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Abstract

We present a model-based method for accurate extraction of
pedestrian silhouettes from video sequences. Our approach
is based on two assumptions, 1) there is a common appear-
ance to all pedestrians, and 2) each individual looks like
him/herself over a short amount of time. These assump-
tions allow us to learn pedestrian models that encompass
both a pedestrian population appearance and the individ-
ual appearance variations. Using our models, we are able
to produce pedestrian silhouettes that have fewer noise pix-
els and missing parts. We apply our silhouette extraction
approach to the NIST gait data set and show that under the
gait recognition task, our model-based sulhouettes result
in much higher recognition rates than silhouettes directly
extracted from background subtraction, or any non-model-
based smoothing schemes.

1. Introduction

The ability to accurately segment pedestrians from a video
stream is important for applications such as gait recognition,
person height/girth estimation [4], articulated body track-
ing, pedestrian activity description [3], and 3D reconstruc-
tion of people from silhouettes [7]. We use a model-based
approach to pedestrian segmentation that incorporates in-
formation from background subtraction, pedestrian shape
models, and an individual shape model sampled at discrete
phases of the walking cycle. Our approach eliminates noise
introduced by background subtraction, and fills in missing
parts of the pedestrian silhouette, which often result from
camera noise or lack of color/intensity difference between
the pedestrian and the background. In addition, our pedes-
trian models are learned from a noisy background subtrac-
tion process, hence making the entire process completely
automatic.

Traditional approaches to pedestrian segmentation from
video generally involve using a background subtraction
algorithm to arrive at foreground silhouettes, then post-
processing to refine the silhouettes. Because background
subtraction inherently detects pixel value changes in the
video/image, spurious foreground pixels are formed by
noise in the video, and pedestrian silhouettes will have holes

and missing parts if there is not enough contrast between the
pedestrian and the background scene. The general solutions
to these difficulties are to apply large numbers of morpho-
logical operations to fill in holes and remove noise in the sil-
houettes, or to apply a smoothing process at the background
subtraction stage [9]. In either case, these operations tend to
systematically distort the silhouettes and remove fine details
which may be important for identification.

We investigate the particular case of pedestrians walk-
ing in a plane roughly parallel to the camera image plane.
Under this scenario, it is easy to see that there are common-
alities between all pedestrian shapes. Moreover, the cyclic
nature of the walking action ensures that the silhouette ap-
pearance of each individual pedestrian is repeated at each
stride at regular intervals. These observations make it possi-
ble to improve the estimation of silhouette appearance over
time and over a population of pedestrians. We take advan-
tage of these characteristics to learn two types of pedestrian
models, one that represents all pedestrians, and one that rep-
resents each individual walking video sequence. Using the
pedestrian population model and individual sequence mod-
els, we are able to remove noise from each frame of a sil-
houette sequence and fill in missing parts of each silhouette.
To show that these silhouettes are an improvement over the
traditional methods of silhouette smoothing, we apply our
approach to the NIST gait data set1 to produce a set of sil-
houttes and use these silhouettes in a set of baseline gait
recognition tests introduced in [9]. Our results show that
recognition results are improved using our model-based sil-
houettes.

While we are only concerned with extracting pedestrian
silhouettes in this paper, the method we propose is generally
applicable to any moving object that demonstrates the cyclic
nature and common overall appearance that are observed in
pedestrians. For example, models for joggers, or trotting
dogs or horses may be built using the same technique.

2. Previous Work
There are many works related to the problem of pedestrian
detection/tracking/segmentation. We indicate several of rel-
evance to our approach. We categorize these works into two

1See http://www.gaitchallenge.org.
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types: pedestrian detection, and pedestrian shape represen-
tation.

Oren et al. [8] trained a set of wavelet template represen-
tations of the frontal view of pedestrians. These represen-
tations capture the shape gradient difference between the
pedestrian and the surrounding background. The authors
applied their pedestrian representation to images to detect
roughly frontal (or back) views of pedestrians. Gavrila [2]
used a set of edge models of pedestrian shapes to detect
pedestrians from video sequences taken with a moving cam-
era. While pedestrian detection is the goal of both algo-
rithms, additional steps are needed to extract the silhouette
of pedestrians.

