
From Learning Models of Natural Image Patches to Whole Image Restoration

Daniel Zoran
Interdisciplinary Center for Neural Computation

Hebrew University of Jerusalem
daniez@cs.huji.ac.il

Yair Weiss
School of Computer Science and Engineering

Hebrew University of Jerusalem
http://www.cs.huji.ac.il/~yweiss

Abstract

Learning good image priors is of utmost importance for
the study of vision, computer vision and image processing
applications. Learning priors and optimizing over whole
images can lead to tremendous computational challenges.
In contrast, when we work with small image patches, it is
possible to learn priors and perform patch restoration very
efficiently. This raises three questions - do priors that give
high likelihood to the data also lead to good performance in
restoration? Can we use such patch based priors to restore
a full image? Can we learn better patch priors? In this work
we answer these questions.

We compare the likelihood of several patch models and
show that priors that give high likelihood to data perform
better in patch restoration. Motivated by this result, we
propose a generic framework which allows for whole image
restoration using any patch based prior for which a MAP (or
approximate MAP) estimate can be calculated. We show how
to derive an appropriate cost function, how to optimize it and
how to use it to restore whole images. Finally, we present a
generic, surprisingly simple Gaussian Mixture prior, learned
from a set of natural images. When used with the proposed
framework, this Gaussian Mixture Model outperforms all
other generic prior methods for image denoising, deblurring
and inpainting.

1. Introduction
Image priors have become a popular tool for image

restoration tasks. Good priors have been applied to different
tasks such as image denoising [1, 2, 3, 4, 5, 6], image inpaint-
ing [6] and more [7], yielding excellent results. However,
learning good priors from natural images is a daunting task
- the high dimensionality of images makes learning, infer-
ence and optimization with such priors prohibitively hard.
As a result, in many works [4, 5, 8] priors are learned over
small image patches. This has the advantage of making com-
putational tasks such as learning, inference and likelihood
estimation much easier than working with whole images

directly. In this paper we ask three questions: (1) Do patch
priors that give high likelihoods yield better patch restoration
performance? (2) Do patch priors that give high likelihoods
yield better image restoration performance? (3) Can we learn
better patch priors?

2. From Patch Likelihoods to Patch
Restoration

For many patch priors a closed form of log likelihood,
Bayesian Least Squares (BLS) and Maximum A-Posteriori
(MAP) estimates can be easily calculated. Given that, we
start with a simple question: Do priors that give high likeli-
hood for natural image patches also produce good results in a
restoration task such as denoising? Note that answering this
question for priors of whole images is tremendously difficult
- for many popular MRF priors, neither the log likelihood
nor the MAP estimate can be calculated exactly [9].

In order to provide an answer for this question we com-
pare several popular priors, trained over 50,000 8×8 patches
randomly sampled from the training set of [10] with their
DC removed. We compare the log likelihood each model
gives on a set of unseen natural image patches (sampled
from the test set of [10]) and the performance of each model
in patch denoising using MAP estimates. The models we
use here are: Independent pixels with learned marginals (Ind.
Pixel), Multivariate Gaussian over pixels with learned covari-
ance (MVG), Independent PCA with learned (non-Gaussian)
marginals and ICA with learned marginals. For a detailed
description of these models see the Supplementary Material.

The results for each of the models can be seen in Figure
1. As can be seen, the higher the likelihood a model gives
for a set of patches, the better it is in denoising them when
they are corrupted.

3. From Patch Likelihoods to Whole Image
Restoration

Motivated by the results in Section 2, we now wish to
answer the second question of this paper - do patch priors
that give high likelihoods perform better in whole image

1

http://www.cs.huji.ac.il/~yweiss


Ind. Pixel MVG PCA ICA

0

20

40

60

80

100

120

lo
g
L

0

5

10

15

20

25

30

P
S
N
R
(d
B
)

 

 

Figure 1: The likelihood of several off-the-shelf patch priors,
learned from natural images, along with their patch denoising per-
formance. As can be seen, patch priors that give higher likelihood
to the data give better patch denoising performance (PSNR in dB).
In this paper we show how to obtain similar performance in whole
image restoration.

restoration? To answer this question we first need to consider
the problem of how to use patch priors for whole image
restoration.

