
Training Mixture Models at Scale via Coresets

Mario Lucic lucic@inf.ethz.ch
Department of Computer Science
ETH Zurich
Universitätstrasse 6, 8092 Zürich, Switzerland

Matthew Faulkner mnfaulk@gmail.com
Department of Electrical Engineering and Computer Sciences
Caltech
1200 E California Blvd, Pasadena, California 91125

Andreas Krause krausea@ethz.ch
Department of Computer Science
ETH Zurich
Universitätstrasse 6, 8092 Zürich, Switzerland

Dan Feldman dannyf.post@gmail.com

Department of Computer Science

University of Haifa

199 Aba Khoushy Ave. Mount Carmel, Haifa, Israel

Abstract

How can we train a statistical mixture model on a massive data set? In this paper, we
show how to construct coresets for mixtures of Gaussians and natural generalizations. A
coreset is a weighted subset of the data, which guarantees that models fitting the core-
set also provide a good fit for the original data set. We show that, perhaps surprisingly,
Gaussian mixtures admit coresets of size polynomial in dimension and the number of mix-
ture components, while being independent of the data set size. Hence, one can compute
a (1 + ε)-approximation for the optimal model on a significantly smaller data set. More
importantly, such coresets can be efficiently constructed both in distributed and streaming
settings. Our results rely on a novel reduction of statistical estimation to problems in com-
putational geometry and new complexity results for mixtures of Gaussians. As a by-product
of our analysis, we prove that the pseudo-dimension of arbitrary mixtures of Gaussians is
polynomial in the ambient dimension. Empirical evaluation on several real-world datasets
suggest that our coreset-based approach enables significant reduction in training-time with
negligible approximation error.

Keywords: Gaussian mixture models, coresets, streaming, distributed, pseudo-dimension

1. Introduction

We consider the problem of training statistical mixture models, in particular mixtures of
Gaussians and some natural generalizations, on massive data sets. In contrast to parameter
estimation for models with compact sufficient statistics, mixture models generally require
inference over latent variables, which in turn depends on the full data set. Such data sets
are often distributed across a cluster of machines, or arrive in a data stream, and have to

ar
X

iv
:1

70
3.

08
11

0v
1

 [
st

at
.M

L
]

 2
3

M
ar

 2
01

7

Lucic, Faulkner, Krause and Feldman

be processed with limited memory. In this paper, we show that Gaussian mixture models
(GMMs), and some generalizations, admit small coresets: A weighted subset of the data
which guarantees that models fitting the coreset will also provide a good fit for the original
data set. Perhaps surprisingly, we show that Gaussian mixtures admit coresets of size
independent of the size of the data set.

Hence, solving the estimation problem on the coreset C (e.g., using weighted variants
of the EM algorithm, see Section 5) is as good as solving the estimation problem on the
large data set X . Our algorithm for constructing C is based on importance sampling and is
simple to implement. We focus on training mixtures of λ-semi-spherical Gaussians, where
the covariance matrix Σi of each component 1 ≤ i ≤ k has eigenvalues bounded in [λ, 1/λ],
but some of our results generalize even to the semi-definite case. In particular, we show
that given a data set X of n points in Rd, ε > 0 and k ∈ N, one can efficiently construct
a weighted set C of Θ

(
d4k6ε−2λ−8

)
points, such that for any mixture of k λ-semi-spherical

Gaussians θ = [(w1, µ1,Σ1), . . . , (wk, µk,Σk)] it holds that the log-likelihood lnP (X | θ) of
X under θ is approximated by the (properly weighted) log-likelihood lnP (C | θ) of C under
θ to arbitrary accuracy as ε → 0. Moreover, the coresets can be efficiently constructed in
parallel (using a map-reduce style computation), as well as in the streaming setting using
space and update time per point polynomial in d, k, λ−1, ε−1, log n and log(1/δ).

2. Related Work

In this section we review the results on learning mixtures of Gaussians and the relevant
coreset literature. We conclude this section by contrasting prior art to this work.

2.1 Learning Mixtures of Gaussians

The fundamental problem of learning Gaussian mixture models has received a great deal
of interest. The most commonly used technique is maximum likelihood estimation whereby
the parameters of the model are computed via expectation-maximization (Dempster et al.,
1977). As the objective is non-convex, the algorithm is guaranteed to converge only to a
local optima. The work of Dasgupta (1999) was the first to show that parameters θ of
an unknown GMM can be estimated in polynomial time, with arbitrary accuracy ε, given
i.i.d. samples from θ. However, the proposed algorithm assumes a common covariance,
bounded eccentricity, a (known) bound on the smallest component weight, as well as a
separation (distance of the means) that scales with Ω(

√
d). Subsequent works relax the

assumption on separation to d1/4 (Dasgupta and Schulman, 2000) and k1/4 (Vempala and
Wang, 2004). Feldman et al. (2006b) provide the first result that does not require any sep-
aration, but assumes that the Gaussians are axis-aligned. Moitra and Valiant (2010) and
Belkin and Sinha (2010) prove that arbitrary GMMs with fixed number of components can
be learned in polynomial time and sample complexity (but exponential dependence on k).
Anandkumar et al. (2012, 2014) demonstrate that a spectral decomposition technique yields
consistent parameter estimates from low-order observable moments, without additional sep-
aration assumptions. These results hinge on non-degeneracy, that is, that the component
means indeed span a k-dimensional subspace and the vector w has strictly positive entries.
We stress that all of the above results crucially rely on the fact that the data set X is
actually generated by a mixture of Gaussians. The problem of fitting a mixture model with

2

Training Mixture Models at Scale via Coresets

near-optimal log-likelihood for arbitrary data is studied by Arora and Kannan (2005). They
provide a polynomial-time approximation scheme, provided that the Gaussians are identical
spheres. We note that in this case the maximum likelihood estimation problem reduces to
k-means clustering.

In contrast, as detailed in Section 4, our results make only mild assumptions about
the Gaussian components and allow one to explicitly trade-off the coreset size and the
assumption strength. Critically, none of the algorithms described above applies to the
streaming or parallel setting.

2.2 Approximation Algorithms via Coresets

Approximation algorithms in computational geometry often make use of random sampling,
feature extraction, and ε-samples (Haussler, 1992). Coresets can be viewed as a general
concept that includes all of the above, and more.

Existence and construction of coresets have been investigated for a number of prob-
lems in computational geometry (Agarwal et al., 2005; Czumaj and Sohler, 2007) and have
been used to great effect for a host of geometric and graph problems, including k-median
(Har-Peled and Mazumdar, 2004), k-means (Feldman et al., 2007), k-center (Har-Peled
and Varadarajan, 2004), k-line median (Feldman et al., 2006a), subspace approximation
(Feldman et al., 2006a; Mahoney and Drineas, 2009), (k,m)-segment mean (Feldman et al.,
2012), PCA and projective clustering (Feldman et al., 2013b), distributed k-means and k-
median (Balcan et al., 2013), dictionary learning (Feldman et al., 2013a), k-segmentation
of streaming data (Rosman et al., 2014), non-parametric estimation (Bachem et al., 2015),
clustering with Bregman divergences (Lucic et al., 2016b), etc. A framework that general-
izes and improves several of these results has appeared in Feldman and Langberg (2011).
Notably, coresets also imply streaming algorithms for many of these problems (Har-Peled
and Mazumdar, 2004; Agarwal et al., 2005; Frahling and Sohler, 2005; Feldman et al., 2007).
Recently, coresets were leveraged to establish a space-time-data-risk tradeoff in the context
of unsupervised learning (Lucic et al., 2015). Promising results in the context of empirical
risk minimization have been demonstrated by Reddi et al. (2015). For a survey of the recent
results we refer the reader to Bachem et al. (2017b).

Apart from fast approximation, streaming and parallel computations, coresets have
many other applications. For example, since our coreset approximates any mixture of λ-
semi-spherical Gaussians, it can be used to solve optimization problems with constraints on
the Gaussian components (such as forbidden areas for their centers).

2.3 Our Contributions

In this work we demonstrate how these techniques from computational geometry can be
lifted to the realm of statistical estimation. As a by-product of our analysis, we also answer
an open question on the pseudo-dimension (generalization of the VC dimension) of arbitrary
mixtures of Gaussians. This paper is an extended version of Feldman et al. (2011) and
provides several improvements over the original work.

The theoretical analysis is now simplified and executed directly on the negative log-
likelihood implied by a fixed mixture of Gaussians. Based on this simplification, we provide
a blueprint for constructing coresets for other statistical models. We present a new proof for

3

Lucic, Faulkner, Krause and Feldman

the complexity (pseudo-dimension) of a mixture of Gaussians and natural generalizations
by forging a link to VC analysis of neural networks. We now directly model the impact
of the assumption of λ-semi-spherical Gaussian components on the coreset size. Critically,
we prove that one can use any bicriteria approximation for the k-means clustering problem
as a basis for the importance sampling scheme. Specifically, we show that the well-known
k-means++ algorithm is a good choice, both in theory and practice. To this end, we de-
coupled the bicriteria approximation algorithm from the sampling scheme. Overall, we are
able to construct larger coresets in less time (approximately two orders of magnitude) and
significantly improve the experimental results.

The empirical evaluation is performed on six real-world data sets ranging up to 45,000,000
points (two orders of magnitude larger than prior work), up to 90 dimensions, and we fit
mixture models of up to 150 components. We present both absolute as well as relative
log-likelihood of models trained on coresets and the models trained on the full data set. We
observe computational time reduction of two orders of magnitude while achieving a hold-out
set likelihood competitive with the models trained on the full data set.

3. Background and Problem Statement

We briefly review the approach of fitting mixture models by maximum likelihood estimation
and discuss the critical aspect of approximating the log-likelihood by a weighted subset of
the data set. We conclude this section by defining coresets for Gaussian mixture models.

