A SOFTWARE TEST-BED FOR THE
REGISTRATION OF 3D RANGE IMAGES

A Thesis

Presented in Partial Fulfillment of the Requirements for
the Degree Bachelor of Science with Distinction at

The Ohio State University

By
Gerald Dalley
The Ohio State University

2000

Honors Distinction Committee: Approved by

Dr. Patrick J. Flynn, Adviser

Dr. Kim Boyer Adviser

Department of
Electrical Engineering



© Copyright by
Gerald Dalley

2000



ABSTRACT

Building 3D models of real-world objects by assembling views taken by a range sensor promisesto be
a more efficient method than manually producing CAD drawings. A series of range images are acquired,
then registered, or aligned with each other to a high degree of accuracy. Finaly, the range images are
merged to form a complete 3D model.

Many techniques have been proposed for solving the registration problem; however, little work has
been done to date to compare several registration algorithms with the same sets of data. In this thesis, we
examine a software test-bed built for performing such analyses. Within this test-bed, we have implemented
several common registration algorithm variants and tested them on four different sets of range images.

Through a set of quality criteria we propose, we show several features of the variants we have
implemented. For example, a base Iterative Closest Point (ICP) algorithm performs very well when nearly
all of the data is overlapping in the range images. For range image pairs that have large non-overlapping
regions, an outlier classifier is required for better results. We also examine the effects of uniform
decimation and | CP exit criteria values.

Our test-bed is extensble and allows researchers to add new registration algorithms and variants.
Given the distribution of closest point pair distances we observed we propose extending this test-bed with

nove approaches to produce better registration results through proper outlier classification.
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CHAPTER 1:

INTRODUCTION

In recent years, there has been a growing interest in techniques for building 3D computer model's of
real-world objects and scenes without requiring humans to manually produce these models using laborious
and error-prone CAD-based approaches. Using “range sensors’ instead, users are able to capture 3D
images of objects from different viewpoints that may be combined to form the final model of the object or
scene.  These models then may be used for a variety of purposes such as building 3D maps for robot
navigation, providing training data for computer vision experiments, and digitizing historical buildings for
restoration planning [12], [14]. Figure 1.1 shows the steps involved in building a model. The following

paragraphs discuss the steps in more detail.

1.1 Range Images

The first step in building such models is to obtain a set of range images. A range sensor scans an
object or scene, producing a 2D array of distance values called a range image. Figure 1.2a represents the
distance array. The numbers in each cell of the table represent a distance from the sensor while distances
that cannot be quantified appear as crosses. These numbers are used as the values for the z coordinate of
points on a polygona mesh. The x and y coordinates are implicit in the positioning of a grid point in the

range image. Figure 1.2b shows arendered view of therangeimagein Figure 1.2a.

1.2 Registration

In order to obtain a complete modd, these individual range images must be combined into asingle data
set.  Before this final mesh integration can be performed, the range images must first be aligned, or

registered. Just as having humans generate the CAD modésisimpractical, sois requiring them to perform



the very precise alignments that are needed. Additionally, while some sensors provide positional and
orientation data for each range image, these values are generally far too approximate for the purposes of
modd building. Instead, either human-assisted or this a priori sensor-produced registration is used as a

first-cut registration. This coarse registration is then refined through an automatic registration scheme.

1.3 Mesh Integration

Once therange images have been registered, they are combined to produce a single surface description.
This mesh integration step prunes the redundant data from the input range images and stitches together
their surfaces. Mesh integration is another large area of study that will not be discussed in detail in this

report.

1.4 Organization of the Thesis

The remainder of this document is organized as follows. Chapter 2 describes the most common
methods used for automatic range image registration and the principal approaches that researchers have
taken to solve the problem. In Chapter 3, we describe the rationale behind our work in building a software
test-bed to comparatively study various range image registration approaches. An overview of the test-bed
implementation follows in Chapter 4, and the results and conclusions of comparing several registration
methods using this software are given in Chapter 5. Chapter 6 describes additional future work that may be

performed to enhance the studies presented here.
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CHAPTER 2:
RANGE IMAGE REGISTRATION: PRIOR WORK

There are three main classes of algorithms commonly used to register range image pairs, shown as
leavesin the treein Figure 2.1. Early work in the field generdly concentrated on extracting and aigning
major features of the range images, and some researchers use feature-based methods for registration [12].
Bed and Jain introduced the Iterative Closest Point (ICP) method in [4]. This method iteratively
minimizes the distance between the range images by finding corresponding point pairs. A significant
number of researchers use Bed’s algorithm in one form or another [12]. A second large subgroup of
researchers use a “ spring-mass’ based system which iteratively performs a series of damped oscillations on
corresponding point pairs based on spring-mass physics systems [6], [14]. In this chapter, we will describe

the ICP agorithm and its variantsin more detail.

2.1 Iterative Closest Point Registration

If arangeimage, P, is being registered to a data set X by using a rotation matrix R and a trandation

vector T , then the |CP registration process attempts to minimize the function given in Figure 2.2. [4] uses

| Registration Algorithms |

I
v
| General Point/Curve-Centric |

v v

| Iterative Closest Point | | Spring-Mass Model |

Figure 2.1: Tree classifying the most common types of registration algorithms



P ={p,} = Pointsin therangeimage being registered
X ={X;} = Pointsin thereference rangeimage towhich Pisregistering. Fora
given point, p;, X, istheclosest point in dataset X to the point p, .

P, and X; arecalled acorresponding point pair (not necessarily 1:1).
N, = Number of pointsin dataset P
R = Registration rotationmatrix
T = Registration trangation vector

_ 1 Ne, _ 2
f(RT)="2[% -ROp, -T|
NP i=1
Figure 2.2: Registration error function to be minimized during ICP registration

a quaternion-based approach to find the valuesfor R and T that minimize this function. These calculations
are performed iteratively using the following basic algorithm:

1. Given each point p, find the closest point, x , in Xto ;.
2. Computetheregistration (R, T) such that f(R,T) isminimized.

3. Apply theregidration to P.

4. Go to gtep 1 if the difference in the registration errors, f (R, T) - f,,(R,T), has not dropped

bel ow some threshold.

This process is guaranteed to converge to some local minimum for any starting registration when P isa
subset of X.

This base algorithm has been modified in many ways by various researchersin attempts to improve the
speed and/or quality of the regigtrations it produces. For example, in [4] itself Bed and Jain recommend
accelerating the iterative process by using a parabalic interpolant to the last three iterations. Others have
made recommendations on weighting the point pairs, on classification of outlier corresponding pairs, on
more robust methods of detecting convergence, and on methods of detecting descents into non-global

registration minima.



Turk and Levoy [12] enhance the regigtration by adding a confidence weighting factor to each point
pair. Points whose norma is directed away from the range sensor are given a lower confidence value, as
are points at the edge of the mesh. These confidence values are used to weigh the summed terms of the
minimization function and enhance Bed' s algorithm to be more robust to sensor errors.

The original algorithm requires that a range image be registered to a surface that is a superset of the
range image. Unfortunately, when building new models from range images, no moddl aready exists to
which arange image may registered. Instead, we desire to register multiple range images so that just their
overlapping regions are aligned. Schiitz, Jost, and Hiigli propose a simple heuristic method of determining
which corresponding point pairs belong to overlapping regions and which are actualy not corresponding
points[11]. They theorize that point pairs whose distance is much greater than the separation of the centers
of mass of two partidly registered range images must be outliers. As shown in Figure 2.3, they calculate a
binary weighting factor for each point pair. Those pairs whose two points are separated by more than a
specified value d are considered outliers and given a weight of zero. Those point pairs whose distance is
less than d are considered inliers and have a weight of one. In this way, those points that are highly
separated and likely to bel ong to non-overlapping regions are excluded from the registration calculations.

Schiitz also expands the ICP algorithm by enhancing the convergence determination and validating
that too many point pairs have not been classified as outliers using the equations in Figure 24. To
determine convergence, they require the change in the mean distance » and the standard deviation, o to be
bel ow user-specified threshold values. Additiondly, if the “surface coupling” given by € drops below 30 to
50%, the validity of the ICP step isin question. Thus a better estimation of convergence is obtained and a
program can detect when it has begun excluding too many point pairs.

