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Abstract

We propose a new model for natural image statistics. Instead of minimizing de-
pendency between components of natural images, we maximize a simple form of
dependency in the form of tree-dependencies. By learning filters and tree struc-
tures which are best suited for natural images we observe that the resulting filters
are edge filters, similar to the famous ICA on natural images results. Calculating
the likelihood of an image patch using our model requires estimating the squared
output of pairs of filters connected in the tree. We observe that after learning,
these pairs of filters are predominantly of similar orientations but different phases,
so their joint energy resembles models of complex cells.

1 Introduction and related work

Many models of natural image statistics have been proposed in recent years [1, 2, 3, 4]. A common
goal of many of these models is finding a representation in which components or sub-components
of the image are made as independent or as sparse as possible [5, 6, 2]. This has been found to be a
difficult goal, as natural images have a highly intricate structure and removing dependencies between
components is hard [7]. In this work we take a different approach, instead of minimizing dependence
between components we try to maximize a simple form of dependence - tree dependence.

It would be useful to place this model in context of previous works about natural image statistics.
Many earlier models are described by the marginal statistics solely, obtaining a factorial form of the
likelihood:

p(x) =
∏

i

pi(xi) (1)

The most notable model of this approach is Independent Component Analysis (ICA), where one
seeks to find a linear transformation which maximizes independence between components (thus fit-
ting well with the aforementioned factorization). This model has been applied to many scenarios,
and proved to be one of the great successes of natural image statistics modeling with the emergence
of edge-filters [5]. This approach has two problems. The first is that dependencies between compo-
nents are still very strong, even with those learned transformation seeking to remove them. Second,
it has been shown that ICA achieves, after the learned transformation, only marginal gains when
measured quantitatively against simpler method like PCA [7] in terms of redundancy reduction. A
different approach was taken recently in the form of radial Gaussianization [8], in which compo-
nents which are distributed in a radially symmetric manner are made independent by transforming
them non-linearly into a radial Gaussian, and thus, independent from one another.

A more elaborate approach, related to ICA, is Independent Subspace Component Analysis or ISA.
In this model, one looks for independent subspaces of the data, while allowing the sub-components
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Figure 1: Our model with respect to marginal models such as ICA (a), and ISA like models (b). Our
model, being a tree based model (c), allows components to belong to more than one subspace, and
the subspaces are not required to be independent.

of each subspace to be dependent:

p(x) =
∏
k

pk(xi∈K) (2)

This model has been applied to natural images as well and has been shown to produce the emergence
of phase invariant edge detectors, akin to complex cells in V1 [2].

Independent models have several shortcoming, but by far the most notable one is the fact that the
resulting components are, in fact, highly dependent. First, dependency between the responses of
ICA filters has been reported many times [2, 7]. Also, dependencies between ISA components has
also been observed [9]. Given these robust dependencies between filter outputs, it is somewhat
peculiar that in order to get simple cell properties one needs to assume independence. In this work
we ask whether it is possible to obtain V1 like filters in a model that assumes dependence.

In our model we assume the filter distribution can be described by a tree graphical model [10] (see
Figure 1). Degenerate cases of tree graphical models include ICA (in which no edges are present)
and ISA (in which edges are only present within a subspace). But in its non-degenerate form, our
model assumes any two filter outputs may be dependent. We allow components to belong to more
than one subspace, and as a result, do not require independence between them.

2 Model and learning

Our model is comprised of three main components. Given a set of patches, we look for the parame-
ters which maximize the likelihood of a whitened natural image patch z:

p(z;W, β, T ) = p(y1)
N∏

i=1

p(yi|ypai ;β) (3)

Where y = Wz, T is the tree structure, pai denotes the parent of node i and β is a parameter of the
density model (see below for the details). The three components we are trying to learn are:

1. The filter matrix W, where every row defines one of the filters. The response of these
filters is assumed to be tree-dependent. We assume that W is orthogonal (and is a rotation
of a whitening transform).

2. The tree structure T which specifies which components are dependent on each other.

3. The probability density function for connected nodes in the tree, which specify the exact
form of dependency between nodes.

All three together describe a complete model for whitened natural image patches, allowing likeli-
hood estimation and exact inference [11].