To illustrate the advantages and difficulties of working
with patch priors, consider Figure 2. Suppose we learn a
simple patch prior from a given image (Figure 2a). To learn
this prior we take all overlapping patches from the image,
remove their DC component and build a histogram of all
patches in the image, counting the times they appear in it.
Under this prior, for example, the most likely patch would
be flat (because the majority of patches in the original image
are flat patches), the second most likely patch would be the
tip of a diagonal edge and so on (see Figure 2b for a subset
of this histogram). This prior is both easy to learn and easy
to do denoising with by finding the MAP estimate given a
corrupted patch. Now, suppose we are given a new, noisy
image we wish to denoise (Figure 2c) - how should we do
this using our patch prior?

The first, and simplest solution to this problem is to
decompose the noisy image into a set of non-overlapping
patches, denoise each patch independently by finding the
MAP estimate from our prior and restore the image by plac-
ing each of the cleaned patches into its original position. This
simple solution creates notorious artifacts at patch borders
(see Figure 2d for an example) - if we now take a random
patch from our newly constructed image (red patch in Figure
2d), it will be extremely unlikely under our prior (as most
of the patches in the reconstructed image do not even exist
in our prior, so their likelihood is 0). A more sophisticated
solution may be to decompose the image into all overlapping
patches, denoise each one independently and then average
each pixel as it appears in the different patches to obtain the
reconstructed image. This yields better results (see Figure
2f) but still has its problems - while we average the pixels
together we create new patches in the reconstructed image
which are not likely under our prior (red patch in Figure 2f).
We can also take the central pixel from each of the overlap-
ping patches but this suffers from the same problems (Figure

2e).
Going back to the motivation from Section 2, the intuition

for our method is simple - suppose we take a random patch
from our reconstructed image, we wish this patch to be likely
under our prior. If we take another random patch from the
reconstructed image, we want it also to be likely under our
prior. In other words, we wish to find a reconstructed image
in which every patch is likely under our prior while keeping
the reconstructed image still close to the corrupted image
— maximizing the Expected Patch Log Likelihood (EPLL)
of the reconstructed image, subject to constraining it to be
close to the corrupted image. Figure 2g shows the result
of EPLL for the same noisy image — even though EPLL
is using the exact same prior as in the previous methods, it
produces superior results.

3.1. Framework and Optimization

3.1.1 Expected Patch Log Likelihood - EPLL

The basic idea behind our method is to try to maximize the
Expected Patch Log Likelihood (EPLL) while still being
close to the corrupted image in a way which is dependent
on the corruption model. Given an image x (in vectorized
form) we define the EPLL under prior p as:

EPLLp(x) =
∑
i

log p(Pix) (1)

Where Pi is a matrix which extracts the i-th patch from the
image (in vectorized form) out of all overlapping patches,
while log p(Pix) is the likelihood of the i-th patch under the
prior p. Assuming a patch location in the image is chosen
uniformly at random, EPLL is the expected log likelihood
of a patch in the image (up to a multiplication by 1/N ).

Now, assume we are given a corrupted image y, and a
model of image corruption of the form ‖Ax−y‖2 - We note
that the corruption model we present here is quite general,
as denoising, image inpainting and deblurring [7], among
others, are special cases of it. We will discuss this in more
detail in Section 3.1.3. The cost we propose to minimize in
order to find the reconstructed image using the patch prior p
is:

fp(x|y) =
λ

2
‖Ax− y‖2 − EPLLp(x) (2)

Equation 2 has the familiar form of a likelihood term and a
prior term, but note thatEPLLp(x) is not the log probability
of a full image. Since it sums over the log probabilities of all
overlapping patches, it "double counts" the log probability.
Rather, it is the expected log likelihood of a randomly chosen
patch in the image.