Haritaoglu et al. [3] used background subtraction to
detect, segment, and track pedestrians, but they did not
eliminate the errors introduced by background subtraction.
Baumberg and Hogg [1] represented the pedestrian shape
by a chain of edge points. However, a clean segmentation
of the pedestrian is assumed, and point selection requires
human intervention.

Kale et al. [5] use a five state HMM for gait identifica-
tion and reduce their observation distributions to a single
Gaussian per state using noisy silhouettes. Zhou and Chel-
lappa [11] use a time series continuous state space model to
recognize people walking toward the camera.

While there are pedestrian model representations pre-
sented in these papers, they do not address problems inher-
ent to background subtraction that make accurate extraction
of pedestrian silhouettes difficult. Without the full silhou-
ette, questions such as “what color of clothing is the pedes-
trian wearing” can be hard to answer. Our approach seeks to
overcome these difficulties by learning a probability distri-
bution of pedestrian foreground models at different phases
of a walking cycle over time and then using these models to
provide better shape definitions and to recover from errors
in the background subtraction process.

3. The Need for Model-based Segmen-
tation

If pedestrians always appeared in colors that are drastically
different from the surrounding background, and there were
no cast shadows, then pedestrian segmentation from any
image would be a simple task. However, in any realistic
video monitoring situation people may have colors on the
body that are close to the background, and shadows will
appear. For example, Figure 1 shows the intensity of one
color channel of one pixel location in a video sequence. We
manually found the frames for which the pedestrian is the
foreground at that location. Clearly, there are some frames
for which the foreground process is indistinguishable from
the background process. The pedestrian in this case is wear-
ing a black shirt and walking past a black background. As
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Figure 1: The intensity of a pixel through time. Within the fore-
ground segment, indicated by the dark bars, there are times when
the intensity is indistinguishable from the background values.

a result there are large holes in the torso of the silhouette.
These are difficulties that no local background subtraction
algorithm can solve, because background subtraction only
detects changes in pixel intensities. A model-based pedes-
trian representation imparts expectations on the structures
of pedestrians, and the confidence level associated with the
expectations will allow us to ignore the noise in the video
data and fill in the expected structure where data is missing.

4. Learning Pedestrian Models
We consider the case where the pedestrian is walking in a
plane that is roughly parallel to the image plane and always
in the same direction. Under this scenario, the cyclic nature
of pedestrian silhouette appearance is readily apparent. The
same phase of a walking cycle will appear repeatedly in a
sequence. Hence we can obtain a better estimate of a sil-
houette by using all silhouettes that correspond to that same
phase. To further simplify the problem, we assume that the
walking direction is known. Hence we only need to rep-
resent the silhouettes in one direction while the silhouette
appearance from the opposite direction is a mirror image of
the standard direction.

The above observations lead to a straightforward method
for obtaining a pedestrian model within a silhouette se-
quence using a number of discrete phase representations:

1. Detect the period of the silhouette sequence using pe-
riodic features, such as the silhouette aspect ratio.

2. Align all silhouettes by the phase of the walking cycle
assuming a constant walking period.

3. Average all silhouettes assigned to the same phase.

Assuming that there is no systematic error in the back-
grounding process or in the environment, and that pedes-
trians walk at roughly constant speed, this method will
generate a good representation of silhouettes over differ-
ent phases of a walking cycle that captures the shape of the
pedestrian in the walking sequence. However, both of these
assumptions are occasionally violated. If the pedestrian has
consistent patches of clothing that match the background
environment, the raw silhouette sequence will have many
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(a) (b) (c) (d)

Figure 2: The pedestrian population models: (a) male, (b) fe-
male, (c) average model, and, (d) mask for pedestrian shape–black
for turning off a pixel, white for turning on a pixel, and gray for
unchanged pixel).

frames with large holes in the body. If the walking speed of
the pedestrian changes in a sequence, assigning a silhouette
to its correct phase may be difficult.

