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Abstract

The statistics of natural images are of great interest to anyone interested in problems of computer
vision, image processing and biological vision. As natural images form the basic stimuli in most
vision oriented tasks it is of great importance to understand their unique properties and statistical
structure. In this thesis I present a series of works all attempting to better understand the sta-
tistical properties of natural images, ranging from marginal filter response statistics to a complete
analytical model for whole natural image patches. In all of these works we compare the proposed
models to current, cutting edge models and methods.

Natural images have several important statistical properties which manifest themselves in dif-
ferent contexts, many of them relevant to the works presented. Two major properties I will review
here is the scale invariance of natural images and their non-Gaussian structure. Natural images
have scale invariant statistics, meaning that their statistical properties remain the same when the
images are scaled up or down. One of the hallmarks of this property is the power-law spectrum of
natural images, the energy of the spectrum decays with frequency such that p(f) Ã 1

/f2. Another
important property which will play a significant role in this work is the non-Gaussianity of natu-
ral images. The filter response histograms of zero mean filters applied to natural images always
portray highly non-Gaussian shapes with strong peaks and heavy tails. This is a result of several
di�erent phenomena related to the structure of natural images and will be discussed in many of
the works presented here.

Several works are the basis for this thesis. The first work presented here deals with marginal
filter responses in natural images. We show that the kurtosis of marginal filter histograms is
a�ected by noise present in the image. We suggest that in clean natural images this kurtosis tends
to be constant with changes in the scale of the filter, and that noise causes this to constancy to
change. We show that this can be used to estimate noise present images and obtain state-of-the-art
performance in a variety of noise estimation tasks.

In the second work we propose a model which approximates the joint distribution of natural
image patches using a tree structured graphical model learned from these patches. We show that
such a model learns a set of oriented, localized, band-pass filters, resembling “simple cells” of the
V1 cortex. These filters are joined together by the tree graph to form structures which resemble
“complex cells” in the V1 cortex - cells which share location and orientation but di�er in phase
are grouped together in the tree, creating a phase invariant structure akin to complex cells. This
model is compared with several models and is shown to be a strong performer in modeling natural
image patches.

The last two works of this thesis present a new model for natural images which is based on a
simple and common model - the Gaussian Mixture Model (GMM). In the first work in this series,
we present a framework which allows patch priors to be used in whole image restoration. Using
this framework and the GMM model we show that we can achieve state-of-the-art performance in
a variety of image restoration tasks, competing with the most sophisticated engineered methods.
The GMM prior is further analyzed in the second work in this series. In this work we attempt to
explain the surprising success of the GMM. We compare the GMM performance to current cutting
edge models of natural images and we show what are the properties of natural images that are
captured by the model. To conclude, we propose an analytical model for natural image patches
which we call “Mini Dead Leaves” which models some of the salient properties learned by our
model - occlusion, texture and contrast.
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Chapter 1

Introduction

1.1 Natural images

The greater part of this thesis deals with natural images. The term natural images is used in
many di�erent contexts in the relevant literature [1, 2, 3, 4], but there is no agreed upon definition
of natural images. In the context of this work, a natural image would be the result of taking
an ordinary digital camera, pointing it somewhere in the world and pressing the shutter button.
While this is still not a very good definition, it definitely coincides with the majority of images
taken in the world today. This definition also ignores many di�erent aspects of acquiring digital
images, the e�ects of the lens, sensor, pre- and post-processing of the image etc [5, 6]. Some of
these e�ects are important as we will see later on in this work, and some are not, at least not to
the subject at hand.

Natural images serve as the main stimuli of the human visual system, and are the main input
of many computer vision systems. As such, knowing more about the structure (and statistics) of
this extremely complex and diverse stimuli is important if we ever hope to understand our own
visual system or to build better computer vision systems.

1.2 Natural images and statistics

Natural images are an extremely diverse and complex entity. Because they are projections of the
vast world around us, they embody many of the physical properties of this world. An explicit
representation for such a complex thing may be very hard to find, and as such, natural images
lend them selves to a statistical description.

In the context of this thesis, a digital image x will be a matrix of N ◊M pixels. Each pixel
may be a grayscale value (a scalar) or a color value (usually an RGB triplet). To understand the
sheer size of the possible space of images, consider a small 32◊32 grayscale image where each pixel
can be assigned one of 256 grayscale values. This space of all possible image for this small image
comprises of 2561024 di�erent images. This is, of course, a huge number of possible images with a
much larger number of images than atoms in this universe. A majority of these images, however,
will be complete garbage - most of them will not contain anything similar to objects we see in this
world, just noise. Natural images comprise only a small subset of this huge space, and hopefully
they have distinct and informative properties which allow us to model them using statistics.

Given that, it seems that the main challenge in modeling the statistics of natural images,
would be to find a good model that will tell us given an image x how likely it is that this image is
natural. We can think of this “naturalness” score as a probability density function in image space
p(x), where we would like it to have high probability density around images that resemble natural
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(a) A likely image (b) A less likely image (c) An unlikely image

Figure 1.1: An ideal statistical model of natural images would give high likelihood values to images
of a natural source, and low likelihood values to other images.

images, and low probability density in other areas. See Figure 1.1 for an example of this.

This function p(x) is the “holy grail” of natural image statistics and is the main subject of this
thesis.

1.3 Statistical properties of natural images

The study of natural image statistics dates back to the 1950’s where early studies on television
signals revealed that their power spectrum behaves like a power-law [7, 8] (though these television
signals were not called “natural images” at the time, their content inherently coincides with natural
images). This power-law spectrum property will be discussed in detail in the next section. The
majority of earlier works all used classical image analysis tools such as Fourier decomposition and
Gabor filters [9]. These classical tools helped reveal many of the important statistical properties
of natural images we know today.

Starting from the late 1980’s there has been a surge of works all dealing with natural images
directly [10, 11, 2, 12, 13, 14, 15, 16, 17]. While there are many works on the subject matter
covering many di�erent aspects of natural images statistics, there are several notable properties
of these statistics which deserve special attention. These properties will play an important role in
the first published paper in this thesis (Section 2.1), and to some extent are important to all the
works presented here.

1.3.1 Scale invariance

One of the more robust phenomenon observed in natural images is the scale invariance of their
statistics. While there are several scale invariant properties in natural images [11, 2, 3] the most
notable one and by far the most studied one is the power law spectrum. Taking the Fourier
transform of natural images reveals that the power of di�erent frequency magnitudes f (that is,
spatial frequencies averaged over orientations) has the following form:

P (f) Ã 1
f

2≠÷ (1.1)

where ÷ is usually a small constant. Consider a natural image I1 for which the power spectrum is
F2

1 (f) = c
f2 (where c > 0), and its down-scaled version I2 such that:

I1(ax) = I2(x) a > 0 (1.2)
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Figure 1.2: Scale invariant spectrum of natural images. The power spectrum of the four images to
the right of the graph. Note that even though the images here are very di�erent from one another,
their power spectrum is very similar. The dashed line in the left plot is proportional to 1

/f2.3.
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where the first line is due to the Fourier scaling theorem. This means that spectrum of I2 also
follows Equation 1.1, is the same as I1 and is scale invariant. Figure 1.2 depicts the power spectrum
of several, quite di�erent natural images. One important thing to note here is that this is an
empirical result, there is no a-priori reason to assume natural images should have this kind of
spectrum.

There are many work which attempt to explain this and related phenomena [2, 3, 18] and
among those the “Dead Leaves” model is especially important [19, 18, 20, 2]. The dead leaves
model is a model for generating synthetic images. With a careful selection of parameters [2, 18],
the images generated by this model have statistical properties which are closely related to those
of natural images and among these scale invariance and heavy tailed statistics (discussed in the
Section 1.3.2). The basic process to generate an image with the dead leaves model is to place
random “shapes” (say, circles or ellipses) with sizes chosen from a distribution p(s) and random
intensity on an image plane, in a random location. Each new shape is placed on the image plane
in a random location, occluding everything beneath it (like dead leaves falling on the ground o�
a tree). The process stops when all pixels in the image plane have been covered by at least one
shape. Figure 1.3 depicts sample images from such a model (using circles as the shape element).

While this model seems simplistic it is in fact a very rich and interesting model and is able to
reproduce a lot of the statistics of natural images, depending on the distribution of sizes p(s) and
other model parameters [18]. Many works have been devoted to the analysis of this model, and it
is out scope to survey them here.

1.3.2 Non-Gaussianity and heavy tails

Another notable property of natural images is their non-Gaussianity. This property comes to play
in many di�erent aspects of natural image statistics, but the simplest and most common way to
observe it is to look at marginal filter histograms. Convolving an image with almost any zero
mean linear filter results in a histogram similar to the one visible in Figure 1.4 (depicted here is
the horizontal derivative filter response histogram). Compared to a Gaussian (also displayed on
the same plot) the resulting histogram is much more heavy tailed — the probability of getting
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extreme values (much larger than the standard deviation) is magnitudes larger than in a Gaussian
distribution. Correspondingly, the peak around zero is much narrower (a direct result of the
requirement to be normalized density function). If images were Gaussian, we would see Gaussian
marginal histograms. There are many explanations to why this non-Gaussian distribution arises
in natural images [21, 22, 18]. The dead leaves model which we encountered in Section 1.3.1 also
reproduces this e�ect (as well as some related ones).

This property comes into play in almost any model we will discuss in this thesis, from modeling
the statistics to image restoration, the non-Gaussianity of natural images plays an important role
in the challenges for the field. In the published paper presented in Section 2.1 we will see how we
can use this property together with scale invariance (see Section 1.3.1) to estimate noise content
in natural images. The last two papers in this thesis (Section 2.3 and 2.4) present a model which
is able to account for much of the non-Gaussianity of images and also show that conditioned on
some local properties, this non-Gaussianity disappears (see the discussion in Section 3 for more
details).

1.4 Learning models of natural image patches

In the previous section we encountered some important properties of natural image statistics.
These properties, however, are not learned from data - that is, they are empirical observations
made by researching images with classical signal processing tools. With the advance of computing
power, storage capacities and the ever growing amount of data available, there has been a surge of
works which attempt to model natural images via techniques and methods from machine learning.

Machine learning opens up a world of possibilities when it comes to natural image statistics. As
natural images are easy to obtain - many of the images on the internet, are, in fact, natural images
- the amounts of available data to feed into learning algorithms is practically infinite. Since most
learning in natural image statistics is unsupervised no tagging is necessary, making the data cheap
and widely available. This privilege really opens up doors for richer, more sophisticated models
of natural images, and as we will see in the published papers in Section 2.3 and 2.4 of this thesis,
allows us to advance the state-of-the-art in modeling natural images and image restoration.

Modern digital images have a great number of pixels — usually millions per image. This usually
prohibits learning models on whole images, and constraints us to focus on learning models for image
patches. Indeed, the majority of the works presented in this thesis focus on modeling local patch
statistics, usually of tens or hundreds of pixels. Working with smaller image patches does not make
the problem of modeling their statistics easier, it just makes the problem feasible. As we have seen
in Section 1.2 the number of possible patches is amazingly large, and finding a model which allows
us to model the natural image patches is a daunting task. The remainder of this section will be

Figure 1.3: Dead Leaves model. Depicted here is a sample from a dead leaves model. While the
image does not resemble a natural image, these images share many of the statistical properties of
natural images and have been the focus of much research in the natural image statistics community.
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Figure 1.4: Non-Gaussianity of natural images. Depicted is the histogram of horizontal derivative
filter responses over a natural image, in log scale. Note that the response histogram has much
heavier tails than a Gaussian (solid red line, presented here for comparison)

devoted to presenting some of the more popular models of natural image patches of recent years.

1.4.1 PCA

Principal Component Analysis (PCA) [23] is a popular method for data analysis, dimensionality
reduction and density modeling. In PCA we look for a set of linear, orthogonal projections of the
data W for which the variance in the corresponding direction is maximized. The k-th principal
component is given by:

wk = arg max
w

‡

2(wTX) s.t wTw = 1,wk ‹ wk≠1 (1.4)

Where X is the N ◊ P data matrix having P samples in columns, each having N dimensions.
Figure 1.5a depicts this basic idea. Actually finding the principal components of the data amounts
to estimating the eigenvectors of the data covariance matrix, a relatively simple operation. PCA
is also closely related to data whitening — an operation which decorrelates the data, discarding
all second order statistics. Whitening is a common preprocessing step for many of the models
presented in this thesis.

Interpreted as a probabilistic model [24] PCA can be regarded as a Gaussian model, taking
into account only the first and second moments of the data. Under this model, the likelihood of
an image x is simply:

p(x) = N (x; 0,�) (1.5)

Where � is the data covariance matrix and N is the multivariate Gaussian density. Figure 1.5b
depicts the leading principal components of natural image patches (see also [25]). Due to the
stationary nature of natural image statistics, the covariance matrix of natural image patches is
approximately circulant, and as such, its eigenvectors are approximately the 2D Fourier basis
vectors. Figure 1.5c also depicts the eigenvalues of the covariance matrix — it can be seen that
the eigenvalues decay as a power-law much like the spectrum we have seen in Section 1.3.1.

As we have seen in Section 1.3.2, natural images have very non-Gaussian statistics and while
PCA tells us an interesting story about natural images, it is definitely not the whole story. In the
upcoming sections we will address some of the non-Gaussian elements of natural images, though in
many cases, the first step would be discarding the second order statistics, those which are indeed
captured by PCA.

1.4.2 ICA

We have seen that PCA allows us to decorrelate the data, that is, discard all second order statistics.
This is an example of redundancy reduction, obtaining a more compact representation of data. This
has been suggested as one of the goals of the sensory system [1, 11, 15, 26, 27]. When dealing
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Figure 1.5: Principal Component Analysis (PCA). (a) The basic idea of PCA is to find the
directions in which the projected data variance is maximized. In the example here the red line
is the first principal component and the green is the second. (b) The principal components of
natural image patches — note how the eigenvectors resemble the Fourier basis, a result of the
stationarity of image statistics. (c) The eigenvalues associated with the principal components,
note the power-law like decay.

with Gaussian data PCA makes the resulting projections independent — the ultimate form of
redundancy reduction. For N dimensional data we move from a probability density in N dimension
to N univariate densities, a significant reduction indeed!

Making non Gaussian data such as natural images independent is more challenging. Since
there are higher order correlations PCA is not able to achieve this goal and for the purpose
Independent Component Analysis (ICA) has been developed. ICA is a family of algorithms which
share a common goal: finding a linear projection of the data W which makes the resulting data
projections as statistically independent as possible [17, 28].

There are many di�erent ways to achieve this goal [29, 28], but one of the simpler ones is gradient
ascent on a factorial objective likelihood function. The first step of this method is whitening the
data. As we have seen above this gets rid of all second order correlations and can be done easily
using PCA:

Z = D≠ 1
2 VTX (1.6)

where D and V are the diagonal eigenvalue matrix and the eigenvector matrix correspondingly.

After whitening we search for an orthonormal filter matrix which maximizes the following log
likelihood:

logL(X) =
Pÿ

p=1

Nÿ

i=1
log f(ypi ) Y = WZ (1.7)

where f(x) is a leptokurtotic density function - usually the Laplace density, and Z is defined in
Equation 1.6. The reason we look for an orthonormal filter matrix W is that every rotation of
a whitening matrix is also a whitening matrix - restricting the search space considerably. Us-
ing gradient ascent on the log likelihood in Equation 1.7 and constraining the matrix W to be
orthonormal after each step we can find the ICA filter matrix for X.