3.1.2 Optimization

Direct optimization of the cost function in Equation 2 may be
very hard, depending on the prior used. We present here an



(a) Training Image

12477 40 40 40 40 39

39 39 39 38 38 38

38 37 37 37 37 36

36 36 36 35 35 35

35 34 34 34 34 33

33 33 33 33 33 33

(b) Prior Learned (c) Noisy Image

(d) Non Overlapping (e) Center Pixel (f) Averaged Overlapping (g) Our Method

Figure 2: The intuition behind our method. 2a A training image. 2b The prior learned from the image, only the 36 most frequent patches are
shown with their corresponding count above the patch - flat patches are the most likely ones, followed by edges with 1 pixel etc. 2c A noisy
image we wish to restore. 2d Restoring using non-overlapping patches - note the severe artifacts at patch borders and around the image. 2e
Taking the center pixels from each patch. 2f Better results are obtained by restoring all overlapping patches, averaging the results - artifacts
are still visible, and a lot of the patches in the resulting image are unlikely under the prior. 2g Result using the proposed method - note that
there are very few artifacts, and most patches are very likely under our prior.

alternative optimization method called “Half Quadratic Split-
ting” which has been proposed recently in several relevant
contexts [11, 7]. This method allows for efficient optimiza-
tion of the cost. In “Half Quadratic Splitting” we introduce
a set of patches

{
zi
}N
1

, one for each overlapping patch Pix
in the image, yielding the following cost function:

cp,β(x,
{
zi
}
|y) =

λ

2
‖Ax− y‖2 (3)

+
∑
i

β

2

(
‖Pix− zi‖2

)
− log p(zi)

Note that as β →∞ we restrict the patches Pix to be equal
to the auxiliary variables

{
zi
}

and the solutions of Equation
3 and Equation 2 converge. For a fixed value of β, optimizing
Equation 3 can be done in an iterative manner, first solving
for x while keeping

{
zi
}

constant, then solving for
{
zi
}

given the newly found x and keeping it constant.

Optimizing Equation 3 for a fixed β value requires two
steps:

• Solving for x given
{
zi
}

— This can be solved in
closed form. Taking the derivative of 3 w.r.t to the
vector x, setting to 0 and solving the resulting equation

yields

x̂ =

λATA + β
∑
j

PT
j Pj

−1 (4)

λATy + β
∑
j

PT
j zj


Where the sum over j is for all overlapping patches in
the image and all the corresponding auxiliary variables{
zi
}

.

• Solving for
{
zi
}

given x — The exact solution to this
depends on the prior p in use - but for any prior it means
solving a MAP problem of estimating the most likely
patch under the prior, given the corrupted measurement
Pix and parameter β.

We repeat the process for several iterations, typically 4 or
5 — at each iteration, solve for Z given x and solve for x
given the new Z, both given the current value of β. Then,
increase β and continue to the next iteration. These two
steps improve the cost cp,β from Equation 3, and for large β
we also improve the original cost function fp from Equation
2. We note that it is not necessary to find the optimum
of each of the above steps, any approximate method (such
as an approximate MAP estimation procedure) which still



1 2 3 4 5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

7

Iteration

C
o
s
t

 

 

Automatic β estimation
β = 1

σ2 (1, 4, 8, 16, 32)

(a) MAP estimation

1 2 3 4 5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5
x 10

7

Iteration

C
o
s
t

 

 

Automatic β estimation
β = 1

σ2 (1, 4, 8, 16, 32)

(b) BLS estimation

Figure 3: Optimization of the cost function from Equation 2, using
the proposed optimization method. The results shown are for a
simple denoising experiment, once with automatic estimation of
β values, and once with a fixed schedule. In Sub-Figure 3a the
MAP estimate for the patches was used. In Sub-Figure 3b the BLS
estimate of the patches was used - it can be seen that even though
we don’t use the MAP in this experiment, the cost still decreases.

improves the cost of each sub-problem will still optimize the
original cost function (albeit at different rates, depending on
the exact setting).

The choice of β values is an open question. We use two
approaches - the first is optimizing the values on a set of
training images (by hand, or by brute force). The second
option, which is relevant in denoising, is to try to estimate β
from the current image estimate at every step — this is done
by estimating the amount of noise σ present in the image x̂,
and setting β = 1

σ2 . We use the noise estimation method of
[12].