4.1. Pedestrian Population Model
To address the issue of systematic noise in a gait video se-
quence, we devise a separate model that represents the ap-
pearance of all pedestrians, which we name the pedestrian
population model. We assume that while systematic errors
in background subtraction may occur for one walking se-
quence, they are unlikely to occur at the same location for
a population of pedestrians. Hence, a silhouette model con-
structed using a sampling of silhouette sequences from a
general population of pedestrians will not suffer from sys-
tematic background errors. However, because different in-
dividuals have different stride lengths, aligning and averag-
ing silhouettes from different pedestrians by phase results in
blurred legs, especially for the phase with the widest stance.
As a consequence, we choose to represent the silhouette of
all pedestrians with the mean silhouette of a training set that
is representative of the population.

There are some postural differences between the silhou-
ette appearances of male and female pedestrians (see Fig-
ure 2a and 2b), thus the training sequences need to contain
an equal number of male and females. Figure 2c shows the
average pedestrian model computed from 5 males and 5 fe-
males randomly chosen from our gait data set. This popula-
tion model is generated using 100 random silhouette frames
from each of the 10 training subjects. The amount of data
used represents 1% of all the data frames, and 8% of the
total number of frames of the training subjects.

4.2. Pedestrian Sequence Model
To overcome the constraint on constant walking period, we
construct a hidden Markov model (HMM) of the silhouette
appearances where each state represents the silhouette at
different stages of walk for each pedestrian silhouette se-
quence. The transitions between the states in an HMM

Figure 3: Sample model of 8 phases of the walking cycle for one
of our sequences after HMM training.

contain information about the relative amount of time a
pedestrian stays at each state and thus covertly constrains
the period, but this is not a hard constraint and does allow
for adaptation to changing walking speed in a walking se-
quence. In addition, because an HMM is trained on each se-
quence, the states of the HMM will represent the silhouette
appearance of each sequence much better than a pedestrian
model constructed using any generic silhouette sequence.

An HMM is a probabilistic model of a random process
with discrete states. In a first order Markov model, the state
of the system at time t+1 can be predicted knowing only the
state at time t, e.g. P (st+1|st, st−1, ..., s0) = P (st+1|st).
In our case, the states are 8 phases of the walking cycle,
represented as images in Fig. 3. A Markov model is hidden
when we are unable to directly observe the states. Instead
we observe some output of the system, characterized by a
probability distribution, P (yt|st). For the pedestrians, we
see images (our observations) of a person instead of having
a perfect noise-free “phase detector” (our states).

An HMM is characterized by the probability of start-
ing in some state, P (s0 = i), the transition probabilities,
P (st+1 = i|st = j), and the observation probabilities,
P (y|s). These probabilities are estimated using standard
techniques [10], with the following caveats. First, we model
walking as a set of cyclical transitions between N discrete
states, where we have selected N = 8. Second, we assume
that a person will start being filmed at a random time with
respect to the phase, so P (s0 = i) = 1

N for all i. Third, we
set the transition probabilities to be:

P (st+1 = i|st = j) =




1 − 1
f/N if i = j

1
f/N if i = j + 1 mod N

0 otherwise

where f is the average number of frames in a walking cycle
for the given sequence (f > N ). f

N is the average number
of frames per phase transition, so 1

f/N is the probability
of transitioning out of a state after one frame. Finally, our
observations are binary silhouette images. We model the
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Figure 4: Closeup of the legs for the sixth state of a sequence.
Left: original estimate based on averaged frames. Right: refined
estimate after HMM training.

probability of each individual pixel being turned on as an
independent Bernoulli random variable. This model can be
represented as an image where the intensity of a model pixel
is the probability that that pixel will be on in an observed
binary silhouette image. As previously mentioned, Fig. 3 is
a rendering of this model for a particular HMM we trained.