Zhang has implemented a more extensve and sophisticated set of modifications to ICP for the
purposes of robot navigation [14].  In addition to aligning both points and curves, he has developed a
more theoretically-based method of classifying outlier corresponding point pairs. Central to his method is
the assumption that for sufficiently registered range image pairs, the distances between points in the

corresponding point pairs will be Gaussian distributed. This Gaussian is due to mis-registration and noise



1 ifd <(cO)®
"0 otherwise
d = |||5| - X ”2
S = Range scanner sample distance
r = Subsampling factor
¢ = Empirically determined threshold based on the separation of the
centers of mass of the data sets

Figure 2.3: Schiitz's method for classifying outlier corresponding point pairs.

2w,

=]

1
N, -1

ﬂ=§%2ﬂw 0=J

P Np

2.(d - u)?, £=100
Np
Figure 2.4: Factorsfor deter mining conver gence and detecting poor ly coupled range images.

in the input data from quantization and sensor error. A range image is considered to be sufficiently
registered when the mean point pair distance is on the order of therange image sampling distance.

A different number of standard deviations from the mean are considered inliers depending upon how
close the regidration is to this expected error (see Figure 2.5). For example, suppose that the expected
error is 2mm, but the actual mean distance error is 5mm and the standard deviation is 4mm. According to
the algorithm in the Figure 2.5, this means that we should include asinliers all pairs whose distance is less
than the mean distance plus two standard deviations (2mm < 5mm < 3*2mm). All pairs whose distance
between its two points is greater than 13nm are then classified as outliers and do not enter in the
registration calculations.

If the registration is outside this range, then a fallback method is used to classify the outliers. A
histogram of the distancesis generated which is examined for thefirst valley beyond the highest peak. This

valley is found by searching for the first histogram point 60% below the peak that isless than the previous



D = Expected error (proportional to the range image sampling distance)
D, =Maximum distance between pointsin acorresponding point pair for the pair to be considered an inlier
& = Hrgt vall ey after largest pesk in the histogram of corresponding point pair distances

if u<D

D, = 4 +30 Regigtrationisquite good
esaif y<3D

D, =M+ 20 Regidrationisstill good
esaif u<6D

D, = M4+ 0 Regidrationisnot too bad
dse

D... =¢ Registrationisrealy bad

Figure 2.5: Zhang's Outlier Classification Scheme

histogram point. All point pairs whose distance falls beyond this valley are classified as outliers and
removed from the current iteration’ s registration cal culations. outlines this classification scheme.

The ICP agorithm originally presented by Besl [4] provides a means for iteratively performing a least
squares registration.  This registration is guaranteed to converge when there are no errors in the data and
when a range image is being registered to an existing model that wholly contains the surface described by
the range image. Researchers have expanded on this base algorithm in attempts to provide better

performance and to make it morerobust to errors and non-overlapping regions.

2.2 Spring Mass

Ingead of the ICP agorithm, Eggert et a. [6] use a spring-mass model to perform registration.
Although the implementation of the project documented in this thesis focuses on ICP, certain concepts
from this non-1CP work can be applied to ICP. In the spring-mass approach, registration begins by finding
the corresponding point pairs, asis done in ICP. Between each pair, a damped spring is logically set up
whose undamped force is proportional to the distance between the points. These individual forces are
combined to calculate the overall forces and torques on the rigid range image meshes. Motion is then
calculated for a small time step. This motion is applied and the force calculations are revisited without

performing the computationally expensive point correspondence search again. The oscillating motions are

8



iteratively performed until they cease to move the data by a significant distance. Once these oscillations
settle down, the corresponding point pair search is performed again. With the new correspondence data, a
new set of spring-mass calculations are performed until they converge. The process of finding
corresponding point pairs and performing damped oscillations is repeated until the overall motion is
sufficiently small. At this point, the range images areregistered. One feature of Eggert’s approach that can
be applied to ICP is that during the nearest neighbor search, matching points are required to be both close

to each other and to have similar smoothed normals.



CHAPTER 3:

RATIONALE AND GOALS FOR THE TEST-BED

Many of the papers discussing new variants to the ICP dgorithm and other registration dgorithms
have only been tested on a small set of objects. Additionally, few algorithms have been tested on the same
set of data. Broader comparative studies to date have been limited in scope, such as Lorusso's studies on
four different methods of calculating the ICP registration values approach [8]. This lack of comparative
data makes it difficult to judge the true strengths and weaknesses of each one. A test-bed platform
facilitates the making of effective comparisons between algorithm variants if properly designed. The
following goals serve as the basis for such adesign:

1. Extensghility

2. Instrumentality

3. Reusahility

3.1 Extensibility

The extensibility of the platform is measured by the ease with which it may be extended to include
other regigtration dgorithms and algorithm variants. This ease trandates into decreased devel opment time
for new variants. Since there are so many algorithms, variants, and sub-variants for registration, this

feature isimportant.

3.2 Instrumentality

After implementing the test-bed, it must be used to gather data for evaluating the relative fitness of
various algorithm variants. At a minimum, the test-bed must be able to readily yield the following

information given a set of variants and input data:

10



1. Final registration error

2. Regidtration transformations

3. Number of ICP iterations

4. Total execution time

The final transforms and registration error provide the means for evaluating the validity and quality of
a particular registration test. The registration error serves as an objective value, and the transformations
allow for visualization of the results for subjective human verification of theregistration. The total number
of ICP iterations required and the total execution time provide the means to evaluate the relative

performance of registration tests.

3.3 Reusability

Given a highly instrumentable and extensible set of software for supporting the registration of range
images, the test-bed software should be engineered to be reusable in larger applications. For example, an
application that merges range images should be able to use the registration software built for the test-bed as

apre-processing step.

3.4 Summary

To better evaluate the reative strengths and weaknesses of the various registration methods available,
we have implemented a test-bed environment. In addition to being able to collect raw results data, this test-
bed can serve longer-term purposes by its extensibility and reusability features. In the next chapter, we will

examine the design and implementation of the test-bed software.
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CHAPTER 4:

IMPLEMENTATION

In order to fulfill the design goals of extensibility, insrumentality, and reusability, we used object-
oriented design methodologies and tools. In particular, the Strategy Pattern described in [7] was used
extensively. The bulk of the test-bed code was written in C++ using the Visudization Toolkit (VTK)
version 2.4 [3], [9], [10]. Additional tools such asthose used in visua modeling of the software design and
those used in the development of the user interfaces are mentioned in Appendix A.

Our test-bed applications perform the functions shown in Figure 4.1. The GUI application reads in
range images that were produced by our range sensor, passes them through the registration process, then
performs the required visudization functions. After performing the registration on the input range images,

our batch-processing application outputs timing and registration information.

__________________________________________________________________________________________________________________

Visudization
Filters

Sayed, Registration
unregistered Algorithm
rangeimages S ooooooooIonIoooIIooooonoooooonl

Algorithm Helpers
%?ﬁ Vari amze Registration
resultsand

timing

Used by GUI and Batch Processor | | Batch Processor i

Figure 4.1: Test-Bed Application Components

12



Section 4.1 introduces VTK and describes in genera how the toolkit was used. Section 4.2 describes
the classes written to support basic range image registration. Section 4.3 shows hooks for variants of the
|CP agorithm, and Section 4.4 detals the ingrumentation hooks. Section 4.5 describes the visualization
support and gives screenshots of the most important windows in the graphical user interface (GUI)

application.

4.1 Integration with Visualization Toolkit (VTK)

A large body of multi-dimensional data-set manipulation and visualization software has aready been
created. Our test-bed software is built upon the Visualization Toolkit (VTK). To the base toolkit, we
added classes to assist in the automatic registration process, and we built classes to aid in the visualization
of the registration results. In this section we will give an overview of VTK, then we will explain in greater

detail the classes which we have written to support registration.

4.1.1 Overview of VTK

VTK is an open source software system supported by Kitware that supports the processing and
visualization of 2D, 3D, and high-dimensional data [3], [9], [10]. The toolkit ships with over 500 C++
classes that can be used as-is or extended in either C++ or through several popular scripting languages.