3.1 Fitting Mixture Models by Maximum Likelihood Estimation

Suppose we are given a data set X = {x1, . . . , xn} ⊂ Rd. We consider fitting a mixture of
Gaussians θ = [(w1, µ1,Σ1), . . . , (wk, µk,Σk)], that is, the distribution

P (x | θ) =
k∑

i=1

wiN (x;µi,Σi)

where w1, . . . , wk ≥ 0 are the mixture weights and
∑

iwi = 1. Mean µi ∈ Rd and covariance
Σi ∈ Rd×d parametrize the i-th mixture component, which is modeled as a multivariate
normal distribution

N (x;µi,Σi) =
1√
|2πΣi|

exp

(
−1

2
(x− µi)TΣ−1

i (x− µi)
)
.

We discuss extensions to more general mixture models in Section 7. Assuming the data was
generated i.i.d., the negative log-likelihood of the data is

L(X | θ) = −
∑

j

lnP (xj | θ),

and we wish to obtain the maximum likelihood estimate (MLE) of the parameters

θ∗ = argmin
θ∈C

L(X | θ),

4

Training Mixture Models at Scale via Coresets

where C is a set of constraints ensuring that degenerate solutions are avoided.1 Hereby, for
a symmetric matrix A, let spec A be the set of all eigenvalues of A. We define C = Cλ =
{θ = [(w1, µ1,Σ1), . . . , (wk, µk,Σk)] | ∀i : spec(Σi) ⊆ [λ, 1/λ]} to be the set of all mixtures
of k Gaussians θ, such that all the eigenvalues of the covariance matrices of θ are bounded
between λ and 1/λ for λ ∈ (0, 1).

3.2 Approximating the Log-likelihood

Ideally, we would like to obtain (1 + ε)-multiplicative approximation for the likelihood

∏

x∈X
P (x | θ).

This implies an additive ε error for the log-likelihood, which is the sum of log-likelihoods.
What kind of approximation accuracy may we hope to expect? Notice that there is a non-
trivial issue of scale: Suppose we have a MLE θ∗ for X , and let α > 0. Then straightforward
linear algebra shows that we can obtain a MLE θ∗α for a scaled data set αD = {αx : x ∈ X}
by simply scaling all means by α, and covariance matrices by α2. For the log-likelihood,
however, it holds that L(αD | θ∗α) = d lnα+L(X | θ∗). Therefore, optimal solutions on one
scale can be efficiently transformed to optimal solutions on a different scale, while main-
taining the same additive error. Thus, we cannot expect to obtain a (1 + ε)-multiplicative
approximation to the likelihood since any algorithm which achieves absolute error ε at any
scale could be used to achieve parameter estimates (for means, covariances) with arbitrarily
small error, simply by applying the algorithm to a scaled data set and transforming back
the obtained solution. An alternative, scale-invariant approach may be to strive towards a
multiplicative error (1 + ε) for the sum of log-likelihoods. Unfortunately, this goal is also
hard to achieve: Choosing a scaling parameter α such that d lnα + L(X | θ∗) = 0 would
require any algorithm that achieves any bounded multiplicative error to essentially incur
no error at all when evaluating L(αX | θ∗). The above observations hold even for the case
k = 1 and Σ = I, where the mixture θ consists of a single Gaussian, and the log-likelihood
is the sum of squared distances to a point µ and an additive term.

Motivated by the scaling issues discussed above, our goal is to approximate the data set
X by a weighted set C = {(γ1,x

′
1), . . . , (γm,x

′
m)} ⊆ R+ ×Rd such that L(X | θ) ≈ L(C | θ)

for all θ, where we define

L(C | θ) = −
∑

i

γi lnP (x′i | θ).

We make use of the following decomposition that was suggested in Arora and Kannan
(2005) where all Gaussians are identical spheres was studied. We decompose the negative
log-likelihood L(X | θ) of a data set X as

L(X | θ) = −
n∑

j=1

ln

k∑

i=1

wi√
|2πΣi|

exp

(
−1

2
(xj − µi)TΣ−1

i (xj − µi)
)

= −n lnZ(θ) + φ(X | θ)

1. Equivalently, C can be interpreted as prior thresholding.

5

Lucic, Faulkner, Krause and Feldman

where Z(θ) =
∑

i
wi√
|2πΣi|

is a normalizer, and the function φ is defined as

φ(X | θ) = −
n∑

j=1

ln
k∑

i=1

wi

Z(θ)
√
|2πΣi|

exp

(
−1

2
(xj − µi)TΣ−1

i (xj − µi)
)
.

Hereby, Z(θ) plays the role of a normalizer, which can be computed exactly, independently
of the set X . Function φ(X | θ) captures all dependencies of L(X | θ) on X . Furthermore,
φ(X | θ) is always nonnegative by Jensen’s inequality. We can now use φ(X | θ) as a
reference for our error bounds.

3.3 Coresets for Gaussian Mixtures

Definition 1 We call a weighted data set C a (k, ε)-coreset for another (possibly weighted)
set X ⊂ Rd, if for all mixtures θ ∈ C of k Gaussians it holds that

(1− ε)φ(X | θ) ≤ φ(C | θ) ≤ (1 + ε)φ(X | θ).

Hereby φ(C | θ) is generalized to weighted data sets C in the natural way (weighing the
contribution of each summand x′j ∈ C by its weight γj). Thus, as ε → 0, for a sequence of
(k, ε)-coresets Cε we have that

sup
θ∈C
|L(Cε | θ)− L(X | θ)| = sup

θ∈C
| − n logZ(θ) + φ(Cε | θ) + n logZ(θ)− φ(X | θ)|

= sup
θ∈C
|φ(Cε | θ)− φ(X | θ)| → 0.

which implies that L(Cε | θ) uniformly approximates L(X | θ) (over θ ∈ C).

The main idea behind constructing a (k, ε)-coreset C is to reduce the problem of fitting
a mixture model on X to one of fitting a model on C, since the optimal solution θC is a good
approximation (in terms of log-likelihood) of θ∗. While finding the optimal θC is a difficult
problem, one can use a (weighted) variant of the EM algorithm to find a good solution.
Moreover, if |C| � |X |, running EM on C is orders of magnitude faster than solving it on
X . We provide more details on solving the density estimation problem in Section 5.

The key question is whether we can efficiently construct a small (k, ε)-coreset. In what
follows, we show that, perhaps surprisingly, one can efficiently construct coresets of size
independent of the cardinality of X with only polynomial dependence on d, k, λ−1 and ε−1.

4. Efficient Coreset Construction

We start by contrasting the coreset approach with the naive approach of fitting the model to
a uniform sample and show that the uniform sampling can perform arbitrarily badly, while
explicit worst-case guarantees can be made for the coreset based approach. We then present
a simple algorithm for coreset construction. We conclude with a bound on the coreset size
for mixtures of Gaussians.

6

Training Mixture Models at Scale via Coresets

a) Example data set b) Uniform sample c) Coreset sampling probabilities

d) Fit on full data e) Fit on Uniform sample f) Coreset and fitted model

Figure 1: Example of fitting a mixture model on the full data set (a, d), uniform sample (b, e)
and the coreset (c, f). With unbalanced data the uniform sample is likely to miss small
clusters and can be arbitrarily penalized in terms of the log-likelihood (e). Note that the
coreset sampling probabilities are inversely proportional to the size of the cluster which
results in more representative samples (f).

4.1 Naive Approach via Uniform Sampling

A naive approach towards approximating X would be to just pick a subset C uniformly at
random. In particular, suppose the data set is generated from a mixture of two spherical
Gaussians (Σi = I) with weights w1 = 1√

n
and w2 = 1− 1√

n
. Unless m = Ω(

√
n) points are

sampled, with constant probability no data point generated from the second Gaussian is
sampled. By moving the means of the Gaussians apart, L(X | θC) can be made arbitrarily
worse than L(X | θX), where θC and θX are MLEs on C and X respectively. Thus, even
for two well-separated Gaussians, uniform sampling can perform arbitrarily poorly which
is illustrated in Figure 1. This example already suggests that we must devise a sampling
scheme that adaptively selects representative points from all “clusters” present in the data
set. However, this suggests that obtaining a coreset requires solving a chicken-and-egg
problem, where we need to understand the density of the data to obtain the coreset, but
simultaneously would like to use the coreset for density estimation.

4.2 Better Approximation via Adaptive Sampling

The key idea behind the coreset construction is that we can break the chicken-and-egg
problem by first obtaining a rough approximation A of the problem on X and using it
to construct a non-uniform sampling scheme. This non-uniform random sampling can be
understood as an importance-weighted estimate of the log-likelihood L(X | θ), where the
weights are optimized in order to reduce the variance. Feldman and Langberg (2011)
successfully used the same idea to construct coresets for geometric clustering problems

7

Lucic, Faulkner, Krause and Feldman

a) Example data set b) Iteration 1 c) Iteration 2

d) Final bicriteria approximation e) Sampling distribution f) Coreset

Figure 2: Illustration of the coreset construction on a synthetic data set. (b, c) Two iterations of
constructing the bicriteria approximation A via Algorithm 3. Green diamonds are points
sampled uniformly from remaining points, orange squares are bicriteria points selected in
previous iterations. In each iteration a fraction of points closest to A are discarded. (d)
Final approximate clustering A. (e) Induced non-uniform sampling distribution: radius
of points is proportional to the sampling probability. The points in dense clusters are
sampled with a smaller probability. (f) Coreset points sampled from distribution in (e).
The weight of the sampled points is inversely proportional to the sampling probability.

such as k-means and k-median. The rough approximation can either be a constant-factor
approximation or a bicriteria approximation (using more than k components). Below we
show that, even though we seek to fit Gaussian mixture models, it suffices to use a bicriteria
approximation with respect to the optimal k-means clustering as the initial approximation
(see Appendix B.1). Formally, denote the distance between a point x ∈ Rd and a set
A ⊂ Rd by d(x,A) := mina∈A ‖x− a‖2. We define the bicriteria approximation for the
k-means problem as follows.