To train the HMM, we must supply initial estimates of
these probabilities. In our case, the transition and initial
state probabilities are fixed as described. For the obser-
vation probabilities, we start by assuming a near-constant
walking speed and assigning the widest stance to be state 0.
We then estimate the state of the frames:

st =
⌊
s0 + t

1
f/N

mod N

⌋

where s0 is the state for frame 0 and t is a non-negative
integer. For our initial observation probabilities estimates,
we then average all of the frames assigned to each state.
For the frames in the NIST gait data we are using, the as-
sumption of near-constant walking speed is valid, and these
initial estimates work well. A more robust method would
be necessary if there were significant changes or drift in the
walking speed.

Once we have the initial estimate of the observation
probabilities, we train an HMM on the sequence silhouettes
to refine the probabilities. The HMM is able to adapt to
smaller fluctuations in walking speed and make the obser-
vation model sharper, as seen in Figure 4 .

5. Raw Silhouette Extraction
We have assumed to this point that the raw pedestrian sil-
houettes used as input for our model-based pedestrian sil-
houette extraction method had been obtained and that the
tracking of the silhouette is accurate. Below we describe
the process by which we obtain such a set of silhouettes.

5.1. The Gait Data
The data set we are using is the standard NIST gait data set;
the details of the data collection method are described in
[9]. Subjects were asked to walk along a smoothly curving
path under differing environmental and imaging conditions.

The difficulties posed by automatically extracting good
silhouettes from this data set include: shadows on the
ground, grass covering feet, moving objects (including peo-
ple, palm trees, fluttering construction tape, etc.) in the
background, subjects wearing clothing that is largely in-
distinguishable from the background. All of these make
the tracking and background subtraction problem difficult.
However, the predefined pedestrian path allows us to ap-
ply global constraints to simplify the tracking problem. Be-
cause all frames of a gait video sequence are available at
processing time, we are able to use a batch background sub-
traction algorithm to extract the foreground.

5.2. Tracking and Background Subtraction
Because of the moving objects in the scene and the amount
of harsh shadows, tracking the pedestrian accurately be-
comes a challenging problem if we make no assumption
about the gait data. To simplify the tracking problem, we
instead use frame differencing (i.e. we subtract color val-
ues at each pixel between successive frames) to initially lo-
cate the pedestrian in the image. Frame differencing has
the advantage that it is robust to gradual lighting change,
large shadows, and even waving trees, thus allowing us to
localized the pedestrian accurately. However, it does suffer
from missing pixels from the upper portion of the body at
times, because the torso generates less motion than the legs.
Hence we have to choose a large bounding box to outline
the pedestrian.

In addition to using the frame difference image to local-
ize the pedestrian, we also impose a constraint that the paths
of the silhouette centroid must be smooth to a 2nd degree
polynomial. We use a repeated robust estimation process to
generate a path and a set of bounding boxes containing the
pedestrian.

Given the bounding boxes for the tracked pedestrian in
each frame, silhouette extraction using background subtrac-
tion is relatively straightforward. A background is modeled
as an array of Gaussian distributions in RGB color space,
one for each pixel location. For each image frame, the Ma-
halanobis distance of each pixel location is computed us-
ing its corresponding pixel value and background Gaussian.
This distance image is thresholded to yield a binary silhou-
ette. The parameters for each Gaussian are estimated using
all pixel values occurring at the pixel location except when
the location is within a pedestrian bounding box.

6. Model-based Silhouette Refinement
Given the raw pedestrian silhouettes generated in the pro-
cess described in Section 5, and the pedestrian models de-
scribed in Section 4, we can post-process the raw silhou-
ettes by scale normalizing the silhouettes and then using the
silhouette models to remove noise and fill in holes at each
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Figure 5: Silhouette filling examples. (a) raw silhouette
(b) HMM model for the state most likely to have generated
the silhouette (c) mask made by thresholding b (d) logical-
OR of a and c. (e)-(h) are the same as a-d, except e is the
population-filled silhouette and the HMM in f was trained
on the population-filled sequence. (i) another raw silhouette
from a different person (j) i after population- and HMM-
filling. (k)-(l) same as i and j for a third silhouette.

frame. Our pedestrian silhouette model involves two levels
of representations: the pedestrian population representation
and the pedestrian sequence representation, each requiring
a different treatment.