Figure 1.6 shows the ICA filter matrix obtained by training on natural image patches. This
seminal result, closely related to the results we will see in the next section, is one of the most
celebrated results of natural image statistics. The resulting filters are localized in space and
frequency, and are selective for orientation and phase [17, 30]. This resembles the receptive field of
simple cells neurons in the primary visual cortex [17, 31] as well as some popular image transforms
such as wavelets and Gabor filters [17].
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Figure 1.6: Independent Component Analysis (ICA) filter matrix trained on natural image patches.
Note how the resulting filters are localized in space and frequency and selective for orientation and
phase. These filters resemble the receptive field of “simple cell” in the primary visual cortex as
well as image transforms such as the Gabor filter and wavelets. (replotted from [25])

1.4.3 Sparse coding

Sparse coding is a the name given for a large variety of models, all trying to find a sparse repre-
sentation of data [32, 15, 33, 34, 35]. The exact details di�er from discipline to discipline but in its
essence in sparse coding we look for a representation of the data in which most of the variables will
be zero, and only a small subset will be assigned non-zero values. This is usually obtained by using
a dictionary — a set of linear basis functions which are linearly mixed by the sparse coe�cients
to form the image. This dictionary may be hand designed or adapted to the data. Sparse cod-
ing models have become extremely popular in recent years, both in the neuroscience community
[15, 36, 37, 38] and the image processing and computer vision community [39, 40, 41, 42],

From a generative perspective sparse coding can be modeled as:

x = D–+ ÷ (1.8)

where x œ RN is the image patch, D œ RN◊M is the sparse coding dictionary, – œ RM is the sparse
representation of coe�cients and ÷ is zero mean Gaussian noise. In general we require M Ø N
where in cases where the equality holds (the complete case) the problem is closely related to ICA
from Section 1.4.2 [25] and learning of the dictionary is much simpler.

The learning problem in sparse coding is two fold, given a set of patches we would like to
find both the sparse representation vector – for each patch as well as the dictionary D which
would make it easier to find sparse representations of the data. Both problems have many di�erent
formulations [34, 35]. A common formulation for the former problem is:

–̂ = arg min
–
Îx≠D–Î2 + ⁄ Î–Î0 (1.9)

where Î·Î0 denotes the L0 norm and ⁄ is the regularization parameter. The first term is the
reconstruction error, constraining the patch to be close to the observed patch while the second
term The problem with this formulation is that it makes this problem non-convex. While there
are several algorithms which attempt to solve this problem directly, the common solution to this is
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Figure 1.7: Sparse coding dictionary trained on natural image patches. The resulting basis function
resemble Gabor filters, compare to Figure 1.6. (Image by David Field)

to use the L1 norm [15, 35] (or any other sparsity inducing norm [35] for –). This relaxed version
is easier to solve and there is a plethora of methods that find the sparse coe�cients. In cases
where we want to learn the dictionary together with the (relaxed) sparse coe�cients the problem
becomes finding:

–̂, D̂ = arg min
–,D

Îx≠D–Î2 + ⁄ Î–Î1 (1.10)

This is usually solved in an iterative manner — first solving for – given the dictionary D and then
solving for D given the sparse coe�cients –.

When applied to natural images the resulting dictionary elements (basis functions) resemble
Gabor filters [15] much like the ones we have in Section 1.4.2. This celebrated result once more
ties links between natural image statistics and neuroscience — one can argue that if our brain is
looking for a sparse representation of natural images then this can explain the observed properties
of simple cells in the primary visual cortex [15, 37].

1.4.4 Hierarchical models

All the models we have seen thus far are single layer models, each patch is a linear superposition
of basis functions weighted by the corresponding coe�cients which may be sparse, independent
etc. depending on the model. These kind of models have limited a expressive power because it is
hard to model the higher order interactions explicitly [43]. Several hierarchical models have been
suggested in recent years [14, 44]. In all of these models there is an additional layer of interaction
which accounts for the dependencies between the di�erent coe�cients in each model. The most
notable of these models is the model by Karklin and Lewicki [44].

This model is composed of two layers, depicted in Figure 1.8. From a generative perspective, the
model consists of a layer of n hidden “neurons” yj which are assumed to be sparse and independent.
These neurons modulate a set of basis functions (a dictionary) B weighted by weighting matrix W
which connects each neuron to all the dictionary elements in B. The modulated set of dictionary
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(a) (b)

Figure 1.8: (a) The model by Karklin and Lewicki [44], a prime example of a hierarchical model.
Sparse “neurons” (top bars) are used to linearly combine basis vectors which form covariance
structures (middle rows). Di�erent combinations of basis vectors form di�erent “families” of co-
variance structures and image patches. (b) Generalizations learned by the model - depicted are
non-linear projections resulting from the model, together with characteristic patches from each
cluster. Note that that clusters generalize di�erent families of patches - edges, textures and more.
(Image replotted from [44])

elements is used to create a covariance matrix C such that:

log C =
ÿ

jk

yjwjkbkbTk (1.11)

Finally, the image patch x conditioned on the activations of the hidden neuron y is multivariate
Gaussian with covariance C:

p(x|y) = N (x; 0,C) (1.12)

Training and inference procedures for this model are out of scope for this thesis, but when
trained on natural image patches, the model parameters B and W learn to capture several in-
teresting properties of natural images. The dictionary elements in B learn basis functions which
again resemble Gabor filters, localized in space and frequency and selective for orientation and
phase. Here, however, these basis functions are combined together to create intricate receptive
fields which code for edges, boundaries and textures. See Figure 1.8b for examples of this.

1.5 Image restoration using natural image statistics

A basic problem in low-level vision research is the problem of image restoration [45, 46, 41, 42].
Given an image which has been corrupted by some corruption process we wish to recover the clean,
original image. In almost all cases this is a highly under determined problem having many more
unknowns than constraints and as such requires regularization of some sort. This regularization
term is where natural image statistics may help us. If we have a “good” model for clean images,
that is, a model which knows how clean images should look like, then we might be able to recover
such a clean image given a corrupted measurement. When using a prior to help us in image
restoration we are in fact taking the Bayesian approach to image restoration.

1.5.1 The corruption model

There are many ways to corrupt an image, starting from the acquisition process: the lens, the
sensor, through the analog to digital conversion and quantization processes and ending with com-
pression and representation artifacts [5]. Since it is out of scope for this thesis to review this vast
field of research we will focus on a simple problem formulation which covers a variety of corruption
process in a simple model. Given a clean image x we generate the corrupted image y using the
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following model:
y = DHx + ÷ (1.13)

Where ÷ is Gaussian noise with known statistics, H is a convolution matrix with known blurring
kernel and D is a down-sampling matrix (also known). This formulation covers the problem of
image denoising and image inpainting when D and H are the identity matrix, non-blind image
deconvolution when D is the identity, and single image super-resolution when D is a down-sampling
matrix. In all cases we are given y and we wish to recover x knowing only the noise statistics and
the matrices D and H (the related blind case, where we need to also estimate the corruption
parameters will not be discussed here, though the published paper in Section 2.1 deals directly
with the problem of estimating the statistics of the noise ÷ in case they are unknown).

As can be seen, since we don’t know the noise realization, only its statistics, at best we have
two times the unknowns than equations — a hard problem indeed! We will see in the next section
how natural image statistics can help us with solving this problem.

1.5.2 Using a prior for image restoration

Suppose we have a prior for natural images p(x) and that we are given a corrupted image y from
which we wish to restore the unknown clean image x. We assume we have the complete corruption
model p(y|x) the process is similar for other restoration tasks. There are two sensible solutions for
this problem, one is to look for the maximum a-posteriori (MAP) solution for the problem:

x̂MAP = arg max
x

p(x|y)

= arg max
x

p(y|x)p(x)

= arg max
x

log p(y|x) + log p(x) (1.14)

This looks for most likely estimate given the corrupted observation and prior. Actually computing
the result for Equation 1.14 may be very easy or very hard, depending on the exact problem setting.
The alternative to finding the MAP estimate is to find the Bayesian Least Squares (BLS) or the
conditional mean:

x̂BLS = Ep(x|y)(x)

=
ˆ

x

p(x|y)x dx

= 1
p(y)

ˆ
x

p(x)p(y|x)x dx (1.15)

Equation 1.15 can again be quite easy or quite hard to solve, depending on the exact problem
setting. Theoretically, the BLS estimate is the optimal estimate if one wants to minimize the Mean
Squares Error (MSE). However, this is true only if the prior p(x) is the “true” prior for the observed
data. Since we have no guarantee for this in the case of images (if we would have known the true
p(x) there wouldn’t be much point in writing this thesis), it is sometimes preferable to use the
MAP estimate and sometimes the BLS estimate, depending on the exact setting, computational
constraints etc.

As an example to this, let’s consider the case for denoising an image corrupted with zero mean
Gaussian white noise with variance ‡2, and a Gaussian prior on images with covariance � and
zero mean. This means that:

p(y|x) = N (y|x,‡2I) (1.16)

p(x) = N (x|0,�) (1.17)
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(a)

(b)

(c)

Figure 1.9: Image denoising using natural image statistics. (a) Clean image patches (b) Images
corrupted by white Gaussian noise, ‡ = 25 (c) Restored images using a Gaussian prior trained on
natural images

Solving for the MAP, Plugging Equations 1.16 and 1.17 into Equation 1.14 we get:

x̂MAP = arg max
x

≠ 1
2 (y≠ x)T

!
‡

2I
"≠1 (y≠ x)≠ 1

2xT�≠1x (1.18)

taking the derivative w.r.t to x and setting to 0 we obtain:

x̂MAP =
!
‡

2I + �
"≠1 �y

Unsurprisingly, this is just the the Wiener filter solution, which is exactly the solution for this
example. This case is one rare case where the MAP solution has a closed form solution. In many
in the cases we will encounter below there is no closed form solution and an approximate MAP
estimation procedure is required. Coincidentally, the MAP solution for this case is also the BLS
solution but this is certainly not true in the general case, of course. Figure 1.9 depicts clean images,
noisy images and denoised images using this Gaussian model.

1.6 Interim summary

In this section, I have tried to give a broad overview of the relevant works from the natural image
statistics literature. We have seen some of the more important properties of natural images, scale
invariance and non-Gaussianity and we have encountered some recent models for natural images,
as well as how to apply these models to image restoration tasks. The upcoming sections are the
main part of this thesis, and includes four published works. Each of these works stems from at least
some of the works we have seen here, and hopefully expands our understanding of the implications
of these important works.
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Abstract

Natural images are known to have scale invariant statis-
tics. While some eariler studies have reported the kurto-
sis of marginal bandpass filter response distributions to be
constant throughout scales, other studies have reported that
the kurtosis values are lower for high frequency filters than
for lower frequency ones. In this work we propose a reso-
lution for this discrepancy and suggest that this change in
kurtosis values is due to noise present in the image. We
suggest that this effect is consistent with a clean, natural
image corrupted by white noise. We propose a model for
this effect, and use it to estimate noise standard deviation in
corrupted natural images. In particular, our results suggest
that classical benchmark images used in low-level vision
are actually noisy and can be cleaned up. Our results on
noise estimation on two sets of 50 and a 100 natural images
are significantly better than the state-of-the-art.

1. Introduction and Related Work
1.1. Scale Invariance in Natural Images

One of the most striking properties of natural image
statistics is their scale invariance [14]. The most notable
scale invariant property is the power-law spectrum. When
decomposing an image to its local bandpass filter compo-
nents, the power, or the variance of coefficient distributions
decays as a power-law of the form: P(w) =

A
|w|2�h where h

is usually a small number and w is the magnitude of the spa-
tial frequency [15]. This property is very robust and holds
across different images and scenes. Various other properties
of natural images have been shown to be scale invariant as
described in [13, 14].

Natural images, in addition to having scale invariant
statistics, are also extremely non-gaussian. The distribu-
tions of the different wavelet coefficients, for example, have
very large peaks, heavy tails and are highly kurtotic. These
distributions can be generally well fitted with a general-
ized gaussian distribution, which captures this distinctive

shape [1]. The kurtosis of a generalized Gaussian dis-
tribution is directly dependent on its shape parameter a .
Assuming x is generalized Gaussian distributed such that
x⇠GG(µ,s2

,a) where µ is the mean, s2 the variance and
a is the shape parameter, the kurtosis of x is:

kx(a) =

G(

1
a )G(

5
a )

G(

3
a )

2
(1)

Where G is the standard gamma function [4]. As can be
seen, the kurtosis is inversely related to the shape parameter
a . For natural images, a is usually rather small, having
values of between 0.5 and 1 [15].

In light of this, one would expect to see some sort of
scale invariance in the kurtosis of marginal coefficient dis-
tributions, specifically, a reasonable assumption would be
that the kurtosis should be constant throughout scales. This,
however, is not always the case. There is inconclusive evi-
dence to whether the kurtosis values change with the scale
of the measured filter response distribution. In [6] it has
been reported that the kurtosis is constant throughout scales
for DCT filters marginal distributions, whereas in [1] it has
been reported that the kurtosis changes with scale. Specif-
ically, in [1] it is reported that for higher frequencies, the
kurtosis values are lower than for the low frequency ones.

Figure 1 shows two different natural images, one is a
natural scene captured in good light conditions and the other
is the ubiqitous “Lena” image, which also depicts a natural
scene. As can be seen in the figure, while the kurtosis values
for the natural image are more or less constant throughout
scales, the Lena image displays changes in kurtosis values
in different scales. Higher frequency filter responses have
less kurtotic distributions than lower frequency ones.

In this work we propose a model which explains this dis-
crepancy. We suggest that the kurtosis of marginal distribu-
tions in clean, natural images should be constant throughout
scales, and that noise added to the image at various stages
of production causes the kurtosis values to change, and vi-
olates the scale invariance principle. Figure 2 shows the
result of adding noise at different standard deviations to a
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Figure 1: Kurtosis values for two different natural images.
Top row on the left is the kurtosis profile - the kurtosis as a
function of component number, or frequency, for the Lena
image. Kurtosis values for higher frequencies have lower
values than for low frequencies. In the middle of the row
are the response histograms of two components for this im-
age - the 12th (Low Frequency) and 55th (High Frequency)
normalized by their variance. As can be seen, the lower
frequency have a higher peak than the high frequency, mak-
ing it more kurtotic. Bottom row shows the same plot for
a clean natural image, taken at good light and downscaled.
Kurtosis values are constant throughout scales. This can be
seen in the response histogram as well. All results are for
8⇥8 DCT filters, both images are 512⇥512 pixels.
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Figure 2: Result of adding noise at different standard devia-
tion values to a clean image. The figure depicts the kurtosis
of marginal filter response distribution for the DCT filter
basis (8⇥8 pixels) as a function of spatial frequency. As
the noise standard deviation rises, the kurtosis values drop,
and the shape of the graph distorts with more change in the
higher frequencies.

clean, natural image. As the noise standard deviation rises,
kurtosis values drop, and more so for higher frequencies.

1.2. Estimating Noise Standard Deviation in Images
Many low-level computer vision algorithms combine the

image evidence with a prior or regularization term. The rel-

ative weight of these two terms depends crucially on the
observation noise and many computer vision algorithms as-
sume this noise level is given as input to the algorithm
[12, 11, 16, 18]. Different noise models are used in different
algorithms but by far the most common model for noise is
an additive, white Gaussian noise (sometimes referred to as
AWGN). There has, however, been much effort to estimate
the observation noise automatically. For the case of color
images, Liu et al. [8] showed how an assumption of piece-
wise constant color allows estimating noise from a single
image.

For gray level images, the MAD framework [19] uses
the deviation from a smooth image model to estimate the
noise. Specifically, two state-of-the-art methods [2, 10] take
a similar approach. A Laplacian filter is convolved with the
image, removing most second order dependencies between
neighboring pixels. Since pixels in natural images have very
high correlations between neighbours, this effectively re-
moves most of the information in the original image. The
only information that remains is at edges in the original im-
age and the noise itself. Estimating the noise variance (or
standard deviation) from the Laplacian image usually re-
sults in overestimation. This overestimation is due to edges
contributing to the overall variance. To compensate for this,
[2] apply a non-linear decay function over higher values of
the block variance histogram in an iterative manner. [10]
take a different approach - a Sobel edge detector is applied
to the image, and using an adaptive threshold, edge pixels
are marked and removed from the statistics. Both meth-
ods work quite well in general, but in images with prevelant
edges, they overestimate the noise variance considerably.

The most similar approach to ours is that of Stefano et al.
[3]. However, they assume a Laplacian distribution for the
marginals, and do not assume anything about scale invari-
ance or the relation between different wavelet coefficients.
They do note, however, that their method works best for
higher frequencies in which the SNR is lower - where the
change in kurtosis is more pronounced.