At the core of a VTK application is the implicitly executed data pipdine. In general, there are two
types of objectsin a pipeline: data objects and process objects. Data objects store the data to be processed
and visudized such as sets of polygons or implicit 3D data. Process objects may supply, use, or modify the
content of these data objects.

A graphical view of a portion of asimple pipelineisshown in Figure4.2. At thehead of apipelineisa
source, such as the vt kSpher eSour ce shown in the figure. A source outputs some sort of data object
such as the vt kPol yDat a that holds 3D polygonal data sets. Between the source and the rendering
portion of the pipdine, any number of filters may be used. The figure shown contans a
vtkTransfornfilter that performs a 4x4 rigid matrix transformation on the input data. The

rendering portion of the pipeline contains various data objects and process objects to set up lighting
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Source (Process Object)

vtkPolyData Data Object

vtkTransformFilter

Filter (Process Object)

vtkPolyData Data Object

('i?enderi ng portion
\_ of pipeline  /

Figure 4.2: Section of a VTK Pipeline for Displaying a Sphere. Arrows represent direction of data
flow via Execut e() .

conditions, perform the 3D-to-2D mapping, etc. More complex pipeines, such as the ones used in the
range image registration test-bed follow this same basic structure, but may contain more filters, and may
have several pipelineslogically in paralld.

VTK pipdines operate “implicitly,” meaning that downstream process objects request the newest data
whenever it isrequired, and the upstream objects implicitly perform only whatever execution is necessary
to guarantee current results. This process requires two steps, an update step and an execution step. The
update step consists of downstream process objects requesting current information from upstream objects.
The execute step happens when upstream objects process their data and produce new data in their output
for the downstream objects to use.

For example, consider Figure 4.3 adapted from the discussion on pages 92-97 of [9]. If Aismodified
and then the output from E is requested, then the update step is performed on the chain E- D- B- A. When A
is updated, it recognizes that it must regenerate its results and calls Execut e() on itsdf, updating its
output. This updated output means that B must now regenerate its output through a call to Execut e() .

This execution step continues for Dand E.

14



In the second example, C is modified and has its output requested. The chain C- B- A has updates
requested, but since nothing has changed for A or B, their Execut e() methods are not called. Since C
has changed, its Execut e() method is called, producing current output.

An explicit execution model requires an independent object, called an executive, to keep track of when
which portions of the pipdine need to be updated and explicitly cause those updates to occur. Although
explicit execution can be more flexible, it often suffers from complex executive implementations. The
registration test-bed software uses the implicit execution scheme favored by VTK, but has limited hooks

for explicit execution where necessary for insrumentation and algorithm eval uation purposes.
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Ca) Execution of E: Full Execution
1. A parameter modified

2. E output requested
B 3. Chain E-D-B-A back propagates Updat e() method
4. Chain A-B-D-E executesviaExecut e() method

c D Execution of C: Partial Execution
1. C parameter modified
A 4 2. Coutput requested
@ 3. Chain C-B-A back propagates Updat e() method

4. No modifications madeto A or B so Execut e() method not called for them
5. CexecutesviaExecut e() method

(@)

Updat e()
— P

>'Execut e()

Execut e()

(b)

Updat e()

Execut e()

(©

Figure 4.3: Implicit Network Execution. (a) The diagram shows five pipeline process objects.
Arrows represent direction of data flow via Execute(). The top text section describes the
interaction diagram in (b). The lower text section desribes the interaction diagram in (c). Adapted
from 94 of [9].
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4.1.2 vtkMiltilnQutPol yDataFilter andvtkFilterAl gorithmClasses

Nearly all of the built-in VTK filter classes have a single input data object and a single output object.
A few support an arbitrary number of inputs, but these still only have a single output object. The task of
registration requires sets of input-output data object pairs. The input objects are the range images before
registration, and the output objects are copies of the inputs transformed so they are registered with each

other. To support this functionality, we have created thevt kMul ti | nQut Pol yDat aFi | t er class(see

Figure 4.4).

Thevt kMul ti | nQut Pol yDat aFi | t er handles the smultaneous updates and execution of all of
its “pipeline branches.” A pipeline branch is an input-output data object pair, plus any internal filters used

to produce the output. When its Execut e() method is called to make the outputs current, it delegates the

execution toitsvt kFi | t er Al gor i t hm employing the Srategy Peattern [7].

vtkFilter

vtkPolyDataCollection

vtkPolyData

+Invut

Inrut to Filter

vtkMultilnOutPolyDataFilter

Invuts | vtkPolyDataCollection
Outruts : vtkPolyDataCollection
FilterAlyorithm ! vtkFilterAlyorithm

Urdatel)
Executel)

+Source

vtkFilterAlyorithm
Filter ;| vtkMultiinOutPolyDataFilter
+Context
+Strateyy BeforeInrutAdded!)
CreateBranchl)
BeforeInrutRemoved()
Executel)
Dutrut from Fifter Creates
+0utrut \
vtkPolyDataCollection vtkPolyData

Figure 4.4; vtkM ultilnOutPolyDataFilter and vtkFilter Algorithm Class Diagram
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Thevt kFi | t er Al gori t hmbase class (see Figure 4.4) defines the following responsibilities with
respect to itsassociated vt kMul t i | nQut Pol yDat aFi | ter:

1. Creation of the output data objects used internaly by thevt kMul t i | nQut Pol yDat aFi | t er

2. Regulating internal pipeline branches when new inputs are added or removed

3. Performing the necessary work to move data into the output objects

These responsibilities have been separated out from the vt kMul t i | nQut Pol yDat aFi | t er class
to allow greater dynamic flexibility when experimenting with the pipeline setup. For example, suppose that
the test program begins by using one particular registration algorithm and then the user wishes to test
another algorithm on the same sat of input daa With the existing design, the new
vtkFi | ter Al gorithm subclass can be substituted in for the old registration agorithm without
disturbing the structure of the pipéline. If the vtkMiltilnQutPolyDataFilter and
vt kFi | ter Al gorit hmclasses were merged, then the new filter would need to have all of its inputs

added back in manually and al of its outputs reconnected to the rest of the pipéline.

4.2 Basic Registration

To actualy perform the range image registration, we have created a subclass of vt kFilter-
Al gorithm caled vt kRegi strati onAl gorithm(seeFigure4.5). Thisbase class createsinterna
pipdine branches that perform rigid transformations for each of the inputs to the associated
vtkMul ti | nQut Pol yDat aFi | t er (see Figure 4.6). Although this base class performs little actual
work in and of itsdf, it acts as a reusable base class from which a wide variety of
vtkFi | ter Al gorithns may be created that smultaneously perform rigid transformations on a series
of inputs.

Currently, the most interesting subclass of vt kRegi strati onAl gorithm is vtkl CP-
Al gorit hm When executed, this agorithm uses Bed'’s Iterative Closest Point (ICP) agorithm described
in section 2.1 to set the internd pipeline transformations in its associated vt kMul ti | nQut Pol yDat a-

Filter.
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vtkFilterAlgorithm
Filter : vtkMultiinOutPolyDataFilter

b

vtkRegistrationAlgorithm creates vtkTransformPolyDataFilter
vtkICPAlgorithm vtkCenterAtOriginAlgorithm vtkPointCorrespondenceAlgorithm

Figure 4.5: Internal pipeline branch structure for the vt kMul ti | nQut Pol yDat aFi | t er with a
vt kRegi strati onAl gorithm

External source External source
or filter or filter

S
vtkPolyData vtkPolyData } =
@
e ; - — N
L vtkMultilnOutPolyDataFilter )
Data shared Data shared
v v N
vtkPolyData vtkPolyData

vtkRegigtrationAlgorithm I—

vtkTransform vtkTransform

hd
sayoue.q auljadid reusau|

Sets or calculates PolyDataFilter PolyDataFilter
the transforms for v v
the VtkTrans_form' vtkPolyData vtkPolyData
PolyDataFilters -
when executed.
Data shared Data shared
N J
\4 \4 o
vtkPolyData vtkPolyData } -é’
@
y y
External filter External filter
Branch O Branch n

Figure 4.6: Class Diagram for vt kRegi strati onAl gorit hmand vt kl CPAl gorithm



4.3 Hooks for Variants

With the purpose of developing the test-bed being to evaluate different range image registration
methods, several hooks for algorithm variants have been added to the vt kI CPAI gori t hmclass. These
hooks are grouped into three major categories. loop exit criteria, point correspondence analyzers, and
registration acceleration. Figure 4.7 gives pseudo-code for the execution loop of vt kIl CPAI gorit hm
indicating how each of the three variant hooks are integrated into theloop. Figure 4.8 givesa classdiagram

of theinterfaces that the variants use.