The pedestrian population model, generated by averag-
ing a set of training silhouettes equally representing men
and women, is used to refine the raw silhouettes. We can
interpret the average as the maximum likelihood estimate
of the parameters of a population silhouette generative pro-
cess. Each pixel location L is an independent Bernoulli pro-
cess with parameter θL = p(L = 1). Given a sequence of
silhouettes from a pedestrian, we want to choose a binary
value for each pixel location in every frame. We can ob-
tain the posterior distribution of θL given the sequence and
a prior based on the population parameters. In principle,
we could threshold the maximum a posteriori value of θL.
However because the population model prior is only valid
for static binary shapes, we can only confidently threshold
at pixel locations for which the shape is static across time
(i.e., low variance Bernoulli processes). Empirically, we
found that restricting the prior to be valid only in the range
θL ≥ 0.9 and θL ≤ 0.05 worked well . All other pixel
locations in the pedestrian silhouette sequence are left un-
changed. This set of thresholds gives us the mask shown in
Figure 2d. Note that the pixels that are consistently turned
on are the ones interior to the pedestrian torso and head re-
gion, and the ones that are turned off are far from the edge of
the silhouettes, whereas the unchanged pixels are the edge
of the silhouettes and the legs.

The pedestrian sequence model, a cyclic silhouette
model representing discrete phases of a walking cycle, is
used to produce silhouettes that preserve the fine details
of individual pedestrian. This model is trained on each
sequence and hence is able to preserve the detailed shape

of the silhouette in the sequence. We begin by training an
HMM on the sequence, as described in Section 4.2. Using
that HMM, we determine the most likely state assignments
for each of the silhouettes using the Viterbi algorithm [10].
To do the filling, we turn on any pixel in a silhouette that
has a likelihood of greater than 0.5 in the HMM.

In Fig. 5, we see an example of the two filling methods:
(a) has no filling, (d) is HMM-filled, (e) is population-filled,
and (h) is both population and HMM-filled. In this example,
the population-filling recovers part of the head and removes
a few spurious pixels. The HMM-filling is able to fill in
more of the head and parts of the lower torso. In (i) and (j),
we see an example of filling in the entire upper torso and
part of the hair for a different person. The legs are filled in
for a frame of a third person in (k) and (l).

7. Evaluation Methods

To evaluate the quality of our model-based silhouettes, we
apply these silhouettes in a gait recognition task. We use
two gait recognition algorithms—an existing algorithm de-
scribed in [6] briefly summarized below, and a distance met-
ric based on the silhouette HMM states.

Our gait dynamics feature vector consists of smoothed
versions of moment features in image regions containing
the walking person. For each silhouette of a gait sequence,
we find the centroid and divide the silhouette into 7 parts
roughly corresponding to head/shoulder, arms/torso (front
and back), thighs(left/right), and calves/feet(left/right) (see
Figure 6(a)). For each of the regions, we fit an ellipse to de-
scribe the centroid, the aspect ratio and the angle of the por-
tion of foreground object visible in that region(Figure 6(b)).
We assume that all of these features–the centroid, aspect ra-
tio, and angle of each region–are sampled from a Gaussian
distribution and compute the mean and standard deviation
for each of these parameters across each walking sequence.
The feature vector of mean and standard deviation of each
region is used in a nearest neighbor classifier to retrieve the
identity whose walking dynamics feature vector is closest
to the query feature vector.

In addition to the region-based features, we also use the
states of our HMM silhouette model as a gait representa-
tion. We use the Euclidean distances between the 8 HMM
state observation models as comparison between two gait
silhouette sequences.