Definition 2 (Bicriteria approximation) Let X ⊂ Rd, α ≥ 1, and β ∈ N. Set A ⊂ Rd
of β points is an (α, β)-bicriteria approximation of the optimal k-means clustering if

∑

x∈X
d2(x,A) ≤ α min

C⊂Rd
|C|=k

∑

x∈X
d2(x,C).

One choice for the bicriteria approximation for k-means clustering is to use k-means++

given in Algorithm 2. The algorithm produces a (c log2 k, k)-bicriteria approximation to the
k-means objective, where c is a sufficiently large constant (Arthur and Vassilvitskii, 2007).
Interestingly, for β ≥ d16(k+

√
k)e the algorithm produces a constant factor approximation

(α = 20) with probability at least 0.03 (Aggarwal et al., 2009). This probability can be
boosted to 1− δ by repeating the algorithm ln 1/δ times and selecting the solution with the
smallest quantization error. In the case of GMMs (and natural extensions) the approach

8

Training Mixture Models at Scale via Coresets

Algorithm 1 Coreset(X ,A, α, s)
1: for each j in A
2: Xj ← Set of points from X closest to point j. Ties can be broken arbitrarily.

3: for each j ∈ A, for each x ∈ Xj
4: s(x)← αd2(x,A) + α

∑
x′∈Xj d2(x′,A)/|Xj |+

∑
x′∈X d2(x′,A)/|Xj |

5: for each x ∈ X
6: p(x)← s(x)∑

x′∈X s(x
′)

7: C ← Sample s weighted points from X , where each point x is sampled with probability

8: p(x) and has weight 1
s·p(x) .

9: return C

based on this bicriteria approximation leads to coresets of size independent of the data
set size (Corollary 3). Other choices for the bicriteria approximation will lead to different
tradeoffs in terms of the approximation factor and coreset size. For example, Feldman
and Langberg (2011) apply Algorithm 3 which, with probability at least 1 − δ, provides
a constant-factor approximation of size O(dk log 1/δ log n). The algorithm illustrated in
Figure 2 iteratively samples a small number c (sublinear in n) of points, and removes
half of the data set closest to the sampled points in each iteration. For other bicriteria
approximation algorithms for k-means clustering offering different tradeoffs in terms of
computational complexity and the approximation guarantee we refer the reader to Bachem
et al. (2016a,b) and Makarychev et al. (2016).

The pseudocode for the coreset construction is given in Algorithm 1. The sampling
strategy is biased towards sampling points from small clusters, as well as points which are
further away from cluster centers in the bicriteria approximation. We note that this sam-
pling strategy was not selected arbitrarily, but rather follows from a framework introduced
by Langberg and Schulman (2010). It can be shown that sampling proportionally to the
sensitivity — the worst case impact of each point – guarantees that the cost estimated on
the coreset φ(C | θ) is an unbiased estimator of φ(X | θ) with bounded variance (Langberg
and Schulman, 2010). For a detailed discussion on why sensitivity is the critical quantity we
refer the reader to the tutorial in Bachem et al. (2017b). The following corollary bounds the
coreset size and is a direct consequence of our main technical result, Theorem 7 (Section 7).

Corollary 3 Let X ⊂ Rd, δ ∈ (0, 1), ε ∈ (0, 1/2), k ≥ 1, λ ∈ (0, 1). Let C be the collection
of all mixtures of k components θ = [(w1, µ1,Σ1), . . . , (wk, µk,Σk)] such that Σi is a d × d
covariance matrix whose singular values are between λ and 1/λ for every 1 ≤ i ≤ k. Let A
be the output with smallest quantization error of Θ(ln 1/δ) runs of Algorithm 2 with β = k.
Let C be the output of Algorithm 1 with α = 16(log2 k+ 2), bicriteria approximation A and
coreset size s = Θ

(
d4k6λ−8ε−2

)
. Then, with probability at least 1− δ, it holds that

(1− ε)φ(X | θ) ≤ φ(C | θ) ≤ (1 + ε)φ(X | θ).

for every mixture θ ∈ C. The total computational complexity is O(nkd ln 1/δ).

9

Lucic, Faulkner, Krause and Feldman

Algorithm 2 K-Means++(X , k)

1: A ← {Sample x ∈ X uniformly at random}
2: for j ← 2 to k

3: for x in X
4: p(x)← d2(x,A)∑

x′∈X d2(x′,A)

5: Sample x ∈ X with probability p(x)

and add it to A.

6: return A

Algorithm 3 Adaptive sampling(X , k, δ)
1: R← D,A ← ∅, c← d10dk ln(1/δ)e
2: while |R| > c

3: S ← Sample c points uniformly from R

4: P ← d|R|/2e points from R closest to S

5: R← R \ P
6: A ← A∪ S
7: A ← A∪R
8: return A

5. Fitting a GMM on the Coreset using Weighted EM

Once the coreset C is constructed, we need to fit a mixture model that takes into account
the point weights. Since the coreset size is independent of the cardinality of X we can
(at least from the perspective of developing a polynomial time algorithm) afford to use
an “expensive” method. In geometric clustering problems such as k-means or k-median,
where data points are hard-assigned to the closest cluster (point, subspace, etc.), it is
possible to find the optimal clustering via exhaustive search, by simply considering all
possible partitions of the coreset, and picking the best one. This procedure – constructing
a coreset of size independent of n, and then using exhaustive search on the coreset – yields
a (randomized) polynomial time approximation scheme (PTAS): It is guaranteed to achieve
multiplicative error 1 + ε, in time which is polynomial in n, but exponential in all other
quantities (in particular 1/ε). For mixture models, this exhaustive search algorithm is not
feasible, since points are not hard-assigned to a cluster, but “soft-assigned” (according to
the cluster membership probabilities). One approach, which we employ in our experiments,
is to use a natural generalization of the EM algorithm, which takes the coreset weights into
account. We provide the algorithm for the case of GMMs. For other mixture distributions,
the expectation and maximization steps need to be modified appropriately. Since the EM
algorithm is applied on a significantly smaller data set, it can be initialized using multiple
random restarts. In our experiments, we show that running weighted EM on the coreset
typically leads to comparable performance (in terms of log-likelihood) as running EM on
the full data set. The derivation of the EM update equations is presented in Appendix C.

Algorithm 4 Fitting Gaussian mixture models with weighted data sets

1: procedure Initialize(X ,γ, k, λ)

2: η ← Weighted K-Means(X ,γ, k) . ηij = 1 iff xi is assigned to the j-th center

3: return Maximization(η, λ)

4: procedure Fit(X ,γ, k, λ)

5: w,µ,Σ← Initialize(X ,γ, k)

6: while not converged

7: η ← Expectation(X ,γ,w,µ,Σ)

8: w,µ,Σ←Maximization(η, λ)

9: return w,µ,Σ

10

Training Mixture Models at Scale via Coresets

Algorithm 5 Expectation(X ,γ,w,µ,Σ)

Require: w ∈ Rk,µ ∈ Rk×d,Σ ∈ Rk×d×d

1: z ← 0n
2: for i ← 1 to n

3: for j ← 1 to k

4: ηij ← wj · N (xi | µj ,Σj)

5: zi ← zi + ηij

6: for i ← 1 to n

7: for j ← 1 to k

8: ηij ← γi · ηij / zi
9: return η

Algorithm 6 Maximization(η, λ)

Require: η ∈ Rn×k, λ > 0

1: z ← 0k, {µ}kj=1 ← 0d, {Σ}kj=1 ← 0d×d
2: for j ← 1 to k

3: for i ← 1 to n

4: zj ← zj + ηij

5: for j ← 1 to k

6: for i ← 1 to n

7: µj ← µj + ηijxj / zj
8: Σj ← Σj + ηij(xi − µj)(xi − µj)T

9: for j ← 1 to k

10: µj ← µj / zj ,Σj ← Σj / zj + Iλ

11: return (z / ||z||1,µ,Σ)

6. Streaming and Parallel Computation

One advantage of coresets is that they can be constructed in parallel, as well as in a stream-
ing setting where data points arrive one by one, and it is impossible to remember the entire
data set due to memory constraints. The key insight is that coresets satisfy certain com-
position properties, which have previously been used by Har-Peled and Mazumdar (2004)
for streaming and parallel construction of coresets for geometric clustering problems such
as k-median and k-means.

1. Suppose C1 is a (k, ε)-coreset for X1, and C2 is a (k, ε)-coreset for X2. Then C1 ∪ C2 is
a (k, ε)-coreset for X1 ∪ X2.

2. Suppose C is a (k, ε)-coreset for X , and C′ is a (k, δ)-coreset for C. Then C′ is a
(k, (1 + ε)(1 + δ)− 1)-coreset for X .

We now discuss how to exploit these properties for parallel and streaming computation.

6.1 Streaming Computation

In the streaming setting, we assume that points arrive one-by-one, but we do not have
enough memory to remember the entire data set. Thus, we wish to maintain a coreset
over time, while keeping only a small subset of O(log n) coresets in memory, where n is the
number of points seen so far. There is a general reduction that shows that a small coreset
scheme to a given problem suffices to solve the corresponding problem on a streaming input
(Bentley and Saxe, 1980; Har-Peled and Mazumdar, 2004). The idea is to construct and
store in memory a coreset for every block of poly(d, k, λ−1, ε−1) consecutive points arriving
in a stream. When we have two coresets in memory we first merge them which results in a
(k, ε)-coreset via property (1). Then we can compress them by computing a single coreset
from the merged coresets via property (2) to avoid the increase in the coreset size.