Figure 3 shows a small experiment in which we verify
that the original cost function in Equation 2 indeed decreases
as a function of iterations as β grows. At the first experiment,
β was estimated from the current image estimate and in the
second, we used a fixed β schedule. The prior used was
the ICA prior for which the likelihood is easily calculated.
Even though the half quadratic splitting is only guaranteed
to monotonically decrease the cost for infinite β values, we
show experimentally that the cost decreases for different
schedules of β where the schedule effects mostly the con-
vergence speed. In addition, even when using BLS (instead
of MAP), the cost still decreases - this shows that we don’t
need the find the optimum at each step, just to improve the
cost of each sub-problem.

In summary, we note three attractive properties of our
general algorithm. First, it can use any patch based prior
and second, its run time is only 4–5 times the run time of
restoring with simple patch averaging (depending on the
number of iterations). Finally, perhaps the most important
one is that this framework does not require learning a model
P (x) where x is a natural image, rather, learning needs only
to concentrate on modeling the probability of image patches.

3.1.3 Denoising, Deblurring and Inpainting

In denoising, we have additive white Gaussian noise corrupt-
ing the image, so we set the matrix A from Equation 4 to
be the identity matrix, and set λ to be related to the standard
deviation of the noise (≈ 1

σ2 ). This means that the solution
for x at each optimization step is just a weighted average
between the noisy image y and the average of pixels as they
appear in the auxiliary overlapping patches. The solution
for Z is just a MAP estimate with prior p and noise level√

1
β . If we initialize x with the noisy image y, setting λ = 0

and β = 1
σ2 results in simple patch averaging when iterating

a single step. The big difference, however, is that in our
method, because we iterate the solution and λ 6= 0, at each
iteration we use the current estimated image, averaging it
with the noisy one and obtaining a new set of Z patches,
solving for them and then obtaining a new estimate for x,
repeating the process, while increasing β. For image deblur-
ring (non-blind) A is a convolution matrix with a known
kernel.

Image inpainting is similar, A is a diagonal matrix with
zeros for all the missing pixels. Basically, this can be thought
of as “denoising” with a per pixel noise level - infinite noise
for missing pixels and zero noise for all other pixels. See
Supplementary Material for some examples of inpainting.

3.2. Related Methods

Several existing methods are closely related, but are fun-
damentally different from the proposed framework. The first
related method is the Fields of Experts (FoE) framework
by Roth and Black [6]. In FoE, a Markov Random Field
(MRF) whose filters are trained by approximately maximiz-
ing the likelihood of the training images is learned. Due to
the intractability of the partition function, learning with this
model is extremely hard and is performed using contrastive
divergence. Inference in FoE is actually a special case of
our proposed method - while the learning is vastly different,
in FoE the inference procedure is equivalent to optimizing
Equation 2 with an independent prior (such as ICA), whose
filters were learned before hand. A common approximation
to learning MRFs is to approximate the log probability of an
image as a sum of local marginal or conditional probabilities
as in the method of composite likelihood [13] or directed
models of images [14]. In contrast, we do not attempt to ap-
proximate the global log probability and argue that modeling
the local patch marginals is sufficient for image restoration.
This points to one of the advantages of our method - learning
a patch prior is much easier than learning a MRF. As a result,
we can learn a much richer patch prior easily and incorporate
it into our framework - as we show later.

Another closely related method is KSVD [3] - in KSVD,
one learns a patch based dictionary which attempts to max-
imize the sparsity of resulting coefficients. This dictionary



can be learned either from a set of natural image patches
(generic, or global as it is sometimes called) or the noisy
image itself (image based). Using this dictionary, all overlap-
ping patches of the image are denoised independently and
then averaged to obtain a new reconstructed image. This
process is repeated for several iterations using this new esti-
mated image. Learning the dictionary in KSVD is different
than learning a patch prior because it may be performed
as part of the optimization process (unless the dictionary
is learned beforehand from natural images), but the opti-
mization in KSVD can be seen as a special case of our
method - when the prior is a sparse prior, our cost function
and KSVD’s are the same. We note again, however, that
our framework allows for much richer priors which can be
learned beforehand over patches - as we will see later on,
this boasts some tremendous benefits.