We propose a method for noise estimation the relies on
the assumption that kurtosis values of different scale filter
distributions should not change with scale, and that any sys-
tematic change in these values is due to added noise. Our
method performs much better on low-noise corrupted, elab-
orate natural image than current methods, and is compara-
ble to other methods when the noise is higher, or the image
simpler.

2. Model
2.1. Noise and the Generalized Gaussian Distribu-

tion
We start by modeling the change in kurtosis of a gener-

alized Gaussian distributed random variable due to added



Gaussian noise. Denote x a generalized Gaussian random
variable such that x ⇠ GG(µ,s2

x ,a) and denote h an in-
dependent Gaussian random variable with zero mean and
variance s2

n . Denote y a random variable such that:

y = x+h

We wish to calculate the kurtosis ky of y. Going back
to images, x would represent the original distribution for
a local coefficient (for example) in the clean image, h the
noise added and y the measured coefficient distribution from
the noise corrupted image.

In this work, we refer to kurtosis as the fourth central
moment normalized by the variance squared, or:

k =

µ4

s4

This is not the same as excess kurtosis which also in-
cludes a �3 term that makes the kurtosis of the Gaussian
distribution zero. Due to the independence of noise, the
variance of y is simply the sum of s2

GG and s2
n or:

s2
y = s2

x

✓
1+

s2
n

s2
x

◆

The fourth central moment of y is easy to calculate using
the cumulants and independence of noise:

µ4(y) = 3s4
x

✓
1+

s2
n

s2
x

◆2

+s4
x (kx(a)�3)

Where kx(a) is defined in Eq. 1. Finally, by normalizing
with the squared variance calculated above we get:

ky =

kx(a)�3
⇣

1+

s2
n

s2
x

⌘2 +3 (2)

Using this result we can predict the kurtosis of a marginal
filter response distribution taken from a noise corrupted im-
age, given the original image. This, however, is not usually
the case as the original image is typically not available. In
the next section we describe a method to estimate s2

n using
measurements of the noisy variable y and the assumption
that kx is unknown, but constant throughout measurements
of x for different scales.

2.2. Noise Estimation using Scale Invariance
At the base of our noise estimation procedure is the as-

sumption that the original, uncorrupted image had scale in-
variant statistics. Specifically, we assume that the kurtosis
of marginal filter response distributions for the original im-
age is an unknown constant, and that adding noise to the im-
age resulted in changes to kurtosis values throughout scales
for the corrupted image.
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Figure 3: Function space for Eq. 3. The minimum is the
actual point found numerically. Noise added to the image
had a standard deviation of 10.

The first step of the algorithm is gathering statistics over
the noise corrupted image In. We convolve the image with
each filter from the N⇥N DCT basis, to produce a response
image, yi for the i-th filter. We estimate the variance and
kurtosis for this response image to obtain ŝ2

yi
and k̂yi . We

do this procedure for every component i in the range 2..N2,
hence ignoring the DC component.

Given these variance and kurtosis measures, we wish to
estimate the variance of the added noise. This is done by
finding the pair k̂x, the kurtosis of the original uncorrupted
image distribution and ŝ2

n the variance of the noise, which
minimizes:

k̂x, ŝ2
n = argmin

kx,s2
n

N2

Â
i=2

���������

kx�3
✓

1+

s2
n

ŝ2
yi�s2

n

◆2 +3� k̂yi

���������

(3)

Figure 3 shows an example of what the function space
look like, when the noise added to the image has a standard
deviation of 10. As can be seen, there is a rather pronounced
valley at the minimum point (which the was numerically
found).

2.3. Non Gaussian Noise
Although the above model assumes white Gaussian

noise, it assumes that it is white and Gaussian in the fil-
ter domain only. Since many types of independent noise in
the pixel domain will mix in to Gaussian noise in the filter
domain, this method work with other types of noise. The
summation over the noise in pixels while calculating the re-
sponse image for the DCT basis causes the distribution of
the sum to be Gaussian - due to the central limit theorem and
noise independence. An example can be shown in Figure 4,
even though the noise is very non Gaussian in the pixel do-
main, it becomes Gaussian in the coefficient domain. In
Section 3 we show that adding uniform noise to images, for
example, does not change the performance of our method.

Other image corruption methods, such as JPEG com-
pression artifacts, quantization noise and sensor noise were
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Figure 4: Response histograms of independent Gaussian,
Uniform and Poisson pixel noise. Noise images were
512⇥ 512 pixels, having variance 1 and mean 0. Coeffi-
cient domain histograms made using an 8⇥8 DCT filter. It
can be clearly seen that while the three look very different
at the pixel domain, all three are mixed to be Gaussian with
the same variance and mean in the coefficient domain.

tested. Results are shown in the next section.

3. Results
3.1. Methods

We first compared the proposed method with existing
methods by synthetically adding noise to clean images. We
minimized equation 3 using MATLAB’s fminsearch func-
tion.

3.2. Noise Estimation Results
When the original image is relatively simple, such as the

one depicted in Figure 5 algorithms perform similarly, esti-
mating the noise variance well for a range of values. How-
ever, when using a more complex image, with a lot of tex-
tured areas such as the one depicted in Figure 6, the picture
changes. All results are means over 3 noise realizations -
standard deviations were not included in the graphs because
they were too low for all methods to be visible in the graph.

Due to the large amount of edges in the image in Fig-
ure 6, the methods in [2, 10] over estimate the noise greatly.
Our method performs better on the low to medium noise
regime (sn between 1 to 15). As the noise levels rise, it is
harder for our method to accurately estimate the noise. The
reason for overestimation of the noise SD in other methods
is that the textured areas have a lot of edges, causing the
Laplacian filtering be less effective at separating the noise
from the original image. Since the textured areas are from a
natural image and have scale invariant statistics, our meth-
ods handles this quite well, and enables us to recover the
noise SD more precisely. When the noise is sufficiently
large, the variance contributed from the edges is small rela-
tively to the noise variance, hence the similar performance
at this regime. Table 1 summarizes results for all experi-
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Figure 5: Noise estimation on a simple image, with no
prevalent edges (BIRD). All methods estimate the noise cor-
rectly for a range of values.

ments. In the results table the estimation results for uniform
noise can be observed. It seems that all methods handle this
type of noise relatively well. Using different patch sizes for
our method resulted in little difference in performance, it
seems that the central limit theorem comes in to play even
on small patch sizes (8⇥8 in this case, 64 pixels are more
than enough).

Finally, we estimate noise in 50 images from the Van
Hateren natural image database [17] as well as for a 100 im-
ages from the Berkeley database [9]. White Gaussian noise
was added to each of the images and noise was estimated
from them. It is obvious our method is on par or better than
other methods for all noise levels, for both databases. Cal-
culating the relative error for all noise levels over the van
Hateren database we obtain a mean error rate of 3%, while
other methods obtain 22% for Rank et al. and 28% for Cor-
ner et al. For the Berkeley our method obtains an average
error that is 9%, while other methods obtain 49% (Rank et
al.) and 65% (Corner et al.). Differences were even larger
when neglecting the lowest noise level estimation (in which
even a small error in estimation leads to a large relative er-
ror, results are then 1% for our method and 20% (Rank et
al.) and 22% (Corner et al.)). Results are shown in Table 1.

3.3. Other types of noise and corruption scenarios
We tested the proposed method under several other im-

age corruption scenarios. Under all scenarios under which
there’s no clear parameter for the noise standard deviation
sn, we calculate the standard deviation of the difference be-
tween the original image I and the corrupted image In such
that:

sn = h|I� In|i (4)

Where the mean is over all the pixels in the images.
The first scenario we tested is first motion blurring an

image, and then adding Gaussian noise to it. This scenario
is important as correct estimation of noise prior to image
deblurring is important to minimize common artifacts [7].



BIRD FIELD Van Hateren Berkeley

sn ŝn ŝ R
n ŝC

n ŝn ŝ R
n ŝC

n ŝn ŝ R
n ŝC

n ŝn ŝ R
n ŝC

n

1 0.68 1.01 1.1 2.06 7.16 8.3 0.89±0.71 2.02±1.19 2.25±1.1 1.5±1.8 2.9±2.8 3.7±2.8

3 2.8 3.05 3.13 3.67 8.04 8.76 2.92±0.62 3.64±0.89 3.75±0.72 2.9±1.8 4.5±2.3 4.9±2.3

5 4.83 5.11 5.14 5.52 9.43 9.56 4.96±0.59 5.47±0.72 5.55±0.52 4.9±1.9 6.4±2 6.6±1.9

10 9.98 10.11 10.08 10.35 13.56 12.89 10.13±0.89 10.2±0.49 10.2±0.48 9.7±1.8 11.1±1.6 11.1±1.3

15 15.15 14.97 14.98 15.34 17.9 17.05 15.32±1.13 15±0.38 14.87±0.62 14.7±1.8 15.9±1.3 15.7±1.1

25 25.47 24.75 23.73 25.57 26.8 26.27 26.33±1.81 24.65±0.28 23.9±1.47 24.8±2.0 25±1.0 25±1.2

hei 7% 1% 4% 24% 155% 176% 3% 22% 28% 9.8% 49% 65%

Table 1: Results summary for images and methods presented, for each image the first column is our method estimation ŝn,
the second Rank et al. ŝR

n and finally Corner et al. ŝC
n . Last row is the average relative estimation error. On 50 images

from the Van Hateren natural image database we obtain an average 3% error rate, while current state-of-the art method obtain
22% and 28%. Results for the Berkeley database (100 images) are similar, our method out-performs current state-of-the-art
methods.
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Figure 6: Noise estimation on a more complex image hav-
ing a lot edges and texture data (FIELD). With low noise
standard deviation other methods perform poorly, overesti-
mating the noise by a large percentage. Out method per-
forms much better, estimating the noise standard deviation
much better.

Figure 7 shows the result of such a scenario - it seems that
none of the methods is affected in any way by the blurring
operation, and all methods perform well in estimating the
noise standard deviation.

Second we tested whether corruption due to quantization
can be estimated using this method. We quantized 256 gray
scale levels images to 128, 64, 32, 16, 8 and 4 levels, noise
standard deviation was estimated as in Equation 4. From
the quantized image we tried to estimate this standard de-
viation. The proposed method works quite well, results can
be seen in Figure 8.

Third, a more realistic noise scenario was used. As was
done in [8], we obtained a Camera Response Function (or
CRF) from [5]. With this CRF we inversely mapped an
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Figure 7: Noise estimation under motion blur. The image
was first blurred with a motion blur mask and then corrupted
by noise. Noise was then estimated by several methods. It
seems that all methods estimate the noise well for a range
of values.

intensity image into a “lightness” image, added noise to the
“lightness” image and mapped the lightness image back to a
noisy, saturated, intensity image. This effectively simulates
the sensor noise of a digital camera for a single channel.
Results of noise estimation can be seen in Figure 9. All
methods slightly underestimate the noise in the image. The
reason for this is the clipping of the noise due to the CRF’s
saturation reduces variance near the extreme values (near 0
and near 255).

Finally, we tested whether JPEG corruption can be esti-
mated using the proposed method. A clean image was com-
pressed in the JPEG format using different quality levels.
The compressed images were then used to estimate the cor-
ruption in them and compared to the standard deviation of
the difference image. Results were very poor for all meth-
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Quantized Image − 4 Levels

Figure 8: Noise estimation under quantization. The 256
gray scale level image was quantized to 128, 64, 32, 16, 8,
and 4 levels. The standard deviation of the difference image
between the original and quantized image was used as the
true noise standard deviation. Estimation was done directly
on the quantized image. Our method out-performs other
methods on all quantization levels.
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Figure 9: Noise estimation under simulated sensor noise.
All methods slightly underestimate the noise in the image,
due to the saturation caused by the CRF.

ods. It seems that this kind of artifacts disrupt the kurto-
sis of marginal filter distributions in such a way that this
method can not handle properly. Specifically, since JPEG
compression is primarily a frequency domain operation, the
distributions change radically, having very extreme kurtosis
values which are inconsistent with the above model.

3.4. Uncovering the original Lena
One particularly interesting example is the famous

“Lena” image. The Lena image is very old - photographed
in 1972 and scanned in 1973. One can only assume that
scanning and printing technology of these days were not of
the highest grade, and noise has probably corrupted the im-
age to some extent. Looking at the kurtosis values, this is
clearly evident as was shown in Figure 1. It would be in-
teresting to see if one can estimate the noise in the original
Lena image, and maybe denoise it, uncovering the original,
clean image.

Estimating the inherent noise in the original, uncorrupted

image by our method yields a standard deviation of ŝn =

2.08. Other methods yield a bit more - this implies that
Lena in itself is noisy, as the original kurtosis profile hints
at. Taking this into account, it seems that in denoising ex-
periments with Lena, which are very common [11] there is a
maximal PSNR value that can be taken into account. When
measuring the PSNR between the original image and the
denoised image in a denoising experiment, any result above
41.76dB might not be possible without over fitting. It can
certainly be the case that a denoising algorithm will discard
some of the inherent noise in the original image, and that
when measuring the PSNR value with the original image
one will get a lower value for cleaner images. Of course,
the inherent noise in Lena is not necessarily additive, white
or Gaussian so the statement above should be taken with a
grain of salt, but nevertheless, the noise is present.

Assuming that Lena is noisy, can we uncover the orig-
inal, uncorrupted Lena image? We applied a simple
Bayesian denoising scheme which assumes a Generalized
Gaussian model for marginal filter distributions. We use
our proposed noise estimation method to estimate the noise
standard deviation in the image, and also the constant kur-
tosis value underlying in the original image. Using these
two parameters, we estimated the MAP value of local DCT
coefficients for all 8⇥8 patches of the images, and then av-
eraged the inverse DCT results to obtain a denoised image.
Results can be seen in Figure 10. Not surprisingly, esti-
mating the noise standard deviation of the denoised image
using our method yields a very low value (0.000001). This
reason for this is obvious when looking at the kurtosis of
the denoised image - as can be seen in Figure 11 it is al-
most constant throughout scales. Now we can measure the
PSNR value between the original (which has noise in it) and
the denoised version (which is assumed to be noise free) -
this yield a PSNR of 42.1dB, consistent with what we sug-
gest above. Denoising with a second algorithm, BRFOE by
Weiss and Freeman [18] yielded similar results (see Figure
10). This is interesting because this denoising model does
not assume scale invariance, and yet still, noise estimation
by our method yields a very low value, since the kurtosis in
the denoised image is rather constant.

4. Discussion and Future Work
In this work we describe and explain a baffling phenom-

ena. When measuring the kurtosis of marginal filter re-
sponse distributions in natural images, in many (but not all)
natural images, values of kurtosis for lower frequency filters
are higher than high frequency ones. This is in contrast to
the scale-invariant nature of natural images. We argue that
clean, natural images should have a constant kurtosis value
throughout scales, and propose that deviations from this are
due to noise inherent in the image. Using this assumption
we show how the noise level in a corrupted image can be



Original BRFOE

MAP Abs. Diff

Figure 10: Denoising results for the original Lena image
using simple scale-invariant Bayesian and BRFOE denois-
ing. On the top left is the original image (detail), on the
top right is the denoised image (BRFOE). Details are fully
preserved in the denoised image, but noise is much less ap-
parent. MAP denoising is on bottom left. Difference image
is scaled, and with BRFOE image.
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Figure 11: Kurtosis plot for the denoised Lena image and
original. An almost constant kurtosis throughout most of
the scales is apparent in the denoised image. The dashed
line shows the Kurtosis estimated by our noise estimation
algorithm. Left is the result from scale-invariant Bayesian
denoising, right is the BRFOE result.

accurately estimated, for a range of scene types and noise
levels, and under different corruption scenarios.

A particularly intriguing example is the ubiquitous Lena
image - a very common benchmark image - which we show
here to be noisy. We showed that this image is noisy in its
original form, and using it as "ground truth" in low-level
vision experiments should be done with caution.

