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Dimensionality Reduction of Massive Sparse Datasets
Using Coresets

Dan Feldman Mikhali Volkov Daniela Rus

Abstract

In this paper we present a practical solution with performance guarantees to the
problem of dimensionality reduction for very large scale sparse matrices. We
show applications of our approach to computing the Principle Component Anal-
ysis (PCA) of any n × d matrix, using one pass over the stream of its rows. Our
solution uses coresets: a scaled subset of the n rows that approximates their sum
of squared distances to every k-dimensional affine subspace. An open theoretical
problem has been to compute such a coreset that is independent of both n and
d. An open practical problem has been to compute a non-trivial approximation to
the PCA of very large but sparse databases such as the Wikipedia document-term
matrix in a reasonable time. We answer both of these questions affirmatively. Our
main technical result is a new framework for deterministic coreset constructions
based on a reduction to the problem of counting items in a stream.

1 Introduction

Algorithms for dimensionality reduction usually aim to project an input set of d-dimensional vectors
(database records) onto a k ≤ d− 1 dimensional affine subspace that minimizes the sum of squared
distances to these vectors, under some constraints. Special cases include the Principle Component
Analysis (PCA), Linear regression (k = d− 1), Low-rank approximation (k-SVD), Latent Drichlet
Analysis (LDA) and Non-negative matrix factorization (NNMF). Learning algorithms such as k-
means clustering can then be applied on the low-dimensional data to obtain fast approximations with
provable guarantees. To our knowledge, unlike SVD, there are no algorithms or coreset construc-
tions with performance guarantees for computing the PCA of sparse n×n matrices in the streaming
model, i.e. using memory that is poly-logarithmic in n. Much of the large scale high-dimensional
data sets available today (e.g. image streams, text streams, etc.) are sparse. For example, consider
the text case of Wikipedia. We can associate a matrix with Wikipedia, where the English words
define the columns (approximately 1.4 million) and the individual documents define the rows (ap-
proximately 4.4 million documents). This large scale matrix is sparse because most English words
do not appear in most documents. The size of this matrix is huge and no existing dimensionality
reduction algorithm can compute its eigenvectors. To this point, running the state of the art SVD
implementation from GenSim on the Wikipedia document-term matrix crashes the computer very
quickly after applying its step of random projection on the first few thousand documents. This is
because such dense vectors, each of length 1.4 million, use all of the computer’s RAM capacity.

In this paper we present a dimensionality reduction algorithms that can handle very large scale sparse
data sets such as Wikipedia and returns provably correct results. A long-open research question has
been whether we can have a coreset for PCA that is both small in size and a subset of the original
data. In this paper we answer this question affirmatively and provide an efficient construction. We
also show that this algorithm provides a practical solution to a long-standing open practical problem:
computing the PCA of large matrices such as those associated with Wikipedia.
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2 Problem Formulation

Given a matrixA, a coreset C in this paper is defined as a weighted subset of rows ofA such that the
sum of squared distances from any given k-dimensional subspace to the rows of A is approximately
the same as the sum of squared weighted distances to the rows in C. Formally,

For a compact set S ∈ Rd and a vector x in Rd, we denote the Euclidean distance between x and its
closest points in S by

dist2(x, S) := min
s∈S
‖x− s‖22

For an n×d matrix A whose rows are a1, . . . , an, we define the sum of the squared distances from
A to S by

dist2(A,S) :=

n∑

i=1

dist2(ai, S)

Definition 1 ((k, ε)-coreset). Given a n×d matrix A whose rows a1, · · · , an are n points (vec-
tors) in Rd, an error parameter ε ∈ (0, 1], and an integer k ∈ [1, d − 1] = {1, · · · , d− 1}
that represents the desired dimensionality reduction, n (k, ε)-coreset for A is a weighted subset
C = {wiai | wi > 0 and i ∈ [n]} of the rows of A, where w = (w1, · · · , wn) ∈ [0,∞)n is a
non-negative weight vector, such that for every affine k-subspace S in Rd we have

∣∣dist2(A,S))− dist2(C, S))
∣∣ ≤ εdist2(A,S)). (1)

That is, the sum of squared distances from the n points to S approximates the sum of squared
weighted distances

∑n
i=1 w

2
i (dist(ai, S))2 to S. The approximation is up to a multiplicative factor

of 1±ε. By choosing w = (1, · · · , 1) we obtain a trivial (k, 0)-coreset. However, in a more efficient
coreset most of the weights will be zero and the corresponding rows in A can be discarded. The
cardinality of the coreset is thus the sparsity of w, given by |C| = ‖w‖0 := | {wi 6= 0 | i ∈ [n]} |.
If C is small, then the computation is efficient. Because C is a weighted subset of the rows of A,
if A is sparse, then C is also sparse. A long-open research question has been whether we can have
such a coreset that is both of size independent of the input dimension (n and d) and a subset of the
original input rows.

2.1 Related Work

In [24] it was recently proved that an (k, ε) coreset of size |C| = O(dk3/ε2) exists for every
input matrix, and distances to the power of z ≥ 1 where z is constant. The proof is based on a
general framework for constructing different kinds of coresets, and is known as sensitivity [10, 17].
This coreset is efficient for tall matrices, since its cardinality is independent of n. However, it is
useless for “fat” or square matrices (such as the Wikipedia matrix above), where d is in the order
of n, which is the main motivation for our paper. In [5], the Frank-Wolfe algorithm was used to
construct different types of coresets than ours, and for different problems. Our approach is based
on a solution that we give to an open problem in [5], however we can see how it can be used to
compute the coresets in [5] and vice versa. For the special case z = 2 (sum of squared distances),
a coreset of size O(k/ε2) was suggested in [8] with a randomized version in [7] for a stream of n
points that, unlike the standard approach of using merge-and-reduce trees, returns a coreset of size
independent of n with a constant probability. These result minimizes the ‖ ·‖2 error, while our result
minimizes the Frobenius norm, which is always higher, and may be higher by a factor of d. After
appropriate weighting, we can apply the uniform sampling of size O(k/ε2) to get a coreset with a
small Frobenius error [14], as in our paper. However, in this case the probability of success is only
constant. Since in the streaming case we compute roughly n coresets (formally, O(n/m) coresets,
where m is the size of the coreset) the probability that all these coresets constructions will succeed
is close to zero (roughly 1/n). Since the probability of failure in [14] reduces linearly with the size
of the coreset, getting a constant probability of success in the streaming model for O(n) coresets
would require to take coresets of size that is no smaller than the input size.

There are many papers, especially in recent years, regarding data compression for computing the
SVD of large matrices. None of these works addresses the fundamental problem of computing a
sparse approximated PCA for a large matrix (in both rows and columns), such as Wikipedia. The
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reason is that current results use sketches which do no preserve the sparsity of the data (e.g. because
of using random projections). Hence, neither the sketch nor the PCA computed on the sketch is
sparse. On the other side, we define coreset as a small weighted subset of rows, which is thus
sparse if the input is sparse. Moreover, the low rank approximation of a coreset is sparse, since
each of its right singular vectors is a sum of a small set of sparse vectors. While there are coresets
constructions as defined in this paper, all of them have cardinality of at least d points, which makes
them impractical for large data matrices, where d ≥ n. In what follows we describe these recent
results in details.