An important subtlety arises: While merging two coresets via property (1) does not
increase the approximation error, compressing a coreset via property (2) does increase

11

Lucic, Faulkner, Krause and Feldman

C7

C3

C1

x1 x2 x3 x4

C2

x5 x6 x7 x8

C6

C4

x9 x10 x11 x12

C5

x13 x14 x15 x16

Figure 3: Tree construction for generating coresets in parallel or from data streams. Black arrows
indicate “merge-and-compress” operations. The (intermediate) coresets C1, . . . , C7 are
enumerated in the order in which they would be generated in the streaming case. In
the parallel case, C1, C2, C4 and C5 would be constructed in parallel, followed by parallel
construction of C3 and C6, finally resulting in C7.

the error. A naive approach that merges and compresses immediately as soon as two
coresets have been constructed can incur an exponential increase in approximation error.
Fortunately, it is possible to organize the merge-and-compress operations in a binary tree of
height O(log n), where we need to store in memory a single coreset for each level on the tree
(thus requiring only poly(d, k, λ−1, ε−1, log n) memory). The following analysis is based on
Feldman et al. (2013b, Theorem 10.1.).

Consider Figure 3 which illustrates the tree computation for an example data set. In
the following, ε-coreset denotes a (ε, k)-coreset (k is fixed). In the first step, we construct a
ε-coreset for x1, . . . , x4. We then construct a ε-coreset for x5, . . . , x8. At this point we have
two ε-coresets and their union is, by property (1), a ε-coreset for x1, . . . , x8. By property
(2) a coreset C3 of the union of those two coresets is a 4ε-coreset for x1, . . . , x8 since

(1 + ε)(1 + ε) = 1 + 2ε+ ε2 ≤ 1 + 4ε

for 0 ≤ ε ≤ 1. Hence, we discard coresets C1 and C2 and keep only C3 in memory. We apply
the same approach for x9, . . . , x16 and obtain C6, a 4ε-coreset for x9, . . . , x16. Once again,
we obtained two coresets at the same level of the tree (C3 and C6) and merging them we
obtain a 4ε-coreset for x1, . . . , x16. By property (2), the coreset of the union of C3 and C6

is a 13ε-coreset for the whole data set since

(1 + 4ε)(1 + ε) = 1 + 5ε+ 4ε2 ≤ 1 + 13ε.

We now consider the general setting whereby we need to return a coreset after reading n
points. To ensure final accuracy of ε, it suffices that the intermediate coreset has accuracy
ε′ = ε

6 logn . Indeed, since the height of the tree is at most dlog ne, the approximation error
of the union of all coresets is at most

(1 + ε′)dlogne = (1 +
ε

6 log n
)dlogne ≤ e ε6 ≤ 1 +

ε

3
.

12

Training Mixture Models at Scale via Coresets

Thus, by property (2), a (ε/3)-coreset of the union of all coresets in memory has the approx-
imation error bounded by (1 + ε/3)2 ≤ 1 + ε. We conclude that for a desired approximation
error of ε it suffices to set each coreset error to ε′ = ε

6 logn . A subtle issue arises in the
streaming setting — we do not know n a priori. Intuitively, this issue can be resolved by
computing coresets for data batches of exponentially increasing size – the total time and
space requirements are dominated by the last batch whose size is upper bounded by n
(Feldman et al., 2013b). We summarize this result in the following theorem.

Theorem 4 A (k, ε)-coreset for a stream of n points in Rd can be computed for the λ-semi-
spherical GMM using update time per point and memory poly(d, k, λ−1, ε−1, log n, log(1/δ))
with probability at least 1− δ.

In order to construct a coreset for the union of two (weighted) coresets, we use weighted
versions of Algorithms 1 and 2, where we consider a weighted point as duplicate copies of
a non-weighted point (possibly with fractional weight).

6.2 Distributed Computation

Using the same ideas from the streaming model, a (non-parallel) coreset construction can
be transformed into a parallel one. We partition the data and compute a coreset for each
partition independently. We then in parallel merge via property (1) two coresets, and com-
pute a single coreset for every pair of such coresets exploiting the property (2). Continuing
in this manner yields a process that takes O(log n) iterations of parallel computation. This
computation is naturally suited for map-reduce (Dean and Ghemawat, 2004) style compu-
tations, where the map tasks compute coresets for disjoint parts of X , and the reduce tasks
perform the merge-and-compress operations. Figure 3 illustrates this parallel construction.
We summarize our distributed computation result in the following theorem.

Theorem 5 A (k, ε)-coreset for a set of n points in Rd can be computed for the λ-semi-
spherical GMM using m machines in time (n/m) · poly(d, k, λ−1, ε−1, log(1/δ), log n) with
probability at least 1− δ.

Furthermore, if we have enough memory on one of the machines we can apply a simpler
algorithm. First, partition the data to m machines and compute a (ε/3)-coreset on each,
producing coresets C1, C2, . . . , Cm. Then the union C = ∪mi=1Ci is a (ε/3)-coreset for the
whole data set and its size is bounded bym·maxi |Ci|. To obtain a coreset of size independent
of the number of machines m, construct a (ε/3)-coreset of C. The last coreset is in fact a
ε-coreset since (1 + ε/3)2 ≤ 1 + ε for ε ∈ (0, 1)

7. Extensions and Generalizations

We now show how the connection between estimating the parameters for mixture mod-
els and problems in computational geometry can be leveraged further. Our analysis is
based on combinatorial considerations (such as the complexity of sub-levelsets of GMMs)
and probabilistic methods (importance sampling). Therefore, generalizations to other non-
Euclidean distance functions, or error functions such as (non-squared) distances is straight-
forward. The critical property that we need is a generalization of the triangle inequality, as

13

Lucic, Faulkner, Krause and Feldman

shown in Lemma 6. The double triangle inequality ‖a− c‖22 ≤ 2(‖a− b‖22 + ‖b− c‖22) that
we used in this paper can be replaced by the generalized triangle inequality, ‖a− c‖z2 ≤
2O(z)(‖a− b‖z2 + ‖b− c‖z2) which allows us to develop the following lemma.

Lemma 6 Let x ∈ Rd, z ∈ N, θ ∈ C and define

φz(x | θ) = − ln

(
k∑

i=1

wiexp

(
−1

2

∥∥∥Σ
−1/2
i (x− µi)

∥∥∥
z

2

))
.

Then, for every x, a ∈ Rd

φz(x | θ) ≤
2z−2

λz
· ‖x− a‖z2 + 2z−1φz(a | θ).

The proof is provided in the Appendix B.1. We apply Lemma 6 to bound the necessary
coreset size in case where the distances are not necessarily Euclidean as formalized by the
following theorem.

Theorem 7 Let X ⊂ Rd, |X | = n, δ ∈ (0, 1), ε ∈ (0, 1/2), k ≥ 1, λ ∈ (0, 1) and z ∈ N, Let
C be the collection of all mixtures of k components θ = [(w1, µ1,Σ1), . . . , (wk, µk,Σk)] such
that Σi is a d× d covariance matrix whose singular values are between λ and 1/λ for every
1 ≤ i ≤ k. Consider Algorithm 1 and Algorithm 2 where d2(·, ·) is replaced by dz(·, ·). Let A
be the output with smallest quantization error of Θ(ln 1/δ) runs of Algorithm 2 with β = k.
Let C be the output of Algorithm 1 with α = 2z+2(log2 k + 2), bicriteria approximation A
and coreset size

s = Θ

(
d4k6

λ4zε2

)
.

Then, with probability at least 1− δ, for all θ ∈ C,

(1− ε)φz(X | θ) ≤ φz(C | θ) ≤ (1 + ε)φz(X | θ),

where Z(θ) =
∑

i
wi
g(θi)

and

φz(X | θ) = −
∑

x∈X
ln

k∑

i=1

wi
Z(θ)g(θi)

exp

(
−1

2

∥∥∥Σ
−1/2
i (x− µi)

∥∥∥
z

2

)

using the normalizer

g(θi) =

∫
exp

(
−1

2

∥∥∥Σ
−1/2
i (x− µi)

∥∥∥
z

2

)
dx.

The detailed analysis is provided in Appendix B.

14

Training Mixture Models at Scale via Coresets

210 211 212 213 214
0

1

2

3

4

5

6

7

8
R

el
at

iv
e-

er
ro

r
HIGGS

UNIFORM

CORESET

210 211 212 213 214
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 ×101 CSN

UNIFORM

CORESET

210 211 212 213 214
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8 ×10−1 USGS

UNIFORM

CORESET

210 211 212 213 214

Subsample size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e-
er

ro
r

WEB

UNIFORM

CORESET

210 211 212 213 214

Subsample size

0.0

0.5

1.0

1.5

2.0 ×10−1 KDD

UNIFORM

CORESET

210 211 212 213 214

Subsample size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5 ×10−1 MILLION

UNIFORM

CORESET

Figure 4: Models trained on coresets drastically outperform those trained on uniform samples of
the same size. Small coresets are enough to train a competitive model.

8. Experimental Results

In this section we demonstrate the effectiveness of using coresets for training mixture models.
We propose that instead of fitting the model on the full data set it is enough to consider
relatively small coresets. We compare our coreset based approach to the “naive” approach
of uniformly subsampling the data using models trained on the full data set as a baseline.
In particular, we compare both absolute log-likelihood on hold-out data and well as the
log-likelihood relative to the models trained on the full data set.

8.1 Protocol

In the experiments we use coresets and uniform samples of various sizes selected from a
logarithmic grid in range [864, 16000]. For uniform subsampling, we subsample the data set

data set size train full test d k λ

higgs 11× 106 10× 106 2× 106 1× 106 2 150 10−3

csn 120× 103 100× 103 100× 103 20× 103 17 30 10−3

usgs 59× 103 50× 103 60× 103 9× 103 3 100 10−3

kdd 145× 103 100× 103 100× 103 45× 103 74 10 1
webscope 45× 106 44× 106 2× 106 1× 106 5 150 10−6

million 515× 103 400× 103 400× 103 115× 103 90 50 10−3

Table 1: Data set size, number of training instances for the subsampling methods, number of train-
ing instances for the full model, hold-out data set size, ambient dimension, the number of
mixture components, and the covariance threshold.