4.3.1 vtklCPLoopCriterion C ass

The loop exit criteria are implemented as subclasses of vt kIl CPLoopCri t eri on. Thereis dways
exactly one criterion used per vt kl CPAl gorithm ingance, and that criterion is responsble for
indicating the validity and convergence of the current ICP iteration. Implementations  of
vt kl CPLoopCriterion may declare an ICP iteration sequence either because the point
correspondence analyzers have introduced fluctuations in the registration error descent or they may use
some more sophigticated methods to perhaps detect descent into alocal, non-global minimum.

At the present time, only one subclass, vt kLi near Thr eshol dCri t er i on, has been implemented
(see Figure 4.9). This class examines the present iteration and previous | CP iteration to determine validity
and convergence, as shown in Figure 4.10. If the change in the registration erors is less than the
Thr eshol d value, then the current iteration is deemed to have converged. Thresholds closer to zero
generally require more ICP iterations and yield registrations with a smaller mean squared distance error
value. This class also determines validity by verifying that the previous iteration’s registration error is

greater than or equal to the error for the current iteration.
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while the loop criterion indicates that nore | CP
iterations are necessary
begin
cal cul ate the point correspondences for all branches
calculate the registration for each branch using Besl's al gorithm
performregistration acceleration to tweak the
just-cal cul ated registrations
apply the tweaked registrations sinultaneously
end while

Figure 4.7: Pseudo-Code for vt kI CPAI gorit hm : Execut e()

<<Interface> >
VtkICPLoorCriterion

1 HasConverved(aly : vtkICPAlyorithm)  Boolean
IsICPInvalidialy : vikICPAlyorithm) : Boolean

<<Interface>>
VtKICPAlyorithm }Q vtkPointCorresrondenceAnal yzer

TweakCorresrondencelay : vtkICPAlorithm)

<<Interface>>
VEKICPAccelerator

TweakRevistrationVectorslaly  vtkICPA/yorithm)

Figure 4.8: Class Diagram for Registration Tweaks

VEKICPA yorthm

vtk nearThresho dCr ter on

Threshod Doude

HasConveryed()
IsICPInva dl)

b

vtkduy Crteron
MnCouv ny : Doude

HasConveryedl)
IsICPInva dU)

Not implemented

Figure 4.9: Loop Criterion Class Diagram
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&, = Error for current |CPiteration
&, = Errorfor previous|CPiteration
r = Convergencethreshold
Ae =¢,- ¢,
(T,T) if Ae=0
(T,F) if0<Ae<r

ed, valid) = !
(converged, valid) =1 o 4t - < pe

(FRF) if Ae<O

Figure 4.10: Truth Table for vtkLinear Threshold Criterion

4.3.2 vt kPoi nt CorrespondenceAnal yzer Class

The point correspondence analyzers are implemented as subclasses of vt kPoi nt Corres-
pondenceAnal yzer, and there may be any number of andyzers sequentially used by a particular
vt kl CPAIl gori t hminstance. These analyzers are responsible for determining specific information
about corresponding point pairs, as shown in Figure 4.11. At the present time, the analyzers shown in

Figure 4.12 have been implemented.

4.3.2.1 vtkd osest Poi nt Fi nder Class

By default, a vt kd osest Poi nt Fi nder object is used as the first anayzer for a
vt kl CPAI gorit hm This object creates or replaces the O osest Point. Branch,
Cl osest Poi nt. | D, C osest Poi nt. Di st ance, and O osest Poi nt. Pai r Wi ght poaint fields
for al branches. To determine these values, the object loops through all pointsin all branches. Ingde this
double loop, it calculates the distance from the given point to al other pointsin al other branches. The
other point that has the smallest distance is selected as the closest point. The pair weight is ssmply set to
1. O for every point. More sophisticated implementations could use more efficient nearest-neighbor search

techniques such as kd-tree based searches.
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4.3.2.2 vt kMaxDi st ancePoi nt Wi ght Anal yzer Class

Once the d osest Poi nt . Branch, d osest Poi nt. | D, d osest Poi nt. D st ance, and -
Cl osest Poi nt . Pai r Wi ght point fidds have been calculated, a vt kMaxDi st ancePoi nt -
i ght Anal yzer object modifies the O osest Poi nt . Pai r Wei ght field. Based on the method
introduced in [11], it identifies outliers as those point pairs that are separated by “too much” space. As
discussed in section 2.1, this method attempts to solve the problem of partially overlapping data sets. The
original paper suggests that the distance threshold be linearly proportional to the center of mass separation
of the point set and its corresponding closest points, but leaves out details on how to properly choose the
proportionality constant. By default, in the test-bed setup and visualization application, the constant is set
to the average estimated triangle edge length. Any point pairs whose separation is greater than this
constant times the center of mass separation are considered outliers and have their weight set to zero. If the
Cent er O Mass and O osest Poi nt sCent er Of Mass data set fields have not been set for a branch,
this class interndly uses an instance of vt kCent er O MassCal cul at or to perform the calculation

(see below).
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Data About Each Point in Each Internal Pipeline Branch

ClosestPoint.Branch|ID of the branch that has the point closest to a
given point

ClosestPoint.ID|ID of the point that is closest to a given point
ClosestPoint.Distance| Distance between a given point and its closest
point not in its own branch
ClosestPoint.PairWeight|"Weight" or "mass" of the point pair when
viewed from the perspective of the given point

Data About Each Internal Pipeline Branch
CenterOfMass|Center of mass of the weighted points in a
particular internal pipeline branch

ClosestPointsCenterOfMass| Center of mass of the points closest to those
in a particular branch
TotalWeight| Total mass of a particular branch

Figure 4.11: Required Calculationsfor a Set of Point Correspondence Analyzers

vtkPointCorresrondenceAnalyzer

TweakCorresrondencel)

vtkClosestPointFinder ﬁ K vtkCenterOfMassCalculator

TweakCorres~ondencel) TweakCorres~ondencel)

vtkVariancePointWeiyhtAnalyzer
vtkMaxDistancePointWeiyhtAnalyze GoodReuistrationDist Double

TweakCorres~ondencel) TweakCorresrondencel)
CalcGoodReyistrationDistl)

Figure 4.12: Point Correspondence Analyzer s Class Diagram
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4.3.2.3 vtkVari ancePoi nt Wi ght Anal yzer Class

A vt kVari ancePoi nt Wi ght Anal yzer object performs the same function as a vt kMax-
Di st ancePoi nt Wi ght Anal yzer object: estimating which points are from overlapping sections of

the original object. It uses the more satistically sophisticated method introduced on pages 123-125 of [14].

4.3.2.4 vtkCenter O MassCal cul at or Class

The vt kCent er OF MassCal cul at or classis responsible for calculating the center of mass of a
range image. It does so using the standard method shown in Figure 4.13.

If the Cl osest Poi nt . Pai r Wi ght point fields do not exist, al pointsare given aweight of 1. 0.
If the Cl osest Poi nt. Branch or d osest Poi nt. | D point fields do not exist, then the center of
mass of the closest pointsisnot caculated. Theresultsare placed in the Cent er OF Mass and O osest -

Poi nt sCent er Of Mass dataset fidds.