The recent results in [8, 7] suggest coresets that are similar to our definition of coresets (i.e., weighted
subsets), and do preserve sparsity. However, as mentioned above they minimize the 2-norm error and
not the larger Frobesnius error, and maybe more important, they provide coresets for k-SVD (i.e.,
k-dimensional subspaces) and not for PCA (k-dimensional affine subspaces that might not intersect
the origin). In addition [7] works with constant probability, while our algorithm is deterministic
(works with probability 1).

Software. Popular software for computing SVD such as GenSim [21], redsvd [12] or the MATLAB
sparse SVD function (svds) use sketches and crash for inputs of a few thousand of documents and
a dimensionality reduction (approximation rank) k < 100 on a regular laptop, as expected from
the analysis of their algorithms. This is why existing implementations (including Gensim) extract
topics from large matrices (e.g. Wikipedia), based on low-rank approximation of only small subset
of few thousands of selected words (matrix columns), and not the complete Wikipedia matrix.Even
for k = 3, running the implementation of sparse SVD in Hadoop [23] took several days [13]. Next
we give a broad overview of the very latest state of the dimensionality reduction methods, such as
the Lanczoz algorithm [16] for large matrices, that such systems employ under the hood.

Coresets. Following a decade of research in [24] it was recently proved that an (ε, k)-coreset for low
rank approximation of size |C| = O(dk3/ε2) exists for every input matrix. The proof is based on a
general framework for constructing different kinds of coresets, and is known as sensitivity [10, 17].
This coreset is efficient for tall matrices, since its cardinality is independent of n. However, it is
useless for “fat” or square matrices (such as the Wikipedia matrix above), where d is in the order
of n, which is the main motivation for our paper. In [5], the Frank-Wolfe algorithm was used to
construct different types of coresets than ours, and for different problems. Our approach is based on
a solution that we give to an open problem in [5].

Sketches. A sketch in the context of matrices is a set of vectors u1, · · · , us in Rd such that the sum of
squared distances

∑n
i=1(dist(ai, S))2 from the input n points to every k-dimensional subspace S in

Rd, can be approximated by
∑n
i=1(dist(ui, S))2 up to a multiplicative factor of 1±ε. Note that even

if the input vectors a1, · · · , an are sparse, the sketched vectors u1, · · · , us in general are not sparse,
unlike the case of coresets. A sketch of cardinality d can be constructed with no approximation error
(ε = 0), by defining u1, · · · , ud to be the d rows of the matrix DV T where UDV T = A is the SVD
of A. It was proved in [11] that taking the first O(k/ε) rows of DV T yields such a sketch, i.e. of
size independent of n and d.

The first sketch for sparse matrices was suggested in [6], but like more recent results, it assumes that
the complete matrix fits in memory. Other sketching methods that usually do not support streaming
include random projections [2, 1, 9] and randomly combined rows [20, 25, 22, 18].

The Lanczoz Algorithm. The Lanczoz method [19] and its variant [15] multiply a large matrix by a
vector for a few iterations to get its largest eigenvector v1. Then the computation is done recursively
after projecting the matrix on the hyperplane that is orthogonal to v1. However, v1 is in general not
sparse even A is sparse. Hence, when we project A on the orthogonal subspace to v1, the resulting
matrix is dense for the rest of the computations (k > 1). Indeed, our experimental results show that
the MATLAB svds function which uses this method runs faster than the exact SVD, but crashes on
large input, even for small k.

This paper builds on this extensive body of prior work in dimensionality reduction, and our approach
uses coresets to solve the time and space challenges.
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2.2 Key Contributions

Our main result is the first algorithm for computing an (k, ε)-coreset C of size independent of
both n and d, for any given n × d input matrix. The algorithm takes as input a finite set of d-
dimensional vectors, a desired approximation error ε, and an integer k ≥ 0. It returns a weighted
subset S (coreset) of k2/ε2 such vectors. This coreset S can be used to approximate the sum of
squared distances from the matrix A ∈ Rn×d, whose rows are the n vectors seen so far, to any
k-dimensional affine subspace in Rd, up to a factor of 1± ε. For a (possibly unbounded) stream of
such input vectors the coreset can be maintained at the cost of an additional factor of log2 n.

The polynomial dependency on d of the cardinality of previous coresets made them impractical for
fat or square input matrices, such as Wikipedia, images in a sparse feature space representation, or
adjacency matrix of a graph. If each row of in input matrix A has O(nnz) non-zeroes entries, then
the update time per insertion, the overall memory that is used by our algorithm, and the low rank
approximation of the coreset S is O(nnz · k2/ε2), i.e. independent of n and d.

We implemented our algorithm to obtain a low-rank approximation for the term-document matrix
of Wikipedia with provable error bounds. Since our streaming algorithm is also “embarrassingly
parallel” we run it on Amazon Cloud, and receive a significantly better running time and accuracy
compared to existing heuristics (e.g. Hadoop/MapReduce) that yield non-sparse solutions.

The key contributions in this work are:

1. A new algorithm for dimensionality reduction of sparse data that uses a weighted subset of
the data, and is independent of both the size and dimensionality of the data.

2. An efficient algorithm for computing such a reduction, with provable bounds on size and
running time. (The project codebase will be open-sourced upon acceptance of this paper.)

3. A system that implements this dimensionality reduction algorithm and an application of
the system to compute latent semantic analysis (LSA) of the entire English Wikipedia.

3 Technical Solution

Given a n×dmatrixA, we propose a construction mechanism for a matrixC of size |C| = O(k2/ε2)
and claim that it is a (k, ε)-coreset forA. We use the following corollary for Definition 1 of a coreset,
based on simple linear algebra that follows from the geometrical definitions (e.g. see [11]).
Property 1 (Coreset for sparse matrix). Let A ∈ Rn×d, k ∈ [1, d − 1] be an integer, and let ε > 0
be an error parameter. For a diagonal matrix W ∈ Rn×n, the matrix C = WA is a (k, ε)-coreset
for A if for every matrix X ∈ Rd×(d−k) such that XTX = I , we have

(i)

∣∣∣∣1−
‖WAX‖
‖AX‖

∣∣∣∣ ≤ ε, and (ii) ‖A−WA‖ < ε var(A) (2)

where var(A) is the sum of squared distances from the rows of A to their mean.

The goal of this paper is to prove that such a coreset (Definition 1) exists for any matrix A (Prop-
erty 1) and can be computed efficiently. Formally,
Theorem 1. For every input matrix A ∈ Rn×d, an error ε ∈ (0, 1] and an integer k ∈ [1, d− 1]:

(a) there is a (k, ε)-coreset C of size |C| = O(k2/ε2);

(b) such a coreset can be constructed in O(k2/ε2) time.

Theorem 1 is the formal statement for the main technical contribution of this paper. Sections 3–5
constitute a proof for Theorem 1.