We perform the learning in an iterative manner: we start by learning the tree structure and density
model from the entire data set, then, keeping the structure and density constant, we learn the filters
via gradient ascent in mini-batches. Going back to the tree structure we repeat the process many
times iteratively. It is important to note that both the filter set and tree structure are learned from the
data, and are continuously updated during learning. In the following sections we will provide details
on the specifics of each part of the model.
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Figure 2: Shape of the conditional (Left three plots) and joint (Right three plots) density model in
log scale for several values of β, from dependence to independence.

2.1 Learning tree structure

In their seminal paper, Chow and Liu showed how to learn the optimal tree structure approximation
for a multidimensional probability density function [12]. This algorithm is easy to apply to this
scenario, and requires just a few simple steps. First, given the current estimate for the filter matrix
W, we calculate the response of each of the filters with all the patches in the data set. Using these
responses, we calculate the mutual information between each pair of filters (nodes) to obtain a fully
connected weighted graph. The final step is to find a maximal spanning tree over this graph. The
resulting unrooted tree is the optimal tree approximation of the joint distribution function over all
nodes. We will note that the tree is unrooted, and the root can be chosen arbitrarily - this means that
there is no node, or filter, that is more important than the others - the direction in the tree graph is
arbitrary as long as it is chosen in a consistent way.

2.2 Joint probability density functions

Gabor filter responses on natural images exhibit highly kurtotic marginal distributions, with heavy
tails and sharp peaks [13, 3, 14]. Joint pair wise distributions also exhibit this same shape with
varying degrees of dependency between the components [13, 2]. The density model we use allows
us to capture both the highly kurtotic nature of the distributions, while still allowing varying degrees
of dependence using a mixing variable. We use a mix of two forms of finite, zero mean Gaussian
Scale Mixtures (GSM). In one, the components are assumed to be independent of each other and in
the other, they are assumed to be spherically distributed. The mixing variable linearly interpolates
between the two, allowing us to capture the whole range of dependencies:

p(x1, x2;β) = βpdep(x1, x2) + (1− β)pind(x1, x2) (4)

When β = 1 the two components are dependent (unless p is Gaussian), whereas when β = 0 the
two components are independent. For the density functions themselves, we use a finite GSM. The
dependent case is a scale mixture of bivariate Gaussians:

pdep(x1, x2) =
∑

k

πkN (x1, x2;σ2
kI) (5)

While the independent case is a product of two independent univariate Gaussians:

pind(x1, x2) =

(∑
k

πkN (x1;σ2
k)

)(∑
k

πkN (x2;σ2
k)

)
(6)

Estimating parameters πk and σ2
k for the GSM is done directly from the data using Expectation

Maximization. These parameters are the same for all edges and are estimated only once on the first
iteration. See Figure 2 for a visualization of the conditional distribution functions for varying values
of β. We will note that the marginal distributions for the two types of joint distributions above are
the same. The mixing parameter β is also estimated using EM, but this is done for each edge in the
tree separately, thus allowing our model to theoretically capture the fully independent case (ICA)
and other degenerate models such as ISA.

2.3 Learning tree dependent components

Given the current tree structure and density model, we can now learn the matrix W via gradient
ascent on the log likelihood of the model. All learning is performed on whitened, dimensionally
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reduced patches. This means that W is a N × N rotation (orthonormal) matrix, where N is the
number of dimensions after dimensionality reduction (see details below). Given an image patch z
we multiply it by W to get the response vector y:

y = Wz (7)

Now we can calculate the log likelihood of the given patch using the tree model (which we assume
is constant at the moment):

log p(y) = log p(yroot) +
N∑

i=1

log p(yi|ypai) (8)

Where pai denotes the parent of node i. Now, taking the derivative w.r.t the r-th row of W:

∂ log p(y)
∂Wr

=
∂ log p(y)
∂yr

zT (9)

Where z is the whitened natural image patch. Finally, we can calculate the derivative of the log
likelihood with respect to the r-th element in y:

∂ log p(y)
∂yr

=
∂ log p(ypar

, yr)
∂yr

+
∑

c∈C(r)

∂ log p(yr, yc)
∂yr

− ∂ log p(yr)
∂yr

(10)

Where C(r) denote the children of node r. In summary, the gradient ascent rule for updating the
rotation matrix W is given by:

Wt+1
r = Wt

r + η
∂ log p(y)
∂yr

zT (11)

Where η is the learning rate constant. After update, the rows of W are orthonormalized.