4.3.3 vtkl CPAccel er at or Class

Registration acceleration can be provided through concrete implementations of the vt kI CP-
Accel erat or class. If not accelerator is provided to a vt kl CPAl gori t hm then the registration

vectors generated by the base ICP algorithm are used directly to calculate the registration transforms. At

w; [ ClosestPoints.PairWeight
P, O Pointsin rangeimage
P, O Pointsin ClosestPoints.Branch : ClosestPoints.ID

num pointsin
range image
CenterOfMass= 2. w; [,
i=1
num closest points
in range image
ClosestPointsCenterOfMass = 2w, [T

i=1

Figure 4.13: Equationsfor vtk Center OfM assCal culator
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the present time, no concrete accel erators have been implemented.

4.4 Instrumentation

Registration evaluation is facilitated by the insrumentation built into the test-bed software. This
instrumentation can provide runtime approximation about how much work remains to complete the
registration. More importantly, key information is stored for each ICP iteration to allow more thorough
analysis. Coupled with this instrumentation is a serialization mechanism that can be used with the test-bed
applications and may also be easily processed by shell scripts and loaded directly by popular spreadsheet

programs.

4.4.1 Progress Callback

Primarily to facilitate the incluson of GUI progress meters for long operations, VTK has a built-in
method for filters to report an approximate fraction of the work they have completed while executing their
Updat e methods. For example, if afilter’s Progess is 0. 75, then the filter estimates that 75% of its
work has been completed. If the user has supplied one, the filter may periodicaly cal a
Progr essMet hod to report changes in the progress estimate. The vt kI CPAl gori t hmclass takes
advantage of this mechanism by calling the Pr ogr essMet hod after each ICP iteration. The current test-
bed implementation utilizes this mechanism for progress bars, as originally intended, though its use could
easily be extended to provide additional information such as timing the length of each individual 1CP

iteration through a callback.

4,42 vtkl CPHi storyltemClass

The primary means for anaysis of the registration steps is through examining a stack of vt kI CP-
Hi st oryl t eminstances associated with a vt kl CPAI gori t hm (see Figure 4.14). For every ICP
iteration, a vt kl CPHi st oryl t emis created. As new key portions of data become available, they are

placed into the history item. Certain information, such as whether the ICP iteration was valid or had
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converged is stored as single elements in the history item. Other information such as the registration error
and center of mass datais conceptually stored in an array, with one element per internal pipeline branch.

A vt kI CPAl gori t hmobject can rollback to the state specified by avt kl CPHi st or yl t emviaits
Rol | backToH story method. Additiondly, whenever any input data object to the
vtkMul ti | nQut Pol yDat aFi | t er is modified, the existing registration history can no longer be
considered valid. Upon execution, the vt kl CPAI gor i t hmmaintains the previous final registration, but

flushes the old history and begins anew history stack.

4.4.3 CCSVFil e Class

In order to dlow the batch processing of registration tests and saving of their results, a relatively
simple serialization mechanism isused. Under the current architecture, a parent object acts as a builder for
its sub-objects using token-based commands in a Comma-Separated Variable (CSV) file. For example, if a
vt kl CPAI gori t hmobject is being built and two successive cell values, “GenCent er sOF Mass” and
“Y”, are read, then the owning object would make the following C++ cal: al gBei ngBuilt -

>CGenCent er sO MassOn() . A CCSVFi | e utility class performsthe CSV parsing and encoding.

VvtkICPHistoryItem

GetvalidSterl) Boolean

GetConveryedl) Boolean

VvtkICPAlYorithm GetIincrementalTransformsl) ;. vtkTransform.numBranchesl
GetFullTransformsl) vtkTransform.numB3rnachesl
GetReuistrationVectorsl) fioatlnumBranchesl.7]
GetRevistrationErrorsl) float.numBranchesl
GetCentersOfMassl) float.numBranchesl.3]
GetClosestPointsCentersOfvass() . float.numBranchesl.3]

Figure 4.14: vtkHistoryltem Class Diagram
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4.5 Visualization

For sensor data, there is no precisely known “ground truth” range image registration. Additionally,
each algorithm variant that has a different method of classifying outliers produces different numerical
registration error values for exactly the same transform on a particular set of range images. Because of this,
naive objective tests that smply compare registration errors cannot be used alone. Specificaly, the
registration needs to be viewed subjectively to determine what types of high-level errorsit produces and/or
avoids. For example, consider a common occurrence when registering human face range images.
Although the reported registration error may have been quite low, features such as the nose or ears would
be so mismatched that the registration could not be considered valid, even though a local minimum was
apparently reached (see Figure 4.15). To account for these difficulties, we developed a graphical user

interface (GUI) for the test-bed and several visualization support classes.

4.5.1 The Test-Bed Graphical User Interface

Although VTK has been instrumental in the implementation of the registration algorithm, its true
strength isin visualization of data that have been processed. We have created a visualization application
that performs the following basic tasks:

1. Initia regigration

2. Configuration of registration variants

3. Reading and writing of the CSV configuration and output files

4. Analysisof theregistration history

The actual registration may be performed directly using the visualization program, or a configuration
file may be output for later batch processing. At the present time, the batch programs must be used if

timing information isrequired.
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The initial regigration may be specified by one of two methods. First, the user may manually
manipulate each range image object with the mouse, using all six degrees of freedom. This method
generaly results in extremely poor initial registrations. For better initial registrations, the user may open a
didog that allows the user to pick corresponding point pairs (see Figure 4.16). Once all of the pairs are
chosen, the dialog is closed, and the |CP agorithm is run with a single iteration to register that small set of
corresponding points.

Other dialog boxes may be used to configure the registration variants. For example, the user may
specify which point correspondence analyzers to use and their parameter values. Once an initia
registration and the registration parameters have been specified, the GUI may be used to output a
configuration CSV file of the type described in section 4.4. These files may also be read back into the GUI
at any time for visualization or modification purposes.

In addition to assisting with the setting up of test files, the test-bed may be used to visually evaluate the

Figure 4.15: Close-up view of the nose for theFacesPatl 000U02-108U02 V70984 0003 test. The
lines shown connect closest point pairs.
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results of aregigtration. Through itsmain GUI dialog shown in Figure 4.17, many visualization options are
available such as modifying the rendering style, mouse-based view interaction, and inclusion of data such
as lines connecting closest point pairs. A histogram of the distances between corresponding point pairsis
also available, asis awindow that outputs the state of the current registration as MATLAB source code. A
separate dialog may also be launched which allows for detailed numerica and graphical inspection of each
step in the regidration process (see Figure 4.18). These visualization facilities are enhanced through

several additional classes that we devel oped.

452 vtkCenter AtOriginAl gorithmClass

The built-in mouse interaction in VTK manipulates the scene based on the scene's 3-D center.
Unfortunately, the ranges images being registered may be placed in arbitrary places in 3-D space. The
vt kCent er At Oi gi nAl gori t hmclass solves this mismatch by calculating the center of mass of an
entire set of inputs and transforming that center to the origin (see Figure 4.19). In the test-bed GUI, this
algorithm is gpplied a the end of the pipeline so asto preserve the registered range imagesin space close to

their original location.

4.5.3 vt kPoi nt CorrespondenceAl gorit hmClass

The vt kPoi nt Cor r espondenceAl gorithmclass is a relatively smple subclass of the base
vtkFi | ter Al gorithm(see Figure 4.19). Just as the vt kl CPAl gori t hmdoes, it stores a list of
vt kPoi nt Cor r espondenceAnal yzer s that attach extra data fields to points in the pipelines upon
execution.  Unlike the vt kI CPAI gori t hm however, the output data objects do preserve this extra
information. This classis generally used in conjunction with another such asthevt kG osest Poi nt s-

Connect or Al gori t hm

45.4 vtkd osest Poi nt sConnect or Al gori t hmClass

When the O osest Poi nt. Branch and Cl osest Poi nt . | D paoint fields have been specified, a

vt kC osest Poi nt sConnect or Al gori t hmobject (see Figure 4.19)may be used to construct lines
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that connect closest point pairs, such as those shown in Figure 4.15. This ahility facilitates understanding
which points have been selected as outliers by a point correspondence analyzer and better gauging local

registration errors visualy.
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Pick Points for Course Registration

~Input 0

~Input 1

Cancel

Figure 4.16: User manually selecting corresponding point pairs for initial registration of the
Buddha_000U01-020U01 tests. The yellow dots represent the points picked and have been enlarged

for thisdocument. Thisfigure showsthe second point in the 5" pair being selected.