To establish Theorem 1(a), we first state our two main results (Theorems 2 and 3) axiomatically, and
show how they combine such that Property 1 holds. Thereafter we prove the these results in Sections
4 and 5, respectively. To prove Theorem 1(b) (efficient construction) we present an algorithm for
computing a matrix C, and analyze the running time to show that the C can be constructed in
O(k2/ε2) iterations.
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Algorithm 1 CORESET-SUMVECS(A, ε)
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Algorithm 1 CORESET-SUMVECS(A, ε)

1: Input: A: n input points a1, . . . , an in Rd

2: Input: ε ∈ (0, 1): the approximation error
3: Output: w ∈ [0,∞)n: non-negative weights
4: A← A−mean(A)
5: A← cA where c is a constant s.t. var(A) = 1
6: w ← (1, 0, . . . , 0)
7: j ← 1, p← Aj , J ← {j}
8: Mj =

{
y2 | y = A ·AT

j

}
9: for i = 1, . . . , n do

10: j ← argmin {wJ ·MJ}
11: G←W ′ ·AJ where W ′

i,i =
√
wi

12: ‖c‖ = ‖GTG)‖2F
13: c · p =∑|J|

i=1Gp
T

14: ‖c− p‖ =
√
1 + ‖c‖2 − c · p

15: compp(v) = 1/‖c− p‖ − (c · p) /‖c− p‖
16: ‖c− c′‖ = ‖c− p‖ − compp(v)
17: α = ‖c− c′‖/‖c− p‖
18: w ← w(1− |α|)
19: wj ← wj + α
20: w ← w/

∑n
i=1 wi

21: Mj ←
{
y2 | y = A ·AT

j

}

22: J ← J ∪ {j}
23: if ‖c‖2 ≤ ε then
24: break
25: end if
26: end for
27: return w

1

(a) Coreset for sum of vectors algorithm
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(b) Illustration showing first 3 steps of the computation

Let A ∈ Rn×d be a matrix of rank d, and let UΣV T = A denote its full SVD. Let W ∈ Rn×n be a
diagonal matrix. Let k ∈ [1, d− 1] be an integer. For every i ∈ [n] let

vi =

(
Ui,1, · · · , Ui,k,

Ui,k+1:dΣk+1:d,k+1:d

‖Σk+1:d,k+1:d‖
, 1

)
. (3)

Then the following two results hold:
Theorem 2 (Coreset for sum of vectors). For every set of of n vectors v1, · · · , vn in Rd and every
ε ∈ (0, 1), a weight vectorw ∈ (0,∞)n of sparsity ‖w‖0 ≤ 1/ε2 can be computed deterministically
in O(nd/ε) time such that ∥∥∥∥∥

n∑

i=1

vi −
n∑

i=1

wivi

∥∥∥∥∥ ≤ ε
n∑

i=1

‖vi‖2. (4)

Section 4 establishes a proof for Theorem 2.
Theorem 3 (Coreset for Low rank approximation). For every X ∈ Rd×(d−k) such that XTX = I ,

∣∣∣∣1−
‖WAX‖2
‖AX‖2

∣∣∣∣ ≤ 5

∥∥∥∥∥
n∑

i=1

viv
T
i −Wi,iviv

T
i

∥∥∥∥∥ . (5)

Section 5 establishes a proof for Theorem 3.

3.1 Proof of Theorem 1

Proof of Theorem 1(a). Replacing vi with vivTi and ε by ε/(5d) in Theorem 2 yields∥∥∥∥∥
∑

i

viv
T
i −Wi,iviv

T
i

∥∥∥∥∥ ≤ (ε/5d)

n∑

i=1

‖vivTi ‖2.

Combining this inequality with (4) gives
∣∣∣∣1−

‖WAX‖2
‖AX‖2

∣∣∣∣ ≤ 5

∥∥∥∥∥
n∑

i=1

viv
T
i −Wi,iviv

T
i

∥∥∥∥∥ ≤ (ε/5d)

n∑

i=1

‖vivTi ‖2 .
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Thus the left-most term is bounded by the right-most term, which proves (2). This also means that
C = WA is a coreset for k-SVD, i.e., (non-affine) k-dimensional subspaces. To support PCA
(affine subspaces) the coreset C = WA needs to satisfy the expression in the last line of Property 1
regarding its mean. This holds using the last entry (one) in the definition of vi (3), which implies
that the sum of the rows is preserved as in equation (4). Therefore Property 1 holds for C = WA,
which proves Theorem 1(a).

Claim Theorem 1(b) follows from simple analysis of Algorithm 2 that implements this construction.

4 Coreset for Sum of Vectors (k = 0)

In order to prove the general result Theorem 1(a), that is the existence of a (k, ε)-coreset for any
k ∈ [1, d−1], we first establish the special case for k = 0. In this section, we prove Theorem 2 by
providing an algorithm for constructing a small weighted subset of points that constitutes a general
approximation for the sum of vectors.

To this end, we first introduce an intermediate result that shows that given n points on the unit ball
with weight distribution z, there exists a small subset of points whose weighted mean is approxi-
mately the same as the weighted mean of the original points.

Let Dn denote the union over every vector z ∈ [0, 1]n that represent a distribution, i.e.,
∑
i zi = 1.

Our first technical result is that for any finite set of unit vectors a1, . . . , an in Rd, any distribution
z ∈ Dn, and every ε ∈ (0, 1], we can compute a sparse weight vector w ∈ Dn of sparsity (non-
zeroes entries) ‖w‖0 ≤ 1/ε2.

Lemma 1. Let z ∈ Dn be a distribution over n unit vectors a1, · · · , an in Rd. For ε ∈ (0, 1), a
sparse weight vector w ∈ Dn of sparsity s ≤ 1/ε2 can be computed in O(nd/ε2) time such that

∥∥∥∥∥
n∑

i=1

zi · ai −
n∑

i=2

wi ai

∥∥∥∥∥
2

≤ ε. (6)

Proof of Lemma 1. Please see Supplementary Material, Section A.

We prove Theorem 2 by providing a computation of such a sparse weight vector w. The intuition
for this computation is as follows. Given n input points a1,. . . ,an in Rd, with weighted mean∑
i zi ai = 0, we project all the points on the unit sphere. Pick an arbitrary starting point a1 = c1.

At each step find the farthest point aj+1 from cj , and compute cj+1 by projecting the origin onto
the line segment [cj , aj+1]. Repeat this for j= 1,. . . ,N iterations, where N = 1/ε2. We prove that
‖ci‖2 = 1/i, thus if we iterate 1/ε2 times, this norm will be ‖c1/ε2‖ = ε2. The resulting points ci
are a weighted linear combination of a small subset of the input points. The output weight vector
w ∈ Dn satisfies cN =

∑n
i=1 wi ai, and this weighted subset forms the coreset.

Fig. 1a contains the pseudocode for Algorithm 1. Fig. 1b illustrates the first steps of the main com-
putation (lines 9–26). Please see Supplementary Material, Section C for a complete line-by-line
analysis of Algorithm 1.