This gradient ascent rule is applied for several hundreds of patches (see details below), after which
the tree structure is learned again as described in Section 2.1, using the new filter matrix W, repeat-
ing this process for many iterations.

3 Results and analysis

3.1 Validation

Before running the full algorithm on natural image data, we wanted to validate that it does produce
sensible results with simple synthetic data. We generated noise from four different models, one is
1/f independent Gaussian noise with 8 Discrete Cosine Transform (DCT) filters, the second is a
simple ICA model with 8 DCT filters, and highly kurtotic marginals. The third was a simple ISA
model - 4 subspaces, each with two filters from the DCT filter set. Distribution within the subspace
was a circular, highly kurtotic GSM, and the subspaces were sampled independently. Finally, we
generated data from a simple synthetic tree of DCT filters, using the same joint distributions as for
the ISA model. These four synthetic random data sets were given to the algorithm - results can
be seen in Figure 3 for the ICA, ISA and tree samples. In all cases the model learned the filters
and distribution correctly, reproducing both the filters (up to rotations within the subspace in ISA)
and the dependency structure between the different filters. In the case of 1/f Gaussian noise, any
whitening transformation is equally likely and any value of beta is equally likely. Thus in this case,
the algorithm cannot find the tree or the filters.

3.2 Learning from natural image patches

We then ran experiments with a set of natural images [9]1. These images contain natural scenes
such as mountains, fields and lakes. . The data set was 50,000 patches, each 16 × 16 pixels large.
The patches’ DC was removed and they were then whitened using PCA. Dimension was reduced
from 256 to 128 dimensions. The GSM for the density model had 16 components. Several initial

1available at http://www.cis.hut.fi/projects/ica/imageica/
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Figure 3: Validation of the algorithm. Noise was generated from three models - top row is ICA,
middle row is ISA and bottom row is a tree model. Samples were then given to the algorithm. On
the right are the resulting learned tree models. Presented are the learned filters, tree model (with
white edges meaning β = 0, black meaning β = 1 and grays intermediate values) and an example
of a marginal histogram for one of the filters. It can be seen that in all cases all parts of the model
were correctly learned. Filters in the ISA case were learned up to rotation within the subspace, and
all filters were learned up to sign. β values for the ICA case were always below 0.1, as were the
values of β between subspaces in ISA.

conditions for the matrix W were tried out (random rotations, identity) but this had little effect
on results. Mini-batches of 10 patches each were used for the gradient ascent - the gradient of 10
patches was summed, and then normalized to have unit norm. The learning rate constant η was
set to 0.1. Tree structure learning and estimation of the mixing variable β were done every 500
mini-batches. All in all, 50 iterations were done over the data set.

3.3 Filters and tree structure

Figures 4 and 5 show the learned filters (WQ where Q is the whitening matrix) and tree structure
(T ) learned from natural images. Unlike the ISA toy data in figure 3, here a full tree was learned
and β is approximately one for all edges. The GSM that was learned for the marginals was highly
kurtotic.

It can be seen that resulting filters are edge filters at varying scales, positions and orientations. This
is similar to the result one gets when applying ICA to natural images [5, 15]. More interesting is

Figure 4: Left: Filter set learned from 16 × 16 natural image patches. Filters are ordered by PCA
eigenvalues, largest to smallest. Resulting filters are edge filters having different orientations, po-
sitions, frequencies and phases. Right: The “feature” set learned, that is, columns of the pseudo
inverse of the filter set.
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Figure 5: The learned tree graph structure and feature set. It can be seen that neighboring features
on the graph have similar orientation, position and frequency. See Figure 4 for a better view of the
feature details, and see text for full detail and analysis. Note that the figure is rotated CW.
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Figure 6: Correlation of optimal parameters in neighboring nodes in the tree graph. Orientation,
frequency and position are highly correlated, while phase seems to be entirely uncorrelated. This
property of correlation in frequency and orientation, while having no correlation in phase is related
to the ubiquitous energy model of complex cells in V1. See text for further details.

Figure 7: Left: Comparison of log likelihood values of our model with PCA, ICA and ISA. Our
model gives the highest likelihood. Right: Samples taken at random from ICA, ISA and our model.
Samples from our model appear to contain more long-range structure.

the tree graph structure learned along with the filters which is shown in Figure 5. It can be seen that
neighboring filters (nodes) in the tree tend to have similar position, frequency and orientation. Figure
6 shows the correlation of optimal frequency, orientation and position for neighboring filters in the
tree - it is obvious that all three are highly correlated. Also apparent in this figure is the fact that
the optimal phase for neighboring filters has no significant correlation. It has been suggested that
filters which have the same orientation, frequency and position with different phase can be related
to complex cells in V1 [2, 16].