ICP Test Program M= B
Fie Help
i~ Registered Data - Diagnostic Dutput ICP Test Program
Kick ICP Converged no = by Gerald Dal\_ey .
Single Kick fulb<form0=[0. 937830 0119388 -0.325925 0000000 ; 0111555 0.992 T“eci'gﬁgg;‘}'augggg'w

Mouse Interacts With:

" actor (% Camera HesetCamelal Backgloundl

Pick Paints | |CP Properties Flush Detug

¥ Shaow Tektures Object 1

= Surface
™ Show Normals  wireframe

™ Show Closest Point Connectors " Points

Decimation,
1

Close |

Object 2

% Suface

1 ireframe

" Prirts

Decimation:
1

Reset ICP
Save PP |

fullforrn =[1.000000 0.000359 -0.000219 0000000 ; -0.000353 1.000
inchefiarmO=[1.000000 0.000000 0.000000 0.000000 ; 0.000000 1.000C

regiectors=[1.000000 0000000 0.000000 0.000000 0.000000 0.0000

cpCOM=[10.850026 -2, 246250 -1265. 972046 ; 15.371146 -3 875264 -
numPts=[14866, 14523];

histDepth=3 =
Histogram Update 4 | 3

Closest Point Pairs’ Distances

25
: |
o 20
e
=@
s 15
3 |
210
£ |
E s - [ |
; I L/
s} - l_l - l_..-_.- I- I.-. w Bl
sle|Z| N o|d | f|n &3 & SRR
cloe|a|lgle|lae|lea(glel|le|m|T g
o2 2 [=] o = = |2 [=] @ = e o (=N
o wr e — A w ™ oo (o] < o ] o P bl
= o = h [ w0 [ — [} — w [ (=) = o~
o @ g B e g T ddg 0 oD TONg
2 9 2 9 45 2 &8 5 8 S &8 s o
(= = = (=) =
Distance Bin
i=0.180; d=0.049; wuBin=12.177; BSD=3314 | nm=0.039; s=0.025; muBin=11.176; BirSD=3.143

reqErrors=[0.035414 0.008629 ; 1; Clear Output
COM=I10L865033 -2 244247 -1 65,361073 - 15.393655 -3.675621 -12 e Ot |
—

inchefiormi=[1.000000 0.000019 -0.000028 0.000000 ; -0.000019 1,000 Update Output]

rl0
r0.8
r06
r0.4
r0.2
r0.0

SUONBIAE] fUEDUEIS

Figure 4.17: The main GUI window for setting up and analyzing registration tests
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CHAPTER 5:
EXPERIMENTAL ANALYSIS AND RESULTS

In the absence of actual “ground truth” registrations against which comparisons may be made, we used
a combination of qualitative and quantitative measures to analyze the experimental results. Qualitatively,
we examined a sampling of the test data to verify trends and give meaning to the numericd results. We
used the numerical data to guide this sampling process and produce additional statistics on the registration
results.

In Section 5.1, we describe the ways in which we have setup our experiments, and in Section 5.2 we
propose several ways to analyze the quality of arangeimageregistration. Section 5.3 gives the key results
that we found through our experiments. At the end of this chapter, in Section 5.4 we will summarize our

work and give our conclusions.

5.1 Experimental Setup

In setting up our experiments, we selected severa views from four real-world objects, as shown in
Figure5.1. From thisset of views, pairsfrom an object were sdected, then we used the GUI to produce an
initia registration, as discussed in the Section 4.5. For the tests we performed, we attempted to produce
“good”, redlistic initial registrations that visually appeared to only need a small amount of fine registration.

Once the initial registration was created, we saved the base test configuration file to disk. This
configuration file was then duplicated and modified for each registration variant permutation desired. The
variables upon which these permutations are based for our tests are;

e Dataset



FacesPatl_144

Figure 5.1: Texture-Mapped Rendering of the Range Images Used in Our Experiments. Labels
under each image indicate the data set name followed by the range image name. For the “Angd”
and “Buddha” images, this number is approximately equal to the number of rotational degrees. For
the “FacesPat1” and “ FacesRick1” images, thisnumber isroughly twice that angle.
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e View Pair

+ Decimation Factor:

* Outlier Classifier

* Outlier Classifier Parameter

e Loop Exit Criterion Threshold

Our tests are named according to which values for these parameters were chosen. For details on the
naming conventions we used, see Appendix B. Throughout this thesis, we have followed this convention
when labdling figures and referring to specific experiments.  The remaining subsections will give details
on the permutations chosen. The fina subsection of this section summarizes the permutations and briefly

describes our registration testing environment.

5.1.1 Data Sets and View Pairs

For this paper, we used range images from the“Angd”, “Buddhd’, “FacesPat1”, and “FacesPat2” data
sets. All of the range images on which we gathered data are shown in Figure 5.1. Most of the tests
included the 000 image as one of the two images in the pair. The narrowest view angle used in these tests
was 20 degrees and the widest view angle was approximately 126 degrees. Note that for the “FacesPat1”
and “FacesRickl” data sets, the numbers used to name the range images are actudly double the
approximate angle (e.g. the 126 degree view of “FacesPat1” is labeled as 252).

The“Angel” data set was supplied with our Minolta Vivid 700 range sensor, shown in Figure5.2. The
most important feature of this data set is that the Angel_000 view is, for al intents and purposes, a superset
of all of the other views. The large wings on either side of the body block the camera’s view of the side
and back of the angdl.

The next data set, “Buddha,” was also supplied with our sensor. The Buddha head is quite round and
has some very nice 3D texture in the hair. The ears served as one of the locations that was easiest to find

misregistrations.
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Figure 5.2: Photo of the Minolta Vivid 700 Range Sensor [1]

We acquired “FacesPat]l” and “FacesRickl” with our sensor. Both of these proved to be smoother
data sets than the Buddha images, however they provided more prominent noses and more complex ear
structures.

All of the above range images plus many others are available in our range image database located in

the OSU SAMPL web site at http://sampl.eng.ohio-state.edu/.

5.1.2 Decimation Factor

We tested our experiments at different uniform decimation factors, including 1, 2, 4, 8, 16, and 32.
Larger decimation factors indicate smaller tested images. For example, a 200x200 range image decimated
by a factor of 4 becomes a 50x50 range image where every fourth row and column from the origina is

selected.

5.1.3 Outlier Classifiers and Parameters

Three main point weight analyzer variants were used for our tests to perform outlier classification.
Firgt, the base algorithm introduced by [4] that classifies no points as outliers was used. It requires no
parameters. The vt kMaxDi st Poi nt Wi ght Anal yzer and the vt kVari ancePoi nt Wi ght -

Anal yzer based on [11] and [14], respectively, were also used. These latter two were provided the same
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set of valuesfor their Expect edEr r or and GoodRegi strati onDi st ance values, respectively. We
used a base value of 3. 5492nmmfor each of these, plus several multiples of thisvalue. This base value was

obtained from the mean edge length of several initial data sets at a decimation factor of 2.

5.1.4 Loop Exit Criterion Threshold

As described in section 4.3, the loop exit criterion threshold is the maximum difference between
successive registration errors required to consider an ICP sequence to have converged. We chose the loop
exit criterion values of 0. 3, 0. 03, and 0. 003 somewhat arhitrarily because they yielded good results
with initial tests. Except when analyzing the effects of the criterion value, the tightest threshold, 0. 003

was generally used for qualitative tests.

5.1.5 Experiment Runs

After generating the test configuration files, four 450MHz Pentium 11™ machines with 256MB  of
RAM were used to perform batch experiment runs. The vast majority of the tests were performed on three
machines configured specifically for performing the tests and had minimal softwareinstalled. We collected
data from atotal of 7,699 tests for analysis, which consists of four different input objects with atotal of 18
view pairs. For each of these tests, we recorded the configuration, the registration history described in the
section 4.4, and the total execution time. From the results files, we compiled a database of the fina

registration information, the execution time, and the number of iterations required for each test.