15

Lucic, Faulkner, Krause and Feldman

210 211 212 213 214
−5

−4

−3

−2

−1

0

1
L

og
-l

ik
el

ih
o
o
d

×106 HIGGS

UNIFORM

CORESET

FULL

210 211 212 213 214

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

×106 CSN

UNIFORM

CORESET

FULL

210 211 212 213 214

1.05

1.10

1.15

1.20

×104 USGS

UNIFORM

CORESET

FULL

210 211 212 213 214

Subsample size

0.0

0.5

1.0

1.5

L
og

-l
ik

el
ih

o
o
d

×107 WEB

UNIFORM

CORESET

FULL

210 211 212 213 214

Subsample size

−1.10

−1.05

−1.00

×107 KDD

UNIFORM

CORESET

FULL

210 211 212 213 214

Subsample size

−2.8

−2.6

−2.4

−2.2

−2.0
×107 MILLION

UNIFORM

CORESET

FULL

Figure 5: Average log-likelihood of the models trained on uniform samples and models trained on
coresets with respect to the models trained on the full data set. Coresets dominate the
uniform samples and, in some cases, outperform the models trained on the full data set.

and fit the model using Algorithm 4 with uniform weights for each point. For the coreset
based approach with k mixture components we first construct a bicriteria approximation
using Algorithm 2 and pass it to Algorithm 1 with α = 16(log2 k + 2) as suggested by
Corollary 3. Finally, we fit a GMM on the weighed coreset using Algorithm 4 with λ as
specified in Table 1. For each run we store the sampling time, solving time and the log-
likelihood on a hold-out set. We compare the log-likelihood on hold-out data of models
trained on the uniform subsample, the coreset and the full data set. To ensure robustness
against bad initializations we compare the median results from 200 runs for the subsampling
methods and 100 runs on the full data set.

8.2 Data Sets and Results

1. Higgs high-energy physics contains 11,000,000 instances describing signal pro-
cesses which produce Higgs bosons and background processes which do not (Baldi
et al., 2014). We consider the two principal components components and fit GMMs
with 150 components. We use 9,000,000 instances for training and the rest for testing.
As we can’t fit the GMM on the full data set in reasonable time, we consider a uni-
form subsample of 2,000,000 points. Models trained on coresets achieve a comparable
log-likelihood to the full solution 111 times faster (2 minutes vs 3.7 hours).

2. Community Seismic Network (CSN) uses smart phones with accelerometers as
inexpensive seismometers for earthquake detection. In Faulkner et al. (2011), 7 GB
of acceleration data was recorded from volunteers carrying and operating their phone
in normal conditions (walking, talking, on desk, etc.). From this data, 17-dimensional
feature vectors were computed (containing frequency information, moments, etc.).
Out of 120,000 points we use 100,000 for training and the rest for testing and fit

16

Training Mixture Models at Scale via Coresets

GMMs with 30 components. Models trained on coresets achieve a comparable log-
likelihood to the full solution 8 times faster.

3. U.S. geological survey contains coordinates of all earthquakes since 1972 as re-
ported by USGS. It contains 59,000 instances with 8 features which we mapped to
3D space using WGS 84. We use 50,000 for training and the rest for testing and fit
GMMs with 100 components. Since this is a relatively small data set and the data
is balanced we don’t expect large speedups. Models trained on coresets achieve a
comparable log-likelihood 6 times faster.

4. Yahoo! Webscope R6A contains a fraction of user click log for news articles dis-
played in the Featured Tab of the Today Module on Yahoo! Front Page during the
first ten days in May 2009.2 The data set contains 45,000,000 user visits to the To-
day Module. We use 44,000,000 for training and the rest for testing. Figure 5) and
Figure 4e) show that coresets consistently obtain higher log-likelihood for uniform
subsample GMMs of the same size. Models trained on coresets achieve a comparable
log-likelihood 80 times faster (5 minutes vs 7.2 hours).

5. KDD Cup 2004 The data set contains 145,000 samples with 74 features measuring
the match between a protein and a native sequence.3 We use 100,000 instances for
training and the rest for testing and fit GMMs with 10 components. Models trained
on coresets achieve a comparable log-likelihood 10 times faster.

6. Million song data set contains 515.345 instances with 90 features each. The fea-
tures represent timbre average and timbre covariance for mostly western, commercial
tracks ranging from 1922–2011. We normalize each column to unit variance. We
use 400,000 for training and the rest for testing and fit GMMs with 50 components.
Models trained on coresets achieve a comparable log-likelihood 40 times faster.

2. Available at http://research.yahoo.com.
3. Available at http://osmot.cs.cornell.edu/kddcup/datasets.html.

Table 2: Relative quality and speedup for various coreset sizes. The coreset size required
in practice is drastically smaller than worst-case size predicted by the analysis.

relative error speedup

m = 2581 m = 5355 m = 11109 m = 2581 m = 5355 m = 11109

higgs 11.15% 3.39% 1.10% 212.84× 181.78× 111.86×
csn 16.95% 7.54% 3.48% 66.28× 25.75× 9.59×
usgs 1.21% 0.69% 0.64% 25.44× 14.71× 6.66×
web 7.17% 3.17% 1.39% 106.54× 102.67× 87.55×
kdd 2.11% 1.07% 0.47% 66.79× 12.08× 5.91×
million 4.11% 2.09% 1.24% 930.61× 163.90× 47.70×

17

Lucic, Faulkner, Krause and Feldman

8.3 Discussion

The experimental results are summarized in Table 2. The empirical results suggest that the
coreset sizes required to obtain a competitive log-likelihood to the models trained on full
data set are drastically smaller than the ones suggested by the analysis. This discrepancy
is due the fact that coresets uniformly approximate the log-likelihood. As such, larger
samples are required to allow for degenerate queries which rarely happen in practice. Both
Figure 4 and Figure 5 demonstrate that the models trained on coresets generalize better
than the ones trained on uniform samples. Furthermore, even models trained on small
coresets provide competitive performance with respect to the ones trained on the full data
set, while enabling a significant saving in training time. The reported time includes both
sampling and solving times.4

9. Conclusion and Future Work

We have shown how to construct coresets for estimating parameters of Gaussian mixture
models and natural generalizations by exploiting a connection between statistical estima-
tion and clustering problems in computational geometry. We show theoretical existence
of coresets of size independent of the original data set size. To our knowledge, our re-
sults provide the first rigorous guarantees for obtaining compressed ε-approximations of
the log-likelihood of mixture models for large data sets. Our coreset construction is based
on a two-step intuitive sampling scheme, and can be easily (and efficiently) implemented.
Furthermore, we show that any future improvement in approximation algorithms for the
k-means clustering problem can readily be used to improve the speed and/or quality of our
methods. We further show how the method can be extended to other mixture models

We demonstrate that, by exploiting certain closure properties of coresets, it is possi-
ble to construct them in parallel, or in a single pass through a stream of data, using only
poly(d, k, λ−1, ε−1, log n, log(1/δ)) space and update time. Unlike most of the related work,
our coresets provide guarantees for any given (possibly unstructured) data, without assump-
tions on the distribution or model that generated it. While proving the correctness of our
construction we also upper bound the pseudo-dimension of the function family of mixtures
of Gaussians, for which only a lower bound was known (Akama and Irie, 2011). We empir-
ically demonstrate the practicality of our approach on six real-world data sets. Critically,
we show that coresets consistently outperform uniform sampling and enjoy fast convergence
(in terms of relative log-likelihood approximation error) to the models trained on the full
data set. Empirical evaluation on several real-world datasets suggest that our coreset-based
approach enables significant reduction in training-time with negligible approximation error.

Acknowledgments

We thank Olivier Bachem for invaluable discussions, suggestions and comments. This re-
search was partially supported by ONR grant N00014-09-1-1044, NSF grants CNS-0932392,
IIS-0953413, DARPA MSEE grant FA8650-11-1-7156, and the Zurich Information Security
Center.

4. The algorithms are implemented in Python 2.7 using NumPy and SciPy libraries. The experiments were
ran on Intel Xeon 3.3GHz machine with 32 cores and 256GB RAM.

18

Training Mixture Models at Scale via Coresets

Appendix A. Sampling Complexity

Our goal is to bound the coreset size required to guarantee the coreset property. It is
clear that the original data set is a coreset with uniform weights. The question is whether
we can obtain arbitrarily good approximation with coresets which are sublinear (or even
independent of the data set size).

A.1 Sensitivity

For a fixed z ∈ N we define f : X × C→ R+ as

fθ(x) = φz(x | θ) = − ln

(
k∑

i=1

wiexp

(
−1

2

∥∥∥Σ
−1/2
i (x− µi)

∥∥∥
z

2

))
.

As such, fθ(x) measures the contribution of the point x to the log-likelihood for a given a
parametrization of the mixture model θ – a query. In the case of a mixture of Gaussians,
the space of possible queries C is the space of all possible GMMs with k components in
d dimensions. The role of z ∈ N is to generalize the model to powers of the Euclidean
distance. Note that vector θ ∈ C represents one GMM. Langberg and Schulman (2010)
show that the following quantity plays a critical role in bounding the coreset size.

Definition 8 (Sensitivity) Let C be the set of all queries and F = {fθ(·) | θ ∈ C}. The
sensitivity of x ∈ X with respect to F is defined as

σC(x) = max
θ∈C

fθ(x)∑
x∈X fθ(x)

.

The total sensitivity is

S =
1

|X |
∑

x∈X
σC(x).

The exact sensitivity is usually hard to compute, and we will instead find some upper bound
sC(x) of σC(x),∀x ∈ X and use it to upper bound the total sensitivity. By definition, points
with large sensitivity contribute more to the log-likelihood for the worst-case queries —
not having them in the sample will introduce larger penalties. Hence, the sensitivity of the
points may be used to construct an importance sampling strategy that provably reduces
the variance of the likelihood estimate.

A.2 Combinatorial Complexity

The other key factor in bounding the coreset size is the combinatorial complexity of the
function family F induced by the maximum likelihood estimation of the Gaussian mixture.
The higher the complexity, more samples are necessary to obtain uniform convergence over
all queries C.