Proof of Theorem 2. The proof of Theorem 2 follows by applying Lemma 1 after normalization of
the input points and then post-processing the output.

5 Coreset for Low Rank Approximation (k > 0)

In Section 4 we presented a new coreset construction for approximating the sum of vectors, showing
that given n points on the unit ball there exists a small weighted subset of points that is a coreset
for those points. In this section we describe the reduction of Algorithm 1 for k = 0 to an efficient
algorithm for any low rank approximation with k ∈ [1, d−1].

Conceptually, we achieve this reduction in two steps. The first step is to show that Algorithm 1 can
be reduced to an inefficient computation for low rank approximation for matrices. To this end, we
first prove Theorem 3, thus completing the existence clause Theorem 1(a).

6
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Algorithm 2 CORESET-LOWRANK(A, k, ε)
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Algorithm 1 CORESET-LOWRANK(A, k, ε)

1: Input: A: A sparse n×d matrix
2: Input: k ∈ Z>0: the approximation rank
3: Input: ε ∈

(
0, 12
)
: the approximation error

4: Output: w ∈ [0,∞)n: non-negative weights
5: Compute UΣV T = A, the SVD of A
6: R← Σk+1:d,k+1:d

7: P ← matrix whose i-th row ∀i ∈ [n] is
8: Pi = (Ui,1:k, Ui,k+1:d · R

‖R‖F
)

9: X ← matrix whose i-th row ∀i ∈ [n] is
10: Xi = Pi/‖Pi‖F
11: w ← (1, 0, . . . , 0)
12: for i = 1, . . . ,

⌈
k2/ε2

⌉
do

13: j ← argmini=1,...,n{wXXi}
14: a =

∑n
i=1 wi(X

T
i Xj)

2

15: b =
1− ‖PXj‖2F +

∑n
i=1 wi‖PXi‖2F

‖P‖2F
16: c = ‖wX‖2F
17: α = (1− a+ b) / (1 + c− 2a)
18: w ← (1− α)Ij + αw
19: end for
20: return w

1

(a) 1/2: Initialization
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Algorithm 1 CORESET-LOWRANK(A, k, ε)

1: Input: A: A sparse n×d matrix
2: Input: k ∈ Z>0: the approximation rank
3: Input: ε ∈

(
0, 12
)
: the approximation error

4: Output: w ∈ [0,∞)n: non-negative weights
5: Compute UΣV T = A, the SVD of A
6: R← Σk+1:d,k+1:d

7: P ← matrix whose i-th row ∀i ∈ [n] is
8: Pi = (Ui,1:k, Ui,k+1:d · R

‖R‖F
)

9: X ← matrix whose i-th row ∀i ∈ [n] is
10: Xi = Pi/‖Pi‖F
11: w ← (1, 0, . . . , 0)
12: for i = 1, . . . ,

⌈
k2/ε2

⌉
do

13: j ← argmini=1,...,n{wXXi}
14: a =

∑n
i=1 wi(X

T
i Xj)

2

15: b =
1− ‖PXj‖2F +

∑n
i=1 wi‖PXi‖2F

‖P‖2F
16: c = ‖wX‖2F
17: α = (1− a+ b) / (1 + c− 2a)
18: w ← (1− α)Ij + αw
19: end for
20: return w

1

(b) 2/2: Computation

Proof of Theorem 3. Let ε = ‖∑n
i=1(1 −W 2

i,i)viv
T
i ‖. For every i ∈ [n] let ti = 1 −W 2

i,i. Set
X ∈ Rd×(d−k) such that XTX = I . Without loss of generality we assume V T = I , i.e. A = UΣ,
otherwise we replace X by V TX . It thus suffices to prove that

∣∣∑
i ti‖Ai,:X‖2

∣∣ ≤ 5ε ‖AX‖2.
Using the triangle inequality, we get

∣∣∣∣∣
∑

i

ti‖Ai,:X‖2
∣∣∣∣∣ ≤

∣∣∣∣∣
∑

i

ti‖Ai,:X‖2 −
∑

i

ti‖(Ai,1:k,0)X‖2
∣∣∣∣∣ (7)

+

∣∣∣∣∣
∑

i

ti‖(Ai,1:k,0)X‖2
∣∣∣∣∣ . (8)

We complete the proof by deriving bounds on (7) and (8), thus proving (5). For the complete proof,
please see Supplementary Material, Section B.

Together, Theorems 2 and 3 show that the error of the coreset is a 1 ± ε approximation to the true
weighted mean. By Theorem 3, we can now simply apply Algorithm 1 to the right hand side of (5)
to compute the reduction. The intuition for this inefficient reduction is as follows. We first compute
the outer product of each row vector x in the input matrix A ∈ R[n×d]. Each such outer products
xTx is a matrix in Rd×d. Next, we expand every such matrix into a vector, in Rd2 by concatenating
its entries. Finally, we combine each such vector back to be a vector in the matrix P ∈ Rn×d2 . At
this point the reduction is complete, however it is clear that this matrix expansion is inefficient.

The second step of the reduction is to transform the slow computation of running Algorithm 1 on the
expanded matrix P ∈ Rn×d2 into an equivalent and provably fast computation on the original set of
points A ∈ Rd. To this end we make use of the fact that each row of P is a sparse vector in Rd to
implicitly run the computation in the original row space Rd. We present Algorithm 2 and prove that
it returns the weight vector w=(w1, · · · , wn) of a (k, ε)-coreset for low-rank approximation of the
input point set P , and that this coreset is small, namely, only O(k2/ε2) of the weights (entries) in w
are non-zeros. Fig. 5 contains the pseudocode for Algorithm 2. Please see Supplementary Material,
Section D for a complete line-by-line analysis of Algorithm 2.

6 Evaluation and Experimental Results

The coreset construction algorithm described in Section 5 was implemented in MATLAB. We make
use of the redsvd package [12] to improve performance, but it is not required to run the system. We
evaluate our system on two types of data: synthetic data generated with carefully controlled param-
eters, and real data from the English Wikipedia under the “bag of words” (BOW) model. Synthetic
data provides ground-truth to evaluate the quality, efficiency, and scalability of our system, while
the Wikipedia data provides us with a grand challenge for latent semantic analysis computation.

For our synthetic data experiments, we used a moderate size sparse input of (5000×1000) to evaluate
the relationship between the error ε and the number of iterations of the algorithm N . We then
compare our coreset against uniform sampling and weighted random sampling using the squared
norms of U (A = UΣV T ) as the weights. Finally, we evaluate the efficiency of our algorithm by
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(a) Relative error (k = 10)
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(b) Relative error (k = 20)

Coreset size (number of points)
0 10 20 30 40 50 60 70 80 90 100

R
el

at
iv

e 
er

ro
r

#10 -3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SVD Coreset
Uniform Random Sampling
Weighted Random Sampling

(c) Relative error (k = 50)
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Figure 1: Experimental results for synthetic data (Fig. 1a–1d) and Wikipedia (Fig. 1e–Fig. 1f).

comparing the running time against the MATLAB svds function and against the most recent state
of the art dimensionality reduction algorithm [7]. Figure 1a–1d show the exerimental results. Please
see Supplementary Material, Section E for a complete description of the experiments.

