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Abstract
In the last decade, significant progress has been made on
developing automatic farfield tracking systems. The PETS
2007 dataset provides some interesting event detection chal-
lenges. In this paper, we describe a method of bootstrapping
a background model in the presence of significant lighting
changes. We then use a blob tracker as an attention mecha-
nism for finding tracks of interest, which we temporally ex-
tend using the meanshift algorithm. Using only weak human
and luggage models (based purely on size), our system per-
forms well at detecting loitering events, and several events
involving interactions between actors and their luggage.

1. Introduction
Police and security officials are increasingly faced with po-
tential threats that can be at least partially mitigated through
surveillance of key physical assets such as seaports, air-
ports, transportation hubs, and government buildings. By
automating portions of the surveillance network, officials
may broaden the range of events they can track and detect
in an effort to increase security.

Beginning in the late 1990s, some key advances were
made by researchers such as Stauffer and Grimson [19] and
Haritaoglu et al. [10] that allowed the construction of real-
time farfield visual tracking systems on commodity hard-
ware. Work has continued to progress in handling more
challenging low-level situations such as variable lighting
and dynamic backgrounds. With those improvements, re-
searchers have been able to also make progress on higher-
level tasks such as directly detecting events of interest.

For the PETS 2006 workshop [1], a standardized dataset
was created to evaluate various automatic visual event de-
tection systems. Seven videos were taken from each of
four calibrated cameras overlooking a train station platform.
Each video set recorded a left-luggage event that the auto-
matic visual surveillance systems were expected to detect.
Specularities, shadows, a partially-reflective glass surface,
and mutual occlusions from multiple actors provided vary-

Figure 1: Actor entering the abandoned-luggage warning
zone: In this image (frame 1120, camera 3, clip S08), we
mark the location of a dropped piece of luggage with a green
dot. The owner has just left the 2m-radius area about the
bag defining a warning zone indicated by the yellow circle.
After remaining outside the red circle (3m) for more than 15
seconds, an abandoned luggage alarm should be generated.

ing levels of difficulty depending on the camera views used
and the individual staged scenarios.

Nearly all of the accepted papers used background sub-
traction and/or motion detection to first identify foreground
blobs. del-Rincón et al. [7] used multiple time scales and
feedback loops to improve robustness. Lv et al. [15] and
Grabner et al. [9] used the background subtraction results
for static object detection and then used and/or learned a
classifier for humans.

Auvinet et al. [2] took the foreground blobs and pro-
jected them onto the groundplane, looking for multiple sil-
houette intersections from the four cameras. Li et al. [14]
used a layered model to track objects across time. Lv et al.
used Kalman filters on the human classifier output, falling
back to meanshift [6] when necessary. del-Rincón et al.
used an unscented Kalman filter to track the owners of dis-
covered static objects while Smith et al. [18] used a full
MCMC sampler. Krahnstoever et al. [13] and Auvinet et al.
showed results using nearest neighbors for their data asso-
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Figure 2: This diagram outlines the primary data processing steps in our tracking pipeline. The motivation behind and
implementation of each block is described in §2–§4.

ciation.
This PETS 2007 workshop is staged similarly to the

2006 workshop, adding several interesting real-world chal-
lenges: (a) more inter- and intra-clip lighting changes, (b)
a changing mixture of harsh and soft shadows, (c) camera
movement between clips, (d) denser pedestrian traffic, (e)
lower effective resolution in a key camera view,1 and (f) a
broader set of events to detect.

The dataset consists of 10 video clips from each of four
calibrated PAL cameras (25fps). The BACKGROUND clip
is a 1000-frame clip with sparse pedestrian traffic, provided
to allow for algorithm training, as needed. The remaining
clips have durations of 2750 to 4500 frames. S00 is a 4500-
frame control sequence in which none of the defined events
occur. S01 and S02 were designed to contain one staged
loitering event each under easy and hard conditions, respec-
tively. For this dataset, loitering is defined as remaining in
the scene for more than 60 consecutive seconds. S03 and
S04 contain easy and hard staged luggage retrieval events
where a group of two people enter and a bag is placed on
the ground. Both members of the couple stay near the bag
and then later the second person picks up the bag and the
couple leaves together. S05 and S06 each contain an exam-
ple of theft, where someone other than the owner picks up
a bag that was placed on the ground by the original owner.
In S07 and S08, a person drops a bag and “abandons” it by
moving more than 3m away for more than 15s (see Fig. 1)2.