Future work will include several directions. The first is
investigating what other types of image corruption come

into play when examining the kurtosis of marginal distri-
butions. Second, handling non-white noise should be rel-
atively simple as long as some model for the noise power
spectrum is assumed. Finally, there’s still the possibility
that the kurtosis profile should have another kind of scale
invariance, power-law or other, but not necessarily con-
stant (which is a special case of power-law). Extending this
method to include power-law is possible, but requires fur-
ther work as merely adding another parameter to the mini-
mization or model will not work.
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Abstract

We propose a new model for natural image statistics. Instead of minimizing de-
pendency between components of natural images, we maximize a simple form of
dependency in the form of tree-dependencies. By learning filters and tree struc-
tures which are best suited for natural images we observe that the resulting filters
are edge filters, similar to the famous ICA on natural images results. Calculating
the likelihood of an image patch using our model requires estimating the squared
output of pairs of filters connected in the tree. We observe that after learning,
these pairs of filters are predominantly of similar orientations but different phases,
so their joint energy resembles models of complex cells.

1 Introduction and related work

Many models of natural image statistics have been proposed in recent years [1, 2, 3, 4]. A common
goal of many of these models is finding a representation in which components or sub-components
of the image are made as independent or as sparse as possible [5, 6, 2]. This has been found to be a
difficult goal, as natural images have a highly intricate structure and removing dependencies between
components is hard [7]. In this work we take a different approach, instead of minimizing dependence
between components we try to maximize a simple form of dependence - tree dependence.

It would be useful to place this model in context of previous works about natural image statistics.
Many earlier models are described by the marginal statistics solely, obtaining a factorial form of the
likelihood:

p(x) =

Y

i

p

i

(x

i

) (1)

The most notable model of this approach is Independent Component Analysis (ICA), where one
seeks to find a linear transformation which maximizes independence between components (thus fit-
ting well with the aforementioned factorization). This model has been applied to many scenarios,
and proved to be one of the great successes of natural image statistics modeling with the emergence
of edge-filters [5]. This approach has two problems. The first is that dependencies between compo-
nents are still very strong, even with those learned transformation seeking to remove them. Second,
it has been shown that ICA achieves, after the learned transformation, only marginal gains when
measured quantitatively against simpler method like PCA [7] in terms of redundancy reduction. A
different approach was taken recently in the form of radial Gaussianization [8], in which compo-
nents which are distributed in a radially symmetric manner are made independent by transforming
them non-linearly into a radial Gaussian, and thus, independent from one another.

A more elaborate approach, related to ICA, is Independent Subspace Component Analysis or ISA.
In this model, one looks for independent subspaces of the data, while allowing the sub-components
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Figure 1: Our model with respect to marginal models such as ICA (a), and ISA like models (b). Our
model, being a tree based model (c), allows components to belong to more than one subspace, and
the subspaces are not required to be independent.

of each subspace to be dependent:

p(x) =

Y

k

p

k

(x

i2K

) (2)

This model has been applied to natural images as well and has been shown to produce the emergence
of phase invariant edge detectors, akin to complex cells in V1 [2].

Independent models have several shortcoming, but by far the most notable one is the fact that the
resulting components are, in fact, highly dependent. First, dependency between the responses of
ICA filters has been reported many times [2, 7]. Also, dependencies between ISA components has
also been observed [9]. Given these robust dependencies between filter outputs, it is somewhat
peculiar that in order to get simple cell properties one needs to assume independence. In this work
we ask whether it is possible to obtain V1 like filters in a model that assumes dependence.

In our model we assume the filter distribution can be described by a tree graphical model [10] (see
Figure 1). Degenerate cases of tree graphical models include ICA (in which no edges are present)
and ISA (in which edges are only present within a subspace). But in its non-degenerate form, our
model assumes any two filter outputs may be dependent. We allow components to belong to more
than one subspace, and as a result, do not require independence between them.

2 Model and learning

Our model is comprised of three main components. Given a set of patches, we look for the parame-
ters which maximize the likelihood of a whitened natural image patch z:

p(z;W, �, T ) = p(y1)

NY

i=1

p(y

i

|y
pa

i

;�) (3)

Where y = Wz, T is the tree structure, pa

i

denotes the parent of node i and � is a parameter of the
density model (see below for the details). The three components we are trying to learn are:

1. The filter matrix W, where every row defines one of the filters. The response of these
filters is assumed to be tree-dependent. We assume that W is orthogonal (and is a rotation
of a whitening transform).

2. The tree structure T which specifies which components are dependent on each other.
3. The probability density function for connected nodes in the tree, which specify the exact

form of dependency between nodes.

All three together describe a complete model for whitened natural image patches, allowing likeli-
hood estimation and exact inference [11].

We perform the learning in an iterative manner: we start by learning the tree structure and density
model from the entire data set, then, keeping the structure and density constant, we learn the filters
via gradient ascent in mini-batches. Going back to the tree structure we repeat the process many
times iteratively. It is important to note that both the filter set and tree structure are learned from the
data, and are continuously updated during learning. In the following sections we will provide details
on the specifics of each part of the model.
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Figure 2: Shape of the conditional (Left three plots) and joint (Right three plots) density model in
log scale for several values of �, from dependence to independence.

2.1 Learning tree structure

In their seminal paper, Chow and Liu showed how to learn the optimal tree structure approximation
for a multidimensional probability density function [12]. This algorithm is easy to apply to this
scenario, and requires just a few simple steps. First, given the current estimate for the filter matrix
W, we calculate the response of each of the filters with all the patches in the data set. Using these
responses, we calculate the mutual information between each pair of filters (nodes) to obtain a fully
connected weighted graph. The final step is to find a maximal spanning tree over this graph. The
resulting unrooted tree is the optimal tree approximation of the joint distribution function over all
nodes. We will note that the tree is unrooted, and the root can be chosen arbitrarily - this means that
there is no node, or filter, that is more important than the others - the direction in the tree graph is
arbitrary as long as it is chosen in a consistent way.

2.2 Joint probability density functions

Gabor filter responses on natural images exhibit highly kurtotic marginal distributions, with heavy
tails and sharp peaks [13, 3, 14]. Joint pair wise distributions also exhibit this same shape with
varying degrees of dependency between the components [13, 2]. The density model we use allows
us to capture both the highly kurtotic nature of the distributions, while still allowing varying degrees
of dependence using a mixing variable. We use a mix of two forms of finite, zero mean Gaussian
Scale Mixtures (GSM). In one, the components are assumed to be independent of each other and in
the other, they are assumed to be spherically distributed. The mixing variable linearly interpolates
between the two, allowing us to capture the whole range of dependencies:

p(x1, x2;�) = �p

dep

(x1, x2) + (1� �)p

ind

(x1, x2) (4)

When � = 1 the two components are dependent (unless p is Gaussian), whereas when � = 0 the
two components are independent. For the density functions themselves, we use a finite GSM. The
dependent case is a scale mixture of bivariate Gaussians:

p

dep

(x1, x2) =

X

k

⇡

k

N (x1, x2;�
2
k

I) (5)

While the independent case is a product of two independent univariate Gaussians:

p

ind

(x1, x2) =

 
X

k

⇡

k

N (x1;�
2
k

)

! 
X

k

⇡

k

N (x2;�
2
k

)

!
(6)

Estimating parameters ⇡

k

and �

2
k

for the GSM is done directly from the data using Expectation
Maximization. These parameters are the same for all edges and are estimated only once on the first
iteration. See Figure 2 for a visualization of the conditional distribution functions for varying values
of �. We will note that the marginal distributions for the two types of joint distributions above are
the same. The mixing parameter � is also estimated using EM, but this is done for each edge in the
tree separately, thus allowing our model to theoretically capture the fully independent case (ICA)
and other degenerate models such as ISA.

2.3 Learning tree dependent components

Given the current tree structure and density model, we can now learn the matrix W via gradient
ascent on the log likelihood of the model. All learning is performed on whitened, dimensionally
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reduced patches. This means that W is a N ⇥ N rotation (orthonormal) matrix, where N is the
number of dimensions after dimensionality reduction (see details below). Given an image patch z

we multiply it by W to get the response vector y:

y = Wz (7)

Now we can calculate the log likelihood of the given patch using the tree model (which we assume
is constant at the moment):

log p(y) = log p(y

root

) +

NX

i=1

log p(y

i

|y
pa

i

) (8)

Where pa

i

denotes the parent of node i. Now, taking the derivative w.r.t the r-th row of W:

@ log p(y)

@W

r

=

@ log p(y)

@y

r

z

T (9)

Where z is the whitened natural image patch. Finally, we can calculate the derivative of the log
likelihood with respect to the r-th element in y:

@ log p(y)

@y

r

=

@ log p(ypa
r

, y

r

)

@y

r

+

X

c2C(r)

@ log p(y

r

, y

c

)

@y

r

� @ log p(y

r

)

@y

r

(10)

Where C(r) denote the children of node r. In summary, the gradient ascent rule for updating the
rotation matrix W is given by:

W

t+1
r

= W

t

r

+ ⌘

@ log p(y)

@y

r

z

T (11)

Where ⌘ is the learning rate constant. After update, the rows of W are orthonormalized.

This gradient ascent rule is applied for several hundreds of patches (see details below), after which
the tree structure is learned again as described in Section 2.1, using the new filter matrix W, repeat-
ing this process for many iterations.

3 Results and analysis

3.1 Validation

Before running the full algorithm on natural image data, we wanted to validate that it does produce
sensible results with simple synthetic data. We generated noise from four different models, one is
1
/f independent Gaussian noise with 8 Discrete Cosine Transform (DCT) filters, the second is a

simple ICA model with 8 DCT filters, and highly kurtotic marginals. The third was a simple ISA
model - 4 subspaces, each with two filters from the DCT filter set. Distribution within the subspace
was a circular, highly kurtotic GSM, and the subspaces were sampled independently. Finally, we
generated data from a simple synthetic tree of DCT filters, using the same joint distributions as for
the ISA model. These four synthetic random data sets were given to the algorithm - results can
be seen in Figure 3 for the ICA, ISA and tree samples. In all cases the model learned the filters
and distribution correctly, reproducing both the filters (up to rotations within the subspace in ISA)
and the dependency structure between the different filters. In the case of 1

/f Gaussian noise, any
whitening transformation is equally likely and any value of beta is equally likely. Thus in this case,
the algorithm cannot find the tree or the filters.

3.2 Learning from natural image patches

We then ran experiments with a set of natural images [9]1. These images contain natural scenes
such as mountains, fields and lakes. . The data set was 50,000 patches, each 16 ⇥ 16 pixels large.
The patches’ DC was removed and they were then whitened using PCA. Dimension was reduced
from 256 to 128 dimensions. The GSM for the density model had 16 components. Several initial

1available at http://www.cis.hut.fi/projects/ica/imageica/
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Figure 3: Validation of the algorithm. Noise was generated from three models - top row is ICA,
middle row is ISA and bottom row is a tree model. Samples were then given to the algorithm. On
the right are the resulting learned tree models. Presented are the learned filters, tree model (with
white edges meaning � = 0, black meaning � = 1 and grays intermediate values) and an example
of a marginal histogram for one of the filters. It can be seen that in all cases all parts of the model
were correctly learned. Filters in the ISA case were learned up to rotation within the subspace, and
all filters were learned up to sign. � values for the ICA case were always below 0.1, as were the
values of � between subspaces in ISA.

conditions for the matrix W were tried out (random rotations, identity) but this had little effect
on results. Mini-batches of 10 patches each were used for the gradient ascent - the gradient of 10
patches was summed, and then normalized to have unit norm. The learning rate constant ⌘ was
set to 0.1. Tree structure learning and estimation of the mixing variable � were done every 500
mini-batches. All in all, 50 iterations were done over the data set.

3.3 Filters and tree structure

Figures 4 and 5 show the learned filters (WQ where Q is the whitening matrix) and tree structure
(T ) learned from natural images. Unlike the ISA toy data in figure 3, here a full tree was learned
and � is approximately one for all edges. The GSM that was learned for the marginals was highly
kurtotic.

It can be seen that resulting filters are edge filters at varying scales, positions and orientations. This
is similar to the result one gets when applying ICA to natural images [5, 15]. More interesting is

Figure 4: Left: Filter set learned from 16 ⇥ 16 natural image patches. Filters are ordered by PCA
eigenvalues, largest to smallest. Resulting filters are edge filters having different orientations, po-
sitions, frequencies and phases. Right: The “feature” set learned, that is, columns of the pseudo
inverse of the filter set.
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Figure 5: The learned tree graph structure and feature set. It can be seen that neighboring features
on the graph have similar orientation, position and frequency. See Figure 4 for a better view of the
feature details, and see text for full detail and analysis. Note that the figure is rotated CW.
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Figure 6: Correlation of optimal parameters in neighboring nodes in the tree graph. Orientation,
frequency and position are highly correlated, while phase seems to be entirely uncorrelated. This
property of correlation in frequency and orientation, while having no correlation in phase is related
to the ubiquitous energy model of complex cells in V1. See text for further details.

Figure 7: Left: Comparison of log likelihood values of our model with PCA, ICA and ISA. Our
model gives the highest likelihood. Right: Samples taken at random from ICA, ISA and our model.
Samples from our model appear to contain more long-range structure.

the tree graph structure learned along with the filters which is shown in Figure 5. It can be seen that
neighboring filters (nodes) in the tree tend to have similar position, frequency and orientation. Figure
6 shows the correlation of optimal frequency, orientation and position for neighboring filters in the
tree - it is obvious that all three are highly correlated. Also apparent in this figure is the fact that
the optimal phase for neighboring filters has no significant correlation. It has been suggested that
filters which have the same orientation, frequency and position with different phase can be related
to complex cells in V1 [2, 16].

3.4 Comparison to other models

Since our model is a generalization of both ICA and ISA we use it to learn both models. In order to
learn ICA we used the exact same data set, but the tree had no edges and was not learned from the
data (alternatively, we could have just set � = 0). For ISA we used a forest architecture of 2 node
trees, setting � = 1 for all edges (which means a spherical symmetric distribution), no tree structure
was learned. Both models produce edge filters similar to what we learn (and to those in [5, 15, 6]).
The ISA model produces neighboring nodes with similar frequency and orientation, but different
phase, as was reported in [2]. We also compare to a simple PCA whitening transform, using the
same whitening transform and marginals as in the ICA case, but setting W = I.

We compare the likelihood each model gives for a test set of natural image patches, different from
the one that was used in training. There were 50,000 patches in the test set, and we calculate the
mean log likelihood over the entire set. The table in Figure 7 shows the result - as can be seen, our
model performs better in likelihood terms than both ICA and ISA.

Using a tree model, as opposed to more complex graphical models, allows for easy sampling from
the model. Figure 7 shows 20 random samples taken from our tree model along with samples from
the ICA and ISA models. Note the elongated structures (e.g. in the bottom left sample) in the
samples from the tree model, and compare to patches sampled from the ICA and ISA models.
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frequency, it is rather invariant to phase.

3.5 Tree models and complex cells

One way to interpret the model is looking at the likelihood of a given patch under this model. For
the case of � = 1 substituting Equation 4 into Equation 3 yields:

log L(z) =

X

i

⇢(

q
y

2
i

+ y

2
pa

i

)� ⇢(|y
pa

i

|) (12)

Where ⇢(x) = log

�P
k

⇡

k

N (x;�

2
k

)

�
. This form of likelihood has an interesting similarity to mod-

els of complex cells in V1 [2, 4]. In Figure 8 we draw a simple two-layer network that computes
the likelihood. The first layer applies linear filters (“simple cells”) to the image patch, while the sec-
ond layer sums the squared outputs of similarly oriented filters from the first layer, having different
phases, which are connected in the tree (“complex cells”). Output is also dependent on the actual
response of the “simple cell” layer. The likelihood here is maximized when both the response of the
parent filter y

pa

i

and the child y

i

is zero, but, given that one filter has responded with a non-zero
value, the likelihood is maximized when the other filter also fires (see the conditional density in
Figure 2). Figure 8 also shows an example of the phase invariance which is present in the learned
"complex cell" (energy of a pair of learned filters connected in the tree) - it seems that sum squared
response of the shown pair of nodes is relatively invariant to the phase of the stimulus, while it is
selective to both frequency and orientation - the hallmark of “complex cells”. Quantifying this re-
sult with the AC/DC ratio, as is common [17] we find that around 60% percent of the edges have an
AC/DC ratio which is smaller than one - meaning they would be classified as complex cells using
standard methods [17].