6.1 Latent Semantic Analysis of Wikipedia

For our large-scale grand challenge experiment, we apply our algorithm for computing Latent Se-
mantic Analysis (LSA) on the entire English Wikipedia. The size of the data is n= 3.69M (docu-
ments) with a dimensionality d=7.96M (words). We specify a nominal error of ε=0.5, which is a
theoretical upper bound for N = 2k/ε iterations, and show that the coreset error remains bounded.
Figure 1f shows the log approximation error, i.e. sum of squared distances of the coreset to the sub-
space for increasing approximation rank k=1, 10, 100. We see that the log error is proportional to
k, and as the number of streamed points increases into the millions, coreset error remains bounded
by k. Figure 1e shows the running time of our algorithm compared against svds for increasing
dimensionality d and a fixed input size n=3.69M (number of documents).

Finally, we show that our coreset can be used to create a topic model of 100 topics for the entire
English Wikipedia. We construct the coreset of size N = 1000 words. Then to generate the topics,
we compute a projection of the coreset onto a subspace of rank k= 100. Please see Supplementary
Material, Section F for more details, including an example of the topics obtained in our experiments.

7 Conclusion

We present a new approach for dimensionality reduction using coresets. Our solution is general and
can be used to project spaces of dimension d to subspaces of dimension k < d. The key feature
of our algorithm is that it computes coresets that are small in size and subsets of the original data.
We benchmark our algorithm for quality, efficiency, and scalability using synthetic data. We then
apply our algorithm for computing LSA on the entire Wikipedia – a computation task hitherto not
possible with state of the art algorithms. We see this work as a theoretical foundation and practical
toolbox for a range of dimensionality reduction problems, and we believe that our algorithms will
be used to construct many other coresets in the future. Our project codebase will be open-sourced
upon acceptance of this paper, for reproducing the results and the benefit of the community.
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Supplementary Material

A Proof of Lemma 1

Lemma 1. Let z ∈ Dn be a distribution over n unit vectors a1, · · · , an in Rd. For ε ∈ (0, 1), a
sparse weight vector w ∈ Dn of sparsity s ≤ 1/ε2 can be computed in O(nd/ε2) time such that

∥∥∥∥∥
n∑

i=1

zi · ai −
n∑

i=2

wi ai

∥∥∥∥∥
2

≤ ε. (9)

We note that the Caratheodory Theorem [4] proves Lemma 1 for the special case ε = 0 using only
d + 1 points. Our approach and algorithm can thus be considered as an ε-approximation for the
Caratheodory Theorem, to get coresets of size independent of d. Note that our Frank-Wolfe-style
algorithm might run more than d+ 1 or n iterations without getting zero error, since the same point
may be selected in several iterations. Computing in each iteration the closest point to the origin that
is spanned by all the points selected in the previous iterations, would guarantee coresets of size at
most d+1, and fewer iterations. Of course, the computation time of each iteration will also be much
slower. ’

Proof. We assume that
∑
i ziai = 0, otherwise we subtract

∑
j zjaj from each input vector ai. We

also assume ε < 1, otherwise the claim is trivial for w = 0. Let w ∈ Dn such that ‖w‖0 = 1, and
denote the current mean approximation by c =

∑
i wiai. Hence, ‖c‖2 = ‖ai‖ = 1.

The following iterative algorithm updates c in the end of each iteration until ‖c‖2 < ε. In the
beginning of the N th iteration the squared distance from c to the mean (origin) is

‖c‖22 ∈ [ε,
1

N
]. (10)

The average distance to c is thus
∑

i

zi‖ai − c‖22 =
∑

i

zi‖ai‖22 + 2cT
∑

i

ziai +
∑

i

zi‖c‖22 = 1 + ‖c‖22 ≥ 1 + ε ,

where the sum here and in the rest of the proof are over [n]. Hence there must be a j ∈ [n] such that

‖qj − c‖22 ≥ 1 + ε. (11)

Let r be the point on the segment between aj and c at a distance ρ := 1/‖aj − c‖2 from aj . Since
‖aj − r‖2 = ρ = ρ‖aj − 0‖2, and ‖aj − 0‖2 = 1 = ρ‖aj − c‖2, and ∠(0, aj , c) = ∠(c, aj ,0), the
triangle whose vertices are aj , r and 0 is similar to the triangle whose vertices are aj , 0, and c with
a scaling factor of ρ. Therefore,

‖r − 0‖2 = ρ · ‖0− c‖2 =
‖c‖2

‖qj − c‖2
. (12)

From (11) and (12), by letting c′ be the closest point to 0 on the segment between aj and c, we
obtain

‖c′‖22 ≤ ‖r‖22 =
‖c‖22

‖aj − c‖22
≤ ‖c‖

2
2

1 + ε
.

Combining this with (10) yields

‖c′‖22 ≤
1
N

1 + ε
≤

1
N

1 + 1
N

=
1

N + 1
.

Since c′ is a convex combination of aj and c, there is α ∈ [0, 1], such that c′ = αaj + (1 − α)c.
Therefore,

c′ = αaj + (1− α)
∑

i

wiai

10
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and thus we have c′ =
∑
i w
′
iai, where w′ = (1 − α)w + αej , and ej ∈ Dn is the jth standard

vector. Hence, ‖w′‖0 = N + 1. If ‖c′‖22 < ε the algorithm returns c′. Otherwise

‖c′‖22 ∈ [ε,
1

N + 1
] (13)

We can repeat the procedure in (10) with c′ instead of c and N + 1 instead of N . By (29) N + 1 ≤
1/ε so the algorithm ends after N ≤ 1/ε iterations. After the last iteration we return the center
c′ =

∑n
i=1 w

′
iai so ∥∥∥∥∥

∑

i

(zi − w′i)ai
∥∥∥∥∥

2

2

= ‖c′‖22 ≤
1

N + 1
≤ ε.

B Proof of Theorem 3

Theorem 3 (Coreset for Low rank approximation). For every X ∈ Rd×(d−k) such that XTX = I ,
∣∣∣∣1−

‖WAX‖2
‖AX‖2

∣∣∣∣ ≤ 5

∥∥∥∥∥
n∑

i=1

viv
T
i −Wi,iviv

T
i

∥∥∥∥∥ . (14)

Proof of Theorem 3. Let ε = ‖∑n
i=1(1 −W 2

i,i)viv
T
i ‖. For every i ∈ [n] let ti = 1 −W 2

i,i. Set
X ∈ Rd×(d−k) such that XTX = I . Without loss of generality we assume V T = I , i.e. A = UΣ,
otherwise we replace X by V TX . It thus suffices to prove that

∣∣∣∣∣
∑

i

ti‖Ai,:X‖2
∣∣∣∣∣ ≤ 5ε ‖AX‖2. (15)

Using the triangle inequality, we get
∣∣∣∣∣
∑

i

ti‖Ai,:X‖2
∣∣∣∣∣ ≤

∣∣∣∣∣
∑

i

ti‖Ai,:X‖2 −
∑

i

ti‖(Ai,1:k,0)X‖2
∣∣∣∣∣ (16)

+

∣∣∣∣∣
∑

i

ti‖(Ai,1:k,0)X‖2
∣∣∣∣∣ . (17)

We complete the proof by deriving bounds on (16) and (17).