8. Results

Given a set of gait data, we perform the following steps,

1. Track the pedestrian and extract a set of raw silhouettes
using the algorithm described in Section 5.

2. Build the following pedestrian models:
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(a) Partition of a silhouette (b) Ellipse fit to each region

Figure 6: Computing the feature vector for gait recognition

• A population model that represents the appear-
ance of all pedestrians. This model is constructed
using 100 random raw silhouettes from each of 5
male and 5 female subjects (Section 4).

• A sequence-based HMM that models the silhou-
ette at discrete phases of a walking cycle.

Note that these two models can be constructed inde-
pendently of each other, or with the HMM following
the pedestrian population model.

3. For each sequence, refine the silhouettes using the
pedestrian population model and/or the state models
of the HMM.

4. Generate a set of region-based gait features for recog-
nition, or use the HMM states directly for recognition.

We applied the above steps to the HID gait challenge data
set, which resulted in a suite of silhouettes and gait features.
These silhouettes and gait features were then used in a set
of gait recognition tasks.

8.1. Silhouette Comparisons
For each gait silhouette sequence, the following types of
silhouettes are used in our experiments2.

Sr the raw silhouettes, which are the results of the back-
ground subtraction process described in Section 5;

Sd3 Sr dilated with a neighborhood size of 3;

Sd6 Sr dilated with a neighborhood size of 6;

Sp Sr cleaned and filled using the population model;

SHr Sr filled using an HMM trained using Sr;

SHp Sp filled using an HMM trained using Sp;

SN a set of silhouettes provided with the NIST gait data.

The silhouettes that are provided with the NIST gait data
are semi-automatically generated in the following process:

1. Manually track the pedestrian in the video sequences.

2. Compute the Mahalanobis distance between the image
containing the pedestrian and a background model.

2The silhouettes produced for this paper are available for download at
http://www.ai.mit.edu/people/llee/HID/NIST sil.htm.

3. Smooth the Mahalanobis distance image with a 9×9
filter.

4. Threshold the smoothed image to obtain the silhouette.

The smoothing process in step 3 has a side effect of smear-
ing out the fine features of the silhouette and possibly re-
moving some features that may be important to the identifi-
cation of individuals.

Excluding the raw silhouettes, the set of silhouettes that
we have chosen fall into two classes, those that reduce noise
by a non-model-based process, such as smoothing or mor-
phological operation, which are Sd3, Sd6, and SN , and
those that reduce noise by a model-based method, as in
Sp, SHr, and SHp. We will show through gait recognition
experiments that the silhouettes generated using a model-
based method are consistently better.

We generate for each set of silhouettes the region-based
gait features described in Section 7. In addition, the two
types of HMM, generated using Sr and Sp, are also used
for gait recognition.

8.2. The Recognition Task
The NIST gait challenge data is comprised of gait video of
individuals taken under different conditions. A standard set
of tests, described in [9], examines the gait recognition rate
across different conditions.

The NIST gait data set contains pedestrians walking on
different surfaces (concrete and grass), with camera view
change (left and right views), and shoe type change. The
data set is divided into a gallery set and a number of
probe sets. The gallery set contains sequences of pedes-
trian walking on grass wearing one particular type of shoes
and viewed from one of two cameras. The probe sets differs
from the gallery in the following ways:

Probe Set Difference
A view
B shoe
C shoe, view
D surface
E surface, shoe
F surface, view
G surface, shoe, view

There are seven corresponding recognition experiments
A through G, each testing a probe set against the gallery
set. The task of a recognition algorithm is to rank the se-
quences in the gallery by their distances to the probe se-
quences. The recognition performance is evaluated using
a cumulative match score (CMS), which measures the per-
centage of probes correctly identified at each ranking.