4 Discussion

We have proposed a new model for natural image statistics which, instead of minimizing dependency
between components, maximizes a simple form of dependency - tree dependency. This model is a
generalization of both ICA and ISA. We suggest a method to learn such a model, including the tree
structure, filter set and density model. When applied to natural image data, our model learns edge
filters similar to those learned with ICA or ISA. The ordering in the tree, however, is interesting -
neighboring filters in the tree tend to have similar orientation, position and frequency, but different
phase. This decorrelation of phase, in conjunction with correlations in frequency and orientation are
the hallmark of energy models for complex cells in V1.

Future work will include applications of the model to several image processing scenarios. We have
started experimenting with application of this model to image denoising by using belief propagation
for inference, and results are promising.
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Abstract

Learning good image priors is of utmost importance for
the study of vision, computer vision and image processing
applications. Learning priors and optimizing over whole
images can lead to tremendous computational challenges.
In contrast, when we work with small image patches, it is
possible to learn priors and perform patch restoration very
efficiently. This raises three questions - do priors that give
high likelihood to the data also lead to good performance in
restoration? Can we use such patch based priors to restore
a full image? Can we learn better patch priors? In this work
we answer these questions.

We compare the likelihood of several patch models and
show that priors that give high likelihood to data perform
better in patch restoration. Motivated by this result, we
propose a generic framework which allows for whole image
restoration using any patch based prior for which a MAP (or
approximate MAP) estimate can be calculated. We show how
to derive an appropriate cost function, how to optimize it and
how to use it to restore whole images. Finally, we present a
generic, surprisingly simple Gaussian Mixture prior, learned
from a set of natural images. When used with the proposed
framework, this Gaussian Mixture Model outperforms all
other generic prior methods for image denoising, deblurring
and inpainting.

1. Introduction
Image priors have become a popular tool for image

restoration tasks. Good priors have been applied to different
tasks such as image denoising [1, 2, 3, 4, 5, 6], image inpaint-
ing [6] and more [7], yielding excellent results. However,
learning good priors from natural images is a daunting task
- the high dimensionality of images makes learning, infer-
ence and optimization with such priors prohibitively hard.
As a result, in many works [4, 5, 8] priors are learned over
small image patches. This has the advantage of making com-
putational tasks such as learning, inference and likelihood
estimation much easier than working with whole images

directly. In this paper we ask three questions: (1) Do patch
priors that give high likelihoods yield better patch restoration
performance? (2) Do patch priors that give high likelihoods
yield better image restoration performance? (3) Can we learn
better patch priors?

2. From Patch Likelihoods to Patch
Restoration

For many patch priors a closed form of log likelihood,
Bayesian Least Squares (BLS) and Maximum A-Posteriori
(MAP) estimates can be easily calculated. Given that, we
start with a simple question: Do priors that give high likeli-
hood for natural image patches also produce good results in a
restoration task such as denoising? Note that answering this
question for priors of whole images is tremendously difficult
- for many popular MRF priors, neither the log likelihood
nor the MAP estimate can be calculated exactly [9].

In order to provide an answer for this question we com-
pare several popular priors, trained over 50,000 8⇥8 patches
randomly sampled from the training set of [10] with their
DC removed. We compare the log likelihood each model
gives on a set of unseen natural image patches (sampled
from the test set of [10]) and the performance of each model
in patch denoising using MAP estimates. The models we
use here are: Independent pixels with learned marginals (Ind.
Pixel), Multivariate Gaussian over pixels with learned covari-
ance (MVG), Independent PCA with learned (non-Gaussian)
marginals and ICA with learned marginals. For a detailed
description of these models see the Supplementary Material.

The results for each of the models can be seen in Figure
1. As can be seen, the higher the likelihood a model gives
for a set of patches, the better it is in denoising them when
they are corrupted.

3. From Patch Likelihoods to Whole Image
Restoration

Motivated by the results in Section 2, we now wish to
answer the second question of this paper - do patch priors
that give high likelihoods perform better in whole image

1
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Figure 1: The likelihood of several off-the-shelf patch priors,
learned from natural images, along with their patch denoising per-
formance. As can be seen, patch priors that give higher likelihood
to the data give better patch denoising performance (PSNR in dB).
In this paper we show how to obtain similar performance in whole
image restoration.

restoration? To answer this question we first need to consider
the problem of how to use patch priors for whole image
restoration.

To illustrate the advantages and difficulties of working
with patch priors, consider Figure 2. Suppose we learn a
simple patch prior from a given image (Figure 2a). To learn
this prior we take all overlapping patches from the image,
remove their DC component and build a histogram of all
patches in the image, counting the times they appear in it.
Under this prior, for example, the most likely patch would
be flat (because the majority of patches in the original image
are flat patches), the second most likely patch would be the
tip of a diagonal edge and so on (see Figure 2b for a subset
of this histogram). This prior is both easy to learn and easy
to do denoising with by finding the MAP estimate given a
corrupted patch. Now, suppose we are given a new, noisy
image we wish to denoise (Figure 2c) - how should we do
this using our patch prior?

The first, and simplest solution to this problem is to
decompose the noisy image into a set of non-overlapping
patches, denoise each patch independently by finding the
MAP estimate from our prior and restore the image by plac-
ing each of the cleaned patches into its original position. This
simple solution creates notorious artifacts at patch borders
(see Figure 2d for an example) - if we now take a random
patch from our newly constructed image (red patch in Figure
2d), it will be extremely unlikely under our prior (as most
of the patches in the reconstructed image do not even exist
in our prior, so their likelihood is 0). A more sophisticated
solution may be to decompose the image into all overlapping
patches, denoise each one independently and then average
each pixel as it appears in the different patches to obtain the
reconstructed image. This yields better results (see Figure
2f) but still has its problems - while we average the pixels
together we create new patches in the reconstructed image
which are not likely under our prior (red patch in Figure 2f).
We can also take the central pixel from each of the overlap-
ping patches but this suffers from the same problems (Figure

2e).
Going back to the motivation from Section 2, the intuition

for our method is simple - suppose we take a random patch
from our reconstructed image, we wish this patch to be likely
under our prior. If we take another random patch from the
reconstructed image, we want it also to be likely under our
prior. In other words, we wish to find a reconstructed image
in which every patch is likely under our prior while keeping
the reconstructed image still close to the corrupted image
— maximizing the Expected Patch Log Likelihood (EPLL)
of the reconstructed image, subject to constraining it to be
close to the corrupted image. Figure 2g shows the result
of EPLL for the same noisy image — even though EPLL
is using the exact same prior as in the previous methods, it
produces superior results.

3.1. Framework and Optimization
3.1.1 Expected Patch Log Likelihood - EPLL

The basic idea behind our method is to try to maximize the
Expected Patch Log Likelihood (EPLL) while still being
close to the corrupted image in a way which is dependent
on the corruption model. Given an image x (in vectorized
form) we define the EPLL under prior p as:

EPLL

p

(x) =

X

i

log p(P

i

x) (1)

Where P

i

is a matrix which extracts the i-th patch from the
image (in vectorized form) out of all overlapping patches,
while log p(P

i

x) is the likelihood of the i-th patch under the
prior p. Assuming a patch location in the image is chosen
uniformly at random, EPLL is the expected log likelihood
of a patch in the image (up to a multiplication by 1/N ).

Now, assume we are given a corrupted image y, and a
model of image corruption of the form kAx�yk2 - We note
that the corruption model we present here is quite general,
as denoising, image inpainting and deblurring [7], among
others, are special cases of it. We will discuss this in more
detail in Section 3.1.3. The cost we propose to minimize in
order to find the reconstructed image using the patch prior p

is:
f

p

(x|y) =

�

2

kAx� yk2 � EPLL

p

(x) (2)

Equation 2 has the familiar form of a likelihood term and a
prior term, but note that EPLL

p

(x) is not the log probability
of a full image. Since it sums over the log probabilities of all
overlapping patches, it "double counts" the log probability.
Rather, it is the expected log likelihood of a randomly chosen
patch in the image.

3.1.2 Optimization

Direct optimization of the cost function in Equation 2 may be
very hard, depending on the prior used. We present here an



(a) Training Image
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(b) Prior Learned (c) Noisy Image

(d) Non Overlapping (e) Center Pixel (f) Averaged Overlapping (g) Our Method

Figure 2: The intuition behind our method. 2a A training image. 2b The prior learned from the image, only the 36 most frequent patches are
shown with their corresponding count above the patch - flat patches are the most likely ones, followed by edges with 1 pixel etc. 2c A noisy
image we wish to restore. 2d Restoring using non-overlapping patches - note the severe artifacts at patch borders and around the image. 2e
Taking the center pixels from each patch. 2f Better results are obtained by restoring all overlapping patches, averaging the results - artifacts
are still visible, and a lot of the patches in the resulting image are unlikely under the prior. 2g Result using the proposed method - note that
there are very few artifacts, and most patches are very likely under our prior.

alternative optimization method called “Half Quadratic Split-
ting” which has been proposed recently in several relevant
contexts [11, 7]. This method allows for efficient optimiza-
tion of the cost. In “Half Quadratic Splitting” we introduce
a set of patches
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, one for each overlapping patch P
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x

in the image, yielding the following cost function:
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Note that as � !1 we restrict the patches P
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x to be equal
to the auxiliary variables
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and the solutions of Equation

3 and Equation 2 converge. For a fixed value of �, optimizing
Equation 3 can be done in an iterative manner, first solving
for x while keeping

�
z

i

 
constant, then solving for

�
z

i

 

given the newly found x and keeping it constant.

Optimizing Equation 3 for a fixed � value requires two
steps:

• Solving for x given
�
z

i

 
— This can be solved in

closed form. Taking the derivative of 3 w.r.t to the
vector x, setting to 0 and solving the resulting equation
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Where the sum over j is for all overlapping patches in
the image and all the corresponding auxiliary variables�
z

i

 
.

• Solving for
�
z

i

 
given x — The exact solution to this

depends on the prior p in use - but for any prior it means
solving a MAP problem of estimating the most likely
patch under the prior, given the corrupted measurement
P

i

x and parameter �.

We repeat the process for several iterations, typically 4 or
5 — at each iteration, solve for Z given x and solve for x

given the new Z, both given the current value of �. Then,
increase � and continue to the next iteration. These two
steps improve the cost c

p,�

from Equation 3, and for large �

we also improve the original cost function f

p

from Equation
2. We note that it is not necessary to find the optimum
of each of the above steps, any approximate method (such
as an approximate MAP estimation procedure) which still
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(b) BLS estimation

Figure 3: Optimization of the cost function from Equation 2, using
the proposed optimization method. The results shown are for a
simple denoising experiment, once with automatic estimation of
� values, and once with a fixed schedule. In Sub-Figure 3a the
MAP estimate for the patches was used. In Sub-Figure 3b the BLS
estimate of the patches was used - it can be seen that even though
we don’t use the MAP in this experiment, the cost still decreases.

improves the cost of each sub-problem will still optimize the
original cost function (albeit at different rates, depending on
the exact setting).

The choice of � values is an open question. We use two
approaches - the first is optimizing the values on a set of
training images (by hand, or by brute force). The second
option, which is relevant in denoising, is to try to estimate �

from the current image estimate at every step — this is done
by estimating the amount of noise � present in the image ˆ

x,
and setting � =

1
�

2 . We use the noise estimation method of
[12].

Figure 3 shows a small experiment in which we verify
that the original cost function in Equation 2 indeed decreases
as a function of iterations as � grows. At the first experiment,
� was estimated from the current image estimate and in the
second, we used a fixed � schedule. The prior used was
the ICA prior for which the likelihood is easily calculated.
Even though the half quadratic splitting is only guaranteed
to monotonically decrease the cost for infinite � values, we
show experimentally that the cost decreases for different
schedules of � where the schedule effects mostly the con-
vergence speed. In addition, even when using BLS (instead
of MAP), the cost still decreases - this shows that we don’t
need the find the optimum at each step, just to improve the
cost of each sub-problem.

In summary, we note three attractive properties of our
general algorithm. First, it can use any patch based prior
and second, its run time is only 4–5 times the run time of
restoring with simple patch averaging (depending on the
number of iterations). Finally, perhaps the most important
one is that this framework does not require learning a model
P (x) where x is a natural image, rather, learning needs only
to concentrate on modeling the probability of image patches.

3.1.3 Denoising, Deblurring and Inpainting

In denoising, we have additive white Gaussian noise corrupt-
ing the image, so we set the matrix A from Equation 4 to
be the identity matrix, and set � to be related to the standard
deviation of the noise (⇡ 1

�

2 ). This means that the solution
for x at each optimization step is just a weighted average
between the noisy image y and the average of pixels as they
appear in the auxiliary overlapping patches. The solution
for Z is just a MAP estimate with prior p and noise levelq

1
�

. If we initialize x with the noisy image y, setting � = 0

and � =

1
�

2 results in simple patch averaging when iterating
a single step. The big difference, however, is that in our
method, because we iterate the solution and � 6= 0, at each
iteration we use the current estimated image, averaging it
with the noisy one and obtaining a new set of Z patches,
solving for them and then obtaining a new estimate for x,
repeating the process, while increasing �. For image deblur-
ring (non-blind) A is a convolution matrix with a known
kernel.

Image inpainting is similar, A is a diagonal matrix with
zeros for all the missing pixels. Basically, this can be thought
of as “denoising” with a per pixel noise level - infinite noise
for missing pixels and zero noise for all other pixels. See
Supplementary Material for some examples of inpainting.

3.2. Related Methods
Several existing methods are closely related, but are fun-

damentally different from the proposed framework. The first
related method is the Fields of Experts (FoE) framework
by Roth and Black [6]. In FoE, a Markov Random Field
(MRF) whose filters are trained by approximately maximiz-
ing the likelihood of the training images is learned. Due to
the intractability of the partition function, learning with this
model is extremely hard and is performed using contrastive
divergence. Inference in FoE is actually a special case of
our proposed method - while the learning is vastly different,
in FoE the inference procedure is equivalent to optimizing
Equation 2 with an independent prior (such as ICA), whose
filters were learned before hand. A common approximation
to learning MRFs is to approximate the log probability of an
image as a sum of local marginal or conditional probabilities
as in the method of composite likelihood [13] or directed
models of images [14]. In contrast, we do not attempt to ap-
proximate the global log probability and argue that modeling
the local patch marginals is sufficient for image restoration.
This points to one of the advantages of our method - learning
a patch prior is much easier than learning a MRF. As a result,
we can learn a much richer patch prior easily and incorporate
it into our framework - as we show later.

Another closely related method is KSVD [3] - in KSVD,
one learns a patch based dictionary which attempts to max-
imize the sparsity of resulting coefficients. This dictionary



can be learned either from a set of natural image patches
(generic, or global as it is sometimes called) or the noisy
image itself (image based). Using this dictionary, all overlap-
ping patches of the image are denoised independently and
then averaged to obtain a new reconstructed image. This
process is repeated for several iterations using this new esti-
mated image. Learning the dictionary in KSVD is different
than learning a patch prior because it may be performed
as part of the optimization process (unless the dictionary
is learned beforehand from natural images), but the opti-
mization in KSVD can be seen as a special case of our
method - when the prior is a sparse prior, our cost function
and KSVD’s are the same. We note again, however, that
our framework allows for much richer priors which can be
learned beforehand over patches - as we will see later on,
this boasts some tremendous benefits.

A whole family of patch based methods [2, 5, 8] use the
noisy image itself in order to denoise. These “non-local”
methods look for similarities within the noisy image itself
and operate on these similar patches together. BM3D [5]
groups together similar patches into “blocks”, transforms
them into wavelet coefficients (in all 3 dimensions), thresh-
olds and transforms backs, using all the estimates together.
Mairal et al. [8] which is currently state-of-the-art take a sim-
ilar approach to this, but instead of transforming the patches
via a wavelet transform, sparse coding using a learned dic-
tionary is used, where each block is constrained to use the
same dictionary elements. One thing which is common to all
of the above non-local methods, and indeed almost all patch
based methods, is that they all average the clean patches
together to form the final estimate of the image. As we have
seen in Section 3, this may not be the optimal thing to do.