5.2 Analysis Methodology

After performing batch run tests of our regigtration experiments, we collected the results and examined
key individual testsin the GUI. Most of the examinations performed in the GUI were made to characterize
how the outlier classifier choices affect the quality of theregistration. Typically, the no-outlier results were
viewed as a baseline, then results from the two classifiers were viewed. The following criteria were
generally used to judge the quality of aregistration in the GUI:

1. Arethereany grossregistration errors?
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2. Arethere any mismatched edges?

3. Arethere“splotchy” sections?

Gross registration errors consist of registrations that are completely wrong. For example, Figure 5.3
shows two face range images where the nose from one is pointing out the ear of the other. Occasionally,
obvious registration errors such as these correspond to very low registration error values because, even
though the registration isincorrect, the registration produces alow mean squared error.

If the entire registration is not obviously incorrect, we next looked for key feature areas such as ears
and noses on the face images because they were easy to examine with polygonal rendering. Generaly
these feature areas would have edges in one or more range images allowing us to more easily see between
the two rangeimages. Often, we instructed the GUI to draw lines connecting the corresponding point pairs
viaa vt kC osest Poi nt sConnect or filter such as was shown in Figure 4.15. Figure 5.4 shows a
case where the angdl’s right wing is misregistered. The pink edge of the wing intersects the cyan edge
instead of being aligned with it.

Finaly, if there were no problems found in these feature areas, we examined large areas with relatively
constant curvature. Given a perfect registration of range images that have Gaussian noise, we expected that
the two surfaces would cross over each other often, creating a “splotchy” surfaceasin Figure 5.5. A worse
registration would not have this characteristic because the two surfaces would be too far away to have this
interleaving, as shown in Figure 5.6. Thus, we generally considered dightly splotchy surfaces to have a
better registration than registrations displaying large expanses of non-interweaving range image sections.

Using these criteria, we qualitatively analyzed the registration results to determine which algorithm
variants worked the best, and under what conditions. Additional quantitative results were analyzed. Key

findings from those analyses are found in section 5.3.

5.3 Experimental Results

Upon examining our results, we determined the key effects of each of the experiment permutation
variables. We have broken down theresults of these tests into the following categories:

1. Effectsof Outlier Classifier Type and Parameter Settings
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2. Effectsof Decimation
3. Effectsof the Loop Criterion Threshold Vaue
For each of these effects sections detailed below, we will highlight key similarities and differences

with the data sets we tested.
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Figure 5.3: Snapshot of the FacesPatl 000UO1- Figure 5.4: Snapshot of the Angel_000U02-
144U01_N_0003  test. Demonstrates a 060U02 M08873 0003 test. Demonstrates a mis-
catastrophic failure of the registration when registration at the edge of the wing in the circled
large non-overlapping regions exist and no region.

corresponding point pairs are classfied as

outliers

Figure 5.5: Snapshot of the FacesRickl 000UO1- Figure 5.6; Snapshot of FacesRickl 000UO1-
036U01_V01109125 0003 test. Demonstrates 036U01 M0221825 0003 test.  Demonstrates
good “splotching.” poor “splotching.”
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5.3.1 Effects of Outlier Classifier Type and Parameter Settings

One aspect that significantly affects the number of iterations and the total execution time of a test is
whether the ICP processis deemed invalid before it converges. When no classifier is used, 84% of thetests
converged before an ICP iteration resulted in a worse registration than the previous iteration. When either
of thetwo outlier classifiers were used, this rate drops dramatically to approximately 25%. We hypothesize
that the following is happening:

1. Theoutlier classifier marksoutlier point pairs based on aregistration.

2. Thenext registration is calculated and applied given the set of inlier pairs. Thisregistration results

in asmall movement of the range image.

3. The outlier classifier marks outlier points, but this time it selects a significantly different set of

pairsas outliers.

4. The next registration is cadculated and applied on the new set of inlier pairs. The different set of

inliersresultsin aregistration error greater than that calculated in step #2.

We have found that often if we do not check that each ICP iteration’s error value is less than the
previous iteration’s, the ICP cycle enters an infinite loop, apparently jittering between different sets of
inliersand outlier alternately pulling theregistration different directions upon different ICP iterations.

Regardless of whether the ICP sequence was deemed to have converged, we found the effects of using
an outlier classifier to be generdly as expected. When nearly the entire surface from the range image being
registered overlaps the other range image, we found that not using any classifier produced the best results.
We found this situation to be the case for the “Angel” test set as well as for range image pairs that were
only separated by a small angle.

The “Angd” test set approximated Bed's origina requirement of always registering a subset of an
object to the object in the following way. The base range image to which the other range images were
registered was the frontal view of theangel. This view captures the face, wings, and front of the body, only
missing some of the sides of the body that form oblique anglesto the camera. All other views could not see

much more of the original data because the wings blocked the sides and the back.
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For the other data sets, as the amount of non-overlapping data increases, the classifiers become more
important. For most of the tests examined, we found that the vt kVar i ancePoi nt Wi ght Anal yzer
performed the best, though for many tests, it was only slightly better than the vt kMaxDi st ancePoi nt -
i ght Anal yzer.

A major deficiency in the agorithms we tested was that they generally had difficulty registering
certain human-identifiable features of high curvature changes and edges of range images. For example, the
tips of the ear lobesin the face tests would generally be closely registered for the most successful tests, but
often the curves at those tips did not match correctly. We expect that induding the smoothed normals as
[6] suggests would assist in obtaining better results.

Onerather startling discovery we made was that the vt kVar i ancePoi nt Wi ght Anal yzer was
performing very well, but sometimes for the wrong reasons. [14] claims that the hisogram of the
Euclidean distances between corresponding point pairs of a moderately well registered range image pair is
distributed as a Gaussian curve. Often we found this to be the case, asis shown Figure 5.7. On the other
hand, for the “FacesPat1” and “FacesRick1” images, the right leg of the histograms tend to be elevated,
especially when large non-overlapping regions are present.

Consider the curves in Figure 5.8. Both have Gaussian noise and are perfectly registered. If we
examine the overlapping region, the section that looks like a carat (), we can plot a histogram of the
distances between corresponding point pairs. This histogram would be a Gaussian curve due to thenoisein
the data. If we examine the straight segment on the dashed curve, then every point on that segment will
match with the I €ft tip of the dotted carat section. This produces a histogram resembling a pulse function.
When these two histograms are added, we get the lower histogram shown in the figure. In this case, the
standard Gaussian fit leads us to erroneoudly base our outlier classification by the arithmetic mean rather

than the peak of the Gaussian section.
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Figure 5.7: A typical histogram of the distances between corresponding point pairs for a final
registration. Note that the histogram resembles a Gaussian, as hypothesized by [14]. The histogram
columns ar e shaded accor ding to whether the pointsin that histogram column have been classified as
inliersor outliers. Thishistogram isfrom the Ange_000U02-040U02_V 35492 0003 test.

In our “FacesPat1” and “FacesRickl” tests, we found that the above situation happened nearly al of
thetime. Additionally, atypical arithmetic mean of the corresponding point pair distances was near 30nm
With an expected error parameter setting ranging from 0. 1109125nmmto 7. 0984nmm this mean causes
the regigtration to be considered so poor by [14] that the fallback classifier method must be used. As
shown in Figure 5.9, this effectively resultsin dl point pairs corresponding to the right of the main peak in
the histogram to be classified as outliers. These results demonstrate a theoretical deficiency in Zhang's
outlier classifier when there are large non-overlapping sections. Further experiments are required to
determine whether using a more accurate histogram curve fit would alow us to more correctly extract the

inlier corresponding point pairs.



5.3.2 Effects of Decimation

In general, we found that lower decimation factors produced better results, though they required
greater execution time. In particular, the simplistic brute-force nearest-neighbor search used for finding
closest point pairs proved particularly slow for undecimated data sets due to its O(N?) complexity. For
example, the Buddha_300U01- 000U01_N 0003 test took approximately 1 minute, 45 seconds to load
into the GUI. The bulk of this time was spent performing the nearest neighbor search. After breaking up
the input pointsinto uniformly sized bins to improve search speed, we saw this loading time decrease to 40
seconds. In order to not skew the timing results for later tests, the original O(N?) algorithm was used for all
tests and the enhanced search was only used for the GUI visualization. We believe that a more
sophisticated search such as a kd-tree based search would yield much faster results.