Bound on (16): It was proven in [1] that for every pair of k-subspaces S1, S2 in Rd there is u ≥ 0
and a (k − 1)-subspace T ⊆ S1 such that the distance from every point p ∈ S1 to S2 equals to its
distance to T multiplied by u. By letting S1 denote the k-subspace that is spanned by the first k
standard vectors of Rd, letting S2 denote the k-subspace that is orthogonal to each column of X ,
and y ∈ Rk be a unit vector that is orthogonal to T , we obtain that for every row vector p ∈ Rk,

‖(p,0)X‖2 = u2(py)2. (18)

After defining x = Σ1:k,1:ky/‖Σ1:k,1:ky‖, (16) is bounded by
∑

i

ti‖(Ai,1:k,0)X‖2 =
∑

i

ti · u2‖Ai,1:ky‖2

= u2
∑

i

ti‖Ai,1:ky‖2

= u2
∑

i

ti‖Ui,1:kΣ1:k,1:ky‖2

= u2‖Σ1:k,1:ky‖2
∑

i

ti‖(Ui,1:k)x‖2. (19)
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The left side of (19) is bounded by substituting p = Σj,1:k in (18) for j ∈ [k], as

u2‖Σ1:k,1:ky‖2 =

k∑

j=1

u2(Σj,1:ky)2 =

k∑

j=1

‖(Σj,1:k,0)X‖2

=

k∑

j=1

σ2
j ‖Xj,:‖2 ≤

d∑

j=1

σ2
d‖Xj,:‖2

= ‖ΣX‖2 = ‖UΣX‖2 = ‖AX‖2. (20)

The right hand side of (19) is bounded by
∣∣∣∣∣
∑

i

ti‖(Ui,1:k)x‖2
∣∣∣∣∣ =

∣∣∣∣∣
∑

i

ti(Ui,1:k)TUi,1:k · xxT
∣∣∣∣∣ =

∣∣∣∣∣xx
T ·
∑

i

ti(Ui,1:k)TUi,1:k

∣∣∣∣∣

≤ ‖xxT ‖ · ‖
∑

i

ti(Ui,1:k)TUi,1:k‖ (21)

≤ ‖
∑

i

ti(vi,1:k)T vi,1:k‖ ≤ ‖
∑

i

tiv
T
i vi‖ = ε (22)

where (21) is by the Cauchy-Schwartz inequality and the fact that ‖xxT ‖ = ‖x‖2 = 1, and in (22)
we used the assumption Ai,j = Ui,jσj = vi,j for every j ∈ [k].

Plugging (20) and (22) in (19) bounds (16) as

|
∑

i

ti‖(Ai,1:k,0)X‖2| ≤ ε‖AX‖2. (23)

Bound on (17): For every i ∈ [n] we have

‖Ai,:X‖2 − ‖(Ai,1:k,0)X‖2

= 2(Ai,1:k,0)XXT (0, Ai,k+1:d)
T + ‖(0, Ai,k+1:d)X‖2

= 2Ai,1:kX1:k,:(Xk+1:d,:)
T (Ai,k+1:d)

T + ‖(0, Ai,k+1:d)X‖2

= 2

k∑

j=1

Ai,jXj,:(Xk+1:d,:)
T (Ai,k+1:d)

T + ‖(0, Ai,k+1:d)X‖2

=

k∑

j=1

2σjXj,:(Xk+1:d,:)
T · ‖σk+1:d‖vi,j(vi,k+1:d)

T+

‖σk+1:d‖2‖(0, vi,k+1:d)X‖2. (24)

Summing this over i ∈ [n] with multiplicative weight ti and using the triangle inequality, will
bound (17) by

∣∣∣∣∣
∑

i

ti‖Ai,:X‖2 −
∑

i

ti‖(Ai,1:k,0)X‖2
∣∣∣∣∣

≤
∣∣∣
∑

i

ti

k∑

j=1

2σjXj,:(Xk+1:d,:)
T (25)

· ‖σk+1:d‖vi,j(vi,k+1:d)
T
∣∣∣

+

∣∣∣∣∣
∑

i

ti‖σk+1:d‖2‖(0, vi,k+1:d)X‖2
∣∣∣∣∣ . (26)
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The right hand side of (25) is bounded by
∣∣∣∣∣∣

k∑

j=1

2σjXj,:(Xk+1:d)
T · ‖σk+1:d‖

∑

i

tivi,j(vi,k+1:d)
T

∣∣∣∣∣∣

≤
k∑

j=1

2σj‖Xj,:Xk+1:d‖ · ‖σk+1:d‖‖
∑

i

tivi,jvi,k+1:d‖ (27)

≤
k∑

j=1

(εσ2
j ‖Xj,:‖2 +

‖σk+1:d‖2
ε

‖
∑

i

tivi,jvi,k+1:d‖2) (28)

≤ 2ε‖AX‖2, (29)

where (27) is by the Cauchy-Schwartz inequality, (28) is by the inequality 2ab ≤ a2 + b2. In (29)
we used the fact that

∑
i ti(vi,1:k)T vi,k+1:d is a block in the matrix

∑
i tiviv

T
i , and

‖σk+1:d‖2 ≤ ‖AX‖2 and
k∑

j=1

σ2
j ‖Xj,:‖2

= ‖Σ1:k,1:kX1:k,:‖2 ≤ ‖ΣX‖2 ≤ ‖AX‖2.
(30)

Next, we bound (26). Let Y ∈ Rd×k such that Y TY = I and Y TX = 0. Hence, the columns
of Y span the k-subspace that is orthogonal to each of the (d − k) columns of X . By using the
Pythagorean Theorem and then the triangle inequality,

‖σk+1:d‖2|
∑

i

ti‖(0, vi,k+1:d)X‖2| (31)

=‖σk+1:d‖2|
∑

i

ti‖(0, vi,k+1:d)‖2

−
∑

i

ti‖(0, vi,k+1:d)Y ‖2|

≤ ‖σk+1:d‖2|
∑

i

ti‖vi,k+1:d‖2| (32)

+ ‖σk+1:d‖2|
∑

i

ti‖(0, vi,k+1:d)Y ‖2|. (33)

For bounding (33), observe that Y corresponds to a (d− k) subspace, and (0, vi,k+1:d) is contained
in the (d−k) subspace that is spanned by the last (d−k) standard vectors. Using same observations
as above (18), there is a unit vector y ∈ Rd−k such that for every i ∈ [n] ‖(0, vi,k+1:d)Y ‖2 =
‖(vi,k+1:d)y‖2. Summing this over ti yields,

|
∑

i

ti‖(0, vi,k+1:d)Y ‖2| = |
∑

i

ti‖vi,k+1:dy‖2|

= |
∑

i

ti

d∑

j=k+1

v2i,jy
2
j−k| = |

d∑

j=k+1

y2j−k
∑

i

tiv
2
i,j |.