3.3. Patch Likelihoods and the EPLL Framework

We have seen that the EPLL cost function (Equation
2) depends on the likelihood of patches. Going back to
the priors from Section 2 we now ask - do better priors
(in the likelihood sense) also lead to better whole image
denoising with the proposed EPLL framework? Figure 4
shows the average PSNR obtained with 5 different images
from the Berkeley training set, corrupted with Gaussian
noise at � = 25 and denoised using each of the priors in
section 2. We compare the result obtained using simple patch
averaging (PA) and our proposed EPLL framework. It can be
seen that indeed - better likelihood on patches leads to better
denoising both on independent patches (Figure 1) and whole
images (Figure 4). Additionally, it can be seen that EPLL
improves denoising results significantly when compared to
simple patch averaging (Figure 4).

These results motivate the question: Can we find a better
prior for image patches?
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Figure 4: (a) Whole image denoising with the proposed framework
with all the priors discussed in Section 2. It can be seen that better
priors (in the likelihood sense) lead to better denoising performance
on whole images, left bar is log L, right bar is PSNR. (b) Note how
the EPLL framework improves performance significantly when
compared to simple patch averaging (PA)

4. Can We Learn Better Patch Priors?
In addition to the priors discussed in Section 2 we intro-

duce a new, simple yet surprisingly rich prior.

4.1. Learning and Inference with a Gaussian Mix-
ture Prior

We learn a finite Gaussian mixture model over the pixels
of natural image patches. Many popular image priors can
be seen as special cases of a GMM (e.g. [9, 1, 14]) but
they typically constrain the means and covariance matrices
during learning. In contrast, we do not constrain the model in
any way — we learn the means, full covariance matrices and
mixing weights, over all pixels. Learning is easily performed
using the Expectation Maximization algorithm (EM). With
this model, calculating the log likelihood of a given patch is
trivial:

log p(x) = log
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Where ⇡

k

are the mixing weights for each of the mixture
component and µ

k

and ⌃

k

are the corresponding mean and
covariance matrix.

Given a noisy patch y, the BLS estimate can be calcu-
lated in closed form (as the posterior is just another Gaussian
mixture) [1]. The MAP estimate, however, can not be cal-
culated in closed form. To tackle this we use the following
approximate MAP estimation procedure:

1. Given noisy patch y we calculate the conditional mix-
ing weights ⇡

0
k

= P (k|y).

2. We choose the component which has the highest condi-
tional mixing weight k
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Patch Restoration Image Restoration
Model Log L BLS MAP PA EPLL

Ind. Pixel 78.26 25.54 24.43 25.11 25.26
MVG 91.89 26.81 26.81 27.14 27.71
PCA 114.24 28.01 28.38 28.95 29.42
ICA 115.86 28.11 28.49 29.02 29.53

GMM 164.52 30.26 30.29 29.59 29.85

Table 1: GMM model performance in log likelihood (Log L), patch
denoising (BLS and MAP) and image denoising (Patch Average
(PA) and EPLL, the proposed framework) - note that the perfor-
mance is better than all priors in all measures. The patches, noisy
patches, images and noisy images are the same as in Figure 1 and
Figure 4. All values are in PSNR (dB) apart from the log likelihood.

This is actually one iteration of the "hard version" of the
EM algorithm for finding the modes of a Gaussian mixture
[15].

4.2. Comparison
We learn the proposed GMM model from a set of 2 ⇥

10

6 patches, sampled from [10] with their DC removed.
The model is with learned 200 mixture components with
zero means and full covariance matrices. We also trained
GMMs with unconstrained means and found that all the
means were very close to zero. As mentioned above, learning
was performed using EM. Training with the above training
set takes around 30h with unoptimized MATLAB code1.
Denoising a patch with this model is performed using the
approximate MAP procedure described in 4.1.

Having learned this GMM prior, we can now compare
its performance both in likelihood and denoising with the
priors we have discussed thus far in Section 1 on the same
dataset of unseen patches. Table 1 shows the results obtained
with the GMM prior - as can be seen, this prior is superior
in likelihood, patch denoising and whole image denoising to
all other priors we discussed thus far.

In Figure 5a we show a scatter plot of PSNR values ob-
tained with ICA and the GMM model using EPLL at noise
level � = 25 on 68 images from the Berkeley test set. Note
that the high likelihood GMM model is superior to ICA in
denoising, on all tested images. Figure 5b shows details
from images in the test-set, note the high visual quality of
the GMM model when compared to the ICA result.

Why does this model work so well? One way to under-
stand it is to recall that in a zero-mean Gaussian mixture
model, every sample x is well approximated by the top m

eigenvectors of the covariance matrix of the mixture com-
ponent that it belongs to. If we consider the set of all m

eigenvectors of all mixtures as a "dictionary" then every

1Downloaded from: http://www.mathworks.com/matlabcentral/
fileexchange/26184-em-algorithm-for-gaussian-mixture-model
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Figure 5: Comparison of the performance of the ICA prior to the
high likelihood GMM prior using EPLL and noise level � = 25.
5a depicts a scatter plot of PSNR values obtained when denoising
68 images from[10]. Note the superior performance of the GMM
prior when compared to ICA on all images. 5b depicts a detail
shot from two of the images - note the high visual quality of the
GMM prior result. The details are best seen when zoomed in on a
computer screen.

sample is approximated by a sparse combination of these
dictionary elements. Since there are 200 mixture compo-
nents, only (1/200) dictionary elements are "active" for each
x so this is a very sparse representation. But unlike other
models that assume sparsity (e.g. ICA and Sparse Coding),
the active set is extremely constrained — only dictionary
elements that correspond to the same component are allowed
to be jointly active. We have recently learned that this "dual"
interpretation of a GMM was independently given by [16]
for the case of image-specific GMMs.

What do these dictionary elements model? Figure 6 de-
picts the eigenvectors of the 5 randomly selected mixture
components from the learned model. Note that these have
rich structures - while some resembles PCA eigenvectors,
some depict forms of occlusions, modeling texture bound-
aries and edges. These are very different from the Gabor
filters usually learned by sparse coding and similar models.
It would seem that these structures contribute much to the
expressive power of the model.

4.3. Comparison to State-Of-The-Art Methods

We compare the performance of EPLL with the proposed
GMM prior with leading image restoration methods - both
generic and image based. All the experiments were con-
ducted on 68 images from the test set of the Berkeley Seg-
mentation Database [10]. All experiments were conducted
using the same noisy realization of the images. In all exper-
iments we set � =

N

�

2 , where N is the number of pixels in
each patch. We used a patch size of 8⇥ 8 in all experiments.
For the GMM prior, we optimized (by hand) the values for
� on the 5 images from the Berkeley training set - these
were set to � =

1
�

2 · [1, 4, 8, 16, 32, 64]. Running times on
a Quad Core Q6600 processor are around 300s per image
with unoptimized MATLAB code.



� KSVDG FoE GMM-EPLL

15 30.67 30.18 31.21
25 28.28 27.77 28.71
50 25.18 23.29 25.72

100 22.39 16.68 23.19

(a) Generic Priors

� KSVD BM3D LLSC GMM-EPLL

15 30.59 30.87 31.27 31.21
25 28.20 28.57 28.70 28.71
50 25.15 25.63 25.73 25.72

100 22.40 23.25 23.15 23.19

(b) Image Based Methods

Table 2: Summary of denoising experiments results. Our method is clearly state-of-the-art when compared to generic priors, and is
competitive with image based method such as BM3D and LLSC which are state-of-the-art in image denoising.

Figure 6: Eigenvectors of 6 randomly selected covariance matrices
from the learned GMM model, sorted by eigenvalue from largest
to smallest. Note the richness of the structures - some of the
eigenvectors look like PCA components, while others model texture
boundaries, edges and other structures at different orientations.

4.3.1 Generic Priors

We compare the performance of EPLL and the GMM prior
in image denoising with leading generic methods - Fields of
Experts [6] and KSVD [3] trained on natural image patches
(KSVDG). The summary of results may be seen in Table 2a
- it is clear that our method outperforms the current state-of-
the-art generic methods.

4.3.2 Image Based Priors

We now compare the performance of our method
(EPLL+GMM) to image specific methods - which learn
from the noisy image itself. We compare to KSVD, BM3D
[5] and LLSC [8] which are currently the state-of-the-art in
image denoising. The summary of results may be seen in
Table 2b. As can be seen, our method is highly competitive
with these state-of-the-art method, even though it is generic.
Some examples of the results may be seen in Figure 7.

(a) Noisy Image - PSNR: 20.17 (b) KSVD - PSNR: 28.72

(c) LLSC - PSNR: 29.30 (d) EPLL GMM - PSNR: 29.39

Figure 7: Examples of denoising using EPLL-GMM compared with
state-of-the-art denoising methods - KSVD [3] and LLSC [8]. Note
how detail is much better preserved in our method when compared
to KSVD. Also note the similarity in performance with our method
when compared to LLSC, even though LLSC learn from the noisy
image. See supplementary material for more examples.

4.3.3 Image Deblurring

While image specific priors give excellent performance in
denoising, since the degradation of different patches in the
same image can be "averaged out", this is certainly not the
case for all image restoration tasks, and for such tasks a
generic prior is needed. An example of such a task is image
deblurring. We convolved 68 images from the Berkeley
database (same as above) with the blur kernels supplied with
the code of [7]. We then added 1% white Gaussian noise to
the images, and attempted reconstruction using the code by
[7] and our EPLL framework with GMM prior. Results are
superior both in PSNR and quality of the output, as can be
seen in Figure 8.



(a) Blurred (b) Krishnan et al. (c) EPLL GMM
Krishnan et al. EPLL-GMM

Kernel 1 17⇥ 17 25.84 27.17
Kernel 2 19⇥ 19 26.38 27.70

Figure 8: Deblurring experiments

5. Discussion
Patch based models are easier to learn and to work with

than whole image models. We have shown that patch models
which give high likelihood values for patches sampled from
natural images perform better in patch and image restora-
tion tasks. Given these results, we have proposed a frame-
work which allows the use of patch models for whole image
restoration, motivated by the idea that patches in the restored
image should be likely under the prior. We have shown that
this framework improves the results of whole image restora-
tion considerably when compared to simple patch averaging,
used by most present day methods. Finally, we have pro-
posed a new, simple yet rich Gaussian Mixture prior which
performs surprisingly well on image denoising, deblurring
and inpainting.

While we have demonstrated our framework using only a
few priors, one of its greater strengths is the fact that it can
serve as a “plug-in” system - it can work with any existing
patch restoration method. Considering the fact that both
BM3D and LLSC are patch based methods which use simple
patch averaging, it would be interesting to see how would
these methods benefit from the proposed framework.

Finally, perhaps the most surprising result of this work,
and the direction in which much is left to be explored, is the
stellar performance of the GMM model. The GMM model
used here is extremely naive - a simple mixture of Gaussians
with full covariance matrices. Given the fact that Gaussian
Mixtures are an extremely studied area, incorporating more
sophisticated machinery into the learning and the represen-
tation of this model holds much promise - and this is our
current line of research.
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Abstract

Simple Gaussian Mixture Models (GMMs) learned from pixels of natural image
patches have been recently shown to be surprisingly strong performers in modeling
the statistics of natural images. Here we provide an in depth analysis of this simple
yet rich model. We show that such a GMM model is able to compete with even
the most successful models of natural images in log likelihood scores, denoising
performance and sample quality. We provide an analysis of what such a model
learns from natural images as a function of number of mixture components —
including covariance structure, contrast variation and intricate structures such as
textures, boundaries and more. Finally, we show that the salient properties of the
GMM learned from natural images can be derived from a simplified Dead Leaves
model which explicitly models occlusion, explaining its surprising success relative
to other models.

1 GMMs and natural image statistics models

Many models for the statistics of natural image patches have been suggested in recent years. Finding
good models for natural images is important to many different research areas — computer vision,
biological vision and neuroscience among others. Recently, there has been a growing interest in
comparing different aspects of models for natural images such as log-likelihood and multi-information
reduction performance, and much progress has been achieved [1, 2, 3, 4, 5, 6]. Out of these results
there is one which is particularly interesting: simple, unconstrained Gaussian Mixture Models
(GMMs) with a relatively small number of mixture components learned from image patches are
extraordinarily good in modeling image statistics [6, 4]. This is a surprising result due to the simplicity
of GMMs and their ubiquity. Another surprising aspect of this result is that many of the current
models may be thought of as GMMs with an exponential or infinite number of components, having
different constraints on the covariance structure of the mixture components.

In this work we study the nature of GMMs learned from natural image patches. We start with a
thorough comparison to some popular and cutting edge image models. We show that indeed, GMMs
are excellent performers in modeling natural image patches. We then analyze what properties of
natural images these GMMs capture, their dependence on the number of components in the mixture
and their relation to the structure of the world around us. Finally, we show that the learned GMM
suggests a strong connection between natural image statistics and a simple variant of the dead
leaves model [7, 8], explicitly modeling occlusions and explaining some of the success of GMMs in
modeling natural images.
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Figure 1: (a) Log likelihood comparison - note how the GMM is able to outperform (or equal) all
other models despite its simplicity. (b) Denoising performance comparison - the GMM outperforms
all other models here as well, and denoising performance is more or less consistent with likelihood
performance. See text for more details.

2 Natural image statistics models - a comparison

As a motivation for this work, we start by rigorously comparing current models for natural images with
GMMs. While some comparisons have been reported before with a limited number of components in
the GMM [6], we want to compare to state-of-the-art models also varying the number of components
systematically.

Each model was trained on 8⇥8 or 16⇥16 patches randomly sampled from the Berkeley Segmentation
Database training images (a data set of millions of patches). The DC component of all patches
was removed, and we discard it in all calculations. In all experiments, evaluation was done on the
same, unseen test set of a 1000 patches sampled from the Berkeley test images. We removed patches
having standard deviation below 0.002 (intensity values are between 0 and 1) as these are totally flat
patches due to saturation and contain no structure (only 8 patches were removed from the test set).
We do not perform any further preprocessing. The models we compare are: White Gaussian Noise
(Ind. G), PCA/Gaussian (PCA G), PCA/Laplace (PCA L), ICA (ICA) [9, 10, 11], 2⇥Overcomplete
sparse coding (2⇥OCSC) [9], Gaussian Scale Mixture (GSM), Mixture of Gaussian Scale Mixture
(MoGSM) [6], Karklin and Lewicki (KL) [12] and the GMM (with 200 components).

We compare the models using three criteria - log likelihood on unseen data, denoising results on
unseen data and visual quality of samples from each model. The complete details of training, testing
and comparisons may be found in the supplementary material of this paper - we encourage the reader
to read these details. All models and code are available online at: www.cs.huji.ac.il/⇠daniez

Log likelihood The first experiment we conduct is a log likelihood comparison. For most of the
models above, a closed form calculation of the likelihood is possible, but for the 2⇥OCSC and KL
models, we resort to Hamiltonian Importance Sampling (HAIS) [13]. HAIS allows us to estimate
likelihoods for these models accurately, and we have verified that the approximation given by HAIS
is relatively accurate in cases where exact calculations are feasible (see supplementary material for
details). The results of the experiment may be seen in Figure 1a. There are several interesting results
in this figure. First, the important thing to note here is that GMMs outperforms all of the models
and is similar in performance to Karklin and Lewicki. In [6] a GMM with far less components (2-5)
has been compared to some other models (notably Restricted Boltzman Machines which the GMM
outperforms, and MoGSMs which slightly outperform the GMMs in this work). Second, ICA with
its learned Gabor like filters [10] gives a very minor improvement when compared to PCA filters
with the same marginals. This has been noted before in [1]. Finally, overcomplete sparse coding is
actually a bit worse than complete sparse coding - while this is counter intuitive, this result has been
reported before as well [14, 2].