1In the PETS 2007 data, the most overhead view (camera 3) recorded
interlaced video, whereas in PETS 2006, the camera for the best view was
progressive scan.

2Originally, the time period was 25s, but it was later changed to 15s
because the actors did not stay away from their luggage for strictly more
than 25s

Before proceeding to describe our method, we note a few
details. Our approach is purely monocular and we use cam-
era 3 (see Fig. 1) exclusively because it offers the viewpoint
with the fewest inter-human occlusions. Because this cam-
era’s video was interlaced, we subsample the input video
without smoothing down to 360 × 288. Our algorithm is
based on generic blob tracking techniques that are readily
implemented and require little training and tuning relative
to ones that use strong human appearance models. For all
tunable parameters, we used the same settings for all clips.

We have implemented a tracking system to detect this
workshop’s events. Similar in spirit to the work of del-
Rincón et al. in PETS 2006, our system is attention-based.
Using background subtraction (our attention mechanism),
we identify (a) likely dropped luggage and (b) long spa-
tially isolated human tracks. When dropped luggage ap-
pears, we perform a local spatio-temporal search for the hu-
man owner. Humans identified by long tracks or by asso-
ciation with luggage then have their tracks temporally ex-
tended via meanshift. Our system is able to accurately de-
tect nearly all of the events that occur in the dataset with no
false positives, including some actual loitering events that
were omitted from the official ground truth.

Our processing pipeline is illustrated in Fig. 2. In §2,
we discuss our background modeling approach and why the
traditional approach is insufficient for this dataset. We then
detail our foreground/background segmentation algorithm
in §3 and tracking in §4. Our event detection rules are de-
scribed in §5 and its results are given in §6. We summarize
our system in §7.
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2. Background Modeling
The first step in our processing pipeline is background mod-
eling. Our goal in this stage is to build, for each pixel in each
clip, a model of the appearance of the static elements in the
scene. The most common approaches to solve this type of
problem are to adaptively model the background as a mix-
ture of Gaussians (c.f. Stauffer and Grimson [19]) or using a
kernel density estimate, as done by Mittal and Paragios [17].
Unfortunately these approaches cannot be used directly for
the PETS 2007 datasets because they make the fundamen-
tal assumption that the most common color modes for each
pixel correspond to the background: the clips recorded for
PETS are short and many have loitering events where one
or more people remain in nearly the same location for al-
most the entire clip. In fact, in S02, some pixels view the
background less than 10% of the time.

A natural approach would be to use the BACKGROUND
clip for training a standard background model to be used
directly and without adaptation in the test clips. BACK-
GROUND is indeed mostly background for all important
pixels, but its lighting is significantly different from all of
the other clips, as we will see when we discuss Fig. 3. For
most of the clips, the overall illumination is lower, and the
locations of bright highlights on the walls and floor move.
Additionally, camera 3 was moved slightly for clips S05
through S08.

An alternative to starting with a foreground/background
segmentation is to simultaneously learn the appearance and
extent of all objects and the background. Unfortunately,
full layered model alternatives either make modeling as-
sumptions that are too strong for this dataset and are very
computationally expensive [11, 20] or they bootstrap off
background subtraction [14, 21]. Also, most existing im-
plementations are inappropriate for very busy scenes with
very frequent occlusions and changes to layer interleaving
over time.

2.1. Implementation
We now give the details of our background modeling imple-
mentation as outlined in Fig. 2.

As already mentioned, one of the challenges of this
dataset is non-constant illumination, as we now illustrate in
Fig. 3. Even when just observing the mean intensity of the
scene, we can see large differences over time within many
clips as well as large differences between clips. The light-
ing effects we observe are consistent with natural lighting
during a partially-overcast day with slowly passing cloud-
cover. To reduce these effects, we illumination-normalize
each video frame, by using the color c̃i,t,

c̃i,t = Σ−
1
2

t (ci,t − c̄t), (1)

instead of the original RGB value, ci,t, where i is the pixel
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Figure 3: Here we plot the average intensity (on a scale
of 0 to 255) of each frame over time, for each video
clip. We note that there are significant inter-clip changes
(e.g. BACKGROUND vs. S02) and intra-clip changes (e.g.
BACKGROUND and S08).

location, t is the current frame number, c̄t is the mean RGB
color vector for the frame, and Σt is the frame’s diagonal
RGB covariance matrix. The remainder of the background
modeling is done independently for each pixel.