Asfor theregistration quality, when each test is viewed with the decimation factor used to perform the
registration, the results tend to be quite good. Unfortunately, the uniform decimation is sub-optimal for
preserving the original shape. If aregistration performed on decimated data is viewed with undecimated
data, the more subtle features of the shape show up and expose mis-registration problems. We found that
because the initial course hand registrations were close enough to the correct registration that decimation
factors above 2 produced unsatisfactory results. Higher decimation factors generaly resulted in fine
registrations that were qualitatively worse than the original course registration, when viewing the results
with undecimated data.

We did not find any strong correlation between the decimation factor and how the outlier classifier

parameters affected whether an ICP iteration terminated successfully or becameinvalid
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Figure 5.9: A histogram of the distances between corresponding point pairs for a final registration
typical of tests where there are large non-overlapping regions. The histogram columns are shaded
accor ding to whether the pointsin that histogram column have been classified asinliers or outliers.

Thishistogram isfrom the FacesPatl 000U01-144U01 V01109125 003 test.
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5.3.3 Effects of the Loop Criterion Threshold Value

Modifying the loop criterion produced predictable results. As tighter criteria were used, we noticed
greater refinement in the registration path being followed. |If the ICP algorithm was moving toward an
incorrect registration, a tighter criterion simply allowed it to move in closer to that incorrect registration.
Additionally, the tighter the criterion, the greater chances there were that the ICP sequence would become

invalidated.

5.4 Summary and Conclusions

In this chapter, we have described our test setup and the generation of the 7,699 tests for our
experiments. We have proposed a method of analyzing the quality of range image registrations, and given
our analysis of our experiments using this method.

In that andysis, we found that for range image pairs that approximate Bed’s requirement of full-
overlapping, using no outlier classifier generaly yidded the best results. For those pairs that had
significant non-overlapping regions, both of the classifiers generdly yielded good results, with the
classifier based on Zhang's work performing slightly better in most cases than the one based on the work of
Schiitz.

We also found that although decimated data could be registered, those registrations tend to only be
“good” in the context of their decimation. Once the range image pair is viewed undecimated, the
registration imperfections readily manifest themsdves. On the flip-side, due to our rather brute-force
approach to finding closest point pairs, decimation had an extremely significant impact on the execution
timerequired.

Additionally, we found that modifying the threshold for determining convergence of an ICP sequence
had predictable results. Asthat threshold is lowered, the sequence ssimply goes further dong the path it is
following unlessit first encounters numerica or agorithmicinstabilities.

Through performing the tests and analyses, we benefited from the design goals that we followed. The

hooks for instrumentation allowed us to gather the required data from our experiments. Further, we were
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able to add new variants as necessary to our test-bed due to its extensible nature. Internally, we reused
code as we developed classes such as the vt kO osest Poi nt sConnect or that shares the point
correspondence filters with the vt kl CPAI gori t hmclass, and as we built multiple applications that
shared the library classes discussed in this thesis. In the next chapter, we will examine ways in which the
work we have done may be expanded even further and ways in which we may build upon the observations

we have made here.
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CHAPTER 6:

FUTURE WORK

While developing and using the test-bed, we encountered numerous areas in which our work may be
extended and enhanced in the future. Some of these ways include further improving the test-bed software
infrastructure, implementing and testing additional existing registration agorithms and variants, and
developing novel techniques and approaches to the registration problem.

When we began developing the batch processing application, we encountered an infrastructure issue:
seridization and deserialization of the registration pipeline configuration and results. In this context,
seridization is the process of converting a complex set of objects into a stream of bytes typically stored on
disk. Deserialization is the inverse process. We used the CSV-based approach introduced in subsection
4.4.3 due to its smplicity and our ready access to tools such as Microsoft Excel™ and PERL that could
easily process CSV files. Unfortunately, this approach required hand-coding of each seridization and
deseridlization routine. As support grows in VTK, we expect to be able to enhance the software to support
automatic recognition of new registration and helper classes in libraries and automated seridization and
deserialization.

Reated to this infrastructure work, there are many other registration algorithms and variants that we
have neither implemented nor specifically tested. For example, Turk’s non-binary point weight classifier
[13] may prove to yidd better results around points that have a high probability of sensor error. The
spring-mass approach used by Eggert [6] and others may prove to be much faster than a pure | CP approach.
By including not only the position, but also the norma in the corresponding point distances used for the
registration, our results may improve significantly around features of high curvature.

Finally, we would like to further characterize the distribution of errors due to sensor noise. We expect

that we will find the hypotheses presented in subsection 5.3.1 to be correct. The distribution of
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corresponding point distances may be approximated by a Gaussian curve from the overlapping regions of
the range image plus a step function from non-overlapping regions when the object has strong globally
smooth curvature. If this theory holds true, we believe that we can develop more robust point classifiers

that can more effectively extract the corresponding point pairs that actually bel ong to overlapping region in

the range images.
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APPENDIX A:

HARDWARE AND SOFTWARE TOOLS USED

Hardware Tools
e 450Mhz Pentium Il with 256MB memory

e MindltaVivid 700 Non-Contact 3D Digitizer (http://www.minolta.com/)

Software Tools
*  Microsoft Visual Modeler™

e OSU range image database (http://sampl.eng.ohio-state.edu/)

e Microsoft Excel™ for numerical analysis
Languages and APIs
o C++

e VTK™ (http://www.kitware.com/vtk.html)

*  MFC™ for the GUI

e PERL for support scripts (http://www.cpan.org/)

e HTML for debugging output
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APPENDIX B:

TEST NAMING CONVENTIONS

Buddha 000 |U |04 |- |040 (U|04 |_|M|[0221825 |_ |0003

Data set name

Delimiter
View 0 Angle

View 0 Decimation Type
View 0 Decimation Factor
Delimiter

View 1 Angle

View 1 Decimation Type
View 1 Decimation Factor
Delimiter

Outlier Classifier

Outlier Classifier Parameter
Delimiter

Loop Exit Criterion Threshold

. Data set name: Human readabl e | ogical name of the data set used. In this paper, the data sets are
“Angd”, “Buddha’, “FacesPat1”, and “FacesPat2” are used.

. Delimiter: A combination of underscores and dashes are used as delimiter characters to make
machine and human parsing of the test names essier.

. View Angle: Indicates an approximate view angle about the vertical axis. For example atest with
view angles of 000 and 040 would contain two range image views separated by approximately 40
degrees. The narrowest view angle used in these tests was 20 degrees and the widest view angle
was approximately 126 degrees. Note that for the “FacesPat1” and “FacesRickl” data sets, the
names of the view angles are actually doubl e the value described here (e.g. the 126 degree view of
“FacesPat1” islabelled as 252).

. View Decimation Type: For agiven view, indicates what type of decimation was used. For the
tests we are reporting here, only uniform decimation was used, indicated by a“U”.

. View Decimation Factor : Indicates how much decimation was used. In the example above, “04”
indicates that every fourth row and column of the original range image was used.

. Outlier Classifier: Indicates which outlier classifier was used. “N” stands for none, “M” for
vtkMaxDistancePointWeightAnalyzer, and “V” for vtkVariancePointWeghtAnalyzer.

D Outlier Classifier Parameter: If the outlier classifer was not “N”, this gives the classifier
parameter. To interpret these values, insert adecimal point after thefirst digit. For example,
“M0221825" indicates that a vikMaxDistancePointWeghtAnalyzer was used with the
ExpectedError value set to 0.221825.

. L oop Exit Criterion Threshold: Indicates the maximum difference between successive
registration errors required to consider an | CP sequence to have converged. Aswith the outlier
classifier parameter, a decimal point islogically inserted after the first digit, so “0003” is
interpreted as 0.003.

Figure B.1: Naming conventions used for our experiments. See section 5.1 for additional details on
the tests performed.
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