3.4 Comparison to other models

Since our model is a generalization of both ICA and ISA we use it to learn both models. In order to
learn ICA we used the exact same data set, but the tree had no edges and was not learned from the
data (alternatively, we could have just set β = 0). For ISA we used a forest architecture of 2 node
trees, setting β = 1 for all edges (which means a spherical symmetric distribution), no tree structure
was learned. Both models produce edge filters similar to what we learn (and to those in [5, 15, 6]).
The ISA model produces neighboring nodes with similar frequency and orientation, but different
phase, as was reported in [2]. We also compare to a simple PCA whitening transform, using the
same whitening transform and marginals as in the ICA case, but setting W = I.

We compare the likelihood each model gives for a test set of natural image patches, different from
the one that was used in training. There were 50,000 patches in the test set, and we calculate the
mean log likelihood over the entire set. The table in Figure 7 shows the result - as can be seen, our
model performs better in likelihood terms than both ICA and ISA.

Using a tree model, as opposed to more complex graphical models, allows for easy sampling from
the model. Figure 7 shows 20 random samples taken from our tree model along with samples from
the ICA and ISA models. Note the elongated structures (e.g. in the bottom left sample) in the
samples from the tree model, and compare to patches sampled from the ICA and ISA models.
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Figure 8: Left: Interpretation of the model. Given a patch, the response of all edge filters is computed
(“simple cells”), then at each edge, the corresponding nodes are squared and summed to produce the
response of the “complex cell” this edge represents. Both the response of complex cells and simple
cells is summed to produce the likelihood of the patch. Right: Response of a “complex cell” in our
model to changing phase, frequency and orientation. Response in the y-axis is the sum of squares
of the two filters in this “complex cell”. Note that while the cell is selective to orientation and
frequency, it is rather invariant to phase.

3.5 Tree models and complex cells

One way to interpret the model is looking at the likelihood of a given patch under this model. For
the case of β = 1 substituting Equation 4 into Equation 3 yields:

logL(z) =
∑

i

ρ(
√
y2

i + y2
pai

)− ρ(|ypai |) (12)

Where ρ(x) = log
(∑

k πkN (x;σ2
k)
)
. This form of likelihood has an interesting similarity to mod-

els of complex cells in V1 [2, 4]. In Figure 8 we draw a simple two-layer network that computes
the likelihood. The first layer applies linear filters (“simple cells”) to the image patch, while the sec-
ond layer sums the squared outputs of similarly oriented filters from the first layer, having different
phases, which are connected in the tree (“complex cells”). Output is also dependent on the actual
response of the “simple cell” layer. The likelihood here is maximized when both the response of the
parent filter ypai

and the child yi is zero, but, given that one filter has responded with a non-zero
value, the likelihood is maximized when the other filter also fires (see the conditional density in
Figure 2). Figure 8 also shows an example of the phase invariance which is present in the learned
"complex cell" (energy of a pair of learned filters connected in the tree) - it seems that sum squared
response of the shown pair of nodes is relatively invariant to the phase of the stimulus, while it is
selective to both frequency and orientation - the hallmark of “complex cells”. Quantifying this re-
sult with the AC/DC ratio, as is common [17] we find that around 60% percent of the edges have an
AC/DC ratio which is smaller than one - meaning they would be classified as complex cells using
standard methods [17].

4 Discussion

We have proposed a new model for natural image statistics which, instead of minimizing dependency
between components, maximizes a simple form of dependency - tree dependency. This model is a
generalization of both ICA and ISA. We suggest a method to learn such a model, including the tree
structure, filter set and density model. When applied to natural image data, our model learns edge
filters similar to those learned with ICA or ISA. The ordering in the tree, however, is interesting -
neighboring filters in the tree tend to have similar orientation, position and frequency, but different
phase. This decorrelation of phase, in conjunction with correlations in frequency and orientation are
the hallmark of energy models for complex cells in V1.

Future work will include applications of the model to several image processing scenarios. We have
started experimenting with application of this model to image denoising by using belief propagation
for inference, and results are promising.
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