Definition 9 (VC dimension) Let X be a ground set and F be a set of functions from
X to {0, 1}. Fix a set S = {x1, . . . , xn} ⊂ X and a function f ∈ F . We call Sf = {xi ∈ S |
f(xi) = 1} the induced subset of S by f . A subset S = {x1, . . . , xn} of X is shattered by F
if |{Sf | f ∈ F}| = 2n. VC dimension of F is the size of the largest subset of X shattered
by F . If F can shatter sets of arbitrary size VC dimension of F is ∞.

19

Lucic, Faulkner, Krause and Feldman

These notions naturally extend to functions mapping to R (or a subset thereof).

Definition 10 (Pseudo-dimension) Let X be a ground set and F be a set of func-
tions from X to the interval [0, 1]. Fix a set S = {x1, . . . , xn} ⊂ X , a set of reals
R = {r1, . . . , rn}, ri ∈ [0, 1] and a function f ∈ F . We call Sf = {xi ∈ S | f(xi) ≥ ri} the
induced subset of S formed by f and R. Subset S with associated values R is shattered by
F if |{Sf | f ∈ F}| = 2n. Pseudo-dimension of F is the cardinality of the largest shattered
subset of X . If F can shatter sets of arbitrary size pseudo-dimension of F is ∞.

Clearly, for every space of a given pseudo-dimension we can construct a space with the
same VC dimension as formalized by the following lemma.

Lemma 11 (Anthony and Bartlett (2009)) For any f ∈ F let Bf be the indicator
function of the region below or on the graph of f , i.e.

Bf (x, y) = sgn(f(x)− y)

The pseudo-dimension of F is precisely the VC-dimension of the subgraph class

BF = {Bf | f ∈ F}.

We refer the reader to Anthony and Bartlett (2009) for an extensive discussion and results
on the topic.

A.3 Bounding the Coreset Size

Given the pseudo-dimension dimF and some upper bound on the total sensitivity S we
may bound the coreset size by using the theorem from Bachem et al. (2017b). A bound
on the coreset size can also be obtained by applying the theorem of Feldman and Langberg
(2011), where one needs to bound the primal shattering dimension instead of the pseudo-
dimension. For a detailed discussion of the effects introduced by this difference we refer the
reader to Bachem et al. (2017a).

Theorem 12 Let ε > 0 and δ ∈ (0, 1). Let X be a weighted data set, Q the set of all possible
queries and fQ(x) : X × C → R≥0 a cost function. Let s(x) : X → R≥0 denote any upper
bound on the sensitivity σ(x) and define S = 1

n

∑n
i=1 s(x). Let C be a sample of m points

from X with replacement where each point x ∈ X is sampled with probability q(x) = s(x)
S and

each point x ∈ C is assigned the weight µC(x) = µX (x)
mq(x) . Let F =

{
µX (·)fQ(·)

cost(X ,Q)Sq(·) | Q ∈ Q
}

and d′ = dimF . Then, the set C is an ε-coreset of X with probability at least 1− δ for

m ∈ Ω

(
S2

ε2

(
d′ + log

1

δ

))
.

We now focus on upper-bounding the total sensitivity and pseudo-dimension with the goal
of applying Theorem 12.

20

Training Mixture Models at Scale via Coresets

Appendix B. Reduction to Euclidean Space

In the following lemma we prove a variant of the triangle inequality that we will use to
bound the individual contribution of each point to the log-likelihood.

Lemma 6 For every a, x ∈ Rd, z ∈ N,

φz(x | θ) ≤
2z−2

λz
‖x− a‖z2 + 2z−1φz(a | θ).

Proof Let a, x ∈ Rd. By definition,

φz(x | θ) = − ln

(
k∑

i=1

wiexp

(
−1

2

∥∥∥Σ
−1/2
i (x− µi)

∥∥∥
z

2

))
. (1)

Put i ∈ [k]. By the weak triangle inequality
∥∥∥Σ
−1/2
i (x− µi)

∥∥∥
z

2
≤ 2z−1

(∥∥∥Σ
−1/2
i (x− a)

∥∥∥
z

2
+
∥∥∥Σ
−1/2
i (a− µi)

∥∥∥
z

2

)
. (2)

Let UDUT denote the SVD of Σi. Since U is a rotation it preserves the L2 norm. As such,
∥∥∥Σ
−1/2
i (x− a)

∥∥∥
2

=
∥∥∥UD−1/2UT (x− a)

∥∥∥
2

=
∥∥∥D−1/2UT (x− a)

∥∥∥
2

≤
∥∥UT (x− a)

∥∥
2

λ
≤ ‖x− a‖2

λ
,

which combined with Equation 2 yields

∥∥∥Σ
−1/2
i (x− µi)

∥∥∥
z

2
≤ 2z−1

λz
· ‖x− a‖z2 + 2z−1

∥∥∥Σ
−1/2
i (a− µi)

∥∥∥
z

2
. (3)

Substituting Equation 3 in Equation 1 yields

φz(x | θ) ≤ − ln

(
k∑

i=1

wiexp

(
−2z−2

λz
· ‖x− a‖z2 − 2z−2

∥∥∥Σ
−1/2
i (a− µi)

∥∥∥
z

2

))

=
2z−2

λz
· ‖x− a‖z2 − ln

(
k∑

i=1

wiexp

(
−1

2

∥∥∥Σ
−1/2
i (a− µi)

∥∥∥
z

2

)2z−1
)
.

(4)

Since 2z−1 ≥ 1, we have that y(2z−1) is convex over y ∈ [0, 1], and thus

− ln

(
k∑

i=1

wiexp

(
−1

2

∥∥∥Σ
−1/2
i (a− µi)

∥∥∥
z

2

)2z−1
)

≤ − ln

(
k∑

i=1

wiexp

(
−1

2

∥∥∥Σ
−1/2
i (a− µi)

∥∥∥
z

2

))2z−1

= −2z−1 ln

(
k∑

i=1

wiexp

(
−1

2

∥∥∥Σ
−1/2
i (a− µi)

∥∥∥
z

2

))
= 2z−1φz(a | θ).

Finally, by applying the last inequality to Equation 4 we complete the proof.

21

Lucic, Faulkner, Krause and Feldman

B.1 Upper-bound on the Total Sensitivity

We will now introduce a rough approximation to the clustering problem which will be
used to bound the sensitivity of each x ∈ X . Intuitively, the contribution of each point
can be bounded by as a function of the contribution of the closest point in the rough
approximation. We will prove that it suffices to compute a bicriteria approximation for the
k-means clustering problem (or a variant of k-means where the Euclidean distance is raised
to power z ∈ N)

Lemma 13 Let costh(X , C) =
∑

x∈X minc∈C ||x−c||z2 and OPT = argminC∈Rd×k costh(X , C).
Let A be a (α, β)-bicriteria approximation such that |A| = β and

costh(X ,A) ≤ α costh(X , OPT).

The sensitivity σC(x) of x ∈ X is bounded by

σC(x) ≤ s(x) = n
2z−1

λ2z

(
αdz(x,A)∑
x′∈X dz(x′,A)

+
α

|Xj |

∑
x′∈Xj dz(x′,A)

∑
x′∈X dz(x′,A)

+
1

|Xj |

)
.

The total sensitivity is bounded by

S ≤ 1

n

∑

fx∈F
s(x) =

2z−1

λ2z
(2α+ β).

Proof Fix i ∈ [k], x ∈ Xj , θ ∈ C and let a ∈ A such that d(x,A) = ‖x− a‖2. By Lemma 6,

φz(x | θ)∑
x′∈X φz(x

′ | θ) ≤
2z−2dz(x,A)∑
x′∈X φz(x

′ | θ)λz︸ ︷︷ ︸
u

+
2z−1φz(a | θ)∑
x′∈X φz(x

′ | θ)︸ ︷︷ ︸
v

. (5)

To bound u, let UDUT = Σi denote the SVD of Σi. It follows that
∥∥∥Σ
−1/2
i (x− µi)

∥∥∥
2

=
∥∥∥UD−1/2UT (x− µi)

∥∥∥
2

=
∥∥∥D−1/2UT (x− µi)

∥∥∥
2

≥ λ
∥∥UT (x− µi)

∥∥
2

= λ ‖x− µi‖2 ≥ λd(x, µ).

Hence,

φz(x | θ) = − ln

(
k∑

i=1

wiexp

(
−1

2

∥∥∥∥Σ
− 1

2
i (x− µi)

∥∥∥∥
z

2

))

≥ − ln

(
k∑

i=1

wiexp

(
−λ

z

2
dz(x, µ)

))

=
λz

2
dz(x, µ)

Summing over every x′ ∈ X yields

∑

x′∈X
φz(x

′ | θ) ≥ λz

2

∑

x′∈X
dz(x, µ) ≥ λz

2
min

C⊂Rd×k

∑

x′∈X
dz(x′, C) ≥ λz

2α

∑

x′∈X
dz(x′,A),

22

Training Mixture Models at Scale via Coresets

where the last inequality follows by definition of A. As such, we can bound u as

2z−2dz(x,A)∑
x′∈X φz(x

′ | θ)λz ≤
α2z−1dz(x,A)

λ2z
∑

x′∈X dz(x′,A)
. (6)

Next we will upper-bound v. By swapping x and b in Lemma 6 we have

φz(a | θ) ≤
2z−2

λz
· dz(x,A) + 2z−1φz(x | θ).

Let j ∈ [|A|] such that x ∈ Xj . Summing the last inequality over every x′ ∈ Xj yields

|Xj |φz(a | θ) ≤
2z−2

λz

∑

x′∈Xj
dz(x′,A) + 2z−1

∑

x′∈Xj
φz(x

′ | θ)

≤ 2z−2

λz

∑

x′∈Xj
dz(x′,A) + 2z−1

∑

x′∈X
φz(x

′ | θ).