Since all pixels of interest in the BACKGROUND clip
are sampled from the background distribution nearly all of
the time, we fit a single joint Gaussian distribution to each
pixel’s illumination-normalized RGB value. To add a small
measure of robustness to foreground pixels that are present,
we discard any pixels with a Mahalanobis distance greater
than 5 from the Gaussian and then refit the distribution to
the inliers. To avoid overfitting, if any eigenvalue in the
covariance matrix is less than 0.002, we round it up to that
value. Minimal tuning was used to select these parameters.
The output from this step is a canonical background model
for each pixel location.

If the lighting changes were more mild, we could directly
use our canonical model in all clips; however, our illumi-
nation normalization is insufficient to be used directly in
these clips. To illustrate the issue, refer to Fig. 4, where
we examine the observed colors when a given pixel views
foreground objects nearly 90% of the time. For that pixel
in clip S02, we have manually labeled all frames as fore-
ground or background, and observed the normalized color
distributions. The black set of axes represent the canonical
background model. We can see that that model poorly rep-
resents the hand-labeled background distribution (red X’s),
but it is much closer to the true background mode than to
any modes from the foreground distribution (blue dots).

In essence we wish to track the background’s color dis-
tribution between clips. We assume (a) that the background
is well-modeled by a Gaussian, (b) that the Gaussian dis-
tribution’s mean and covariance shift slowly over time, and
(c) that the background distribution is distinctive from the
modes in the foreground distribution. Given these assump-
tions, we wish to find the Gaussian mode in the new clip’s
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Figure 4: Background model adaptation for a challenging
case: For pixel (253, 319) in the S02 clip, we labeled all
frames in which the pixel was viewing the background ver-
sus any foreground object. Color values when the pixel was
viewing background are shown as red X’s in a scatter-plot
(projected onto the red and green axes). Blue dots repre-
sent observed background color samples. For this pixel, the
Gaussian distribution learned for the BACKGROUND clip
is shown as a black-colored set of principle axes. The green
axes represent the learned model after it was adapted to this
clip. If we construct a Gaussian classifier from the learned
model for this pixel, the area under the ROC curve is 0.9926
(not shown). The distribution shown here is a particularly
challenging case as the pixel is viewing foreground objects
nearly 90% of the time.

distribution that is closest to the canonical model, as sug-
gested in the previous paragraph. In doing so, we wish to
be agnostic to the observed foreground distribution and only
concern ourselves with finding the closest color mode.

We can simplify our search by warping our illumination-
normalized pixel values so the canonical model is repre-
sented as an origin-centered unit normal distribution:

˜̃ci,t = Σ−
1
2

BG,i(c̃i,t − c̄BG,i) (2)

where we search for a mode in the ˜̃ci,t space, given the
canonical model’s center c̄BG,i and covariance ΣBG,i.

We then iteratively slide a spherical template of radius
5 to the mean location of the sample points that fall within
the template in a meanshift-like loop, until convergence3.

3The template radius was tuned by selecting a single predominantly-
foreground pixel location in each of two test videos and performing a quick
ROC analysis.

We then fit a Gaussian distribution to the samples that
fall within the final template boundaries and limit the co-
variance eigenvalues as we did for the canonical model.
The output from this step is a single-Gaussian background
model,

(
ĉi, Σ̂i

)
, for each pixel, tuned for each video clip,

and defined in the illumination-normalized RGB space.
For the PETS 2007 dataset, we have used the method

just described to track the background distribution from the
BACKGROUND clip to other clips. We have found this
novel implementation to be effective and to require mini-
mal tuning.