Replacing (33) in (31) by the last inequality yields

‖σk+1:d‖2|
∑

i

ti‖(0, vi,k+1:d)X‖2|

≤ ‖σk+1:d‖2(|
∑

i

tiv
2
i,d+1|+

d∑

j=k+1

y2j−k‖
∑

i

tiviv
T
i ‖) (34)

≤ ‖σk+1:d‖2(ε+ ε

d∑

j=k+1

y2j−k) ≤ 2ε‖AX‖2, (35)
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Algorithm 1 CORESET-SUMVECS(A, ε)

1: Input: A: n input points a1, . . . , an in Rd
2: Input: ε ∈ (0, 1): the approximation error
3: Output: w ∈ [0,∞)n: non-negative weights
4: A← A−mean(A)
5: A← cA where c is a constant s.t. var(A) = 1
6: w ← (1, 0, . . . , 0)
7: j ← 1, p← Aj , J ← {j}
8: Mj =

{
y2 | y = A ·ATj

}
9: for i = 1, . . . , n do

10: j ← argmin {wJ ·MJ}
11: G←W ′ ·AJ where W ′i,i =

√
wi

12: ‖c‖ = ‖GTG)‖2F
13: c · p =

∑|J|
i=1Gp

T

14: ‖c− p‖ =
√

1 + ‖c‖2 − c · p
15: compp(v) = 1/‖c− p‖ − (c · p) /‖c− p‖
16: ‖c− c′‖ = ‖c− p‖ − compp(v)
17: α = ‖c− c′‖/‖c− p‖
18: w ← w(1− |α|)
19: wj ← wj + α
20: w ← w/

∑n
i=1 wi

21: Mj ←
{
y2 | y = A ·ATj

}

22: J ← J ∪ {j}
23: if ‖c‖2 ≤ ε then
24: break
25: end if
26: end for
27: return w

where (34) follows since
∑
i tiv

2
i,j is an entry in the matrix

∑
i tiviv

T
i , in (35) we used (30) and the

fact that ‖y‖2 = 1. Plugging (29) in (25) and (35) in(20) gives the desired bound on (17) as

|
∑

i

ti‖Ai,:X‖2 −
∑

i

ti‖(Ai,1:k,0)X‖2| ≤ 4ε‖AX‖2.

Finally, using (23) in (16) and the last inequality in (17), proves the desired bound of (15).

C Analysis of Algorithm 1

Algorithm 1 contains the full listing of the construction algorithm for the coreset for sum of vectors.

Input: A: n input points a1, . . . , an in Rd; ε > 0: the nominal approximation error.

Output: a non-negative vector w ∈ [0,∞)n of only O(1/ε2) non-zeros entries which are the non-
negative weights of the corresponding points selected for the coreset.

Analysis: The first step is to translate and scale the input points such that the mean is zero and the
variance is 1 (lines 4–5). After initialization (lines 6–8), we begin the main iterative steps of the
algorithm. First we find the index j of the farthest point from the initial point a1. The next point
added to the coreset is denoted by p = aj . Next we compute ‖c− p‖, the distance from the current
point p to the previous center c. In order to do this we compute G = W ′ · AJ where J is the set of
all previously added indices j, starting with the first point, and W ′ is defined in line 11. Note that G
also gives us the error of the current iteration, ε = trace(GGT ) (line 23). Next we find the point c′
on the line from c to p that is closest to the origin, and find the distance between the current center
c and the new center c′ (lines 12–16). Finally, the ratio of distances between the current center,
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Algorithm 2 CORESET-LOWRANK(A, k, ε)

1: Input: A: A sparse n×d matrix
2: Input: k ∈ Z>0: the approximation rank
3: Input: ε ∈

(
0, 12
)
: the approximation error

4: Output: w ∈ [0,∞)n: non-negative weights
5: Compute UΣV T = A, the SVD of A
6: R← Σk+1:d,k+1:d

7: P ← matrix whose i-th row ∀i ∈ [n] is
8: Pi = (Ui,1:k, Ui,k+1:d · R

‖R‖F )
9: X ← matrix whose i-th row ∀i ∈ [n] is

10: Xi = Pi/‖Pi‖F
11: w ← (1, 0, . . . , 0)
12: for i = 1, . . . ,

⌈
k2/ε2

⌉
do

13: j ← argmini=1,...,n{wXXi}
14: a =

∑n
i=1 wi(X

T
i Xj)

2

15: b =
1− ‖PXj‖2F +

∑n
i=1 wi‖PXi‖2F

‖P‖2F
16: c = ‖wX‖2F
17: α = (1− a+ b) / (1 + c− 2a)
18: w ← (1− α)Ij + αw
19: end for
20: return w

farthest point, and new center give us a value for α, the amount by which we update the coreset
weights (lines 17–20).

The algorithm then updates the recorded indices J , update the lookup table M of previously com-
puted row inner products for subsequent iterations, and repeat lines 10–26 until the loop terminates.
The terminating conditions depend on the system specification – we may wish to bound the error,
or the number of iterations. Moreover, if the update value α is below a specified threshold, we may
also terminate the loop if such threshold is lower than a desired level of accuracy.

D Analysis of Algorithm 2

Algorithm 2 contains the full listing of the construction algorithm for the coreset for low rank ap-
proximation.

Input: A: n input points a1, . . . , an in Rd; k ≥ 1: the approximation rank; ε > 0: the nominal
approximation error.

Output: a non-negative vector w ∈ [0,∞)n of only O(1/ε2) non-zeros entries which are the non-
negative weights of the corresponding points selected for the coreset.

Analysis: Algorithm 2 starts by computing the k-SVD of input matrix A (line 5). This is possible
because we use the streaming model, so that the input arrives in small blocks. For each block we
perform the computation to create its coreset. By merging the resulting coresets we preserve sparsity
and can aggregate the coreset forA. Lines 7–8 use the k-SVD of this small input block to restructure
the input matrixA into a combination of the columns ofA corresponding to its k largest eigenvalues
and the remaining columns of D, the singular values of A.

After initialization, we begin the main iterative steps of the algorithm. Note that lines 12–19 of
Algorithm 2 are heavily optimized but functionally equivalent to lines 9–27 of Algorithm 1 – the
end result in both cases is a computation of α at each iteration of the for loop, and an update to the
vector of weights w. First we find the index j of the farthest point from the initial point a1 (Line 13).
The next point is implicitly added to the coreset is by updating w, and in turn affects the next farthest
point as the computation wXXi is performed iteratively. The variables a, b, c implicitly compute
the distance from the current point p to the previous center q, the error of the current iteration ε, the
point on the line from the p to q that is closest to the origin, and the distance between the current
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Algorithm 3 MATRIXPRODUCTAPPROX(A, k, ε)
Algorithm 1: SVD-Coreset(A, ε, k)

Input: A matrix A ∈ Rn×d, and an error parameter ε > 0.
Output: A vector w ∈ [0,∞)n of O(k/ε2) non-zeros entries.