A whole family of patch based methods [2, 5, 8] use the
noisy image itself in order to denoise. These “non-local”
methods look for similarities within the noisy image itself
and operate on these similar patches together. BM3D [5]
groups together similar patches into “blocks”, transforms
them into wavelet coefficients (in all 3 dimensions), thresh-
olds and transforms backs, using all the estimates together.
Mairal et al. [8] which is currently state-of-the-art take a sim-
ilar approach to this, but instead of transforming the patches
via a wavelet transform, sparse coding using a learned dic-
tionary is used, where each block is constrained to use the
same dictionary elements. One thing which is common to all
of the above non-local methods, and indeed almost all patch
based methods, is that they all average the clean patches
together to form the final estimate of the image. As we have
seen in Section 3, this may not be the optimal thing to do.

3.3. Patch Likelihoods and the EPLL Framework

We have seen that the EPLL cost function (Equation
2) depends on the likelihood of patches. Going back to
the priors from Section 2 we now ask - do better priors
(in the likelihood sense) also lead to better whole image
denoising with the proposed EPLL framework? Figure 4
shows the average PSNR obtained with 5 different images
from the Berkeley training set, corrupted with Gaussian
noise at σ = 25 and denoised using each of the priors in
section 2. We compare the result obtained using simple patch
averaging (PA) and our proposed EPLL framework. It can be
seen that indeed - better likelihood on patches leads to better
denoising both on independent patches (Figure 1) and whole
images (Figure 4). Additionally, it can be seen that EPLL
improves denoising results significantly when compared to
simple patch averaging (Figure 4).

These results motivate the question: Can we find a better
prior for image patches?

Ind. Pixel MVG PCA ICA

0

20

40

60

80

100

120

L
og

L

0

5

10

15

20

25

30

P
S
N
R

(d
B
)

(a)
Ind. Pixel MVG PCA ICA

25

26

27

28

29

30

 

 

Patch Average

EPLL

(b)

Figure 4: (a) Whole image denoising with the proposed framework
with all the priors discussed in Section 2. It can be seen that better
priors (in the likelihood sense) lead to better denoising performance
on whole images, left bar is log L, right bar is PSNR. (b) Note how
the EPLL framework improves performance significantly when
compared to simple patch averaging (PA)

4. Can We Learn Better Patch Priors?
In addition to the priors discussed in Section 2 we intro-

duce a new, simple yet surprisingly rich prior.

4.1. Learning and Inference with a Gaussian Mix-
ture Prior

We learn a finite Gaussian mixture model over the pixels
of natural image patches. Many popular image priors can
be seen as special cases of a GMM (e.g. [9, 1, 14]) but
they typically constrain the means and covariance matrices
during learning. In contrast, we do not constrain the model in
any way — we learn the means, full covariance matrices and
mixing weights, over all pixels. Learning is easily performed
using the Expectation Maximization algorithm (EM). With
this model, calculating the log likelihood of a given patch is
trivial:

log p(x) = log

(
K∑
k=1

πkN(x|µk,Σk)

)
(5)

Where πk are the mixing weights for each of the mixture
component and µk and Σk are the corresponding mean and
covariance matrix.

Given a noisy patch y, the BLS estimate can be calcu-
lated in closed form (as the posterior is just another Gaussian
mixture) [1]. The MAP estimate, however, can not be cal-
culated in closed form. To tackle this we use the following
approximate MAP estimation procedure:

1. Given noisy patch y we calculate the conditional mix-
ing weights π′k = P (k|y).

2. We choose the component which has the highest condi-
tional mixing weight kmax = maxk π

′
k.