Hence,

φz(a | θ)∑
x′∈X φz(x

′ | θ) ≤
2z−2

|Xj |λz

∑
x′∈Xj dz(x′,A)

∑
x′∈X φz(x

′ | θ) +
2z−1

|Xj |

≤ α2z−1

|Xj |λ2z

∑
x′∈Xj dz(x′,A)

∑
x′∈X dz(x′, B)

+
2z−1

|Xj |
. (7)

Applying (7) and (6) to (5) yields

σC(x) ≤ n2z−1

λ2z

(
αdz(x,A)∑
x′∈X dz(x′,A)

+
α

|Xj |

∑
x′∈Xj dz(x′,A)

∑
x′∈X dz(x′,A)

+
λ2z

|Xj |

)

≤ n2z−1

λ2z

(
αdz(x,A)∑
x′∈X dz(x′,A)

+
α

|Xj |

∑
x′∈Xj dz(x′,A)

∑
x′∈X dz(x′,A)

+
1

|Xj |

)

= s(x),

since the choice of θ ∈ C was arbitrary and λ ∈ (0, 1). The total sensitivity is bounded by

S ≤ 1

n

∑

x∈D
s(x) =

2z−1

λ2z
(2α+ β).

B.2 Pseudo-dimension of Mixtures of Gaussians

To upper-bound the pseudo-dimension of the function class F implied induced by maximum
likelihood estimation of a mixture of Gaussians, we will construct a feed-forward neural
network which can compute each function from F and for which we can bound the VC
dimension. The following theorem quantifies the VC dimension of feed-forward neural
networks that we will employ.

23

Lucic, Faulkner, Krause and Feldman

Theorem 14 (Theorem 8.14, Anthony and Bartlett (2009)) Let h be a function from
Rm × Rd to {0, 1}, determining the class

H = {hθ(·) | hθ : X → R+, θ ∈ Rm}.

Suppose that h can be computed by an algorithm that takes as input the pair (θ, x) ∈ Rm×Rd
and returns hθ(x) after no more than t of the following operations:

◦ the exponential function x 7→ ex on real numbers,

◦ the arithmetic operations +,−,×, and / on real numbers,

◦ jumps conditioned on >,≥, <,≤,=, and 6= comparisons of real numbers, and

◦ output 0, 1.

If the t operations include no more than p in which the exponential function is evaluated,
then the VC-dimension of H is O

(
m2p2 +mp(t+ logmp)

)
.

Theorem 15 Let θ = [(w1, µ1,Σ1), . . . , (wk, µk,Σk)] where wi ∈ R, µi ∈ Rd, and Σi ∈ Rd×d
for i ∈ [k]. Let m = k + kd+ kd2, z ≤ 2m ∈ N and define fθ : X → [0,∞), θ ∈ C ⊂ Rm as

fθ(x) = − ln

(
k∑

i=1

wiexp

(
−1

2

∥∥∥Σi
−1/2(x− µi)

∥∥∥
z

2

))
.

The pseudo-dimension of F = {fθ(x) | θ ∈ Rm} is O
(
d4k4

)
.

Proof For θ ∈ C, r ∈ R denote their concatenation by θr = (θ, r) ∈ Rm+1. Let h :
Rm+1 × Rd → {0, 1} such that hθ,r(x) = 1 iff fθ(x) ≥ r and

H =
{
hθ,r(·) | θr ∈ Rm+1

}
.

As shown in Figure 6 where di = −1
2

∥∥∥Σ
−1/2
i (x− µi)

∥∥∥
z

2
function hθ,r(x) can be evaluated

using t = O(m) (since log(z) ≤ m) arithmetic operations out of which O(k) are evaluations
of the exponential function. Furthermore, it can be evaluated without using the natural
logarithm by directly comparing efθ(x) to er. By Theorem 14, fthe VC-dimension of H is

dimVCH = O
(
m2k2 +mk(t+ logmk)

)
= O

(
k4d4

)
.

By Lemma 11 dimF = dimVCH = O
(
k4d4

)
which concludes the proof.

The lower-bound of Ω(kd2) was established by Akama and Irie (2011). To establish this
bound notice that k-means is a special case of the isotropic Gaussian mixture model.

B.3 Main Theorem and Extensions

Now we are ready to present the proof of the Theorem 7 which states that, under natural
assumptions, we can uniformly approximate the log-likelihood of the model trained on the
coreset and the likelihood of the model trained on the full data set as ε→ 0. We will then
show that Corollary 3 follows from Theorem 7. We re-state the theorem for completeness.

24

Training Mixture Models at Scale via Coresets

...

d1

...

dk

ex

...

ex

Σ

ex

≤ 0
hθ,r(x)

−r

−1

x1

x2

x3

xd

w1

wk

Figure 6: Feed-forward network that calculates hθ,r(x). The network is parametrized by
the Gaussian mixture given by θ and the threshold r. The first hidden layer

computes k functions of the form di = −1
2

∥∥∥Σ
−1/2
i (x− µi)

∥∥∥
z

2
for a total of O(kd2)

operations. The second layer evaluates k exponential functions. Finally, the sum
of k + 1 real numbers is compared with zero.

Theorem 7 Let X ⊂ Rd, |X | = n, δ ∈ (0, 1), ε ∈ (0, 1/2), k ≥ 1, λ ∈ (0, 1) and z ∈ N, Let
C be the collection of all mixtures of k components θ = [(w1, µ1,Σ1), . . . , (wk, µk,Σk)] such
that Σi is a d× d covariance matrix whose singular values are between λ and 1/λ for every
1 ≤ i ≤ k. Consider Algorithm 1 and Algorithm 2 where d2(·, ·) is replaced by dz(·, ·). Let A
be the output with smallest quantization error of Θ(ln 1/δ) runs of Algorithm 2 with β = k.
Let C be the output of Algorithm 1 with α = 2z+2(log2 k + 2), bicriteria approximation A
and coreset size

s = Θ

(
d4k6

λ4zε2

)
.

Then, with probability at least 1− δ, for all θ ∈ C, it holds that

(1− ε)φz(X | θ) ≤ φz(C | θ) ≤ (1 + ε)φz(X | θ),

where Z(θ) =
∑

i
wi
g(θi)

and

φz(X | θ) = −
∑

x∈X
ln

k∑

i=1

wi
Z(θ)g(θi)

exp

(
−1

2

∥∥∥Σ
−1/2
i (x− µi)

∥∥∥
z

2

)

using the normalizer

g(θi) =

∫
exp

(
−1

2

∥∥∥Σ
−1/2
i (x− µi)

∥∥∥
z

2

)
dx.

Proof Fix θ = [(w1, µ1,Σ1), . . . , (wk, µk,Σk)] ∈ C and let

fθ(x) = − ln

(
k∑

i=1

wiexp

(
−1

2

∥∥∥Σi
−1/2(x− µi)

∥∥∥
z

2

))
.

25

Lucic, Faulkner, Krause and Feldman

Let F = {fθ(·) | θ ∈ C} and define

s(x) = n
2z−1

λ2z

(
αdz(x,A)∑
x′∈X dz(x′,A)

+
α

|Xj |

∑
x′∈Xj dz(x′,A)

∑
x′∈X dz(x′,A)

+
1

|Xj |

)
.

Let costh(X , C) =
∑

x∈X minc∈C ||x − c||z2. By Theorem 5.5 of Arthur and Vassilvitskii
(2007) any solution computed by Algorithm 2 satisfies costh(X ,A) ≤ α costh(X , OPT) in
expectation with α = 2z+1(log2 k+2). By Markov’s inequality costh(X ,A) ≤ 2α costh(X , OPT)
with probability at least 1/2. As a result, the best solution out of Θ(log 1/δ) runs of Algo-
rithm 2 with β = k is a 2z+2(log2 k + 2) approximation with probability at least 1− δ. By
Lemma 13 we have that

s(x) ≥ σC(x) = max
θ∈C

fθ(x)∑
x′∈X fθ(x

′)
.

and S ≤ 1
n

∑
x∈X s(x) = 2z−1

λ2z
(2α + β) = O

(
k 2z−1

λ2z

)
since β = k. Applying Theorem 15 to

Theorem 12 completes the proof.

Corollary 3 is now straightforward application of the theorem with z = 2. As shown in
Lucic et al. (2016a), the bound on the total sensitivity is is tight (up to a constant) as there
exists a data set X for which S ∈ Θ(k).

B.4 Directly Approximating the Log-Likelihood

Under additional assumptions on the singular values we can derive a stronger result directly
relating the approximated log-likelihood with the true likelihood.

Theorem 16 Let the conditions of Theorem 7 hold. If
∏
λj∈spec(Σi)

λj ≥ 1
(2π)d

we have

|L(X | θ)− L(C | θ)| ≤ εL(X | θ).

Proof By Theorem 7 with z = 2, α = 16(log2 k + 2), β = k, s = Θ
(
d4k6λ−8ε−2

)
, with

probability at least 1− δ, it holds that

(1− ε)φ(X | θ) ≤ φ(C | θ) ≤ (1 + ε)φ(X | θ).

By assumption that all eigenvalues are sufficiently large, namely
∏
λj∈spec(Σi)

λj ≥ 1
(2π)d

, for

all components i, the log-normalizer lnZ(θ) is negative since

Z(θ) =
∑

i

wi√
|2πΣi|

≤ max
i

1√
|2πΣi|

= max
i

1√
(2π)d

∏
λj∈spec(Σi)

λj
≤ 1.

Hence,

L(C | θ) = −n lnZ(θ) + φ(C | θ) ≤ −n lnZ(θ) + (1 + ε)φ(X | θ)
≤ (1 + ε)

(
− n lnZ(θ) + φ(X | θ)

)
= (1 + ε)L(X | θ),

26

Training Mixture Models at Scale via Coresets

and similarly,

L(C | θ) = −n lnZ(θ) + φ(C | θ) ≥ −n lnZ(θ) + (1− ε)φ(X | θ)
≥ (1− ε)

(
− n lnZ(θ) + φ(X | θ)

)
= (1− ε)L(X | θ).