Denoising We compare the denoising performance of the different models. We added independent
white Gaussian noise with known standard deviation �

n

= 25/255 to each of the patches in the
test set x. We then calculate the MAP estimate ˆ

x of each model given the noisy patch. This can

2



be done in closed form for some of the models, and for those models where the MAP estimate
does not have a closed form, we resort to numerical approximation (see supplementary material
for more details). The performance of each model was measured using Peak Signal to Noise Ratio
(PSNR): PSNR = log10

⇣
1

k|x�x̂k2

⌘
. Results can be seen in Figure 1b. Again, the GMM performs

extraordinarily well, outperforming all other models. As can be seen, results are consistent with the
log likelihood experiment - models with better likelihood tend to perform better in denoising [4].

Sample Quality As opposed to log likelihood and denoising, generating samples from all the
models compared here is easy. While it is more of a subjective measure, the visual quality of samples
may be an indicator to how well interesting structures are captured by a model. Figure 2 depicts
16⇥ 16 samples from a subset of the models compared here. Note that the GMM samples capture a
lot of the structure of natural images such as edges and textures, visible on the far right of the figure.
The Karklin and Lewicki model produces rather structured patches as well. GSM seems to capture
the contrast variation of images, but the patches themselves have very little structure (similar results
obtained with MoGSM, not shown). PCA lacks any meaningful structure, other than 1/f power
spectrum.

As can be seen in the results we have just presented, the GMM is a very strong performer in modeling
natural image patches. While we are not claiming Gaussian Mixtures are the best models for natural
images, we do think this is an interesting result, and as we shall see later, it relates intimately to the
structure of natural images.

3 Analysis of results

So far we have seen that despite their simplicity, GMMs are very capable models for natural images.
We now ask - what do these models learn about natural images, and how does this affect their
performance?

3.1 How many mixture components do we need?

While we try to learn our GMMs with as few a priori assumptions as possible, we do need to set
one important parameter - the number of components in the mixture. As noted above, many of the
current models of natural images can be written in the form of GMMs with an exponential or infinite
number of components and different kinds of constraints on the covariance structure. Given this,
it is quite surprising that a GMM with a relatively small number of component (as above) is able
to compete with these models. Here we again evaluate the GMM as in the previous section but
now systematically vary the number of components and the size of the image patch. Results for the
16⇥ 16 model are shown in figure 3, see supplementary material for other patch sizes.

As can be seen, moving from one component to two already gives a tremendous boost in performance,
already outperforming ICA but still not enough to outperform GSM, which is outperformed at around
16 components. As we add more and more components to the mixture performance increases, but
seems to be converging to some upper bound (which is not reached here, see supplementary material
for smaller patch sizes where it is reached). This shows that a small number of components is indeed

PCA G GSM KL GMM Natural Images

Figure 2: Samples generated from some of the models compared in this work. PCA G produces no
structure other than 1/f power spectrum. GSM capture the contrast variation of image patches nicely,
but the patches themselves have no structure. The GMM and KL models produce quite structured
patches - compare with the natural image samples on the right.
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Figure 3: (a) Log likelihood of GMMs trained on natural image patches, as a function of the number
of components in the mixture. Models of 16 ⇥ 16 were trained on a training set. Likelihood was
calculated on an unseen test set of patches. Already at 2 components the GMM outperforms ICA and
at 16 components it outperforms the 16 component GSM model. Likelihood continues to improve
as we add more components. See supplementary material for other patch sizes. (b) Denoising
performance as a function of number of components - performance behave qualitatively the same as
likelihood.

sufficient to achieve good performance and begs the questions - what do the first few components
learn that gives this boost in performance? what happens when we add more components to the
mixture, further improving performance? Before we answer these questions, we will shortly discuss
what are the properties of GMMs which we need to examine to gain this understanding.

3.2 GMMs as generative models

In order to gain a better understanding of GMMs it will be useful to think of them from a generative
perspective. The process of generating a sample from a GMM is a two step procedure; a non-linear
one, and a linear one. We pick one of the mixture components - the chances for the k-th component
to be picked are its mixing weight ⇡

k

. Having picked the k-th component, we now sample N

independent Gaussian variables with zero mean and unit variance, where N is the number of pixels
in a patch (minus one for the DC component). We arrange these coefficients into a vector z. From
the covariance matrix of the k-th component we calculate the eigenvector matrix V

k

and eigenvalue
matrix D

k

. Then, the new sample x is:
x = V

k

D

0.5
k

z

This tells us that we can think of each covariance matrix in the mixture as a dictionary with N

elements. The dictionary elements are the “directions” each eigenvector in patch space points to, and
each of those is scaled by the corresponding eigenvalue. These are linearly mixed to form our patch.
In other words, to gain a better understanding of what each mixture component is capturing, we need
to look at the eigenvectors and eigenvalues of its corresponding covariance matrix.

3.3 Contrast

Figure 4 shows the eigenvectors and eigenvalues of the covariance matrices of a 2 component mixture
- as can be seen, the eigenvectors of both mixture components are very similar and they differ only
in their eigenvalue spectrum. The eigenvalue spectrum, on the other hand, is very similar in shape
but differs by a multiplicative constant (note the log scale). This behavior remains the same as we
add more and more components to the mixture — up to around 8-10 components (depending on the
patch size, not shown here) we get more components with similar eigenvector structure but different
eigenvalue distributions.

Modeling a patch as a mixture with the same eigenvectors but eigenvalues differing by a scalar
multiplier is in fact equivalent to saying that each patch is the product of a scalar z and a multivariate
Gaussian. This is exactly the Gaussian Scale Mixture model we compared to earlier! As can be
seen, 8–10 components are already enough to equal the performance of the 16 component GSM.
This means that what the first few components of the mixture capture is the contrast variability of
natural image patches. This also means that factorial models like ICA have no hope in capturing this
as contrast is a global scaling of all coefficients together (something which is highly unlikely under
factorial models).
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Figure 4: Eigenvectors and eigenvalues of covariance matrices in a 2 component GMM trained on
natural images. Eigenvectors are sorted according to decreasing eigenvalue order, top left is the
largest eigenvalue. Note that the two components have approximately the same eigenvectors (up to
sign, and both resembling the Fourier basis) but different eigenvalue spectra. The eigenvalues mostly
differ by a scalar multiplication (note the log scale), hinting that this is, in fact, approximately a GSM
(see text for details).

3.4 Textures and boundaries

We have seen that the first components in the GMM capture the contrast variation of natural images,
but as we saw in Figure 3, likelihood continues to improve as we add more components, so we ask:
what do these extra components capture?

As we add more components to the mixture, we start revealing more specialized components which
capture different properties of natural images. Sorting the components by their mixing weights (where
the most likely ones are first), we observe that the first few tens of components are predominantly
Fourier like components, similar to what we have seen thus far, with varying eigenvalue spectra.
These capture textures at different scales and orientations. Figure 5 depicts two of these texture
components - note how their eigenvector structure is similar, but samples sampled from each of them
reveal that they capture different textures due to different eigenvalue spectra.

A more interesting family of components can be found in the mixture as we look into more rare
components. These components model boundaries of objects or textures — their eigenvectors are
structured such that most of the variability is on one side of an edge crossing the patch. These edges
come at different orientations, shifts and contrasts. Figure 5 depicts some of these components
at different orientations, along with two flat texture components for comparison. As can be seen,
we obtain a Fourier like structure which is concentrated on one side of the patch. Sampling from
the Gaussian associated with each mixture component (bottom row) reveals what each component
actually captures - patches with different textures on each side of an edge.

To see how these components relate to actual structure in natural images we perform the following
experiment. We take an unseen natural image, and for each patch in the image we calculate the most
likely component from the learned mixture. Figure 6 depicts those patches assigned to each of the
five components in Figure 5, where we show only non-overlapping patches for clarity (there are
many more patches assigned to each component in the image). The colors correspond to each of
the components in Figure 5. Note how the boundary components capture different orientations, and
prefer mostly borders with a specific ordering (top to bottom edge, and not vice versa for example),
while texture components tend to stay within object boundaries. The sources for these phenomena
will be discussed in the next section.

4 The “mini” dead leaves model

4.1 Dead leaves models

We now show that many of the properties of natural scenes that were captured by the GMM model
can be derived from a variant of the dead leaves model [15]. In the original dead leaves model, two
dimensional textured surfaces (which are sometimes called “objects” or “leaves”) are sampled from a
shape and size distribution and then placed on the image plane at random positions, occluding one
another to produce an image. With a good choice of parameters, such a model creates images which
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⇡12 = 0.0170 ⇡23 = 0.0118 ⇡54 = 0.006 ⇡59 = 0.005 ⇡73 = 0.004

Figure 5: Leading eigenvectors (top row) and samples (bottom row) from 5 different components
from a 16 ⇥ 16 GMM. From left to right: components 12 and 23, having a similar Fourier like
eigenvector structure, but different eigenvalue spectra, notable by different texture generated from
each component. Three different “boundary” like component: note how the eigenvector structure has
a Fourier like structure which is concentrated only on side of the patch, depicting an edge structure.
These come in different orientations, shifts and contrasts in the mixture. The color markings are in
reference to Figure 6.

share many properties with natural images such as scale invariance, heavy tailed filter responses and
bow-tie distributions for conditional pair-wise filter responses [16, 17, 8]. A recent work by Pitkow
[8] provides an interesting review and analysis of these properties.

4.2 Mini dead leaves

We propose here a simple model derived from the dead leaves model which we call the “Mini Dead
Leaves” model. This is a patch based version of the dead leaves model, and can be seen as an
approximation of what happens when sampling small patches from an image produced by the dead
leaves model.

In mini dead leaves we generate an image patch in the following manner: for each patch we randomly
decide if this patch would be a “flat” patch or an “edge” patch. This is done by flipping a coin with
probability p. Flat patches are then produced by sampling a texture from a given texture process. In
this case we use a multidimensional Gaussian with some stationary texture covariance matrix which is
multiplied by a scalar contrast variable. We then add to the texture a random scalar mean value, such
that the final patch x is of the form: x = µ + zt where µ ⇠ N (0, 1) is a scalar, t ⇠ N (0,⌃) is a

Figure 6: Components assignment on natural images taken from the Berkeley test images. For each
patch in the image the most likely component from the mixture was calculated - presented here are
patches which were assigned to one of the components in Figure 5. Assignment are much more dense
than presented here, but we show only non-overlapping patches for clarity. Color codes correspond
to the colors in Figure 5. Note how different components capture different structures in the image.
See text and Figure 5 for more details.
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(a) (b) (c) (d)

Figure 7: (a) The mini dead leaves models. Patches are either “flat” or “edge” patches. Flat patches
are sampled from a multivariate Gaussian texture which is scaled by a contrast scalar and a mean value
is added to it to form the patch. Edge patches are created by sampling two flat patches, an occlusion
mask and setting the pixels of each side of the mask to come from a different flat patch. See text
for full details. (b) Samples generated from the mini dead leaves model with their DC removed. (c)
Leading eigenvectors of an edge component from a mini dead leaves model. (d) Leading eigenvectors
of a component from the GMM trained on natural images - note how similar the structure is to the
mini dead leaves model analytical result. See text for details.

vector and the scalar z is sampled from a discrete set of variables z

k

with a corresponding probability
⇡

k

. This results in a GSM texture to which we add a random mean (DC) value. In all experiments
here, we use a GSM trained on natural images.

Edge patches are generated by sampling two independent Flat patches from the texture process, f
and g, and then generating an occlusion mask to combine the two. We use a simple occlusion mask
generation process here: we choose a random angle ✓ and a random distance r measured from the
center of the patch, where both ✓ and r may be quantized — this defines the location of a straight
edge on the patch. Every pixel on one side of the edge is assumed to come from the same object, and
pixels from different sides of the patch come from different objects. We label all pixels belonging
to one object by L1 and to the other object by L2. We then generate the patch by taking all pixels
i 2 L1 to x

i

= f

i

and similarly x

i2L2 = g

i

. This results in a patch with two textured areas, one with
a mean value µ1 and the other with µ2. Figure 7a depicts the generative process for both kind of
patches and Figure 7b depicts samples from the model.

4.3 Gaussian mixtures and dead leaves

It can be easily seen that the mini dead leaves model is, in fact, a GMM. For each configuration of
hidden variables (denoting whether the patch is “flat” or “edge”, the scalar multiplier z and if it is
an edge patch the second scalar multiplier z2, r and ✓) we have a Gaussian for which we know the
covariance matrix exactly. Together, all configurations form a GMM - the interesting thing here is
how the structure of the covariance matrix given the hidden variable relates to natural images.

For Flat patches, the covariance is trivial - it is merely the texture of the stationary texture process ⌃

multiplied by the corresponding contrast scalar z. Since we require the texture to be stationary its
eigenvectors are the Fourier basis vectors [18] (up to boundary effects), much like the ones visible in
the first two components in Figure 5.

For Edge patches, given the hidden variable we know which pixel belongs to which “object” in the
patch, that is, we know the shape of the occlusion mask exactly. If i and j are two pixels in different
objects, we know they will be independent, and as such uncorrelated, resulting in zero entries in the
covariance matrix. Thus, if we arrange the pixels by their object assignment, the eigenvectors of such
a covariance matrix would be of the form:

0

v

�
or


v

0

�

where v is an eigenvector of the stationary (within-object) covariance and the rest of the entries are
zeros, thus eigenvectors of the covariance will be zero on one side of the occlusion mask and Fourier-
like on the other side. Figure 7c depicts the eigenvector of such an edge component covariance - note
the similar structure to Figure 7d and 5. This block structure is a common structure in the GMM
learned from natural images, showing that indeed such a dead leaves model is consistent with what
we find in GMMs learned on natural images.
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Figure 8: (a) Log likelihood comparison with mini dead leaves data. We train a GMM with a varying
number of components from mini dead leaves samples, and test its likelihood on a test set. We
compare to a PCA, ICA and a GSM model, all trained on mini dead leaves samples - as can be seen,
the GMM outperforms these considerably. Both PCA and ICA seek linear transformations, but since
the underlying generative process is non-linear (see Figure 7a), they fail. The GSM captures the
contrast variation of the data, but does not capture occlusions, which are an important part of this
model. (b) and (c) ICA filters learned on mini dead leaves and natural image patches respectively,
note the high similarity.

4.4 From mini dead leaves to natural images

We repeat the log likelihood experiment from sections 2 and 3, comparing to PCA, ICA and GSM
models to GMMs. This time, however, both the training set and test set are generated from the mini
dead leaves model. Results can be seen in Figure 8a. Both ICA and PCA do the best job that they
can in terms of finding linear projections that decorrelate the data (or make it as sparse as possible).
But because the true generative process for the mini dead leaves is not a linear transformation of
IID variables, neither of these does a very good job in terms of log likelihood. Interestingly - ICA
filters learned on mini dead leaves samples are astonishingly similar to those obtain when trained on
natural images - see Figure 8b and 8c. The GSM model can capture the contrast variation of the data
easily, but not the structure due to occlusion. A GMM with enough components, on the other hand, is
capable of explicitly modeling contrast and occlusion using covariance functions such as in Figure 7c,
and thus gives much better log likelihood to the dead leaves data. This exact same pattern of results
can be seen in natural image patches (Figure 2), suggesting that the main reason for the excellent
performance of GMMs on natural image patches is its ability to model both contrast and occlusions.

5 Discussion

In this paper we have provided some additional evidence for the surprising success of GMMs in
modeling natural images. We have investigated the causes for this success and the different properties
of natural images which are captured by the model. We have also presented an analytical generative
model for image patches which explains many of the features learned by the GMM from natural
images, as well as the shortcomings of other models.