3. The MAP estimate x̂ is then a Wiener filter solution for
the kmax-th component:

x̂ =
(
Σkmax

+ σ2I
)−1 (

Σkmax
y + σ2Iµkmax

)



Patch Restoration Image Restoration

Model Log L BLS MAP PA EPLL

Ind. Pixel 78.26 25.54 24.43 25.11 25.26

MVG 91.89 26.81 26.81 27.14 27.71

PCA 114.24 28.01 28.38 28.95 29.42

ICA 115.86 28.11 28.49 29.02 29.53

GMM 164.52 30.26 30.29 29.59 29.85

Table 1: GMM model performance in log likelihood (Log L), patch
denoising (BLS and MAP) and image denoising (Patch Average
(PA) and EPLL, the proposed framework) - note that the perfor-
mance is better than all priors in all measures. The patches, noisy
patches, images and noisy images are the same as in Figure 1 and
Figure 4. All values are in PSNR (dB) apart from the log likelihood.

This is actually one iteration of the "hard version" of the
EM algorithm for finding the modes of a Gaussian mixture
[15].

4.2. Comparison

We learn the proposed GMM model from a set of 2 ×
106 patches, sampled from [10] with their DC removed.
The model is with learned 200 mixture components with
zero means and full covariance matrices. We also trained
GMMs with unconstrained means and found that all the
means were very close to zero. As mentioned above, learning
was performed using EM. Training with the above training
set takes around 30h with unoptimized MATLAB code1.
Denoising a patch with this model is performed using the
approximate MAP procedure described in 4.1.

Having learned this GMM prior, we can now compare
its performance both in likelihood and denoising with the
priors we have discussed thus far in Section 1 on the same
dataset of unseen patches. Table 1 shows the results obtained
with the GMM prior - as can be seen, this prior is superior
in likelihood, patch denoising and whole image denoising to
all other priors we discussed thus far.

In Figure 5a we show a scatter plot of PSNR values ob-
tained with ICA and the GMM model using EPLL at noise
level σ = 25 on 68 images from the Berkeley test set. Note
that the high likelihood GMM model is superior to ICA in
denoising, on all tested images. Figure 5b shows details
from images in the test-set, note the high visual quality of
the GMM model when compared to the ICA result.

Why does this model work so well? One way to under-
stand it is to recall that in a zero-mean Gaussian mixture
model, every sample x is well approximated by the top m
eigenvectors of the covariance matrix of the mixture com-
ponent that it belongs to. If we consider the set of all m
eigenvectors of all mixtures as a "dictionary" then every

1Downloaded from: http://www.mathworks.com/matlabcentral/
fileexchange/26184-em-algorithm-for-gaussian-mixture-model

22 24 26 28 30 32 34

22

24

26

28

30

32

34

EPLL ICA − PSNR(dB)

E
P

L
L

 G
M

M
 −

 P
S

N
R

(d
B

)

(a) PSNR Comparison (b) Detail Shots

Figure 5: Comparison of the performance of the ICA prior to the
high likelihood GMM prior using EPLL and noise level σ = 25.
5a depicts a scatter plot of PSNR values obtained when denoising
68 images from[10]. Note the superior performance of the GMM
prior when compared to ICA on all images. 5b depicts a detail
shot from two of the images - note the high visual quality of the
GMM prior result. The details are best seen when zoomed in on a
computer screen.

sample is approximated by a sparse combination of these
dictionary elements. Since there are 200 mixture compo-
nents, only (1/200) dictionary elements are "active" for each
x so this is a very sparse representation. But unlike other
models that assume sparsity (e.g. ICA and Sparse Coding),
the active set is extremely constrained — only dictionary
elements that correspond to the same component are allowed
to be jointly active. We have recently learned that this "dual"
interpretation of a GMM was independently given by [16]
for the case of image-specific GMMs.

What do these dictionary elements model? Figure 6 de-
picts the eigenvectors of the 5 randomly selected mixture
components from the learned model. Note that these have
rich structures - while some resembles PCA eigenvectors,
some depict forms of occlusions, modeling texture bound-
aries and edges. These are very different from the Gabor
filters usually learned by sparse coding and similar models.
It would seem that these structures contribute much to the
expressive power of the model.