3. Background Subtraction
Given a statistical model of the background, we can perform
likelihood tests to classify sampled pixels as foreground or
background, as is standard practice. Markov Random Fields
(MRFs) are an effective mechanism for applying spatial
smoothing priors to a label field [8] instead of relying on
a purely independent thresholding at each pixel. Our MRF
optimizes the following objective function:

E(l) =
∑
{i,j}∈N

Vi,j(li, lj) +
∑
i∈P

Ti(li) +
∑
i∈P

Di(li) (3)

where l is the field of foreground-background labels, P
is the set of pixel sites, N is the 8-neighborhood graph,
Vi,j(li, lj) encourages spatially neighboring pixels to have
the same label, Ti(li) encourages pixels to have the same
foreground/background label they had in the previous
frame, and Di(li) encourages pixels to be labeled as fore-
ground when they do not match the background model well.
These energy terms are defined as

Vi,j(li, lj) = tnδ (li, lj) (4)
Ti(li) = ttδ (li, l′i) (5)

Di(li) =

{
tf , if li = fg;√

(c̃i,t−ĉi)T Σ̂−1
i (c̃i,t−ĉi) otherwise,

(6)

where δ(·, ·) is the Kronecker delta function, tn is the spatial
mismatch potential, tt is the temporal mismatch potential, l′i
is the label assigned to pixel i in the previous frame, and tf
is the foreground label potential. The background potential
(the “otherwise” case) inDi(li) is the Mahalanobis distance
from the learned background model for the given pixel in
the given clip.

We have used an existing MRF implementation that uses
the fast two-label st-cut implementation of Boykov, Vek-
sler, and Zabih [4, 5, 12] with the the temporal smooth-
ness terms suggested by Migdal [16]. For other back-
ground subtraction work, we have found tt = tn = 5 and
tf = log2(2563) ≈ 16.6 to be good default values. We
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Figure 5: An Extreme FG/BG Segmentation Example: Here
we show segmentation results for the foreground- (left) and
background-biased (right) MRFs for frame 500 of clip S08.
The frame shown here is a somewhat extreme example of
the different solutions found by the two MRFs. Both MRFs
use the Mahalanobis distance values visualized in the mid-
dle image as the background label potential. For display
purposes, the intensity is saturated at a distance of 64, twice
the foreground potential for the background-biased MRF
(so a 50% gray pixel sits on the classification threshold, ab-
sent any neighborhood effects).

have used those tt and tn values without any tuning. We
next discuss how we chose tf .

Instead of choosing a single value for tf for the PETS
dataset, we construct pair of MRFs to address two different
detection tasks. One is biased to produce more foreground
labels (tf = 8) and other is biased to produce more back-
ground labels (tf = 32). These values were chosen empir-
ically by starting with the baseline value of tf ≈ 16.6 and
observing foreground/background classification results on a
handful of frames with a few different settings.

As demonstrated in Fig. 5, the foreground-biased MRF
(left) tends to capture all of the foreground into coherent
blobs at the cost of mislabeling shadows as foreground and
joining independent objects. On the right, we see the same
frame segmented with the background-biased MRF. Its sil-
houettes are cleaner and distinct, but camouflaging effects
have caused some objects to be split into multiple blobs.

When attempting to detect dropped luggage, we wish to
obtain robust detections of relatively small isolated objects.
The foreground-biased MRF resists camouflaging effects of
humans that result in fragmented blobs. Thus when a small
foreground blob is present in its solution, there is a high
likelihood that it was actually the result of a small object,
not a blob fragment from a human.

For the foreground-biased MRF segmentations, we ex-
tract blobs using a standard 4-connected neighborhood con-
nected components extractor. Any blobs that have fewer
than 75 pixels are discarded. Before evaluating the MRF,
we mask out regions of the image corresponding to the
ledge on the bottom left of camera and corresponding to
the “British Airways” sign and above on the wall. No hu-
mans can move here and these areas are especially suscep-
tible to lighting changes in some clips. We also reject any
blobs that are very near the edges of the image because they

are unreliable for tracking purposes. The 75-pixel threshold
was chosen with minimal tuning and could be made more
robust by scaling it by the square of the estimated distance
to the camera using its calibration. For this dataset, we did
not find it necessary to take this extra step.

When attempting to detect individual humans who are
present in the scene for a long time, tracking at a blob-
level only works well when the blobs are disjoint. With
the density of human traffic in the PETS 2007 dataset, our
foreground-biased MRF tends to group multiple people into
a single blob very frequently and it also mislabels shadows
as foreground. By biasing a second MRF to prefer back-
ground labels, we obtain clean silhouettes which can be
tracked more easily, at the cost of needing to be robust to
some blob fragmentation.

For the background-biased segmentations, we extract
blobs by grouping any 4-connected blobs that are within 10
pixels of another blob. The 10 pixel dilation diameter was
chosen by observing differences in the MRF segmentations
in a handful of frames from two clips.