One may ask - is the mini dead leaves model a good model for natural images? Does it explain
everything learned by the GMM? While the mini dead leaves model definitely explains some of the
properties learned by the GMM, at its current simple form presented here, it is not a much better
model than a simple GSM model. When adding the occlusion process into the model, the mini dead
leaves gains ~0.1 bit/pixel when compared to the GSM texture process it uses on its own. This makes
it as good as a 32 component GMM, but significantly worse than the 200 components model (for
8⇥ 8 patches). There are two possible explanations for this. One is that the GSM texture process
is just not enough, and a richer texture process is needed (much like the one learned by the GMM).
The second is that the simple occlusion model we use here is too simplistic, and does not allow for
capturing the variable structures of occlusion present in natural images. Both of these may serve
as a starting point for a more efficient and explicit model for natural images, handling occlusions
and different texture processes explicitly. There have been several works in this direction already
[19, 20, 21], and we feel this may hold promise for creating links to higher level visual tasks such as
segmentation, recognition and more.
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Chapter 3

Discussion

3.1 Summary of contributions of this thesis

In the previous sections I have presented four papers which form the main body of this thesis. We
will now survey the main contribution of each paper and how each one relates to current literature
as it was presented in Section 1. In the following sections we will give a broader perspective of the
works here and point to some future directions.

The first paper of this thesis presented a novel hypothesis for the marginal statistics of filter
responses in natural images. We proposed that in clean images, the kurtosis of marginal filter
responses is constant when computed for various band-pass filters, and does not depend on fre-
quency. This is in contrast to 1

/f2 scaling law for variance we have seen in section 1.3.1. We have
shown that when noise is added to the image the kurtosis of the marginals change as a result
and we show how we can use this to estimate noise in natural images, achieving state-of-the-art
performance in noise estimation.

In the second of this thesis we presented statistical model for natural images patches based
on tree structured graphical models. We proposed that because there are strong dependencies
between filter responses in natural images it would make sense to learn a model which attempts to
capture these dependencies explicitly. We have presented a method to learn this tree structured
graphical model together with the pair-wise potentials and filters which maximize the likelihood
of the model. The method learned filters which are similar to the ones learned by ICA (as we have
seen in Section 1.4.2). Additionally we saw that filters with similar selective properties are grouped
to be close on the tree graph, such that the branches of the tree form long chains of related filters.
The model was demonstrated to achieve higher log-likelihood scores than competing models.

The third and fourth papers may be regarded as one continuous work. We began these pair
of works by asking the question “how can we use patch priors for whole image restoration?”. In
Section 1.5 we have discussed how priors in general may be used in image restoration, but there we
assumed that the prior is defined over the same space we wish to restore i.e. images or patches. In
the paper in Section 2.3 we suggest that what needs to be done is to maximize the expected patch
log-likelihood (EPLL) of the output image — this creates the necessary link between our patch prior
and the whole image. We continued this work by presenting the Gaussian Mixture Model (GMM)
prior for natural image patches. This model turned out to be a strong performer in log-likelihood
and denoising performance. We showed that we can achieve state-of-the-art denoising performance
by using the EPLL framework together with the GMM prior. We further analyze the reasons of
the GMM’s success in the fourth paper. We show that the GMM learns basic properties of natural
images: edges, textures, boundaries and so on. We link these results to the “dead leaves” model
(which we will come back to in Section 3.3).
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3.2 Dependencies and redundancy reduction in natural im-
ages

Redundancy reduction is often regarded as one of the primary goals of the visual system [1, 26].
Since visual input has an intricate high dimensional structure it is very hard to process it in its
raw form. Any vision system, be it biological vision or machine vision, has to somehow make the
problem of vision simpler. Redundancy reduction is one way of making a complex signal simpler,
moving from a complex high dimensional description of the data to a simpler low dimensional one.

Many of the models we have discussed in this thesis do some kind of redundancy reduction
- either explicitly or implicitly. Out of those models ICA (Section 1.4.2) is probably the most
explicit model as it directly attempts to find a representation in which the data is factorial. Though
explicit, ICA really fails in achieving its goal when it comes to natural images [43, 47]. As there
are many high order dependencies in natural images which a linear factorial model such as ICA
can’t capture, the residual information remaining after performing ICA is substantial. This rather
surprising result has served as a starting point for the paper in Section 2.2. In that paper we
attempt to explicitly model the dependencies ICA and related models can’t discard of. There is,
however, a limitation to such an explicit modeling because the dependencies in natural images are
complex and mostly unknown, thus finding such a model without knowing what you are looking
for is hard.

In the papers in Section 2.3 and 2.4 we have presented the GMM prior and we have shown it
is a very strong model for modeling natural image statistics. As such, one may ask if the GMM
is also good at redundancy reduction, and here we show that there is strong evidence that it is
quite good at this as well. One way to quantify redundancy reduction is calculating the Mutual
Information (MI) between pairs of coe�cients in each model. For linear models such as PCA and
ICA this is trivial because the coe�cients are direct projections of the data. In the case of the
GMM this is more challenging because there are multiple basis choices (coming from each of the
GMM’s components). The way we handle this is to choose for each data sample the most likely
component, k̂ that is, the component which maximizes the likelihood for the given patch x:

k̂ = arg max
k
fikN (x; 0,�k) (3.1)

where fik and �k are the k-th mixing weight and covariance matrix in the mixture, correspondingly.
Conditioned on this k̂ component we have the “right” covariance matrix for the patch x and we
can use its eigenvectors to project the patch into a basis in which we will hopefully reduce the
pair-wise dependencies (this is much like PCA, only there is a model selection step which is non-
linear and allows for di�erent “families” of covariances to be used). Figure 3.1 depicts pair-wise
MI histograms for a large test set of natural image patches, one for PCA, one for ICA and one
for the GMM using the aforementioned method. Note that while ICA definitely reduces the mean
pair-wise MI, the GMM is much better at this task. This, again, hints that the GMM indeed
finds meaningful representations for natural images which not only allows for better denoising and
likelihood performance but also serve as excellent redundancy reduction tool.

3.3 Richer dead leaves models?

At the end of the paper in Section 2.4 we have suggested that a simple “Mini Dead Leaves”
(MDL) model inspired by the dead leaves model (see Section 1.3.1) can explain some of the salient
properties learned by the GMM model. While it definitely explains some of the properties captured
by the GMM, when we compare the performance of the MDL model to the GMM we see that it
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Figure 3.1: Redundancy reduction for three natural image models. Depicted are three histograms
for pair-wise MI for all pairs of coe�cients in each model. ICA definitely improves upon PCA, as
the mean MI is lower but as can be seen, the GMM overshadows them both, allowing for a much
more e�cient representation via its inherent non-linear properties. See text for details.

falls behind. Figure 3.2a depicts the performance of the MDL model together with the PCA, ICA,
GSM and GMMs with a varying number of components. The texture process used for this MDL is
the GSM model, with 16 components trained on natural images. It seems that while moving from
the GSM to the MDL by adding the occlusion masks improves performance when comparing to
the GSM, it is not as good as the GMM. This means that there are some natural image properties
which the GMM captures which the MDL model does not.

In order to find what kind of patches does the GMM model better than the MDL model we can
perform the following experiment: calculate the log likelihood each model gives to each patch in the
test set and then calculate the di�erence between the two models, GMM - MDL. Sorting these log
likelihood di�erences reveals which patches does the GMM model better, and which patches does
the MDL model better. Figure 3.2b depicts the patches for which the log likelihood di�erence is
greatest for the GMM and the MDL. As expected patches which the MDL models well are mostly
edge patches with very clear edges. The GMM, however, seems to be able to capture patches which
have a “bar” like structure — most of these patches have two edges or borders which are parallel
to each other with di�erent texture or mean value at each area.

Because the occlusion structure in MDL is very simple and allows for only a single edge in each
patch this model can’t properly handle these kind of patches. But how does the GMM handle
these kind of structures? Figure 3.2d depicts the eigenvectors of the component assigned to these
“bar” patches. It can be seen that the structure of correlation is mostly oriented along the bar
direction, allowing for relatively flat textured bars to reside all along the patch (see the samples
from the component below in Figure 3.2d). This simple analysis shows us that in order to build a
better explicit model for natural images a richer mask model is required, probably together with
a richer texture model.

3.4 Future work
To conclude this thesis I will now survey some possible directions for further research the works
presented here may lead to.

In the first presented work here (Section 2.1) we have conjectured that the kurtosis of marginal
filter response histograms in natural images is constant with scale. This simple form of scale
invariance is not predicted in current works on scale invariance in natural images. Considering
this scale invariant property is an empirical observation it would be interesting to look for an
analytical model which may be able to predict this property, together with other properties we
have encountered throughout this thesis.

The second work here (Section 2.2) presents a tree structured graphical model for modeling
the joint density of natural image patches. There several possible directions for future work on
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Figure 3.2: Mini Dead Leaves vs. GMM. (a) Log likelihood of several models, including MDL
on natural image patches. Note that the introduction of simple occlusion does not improve per-
formance in a significant way. (b) Patches which are the GMM models better than the MDL.
(c) Patches which the MDL models better than the GMM. As can be seen, the GMM is able to
capture bar like structures which the MDL can not, having more than one edge in the patch. The
MDL captures sharp, simple edge like structures well. (d) The eigenvectors and samples from the
GMM component assigned to the “bar” patches in (b). See text for details.

this front, but the most promising one is going beyond trees. The field of probabilistic graphical
models has become a popular research area in recent years [48, 49] and there have been much
progress in estimating, learning and inference of higher order structures. Going beyond trees will
be of great importance for natural image modeling — because the interactions in natural images
are sometimes patch global (as we have seen, for example in Section 2.4), the order required for a
proper model is much higher than the pair-wise, tree structured interactions the proposed model
captures.

Finally, the future directions for the works in Sections 2.3 and 2.4 are probably the most varied
and promising. Starting with the EPLL framework presented in Section 2.3, and considering, again,
the scale invariance properties we have encountered throughout this thesis, it would be interesting
to extend it into the multiscale domain. This may be done either by extending the framework
to work at multiple scales explicitly by moving from patches to a multiscale representation, to
train priors which take into account multiple scale and/or combinations of the two. The GMM
prior which was thoroughly discussed here also holds some promise in making our understanding
of natural images better. Creating a multiscale version of it would be an obvious direction to go
to, as this property is largely ignored in its analysis and, as we have seen, is an important property
that should probably be accounted for. Additionally, the analysis we saw in Section 3.3 really
begs us to find a better, richer parameterization for the MDL model — this will allow us to have
an explicit model for natural images which may be useful not only for low-level vision tasks as
denoising, but also for mid-level tasks such as boundary detection, segmentation and more.
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טבעיות  ומראים  כי  במונחי  נראות  אנו  מציעים  שיפור  משמעותי.

הראשונה בעבודה גאוסיניים. תערובות -­ ונפוץ פשוט כלי על שמתבסס מודל מציגות זו בתזה האחרונות העבודות                                 שתי

תמונות של ״טלאים״ עבור המוגדרים מודלים עם לעבוד שמאפשרת עבודה מסגרת מציעים אנו זו עבודות                               בסדרת

ניתן כי מראים אנו הגאוסיינים תערובות ומודל זו עבודה מסגרת באמצעות מלאות. תמונות עם לעבוד רוצים אנו                                   כאשר

בהמשך בתחום. בעולם המובילות השיטות עם אפילו מתחרות אשר תמונות, וניקוי בשחזור מעולות תוצאות                             להשיג

תערובת מודל של להצלחה הסיבות בניתוח ממשיכים אנו זו, בסדרה והשנייה בתזה האחרונה בעבודה                             לכך,

מובילים מודלים מגוון עם זה מודל של מדוקדקת השוואה מבצעים אנו זו בעבודה המפתיעה. והצלחתו                               הגאוסיינים

אנו לסיום, הצלחתו. את מאפשרות אשר הגאוסיינים תערובת מודל לומד אותן התכונות את ומנתחים טבעיות                               לתמונות

מתאר ואשר הקטנים״ המתים ״העלים מודל מכנים אנחנו אשר טבעיות תמונות של ל״טלאים״ אנליטי מודל                               מציעים

בצורה  מפורשת  כמה  מהתכונות  הבולטות  אותן  לומד  מודל  תערובת  הגאוסיינים  ­-  ניגודיות,  טקסטורה  והסתרות.



תקציר

נושא היא טבעיות תמונות של הסטטיסטיקה ביולוגית, ראייה או חישובית ראייה תמונה, בעיבוד שעוסק מי כל                                 עבור

של המיוחד המבנה את בלהבין רב עניין יש היא, באשר ראייה מערכת לכל המרכזי הקלט בהיותן ומרכזי.                                   רלוונטי

מנסה מהן אחת כל אשר עבודות סידרת אציג זו, בתזה אותן. מייחדות אשר הסטטיסטיות והתכונות הטבעיות                                 התמונות

פילטרים תגובות של שוליות מהתפלגויות -­ הסטטיסטיות ותכונותיהן טבעיות תמונות של שלנו ההבנה את                             לקדם

את נשווה כאן העבודות בכל שלמות. מתמונות נגזרים אשר "טלאים" עבור שלמים אנליטיים למודלים ועד                               לינארים

המודלים  המוצעים  למודלים  והשיטות  אשר  נמצאים  בחזית  המחקר  כיום.

לעבודות רלוונטים מהם רבים שונים, בהקשרים ביטוי לידי שבאות סטטיסטיות תכונות מגוון יש טבעיות                             לתמונות

הלא והסטטיסטיקה בגודל, לשינויים האינבריאנטיות הן זו בעבודה נדון בהן מרכזיות תכונות שתי פה.                             המוצגות

משמעות אותן, בוחנים בהן בסקאלה תלויה אינה טבעיות תמונות של הסטטיסטקה טבעיות. תמונות של                             גאוסיינית

ביותר והנחקרות הבולטות התכונות אחת שלהן. הסטטיסטיקה על משפיעות לא הקטנתן, או תמונות, שהגדלת                             הדבר

של בספקטרום האנרגיה התדר: עם חזקה חוק כמו מתנהג אשר שלהן, הספקטרום הינה זו מתכונה נובעות                                 אשר

תפקיד תשחק אשר טבעיות תמונות של נוספת חשובה תכונה בריבוע. התדר כמו התדר עם דועכת טבעיות                                 תמונות

תגובות של היסטוגרמה נערוך אם הטבעיות. התמונות של האי­-גאוסייניות היא זו בתזה מוצגות אשר בעבודות                               מרכזי

עם גאוסייניות, לא מאוד התפלגויות מקבלים אנו כי נגלה טבעיות, תמונות פני על אפס ממוצע בעל לינארי                                   פילטרים

בעבודות נדון בהן אשר שונות תופעות מגוון של תוצאה היא זו תכונה האפס. סביב מאוד גבוהות ופסגות עבים,                                     זנבות

השונות  אשר  מרכיבות  את  תזה  זו.

ליניארים פילטרים תגובות של השוליות בהתפלגויות דנה הראשונה העבודה שונות. עבודות ממספר מורכבת זו                             תזה

אלה התפלגויות של המרכזי) הרביעי (המומנט הקורטוזיס כי מראים אנו טבעיות. תמונות על אותם מפעילים                               כאשר

הפילטר תדר עם משתנה אינו הקורטוזיס נקיות, טבעיות בתמונות כי מציעים אנו בתמונות. נוכח אשר מרעש                                 מושפע

את לשערך מנת על זו בתכונה להשתמש ניתן כי מראים אנו בערכיו. לשינויים גורם בתמונה נוכח אשר רעש                                     וכי

אנו השניה בעבודה רעש. בשערוך כיום בעולם המובילות בשיטות המתחרה דיוק ברמת נתונה בתמונה הרעש                               עוצמת

גרפי מודל ידי על טבעיות מתמונות "טלאים" של המשותפת ההתפלגות פונקציית את מקרב אשר מודל                               מציעים

ממוקמים אשר פילטרים של סט לומד כזה מודל כי מראים אנו אלה. מ"טלאים" נלמד אשר עץ, בצורת                                   הסתברותי

הראייתית. המוח בקליפת "פשוטים" תאים של למודלים בדומה ופאזה, לאוריינטציה וסלקטיביים ובתדר                         במרחב

״מורכבים״ תאים של מודלים מזכירים אשר מבנים יוצרים שהם כל העץ מבנה ידי על יחד מקובצים אלה                                   פילטרים

נמצאים שונות פאזות אך דומים ומיקומים תדרים למיקומים, סלקטיביים אשר תאים -­ הראייתית המוח                             בקליפת

לתמונות מובילים מודלים למספר זה מודל משווים אנו אלו. תאים פונקציונלית המזכירים מבנים ויוצרים                             בשכנות
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