8.3. Recognition Results
As in [9], we report the gait recognition rate using the cu-
mulative match score at ranks 1 and 5, as shown in Fig-
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Figure 7: Comparison of recognition rate using different silhou-
ettes using CMS at rank 1 and 5.

ure 7. While we observe that the experiments D, E, F, and G,
which all involve surface change, presented the more chal-
lenging recognition problems, it is less clear how much the
silhouette type affects the recognition performance.

We are interested in the question of how well each sil-
houette type and gait feature type perform in all recognition
experiments. To present a clearer picture, we average the
CMS for each silhouette type across all recognition exper-
iments A through G, across experiments A through C (the
same surface condition), and across experiments D through
G (the change-of-surface condition). The surface condition
demands further investigation because it is the most chal-
lenging test. The averaged CMS are shown in Figure 8.
The general trends presented in the recognition results are:

• Recognition rates using the region based features on
the NIST silhouette set, SN , are consistently worse.

• Using the region based features, raw silhouettes per-
formed better than their dilated cousins in the same
surface condition, but are comparable or slightly worse

in the change of surface experiments and the average
of all experiments.

• Using the region based features, the silhouettes Sp, and
SHp, ranked by increased recognition performance, re-
sulted in better recognition rate than the raw silhou-
ettes or the non-model based smoothed silhouettes.

• Using the region based features, the silhouette set SHr ,
filled using an HMM trained on raw silhouette se-
quence, performed only marginally better than using
the raw silhouettes.

• Using the distance of the HMM states, the recogni-
tion performances are comparable between the HMMs
trained using the raw silhouettes and the HMMs
trained on preprocessed silhouettes, Sp. They also
performed much better than all other features in the
change of surface condition.

8.4. Discussion
Our gait recognition experiments above show that incorpo-
rating a pedestrian model component, be it using HMM
states for recognition or the region features on silhouettes
filled with a pedestrian population model, resulted in bet-
ter recognition rates than the non-model based silhouettes
and the raw silhouettes. Based on the gait recognition per-
formance using region based features on the various sil-
houette types, we rank, in increasing recognition rate, the
quality of the silhouettes as follows: SHr , Sp, SHp. Sim-
ply using a silhouette model based on one sequence is not
adequate because there may be persistent silhouette errors
through a large number of frames. These systematic errors
in the raw silhouette tend to be caused by lack of contrast
between the foreground object and the background envi-
ronment. The pedestrian population model is able to re-
cover from this type of error because the persistent errors
for one sequence are unlikely to persist through a popula-
tion of pedestrians. Using the HMM silhouette model is
an improvement over using just the pedestrian population
model because it is able to improve the estimate of the in-
dividual shape over time and capture the appearance of the
legs at discrete walking phase. The recognition rates using
the state observation models of the HMM trained on raw
silhouettes and the HMM trained on Sp were among the
best three algorithms/silhouette data. This indicates that for
recognition purposes, HMM silhouette models are robust to
some systematic silhouette errors.

9. Conclusions and Future Work
We have proposed a method to automatically construct
models of pedestrian silhouettes in a walking cycle. Our
model contains two components, a pedestrian population
based model, and an individual gait silhouette sequence
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model that is comprised of discrete phase states of walking
cycles. The population model is used to recover from sys-
tematic noise of a particular gait sequence. The sequence
model is used to correct for sporatic noise that occur from
time to time within a video sequence. This model construc-
tion process can be applied to any moving object that ex-
hibits cyclic properties and/or overall shape commonalities
that allows one to improve the estimate of shape over time.
Our silhouette models can be used in two ways: to fill in
silhouettes for any algorithm that needs accurate silhouette
sequences, and to be used directly for gait recognition. In
both cases, we have shown that using a model based silhou-
ette extraction is superior to using a non-model based sil-
houette smoothing algorithm, such as morphological opera-
tions, or a smoothing process in the background subtraction
process. We are investigating the ability of these pedestrian
models to remove persistent artifacts in silhouettes, such as
shadows.
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Figure 8: Comparison of recognition rate using different silhou-
ettes using average CMS over all probes, grass probes, and con-
crete probes.
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