4.3. Comparison to State-Of-The-Art Methods

We compare the performance of EPLL with the proposed
GMM prior with leading image restoration methods - both
generic and image based. All the experiments were con-
ducted on 68 images from the test set of the Berkeley Seg-
mentation Database [10]. All experiments were conducted
using the same noisy realization of the images. In all exper-
iments we set λ = N

σ2 , where N is the number of pixels in
each patch. We used a patch size of 8× 8 in all experiments.
For the GMM prior, we optimized (by hand) the values for
β on the 5 images from the Berkeley training set - these
were set to β = 1

σ2 · [1, 4, 8, 16, 32, 64]. Running times on
a Quad Core Q6600 processor are around 300s per image
with unoptimized MATLAB code.



σ KSVDG FoE GMM-EPLL

15 30.67 30.18 31.21
25 28.28 27.77 28.71
50 25.18 23.29 25.72

100 22.39 16.68 23.19

(a) Generic Priors

σ KSVD BM3D LLSC GMM-EPLL

15 30.59 30.87 31.27 31.21

25 28.20 28.57 28.70 28.71
50 25.15 25.63 25.73 25.72

100 22.40 23.25 23.15 23.19

(b) Image Based Methods

Table 2: Summary of denoising experiments results. Our method is clearly state-of-the-art when compared to generic priors, and is
competitive with image based method such as BM3D and LLSC which are state-of-the-art in image denoising.

Figure 6: Eigenvectors of 6 randomly selected covariance matrices
from the learned GMM model, sorted by eigenvalue from largest
to smallest. Note the richness of the structures - some of the
eigenvectors look like PCA components, while others model texture
boundaries, edges and other structures at different orientations.

4.3.1 Generic Priors

We compare the performance of EPLL and the GMM prior
in image denoising with leading generic methods - Fields of
Experts [6] and KSVD [3] trained on natural image patches
(KSVDG). The summary of results may be seen in Table 2a
- it is clear that our method outperforms the current state-of-
the-art generic methods.

4.3.2 Image Based Priors

We now compare the performance of our method
(EPLL+GMM) to image specific methods - which learn
from the noisy image itself. We compare to KSVD, BM3D
[5] and LLSC [8] which are currently the state-of-the-art in
image denoising. The summary of results may be seen in
Table 2b. As can be seen, our method is highly competitive
with these state-of-the-art method, even though it is generic.
Some examples of the results may be seen in Figure 7.

(a) Noisy Image - PSNR: 20.17 (b) KSVD - PSNR: 28.72

(c) LLSC - PSNR: 29.30 (d) EPLL GMM - PSNR: 29.39

Figure 7: Examples of denoising using EPLL-GMM compared with
state-of-the-art denoising methods - KSVD [3] and LLSC [8]. Note
how detail is much better preserved in our method when compared
to KSVD. Also note the similarity in performance with our method
when compared to LLSC, even though LLSC learn from the noisy
image. See supplementary material for more examples.

4.3.3 Image Deblurring

While image specific priors give excellent performance in
denoising, since the degradation of different patches in the
same image can be "averaged out", this is certainly not the
case for all image restoration tasks, and for such tasks a
generic prior is needed. An example of such a task is image
deblurring. We convolved 68 images from the Berkeley
database (same as above) with the blur kernels supplied with
the code of [7]. We then added 1% white Gaussian noise to
the images, and attempted reconstruction using the code by
[7] and our EPLL framework with GMM prior. Results are
superior both in PSNR and quality of the output, as can be
seen in Figure 8.



(a) Blurred (b) Krishnan et al. (c) EPLL GMM

Krishnan et al. EPLL-GMM

Kernel 1 17× 17 25.84 27.17

Kernel 2 19× 19 26.38 27.70

Figure 8: Deblurring experiments

5. Discussion
Patch based models are easier to learn and to work with

than whole image models. We have shown that patch models
which give high likelihood values for patches sampled from
natural images perform better in patch and image restora-
tion tasks. Given these results, we have proposed a frame-
work which allows the use of patch models for whole image
restoration, motivated by the idea that patches in the restored
image should be likely under the prior. We have shown that
this framework improves the results of whole image restora-
tion considerably when compared to simple patch averaging,
used by most present day methods. Finally, we have pro-
posed a new, simple yet rich Gaussian Mixture prior which
performs surprisingly well on image denoising, deblurring
and inpainting.