The output of the background subtraction is a collection
of segmented foreground blobs from each MRF. We keep
both sets of blobs separately since they are redundant and
optimized for different tracking tasks (dropped luggage ver-
sus human tracking).

4. Tracking
After extracting the foreground blobs, we need to do enough
tracking to detect the desired events: loitering, luggage
abandonment, and theft. These events rely primarily on
(a) tracking and maintaining the identity of humans who
remain in the scene for a long time, (b) detecting luggage
placed on the ground, (c) identifying who owns a piece of
dropped luggage, and (d) identifying those who pick up lug-
gage. Because the clips all have many actors who occlude
each other, simple blob tracking without appearance infor-
mation cannot succeed. One approach is to explicitly build
strong models and attempt to track all humans, as was done
by Grabner et al. and Lv et al. for PETS 2006. We have
chosen instead to build an attentional system that identifies
(a) proactive opportunities to build robust models and (b)
times when more extensive tracking are desired.

Our first tracking submodule takes the background-
biased foreground blobs and performs standard Kalman
tracking on them, using a constant velocity model on the
blob’s centroid in the image plane. During data association,
we independently associate each track with the blobs in the
current frame. If multiple tracks are associated with a single
blob, we initialize a new track to follow the merged group
as long as it remains coherent. This track is tagged as con-
taining a group of actors. We similarly detect tracks that
split into multiple blobs. Although we did not find it nec-
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essary for this dataset, it is possible to use trajectory and/or
appearance information to disambiguate mild to moderate
split-merge graphs using approaches such as that of Bose
et al. [3]. At greater computational cost, an MCMC tracker
such as the one used by Smith et al. [18] could be used as
well. For this dataset, we used a simplified version of the
implementation of Bose et al.

Our second tracking submodule identifies loitering can-
didates. When we observe a non-group track that lasts
more than 16 seconds and whose a mean blob area is be-
tween 1500 and 3000 pixels (in a 360 × 288 frame), we
consider this track as a good candidate. We use the pix-
els in that person’s tracked blob to learn a color histogram
appearance model for that person. We then use meanshift
tracking [6] to temporally extend the track both temporally
forward and backward through occlusions, dropouts, and
merge-split events. We stop temporally extending mean-
shift tracker when the Bhattacharya distance,

BC(p, q) =
√

1−
∑

c∈[0,15]3

√
p(c)q(c) (7)

exceeds some threshold, τmeanshift = 0.14, where c is an
RGB color value, p is the the color histogram model, and
q is the color histogram of the pixels in the putative object
location. Our color histograms have 163 bins. We have used
an existing meanshift tracker implementation.

If a tracked object disappears at a scene boundary, we
terminate the tracking, but we retain the meanshift model.
This allows us to reacquire targets that reenter the scene
soon after leaving.

The third tracking submodule performs Kalman tracking
on the foreground-biased blobs. Humans walking near each
other are often grouped in the same blob with this tracker,
so it is less effective at identifying individuals. It is however
robust to long-term camouflage effects with humans. This
means that a given person rarely produces a track fragment
that represents only a small portion of their body for more
than a few frames at a time. When people drop luggage and
leave it on the ground for an extended period of time, they
often are segmented separately from the dropped luggage
for a second or more at a time. This presents us with an
opportunity to detect these static objects. When we see a
track that with 200 to 1000 pixels, we hypothesize that it is
a piece of dropped luggage. As was done with the long iso-
lated human tracks, we initialize a meanshift tracker using
appearance information from the initial track. We then ex-
tend the track temporally in both directions until significant
movement (τds = 50 pixels) is observed. This gives us the
drop-off and pickup times.

Given a drop-off and pickup time and location for a piece
of luggage, we would like to identify the individual who
has initiated each event. If a human-sized blob overlaps the
bag’s meanshift template area when it moves by more than
τds pixels from its starting position, we assume that that this

person is moving the bag. If we were searching back in time
with meanshift, this blob is the original owner (or victim in
the case of theft), and when searching forward in time, the
blob is the new owner (or thief).

To disambiguate theft, luggage swaps, luggage that al-
ways stays near the owner, and dropped luggage, we need to
track the original and new owners. If either of these people
has already been associated with a loitering track, no extra
work is needed. Otherwise, we use a new meanshift tracker
for each person to discover their long-term trajectory.