1 Xu ← kI
2 Xl ← −kI
3 δu ← ε+ 2ε2

4 δl ← ε− 2ε2

5 Set w ← (0, · · · , 0)
6 Set Z to be the d× d zero matrix.
7 for m← 1, 2, . . . to k/ε2 do
8 Set

Mu ← ((Xu + δuA
TA)− Z)−1.

9 Set

Ml ← (Z − (Xl + δlA
TA))−1.

10 for i = 1, 2, . . . to n do
11 Set ai ← a d× 1 column vector which is the ith row of A
12 Set

βl(i)←
aTi MlA

TAMlai
δltr(AMlATAMlAT )

− aTi Mlai

13 Set

βu(i)←
aTi MuA

TAMuai
δutr(AMuATAMuAT )

+ aTi Muai

14 Compute j ∈ [n] that maximizes βl(j)− βu(j)
15 Set wj ← 1

βu(j)

16 Set Z ← Z + w2
jaja

T
j

17 return w = (w1, · · · , wn)

1

Figure 2: Matrix product approximation algorithm [7]

center q and the new center q′. Finally, line 17 updates α and line 18 updates w using the new value
of α.

The algorithm terminates after k2/ε2 iterations, and we omit the explicit computation of ε since it
is implied in the guarantees proven in the following section. As in Algorithm 1, the terminating
conditions depend on the system specifications. We may wish to bound the error, or the number of
iterations, or the update value α.

E Experimental Results – Synthetic Data

Synthetic data provides us with a ground-truth to objectively evaluate the quality, efficiency, and
scalability of our system.

Approximation error. We carried out experiments on a moderate size sparse input of (5000×1000)
to evaluate the relationship between the error ε and the number of iterations of the algorithmN . for a
hyperplane coreset (i.e. k=d−1). Fig. 1d shows how the characteristic function of the approximation
error f(N) behaves with respect to increasing number of iterations N (normalized to N = n). Note
that three of the plotted functions f(N) converge as N increases, while the last one ramps up and
then increases linearly. From this we conclude that ε decreases at a true rate somewhere between the
rates of increase of f(N) = N logN and f(N) = N2. The true characteristic f∗(N) +C indicates
the theoretical breakpoint between increasing and decreasing error.

We then compare our coreset against uniform sampling and weighted random sampling, using the
squared norms of U (A = UΣV T ) as the weights. Tests were carried out on a small subset of
Wikipedia (n= 1000, d= 257K) to ensure representative data structure. Figure 1a–1c shows the
results. As expected, approximation error decreases with coreset size, as well as the subspace rank.
(Note that since our algorithm is deterministic, there is zero variance in the approximation error.)
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Figure 3: Fig. 3a shows the runtimes of our coreset compared against MATLAB svds. Fig. 3b shows the
runtimes of our coreset compared against the algorithm in [7].

Running time. We evaluate the efficiency of our algorithm by comparing the running time (coreset
construction) against the built-in MATLAB svds function and against the most recent state of the
art dimensionality reduction algorithm [7].

Algorithm 2 contains the pseudocode for our implementation of the algorithm presented in [7].
Fig. 3a shows the runtimes of our coreset compared against MATLAB svds. Fig. 3b shows the
running time of our algorithm compared against Algorithm 3 run on synthetic data for the same
set of input parameters. We used a fixed dimensionality d = 1000, approximation rank k = 100,
sparsity 10−6 and evaluated construction time for increasing input size N . The results are plotted as
a function of the log of the input size to show the order of magnitute difference in performance.

Besides the fact that our algorithm minimizes the Frobenius norm and support PCA, an important
advantage of our technique compared to existing coreset constructions is that it is much numerically
stable and faster in practice. For example, the result of [8] is based on the technique of [3]. This tech-
nique needs to compute many inverse of matrices during the computation, which makes it not only
less stable but also very inefficient. Indeed, we implemented the coreset construction of [8] and the
running time comparison to our algorithm for the same coreset size can be found in Fig. 3b. In con-
clusion, our algorithm is faster, numerically stable, and can be computed on practically unbounded
size input data.

F Experimental Results – Latent Semantic Analysis of Wikipedia

For these experiments we used three types of machines:

1. Regular desktop computer with quad-core Intel Xeon E5640 CPU @2.67GHz, 6GB RAM
(low spec).

2. Modern laptop with quad-core Intel i7-4500U CPU @1.8GHz, 16GB RAM (medium spec).

3. High-performance computing clusters on Amazon Web Services (AWS) as well as lo-
cal clusters, e.g. an EC2 c3.8xlarge machine with 32-core Intel Xeon E5-2680v2 vCPU
@2.8Ghz, 60GB RAM (high spec).

We compute the coreset using a buffer stream of size N/2, parallelized across 64 nodes on Ama-
zon Web Services (AWS) clusters. The 64 individual coresets are then unified into a single coreset.
Figure 1e shows the running time of our algorithm compared against svds for increasing dimen-
sionality d and a fixed input size n=3.69M (number of documents). Note that this is a log-scale plot
of dimensionality against running time, so the differences in performance represent orders of mag-
nitude. The desktop computer with 6GB RAM crashed for d=2000 and was omitted from the plot.
The same algorithm running on the cluster (blue plot) outperformed the laptop (red plot), which also
quickly ran out of memory. Comparing svds computation on AWS against our coreset (green plot)
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highlights the difference in performance for identical computer architectures. As the dimensionality
d increases, any algorithm dependent on d will eventually crash, given a large enough input.

We show that our coreset can be used to create a topic model of k=100 topics for the entire English
Wikipedia, with a fixed memory requirement and coreset size of just N=1000 words. We compute
the projection of the coresets on a subspace of rank k to generate the topics. Table 1 shows a
selection of 10 of the most highly weighted words from 4 of the computed topics. The total running
time, including coreset construction, merging and topic extraction was 140.66 min.

A cursory glance at the words suggests that the “themes” of these topics are (1) urban planning,
(2) economy and finance, (3) road safety, (4) entertainment. This serves as a qualitative proof of
concept that our system can produce meaningful results topics on very large datasets. We view this
result optimistically, as proof of concept that our system can be used to compute a topic model of the
English language. A more objective analysis would involve using a corpus of tagged documents as a
ground truth, projecting the corresponding vectors onto our topics, and comparing the classification
error against topics computed by other systems. This is the subject of our ongoing work.

Topic 1 Topic 2 Topic 3 Topic 4
US credit drivers comedy
highway risk distracted nominated
bridge plan phone actress
road union driver awards
river interest text television
traffic rating car episode
downtown earnings brain musical
bus capital accidents writing
harbor liquidity visual tv
street asset crash directing
· · · · · · · · · · · ·

Table 1: Example of the highest-weighted words from 4 topics of the k = 100 topic model of
Wikipedia computed by our algorithm
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