While we have demonstrated our framework using only a
few priors, one of its greater strengths is the fact that it can
serve as a “plug-in” system - it can work with any existing
patch restoration method. Considering the fact that both
BM3D and LLSC are patch based methods which use simple
patch averaging, it would be interesting to see how would
these methods benefit from the proposed framework.

Finally, perhaps the most surprising result of this work,
and the direction in which much is left to be explored, is the
stellar performance of the GMM model. The GMM model
used here is extremely naive - a simple mixture of Gaussians
with full covariance matrices. Given the fact that Gaussian
Mixtures are an extremely studied area, incorporating more
sophisticated machinery into the learning and the represen-
tation of this model holds much promise - and this is our
current line of research.

Acknowledgments

The authors wish to thank Anat Levin for helpful discussions.

References
[1] J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli, “Im-

age denoising using scale mixtures of gaussians in the wavelet
domain,” IEEE Transactions on Image Processing, vol. 12,
no. 11, pp. 1338–1351, 2003.

[2] A. Buades, B. Coll, and J. Morel, “A non-local algorithm for
image denoising,” in Computer Vision and Pattern Recogni-
tion, 2005. CVPR 2005. IEEE Computer Society Conference
on, vol. 2, pp. 60–65, IEEE, 2005.

[3] M. Elad and M. Aharon, “Image denoising via sparse and
redundant representations over learned dictionaries,” Image
Processing, IEEE Transactions on, vol. 15, no. 12, pp. 3736–
3745, 2006.

[4] Y. Hel-Or and D. Shaked, “A discriminative approach for
wavelet denoising,” IEEE Transactions on Image Processing,
vol. 17, no. 4, p. 443, 2008.

[5] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Im-
age restoration by sparse 3D transform-domain collaborative
filtering,” in SPIE Electronic Imaging, 2008.

[6] S. Roth and M. Black, “Fields of experts,” International Jour-
nal of Computer Vision, vol. 82, no. 2, pp. 205–229, 2009.

[7] D. Krishnan and R. Fergus, “Fast image deconvolution using
hyper-laplacian priors,” in Advances in Neural Information
Processing Systems 22, pp. 1033–1041, 2009.

[8] J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman,
“Non-local sparse models for image restoration,” in Com-
puter Vision, 2009 IEEE 12th International Conference on,
pp. 2272–2279, IEEE, 2010.

[9] Y. Weiss and W. Freeman, “What makes a good model of
natural images?,” CVPR ’07. IEEE Conference on, pp. 1–8,
June 2007.

[10] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database
of human segmented natural images and its application to
evaluating segmentation algorithms and measuring ecological
statistics,” in Proc. 8th Int’l Conf. Computer Vision, vol. 2,
pp. 416–423, July 2001.

[11] D. Geman and C. Yang, “Nonlinear image recovery with
half-quadratic regularization,” Image Processing, IEEE Trans-
actions on, vol. 4, no. 7, pp. 932–946, 2002.

[12] D. Zoran and Y. Weiss, “Scale invariance and noise in natural
images,” in Computer Vision, 2009 IEEE 12th International
Conference on, pp. 2209–2216, Citeseer, 2009.

[13] B. Lindsay, “Composite likelihood methods,” Contemporary
Mathematics, vol. 80, no. 1, pp. 221–39, 1988.

[14] J. Domke, A. Karapurkar, and Y. Aloimonos, “Who killed
the directed model?,” in CVPR 2008. IEEE Conference on,
pp. 1–8, IEEE, 2008.

[15] M. Carreira-Perpiñán, “Mode-finding for mixtures of Gaus-
sian distributions,” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 22, no. 11, pp. 1318–1323, 2002.

[16] G. Yu, G. Sapiro, and S. Mallat, “Solving inverse problems
with piecewise linear estimators: From gaussian mixture mod-
els to structured sparsity,” CoRR, vol. abs/1006.3056, 2010.