Appendix C. Convergence of Weighted EM for Gaussian Mixtures

Here we present the EM update equations for fitting a weighted set of points using Algo-
rithm 4. Since we are interested in an MLE we begin by stating the necessary conditions
for a stationary point of

L(C | θ) = −n lnZ(θ) + φ(C | θ) = −
∑

i

γi lnP (x′i | θ).

We assume that all covariance matrices are non-singular. Taking the derivative of L(C | θ)
with respect to µi and Σi and setting it equal to zero yields

µi =
1

Ni

n∑

j=1

ηi,jxj and Σi =
1

Ni

n∑

j=1

ηi,j(xj − µi)(xj − µi)T

where

Ni =
n∑

j=1

ηi,jγj and ηi,j = γj
wiN (x′j ;µi,Σi)∑
`w`N (x′j ;µ`,Σ`)

.

To find the mixing weights we minimize the negative log-likelihood under the constraint

k∑

i=1

wi = 1, wi ≥ 0, i = 1, . . . , k.

To this end we introduce a Lagrange multiplier λ and minimize L(C | θ) + λ(
∑k

i=1wi − 1).
Setting the derivative with respect to wi to zero yields

wi =
Ni∑n
j=1 ηi,j

As expected, the only difference to the non-weighted version of the EM algorithm is that the
updates are now scaled proportionally to the weight of each point. As shown in Dempster
et al. (1977) this algorithm will converge to a stationary point. A practical concern is that
a Gaussian mixture model without a prior can result in a singularity. For example, when
only one sample point is assigned to a cluster, the cluster variance is zero, the corresponding
density infinite, which in turn implies infinite log-likelihood. The generally accepted remedy
is to lower-bound the variances with some apriori chosen value λ > 0, which we employ
in the experiments. In the Bayesian framework, the likelihood maximization problem is
replaced by a penalized likelihood function incorporating a prior density on the mixture
parameter wherby small values of variances are heavily penalized.

27

Lucic, Faulkner, Krause and Feldman

References

Pankaj K Agarwal, Sariel Har-Peled, and Kasturi R Varadarajan. Geometric approximation
via coresets. Combinatorial and Computational Geometry, 52:1–30, 2005.

Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-means clus-
tering. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, pages 15–28. Springer, 2009.

Yohji Akama and Kei Irie. VC dimension of ellipsoids. arXiv preprint arXiv:1109.4347,
2011.

Animashree Anandkumar, Daniel J Hsu, and Sham M Kakade. A method of moments for
mixture models and hidden markov models. In Conference On Learning Theory (COLT),
2012.

Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky.
Tensor decompositions for learning latent variable models. Journal of Machine Learning
Research (JMLR), 15(1):2773–2832, 2014.

Martin Anthony and Peter L Bartlett. Neural Network Learning: Theoretical Foundations.
Cambridge University Press, 2009.

Sanjeev Arora and Ravi Kannan. Learning mixtures of separated nonspherical Gaussians.
Annals of Applied Probability, 15(1A):69–92, 2005.

David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. In
Symposium on Discrete Algorithms (SODA), pages 1027–1035. SIAM, 2007.

Olivier Bachem, Mario Lucic, and Andreas Krause. Coresets for nonparametric estimation
- the case of DP-means. In International Conference on Machine Learning (ICML), 2015.

Olivier Bachem, Mario Lucic, S. Hamed Hassani, and Andreas Krause. Approximate k-
means++ in sublinear time. In Proc. Conference on Artificial Intelligence (AAAI), 2016a.

Olivier Bachem, Mario Lucic, S. Hamed Hassani, and Andreas Krause. Fast and provably
good seedings for k-means. In Neural Information Processing Systems (NIPS), 2016b.

Olivier Bachem, Mario Lucic, and Andreas Krause. Scalable and distributed clustering via
lightweight coresets. arXiv preprint arXiv:1702.08248, 2017a.

Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset constructions for
machine learning. arXiv preprint, 2017b.

Maria-Florina Balcan, Steven Ehrlich, and Yingyu Liang. Distributed k-means and k-
median clustering on general topologies. In Advances in Neural Information Processing
Systems (NIPS), pages 1995–2003, 2013.

Pierre Baldi, Peter Sadowski, and Daniel Whiteson. Searching for exotic particles in high-
energy physics with Deep learning. Nature Communications, 5, 2014.

28

Training Mixture Models at Scale via Coresets

Mikhail Belkin and Kaushik Sinha. Polynomial learning of distribution families. In Foun-
dations of Computer Science (FOCS), pages 103–112. IEEE, 2010.

Jon Louis Bentley and James B Saxe. Decomposable searching problems I. Static-to-
dynamic transformation. Journal of Algorithms, 1(4):301–358, 1980.

Artur Czumaj and Christian Sohler. Sublinear-time approximation algorithms for clustering
via random sampling. Random Structures & Algorithms, 30(1-2):226–256, 2007.

Sanjoy Dasgupta. Learning mixtures of Gaussians. In Foundations of Computer Science
(FOCS), pages 634–644. IEEE, 1999.

Sanjoy Dasgupta and Leonard J Schulman. A two-round variant of EM for Gaussian mix-
tures. In Uncertainty in Artificial Intelligence (UAI), pages 152–159, 2000.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clus-
ters. In Symposium on Operating System Design and Implementation (OSDI), 2004.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society. Series B
(Methodological), pages 1–38, 1977.

Matthew Faulkner, Michael Olson, Rishi Chandy, Jonathan Krause, K. Mani Chandy, and
Andreas Krause. The next big one: Detecting earthquakes and other rare events from
community-based sensors. In ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks, 2011.

Dan Feldman and Michael Langberg. A unified framework for approximating and clustering
data. In Symposium on Theory of Computing (STOC), pages 569–578. ACM, 2011.

Dan Feldman, Amos Fiat, and Micha Sharir. Coresets for weighted facilities and their
applications. In Foundations of Computer Science (FOCS), pages 315–324. IEEE, 2006a.

Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A PTAS for k-means clustering
based on weak coresets. In Symposium on Computational Geometry (SoCG), pages 11–18.
ACM, 2007.

Dan Feldman, Matthew Faulkner, and Andreas Krause. Scalable training of mixture models
via coresets. In Advances in Neural Information Processing Systems (NIPS), pages 2142–
2150, 2011.

Dan Feldman, Cynthia Sung, and Daniela Rus. The single pixel GPS: learning big data
signals from tiny coresets. In Advances in Geographic Information Systems, pages 23–32.
ACM, 2012.

Dan Feldman, Micha Feigin, and Nir Sochen. Learning big (image) data via coresets for
dictionaries. Journal of Mathematical Imaging and Vision, 46(3):276–291, 2013a.

Dan Feldman, Melanie Schmidt, and Christian Sohler. Turning big data into tiny data:
Constant-size coresets for k-means, PCA and projective clustering. In Symposium on
Discrete Algorithms (SODA), pages 1434–1453. SIAM, 2013b.

29

Lucic, Faulkner, Krause and Feldman

Jon Feldman, Rocco A Servedio, and Ryan O’Donnell. PAC learning axis-aligned mixtures
of Gaussians with no separation assumption. In Learning Theory, pages 20–34. Springer,
2006b.

Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data streams. In
Symposium on Theory of Computing (STOC), pages 209–217. ACM, 2005.

Sariel Har-Peled and Soham Mazumdar. On coresets for k-means and k-median clustering.
In Symposium on Theory of Computing (STOC), pages 291–300. ACM, 2004.

Sariel Har-Peled and Kasturi R Varadarajan. High-dimensional shape fitting in linear time.
Discrete & Computational Geometry, 32(2):269–288, 2004.

David Haussler. Decision theoretic generalizations of the PAC model for neural net and
other learning applications. Information and Computation, 100(1):78–150, 1992.

Michael Langberg and Leonard J Schulman. Universal ε-approximators for integrals. In
Symposium on Discrete Algorithms (SODA), pages 598–607. SIAM, 2010.

Mario Lucic, Mesrob I. Ohannessian, Amin Karbasi, and Andreas Krause. Tradeoffs for
space, time, data and risk in unsupervised learning. In International Conference on
Artificial Intelligence and Statistics (AISTATS), pages 663–671, 2015.

Mario Lucic, Olivier Bachem, and Andreas Krause. Linear-time outlier detection via sensi-
tivity. In Proc. International Joint Conference on Artificial Intelligence (IJCAI), 2016a.

Mario Lucic, Olivier Bachem, and Andreas Krause. Strong coresets for hard and soft
Bregman clustering with applications to exponential family mixtures. In International
Conference on Artificial Intelligence and Statistics (AISTATS), pages 1–9, 2016b.

Michael W Mahoney and Petros Drineas. CUR matrix decompositions for improved data
analysis. Proceedings of the National Academy of Sciences (PNAS), 106(3):697–702, 2009.

Konstantin Makarychev, Yury Makarychev, Maxim Sviridenko, and Justin Ward. A Bi-
Criteria Approximation Algorithm for k-Means. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2016),
volume 60, Dagstuhl, Germany, 2016.

Ankur Moitra and Gregory Valiant. Settling the polynomial learnability of mixtures of
Gaussians. In Foundations of Computer Science (FOCS), 2010.

Sashank J Reddi, Barnabás Póczos, and Alex Smola. Communication efficient coresets
for empirical loss minimization. In Conference on Uncertainty in Artificial Intelligence
(UAI), 2015.

Guy Rosman, Mikhail Volkov, Dan Feldman, John W Fisher III, and Daniela Rus. Coresets
for k-segmentation of streaming data. In Advances in Neural Information Processing
Systems (NIPS), pages 559–567, 2014.

Santosh Vempala and Grant Wang. A spectral algorithm for learning mixture models.
Journal of Computer and System Sciences, 68(4):841–860, 2004.

30