Any time we have two temporally-separated full tracks
(those which we extended with meanshift trackers), we
compare the color histograms that were used for the mean-
shift tracking. If the Bhattacharya distance is less than
τreacquire = 0.15, we consider the two tracks to belong
to the same person.

5. Event Detection
As described in the previous section, the attentional tracker
is configured to output the primary pieces of information
required for event detection. We are able to translate the
events from image coordinates to real-world coordinates by
assuming the middle of the bottom of the blob or meanshift
tracker’s bounding box is touching the ground. Using the
supplied camera calibration, we are able to infer the world
coordinates of this point.

Any individual tracks that have a human-like size and
aspect ratio and exist for more than 60 seconds trigger loi-
tering events. If the owner of a piece of luggage travels
more than 2 meters away from their luggage, a warning is
triggered, and if they stay more than 3 meters away for more
than 15 or 25 seconds (depending on the scenario, as indi-
cated in the ground truth), an abandoned luggage alarm is
triggered. If a new owner removes a piece of luggage be-
yond the 3 meter radius, a theft alarm is triggered after 15 or
25 seconds, as appropriate for that clip. If the new and orig-
inal owners both exit the scene together, we have chosen to
output a reattended alarm.4

As the events of interest are precisely and deterministi-
cally defined for this dataset, our system attempts to directly
detect the required conditions for alarms.

6. Results
In this section, we briefly summarize our results on the
PETS 2007 dataset. We first note that we had no false posi-
tive events for any of the clips.

For S00, there were no events that took place (and our
system raised no alarms).

For S01, the first loitering clip, there was a single loi-
tering event. Using our meanshift tracker, we were able to

4In our XML results, we encode this alarm as a LeftLuggage/Theft
alarm pair where the original owner and the thief share the same track ID.
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Temporal Subjective
Clip TP FN Error Difficulty
S00 0/0/0 0/0/0 - / - / - **
S01 1/0/0 0/0/0 5.08s / - / - **
S02 1/0/0 0/0/0 1.44s / - / - ***
S03 2/0/0 1/0/0 8.22s / - / - **
S04 1/0/0 2/0/0 0s / - / - ****
S05 1/1/1 1/0/0 19.2s / 0.08s / 0.08s **
S06 0/0/0 0/0/1 - / - / ∞ ****
S07 0/1/1 0/0/0 - / 0.12s / 0.08s **
S08 0/1/1 0/0/0 - / 0.2s / 0.12s ****

Table 1: Results: TP are true positive and FN are false pos-
itive event alarms. In the PETS 2007 dataset, events of in-
terest have a well-defined start time (e.g. a loitering alarm
should sound the moment a person has been in the scene for
60 consecutive seconds). The temporal errors reported here
are the time we raised an alarm minus the time we should
have raised it, according to the supplied ground truth. For
the TP, FN, and Temporal Error columns, we give three val-
ues. The first is for loitering events, the second is for left
luggage events, and the third for theft or reattended luggage
events. We had no false positives. The subjective difficulty
was defined by the PETS 2007 organizers.

track the loiterer back to 5 seconds after the actual scene
entry. For S02, the second loitering clip, we achieved excel-
lent results.

In each of S03 and S04, a couple swapped a piece of lug-
gage. Since the luggage was never unattended, according
to the PETS definition, only loitering events occurred. For
S04, we detected the time correctly, to the exact frame.

In each of S05 and S06, a theft occurs. Because these are
very busy scenes, especially while the event in question is
occurring, we fail to track the second member of the victim
couple in S05 and we are not able to track the couple all the
way back to their entrance time (yielding a high temporal
error in the detected loitering event). For S06 the scene is
too busy for us to obtain a successful event detection.

In S07 and S08, a person loiters in the scene, drops a
bag, exits the scene, then later the same person reenters and
picks up the luggage. Using the model trained for meanshift
tracking, we are able to not only trigger the left-luggage
alarms with high temporal accuracy, but we are also able to
detect that it is the same person picking up the luggage.

The loitering events we report in S03, S04, and S05 were
not in the official ground truth data, but our own manual
verification indicates that they did occur.

7. Conclusions
In this paper, we have described a event detection system
based on a bootstrapped background subtraction system.

We use blob tracking as an attention mechanism and when
we identify tracks of interest, we employ meanshift trackers
to temporally extend tracks, find related tracks, and asso-
ciate tracks that are temporally separated. Our system per-
forms well on the PETS 2007 dataset.
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