
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Dimensionality Reduction of Massive Sparse Datasets
Using Coresets

Dan Feldman Mikhali Volkov Daniela Rus

Abstract

In this paper we present a practical solution with performance guarantees to the
problem of dimensionality reduction for very large scale sparse matrices. We
show applications of our approach to computing the Principle Component Anal-
ysis (PCA) of any n × d matrix, using one pass over the stream of its rows. Our
solution uses coresets: a scaled subset of the n rows that approximates their sum
of squared distances to every k-dimensional affine subspace. An open theoretical
problem has been to compute such a coreset that is independent of both n and
d. An open practical problem has been to compute a non-trivial approximation to
the PCA of very large but sparse databases such as the Wikipedia document-term
matrix in a reasonable time. We answer both of these questions affirmatively. Our
main technical result is a new framework for deterministic coreset constructions
based on a reduction to the problem of counting items in a stream.

1 Introduction

Algorithms for dimensionality reduction usually aim to project an input set of d-dimensional vectors
(database records) onto a k ≤ d− 1 dimensional affine subspace that minimizes the sum of squared
distances to these vectors, under some constraints. Special cases include the Principle Component
Analysis (PCA), Linear regression (k = d− 1), Low-rank approximation (k-SVD), Latent Drichlet
Analysis (LDA) and Non-negative matrix factorization (NNMF). Learning algorithms such as k-
means clustering can then be applied on the low-dimensional data to obtain fast approximations with
provable guarantees. To our knowledge, unlike SVD, there are no algorithms or coreset construc-
tions with performance guarantees for computing the PCA of sparse n×n matrices in the streaming
model, i.e. using memory that is poly-logarithmic in n. Much of the large scale high-dimensional
data sets available today (e.g. image streams, text streams, etc.) are sparse. For example, consider
the text case of Wikipedia. We can associate a matrix with Wikipedia, where the English words
define the columns (approximately 1.4 million) and the individual documents define the rows (ap-
proximately 4.4 million documents). This large scale matrix is sparse because most English words
do not appear in most documents. The size of this matrix is huge and no existing dimensionality
reduction algorithm can compute its eigenvectors. To this point, running the state of the art SVD
implementation from GenSim on the Wikipedia document-term matrix crashes the computer very
quickly after applying its step of random projection on the first few thousand documents. This is
because such dense vectors, each of length 1.4 million, use all of the computer’s RAM capacity.

In this paper we present a dimensionality reduction algorithms that can handle very large scale sparse
data sets such as Wikipedia and returns provably correct results. A long-open research question has
been whether we can have a coreset for PCA that is both small in size and a subset of the original
data. In this paper we answer this question affirmatively and provide an efficient construction. We
also show that this algorithm provides a practical solution to a long-standing open practical problem:
computing the PCA of large matrices such as those associated with Wikipedia.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

2 Problem Formulation

Given a matrixA, a coreset C in this paper is defined as a weighted subset of rows ofA such that the
sum of squared distances from any given k-dimensional subspace to the rows of A is approximately
the same as the sum of squared weighted distances to the rows in C. Formally,

For a compact set S ∈ Rd and a vector x in Rd, we denote the Euclidean distance between x and its
closest points in S by

dist2(x, S) := min
s∈S
‖x− s‖22

For an n×d matrix A whose rows are a1, . . . , an, we define the sum of the squared distances from
A to S by

dist2(A,S) :=

n∑

i=1

dist2(ai, S)

Definition 1 ((k, ε)-coreset). Given a n×d matrix A whose rows a1, · · · , an are n points (vec-
tors) in Rd, an error parameter ε ∈ (0, 1], and an integer k ∈ [1, d − 1] = {1, · · · , d− 1}
that represents the desired dimensionality reduction, n (k, ε)-coreset for A is a weighted subset
C = {wiai | wi > 0 and i ∈ [n]} of the rows of A, where w = (w1, · · · , wn) ∈ [0,∞)n is a
non-negative weight vector, such that for every affine k-subspace S in Rd we have

∣∣dist2(A,S))− dist2(C, S))
∣∣ ≤ εdist2(A,S)). (1)

That is, the sum of squared distances from the n points to S approximates the sum of squared
weighted distances

∑n
i=1 w

2
i (dist(ai, S))2 to S. The approximation is up to a multiplicative factor

of 1±ε. By choosing w = (1, · · · , 1) we obtain a trivial (k, 0)-coreset. However, in a more efficient
coreset most of the weights will be zero and the corresponding rows in A can be discarded. The
cardinality of the coreset is thus the sparsity of w, given by |C| = ‖w‖0 := | {wi 6= 0 | i ∈ [n]} |.
If C is small, then the computation is efficient. Because C is a weighted subset of the rows of A,
if A is sparse, then C is also sparse. A long-open research question has been whether we can have
such a coreset that is both of size independent of the input dimension (n and d) and a subset of the
original input rows.

2.1 Related Work

In [24] it was recently proved that an (k, ε) coreset of size |C| = O(dk3/ε2) exists for every
input matrix, and distances to the power of z ≥ 1 where z is constant. The proof is based on a
general framework for constructing different kinds of coresets, and is known as sensitivity [10, 17].
This coreset is efficient for tall matrices, since its cardinality is independent of n. However, it is
useless for “fat” or square matrices (such as the Wikipedia matrix above), where d is in the order
of n, which is the main motivation for our paper. In [5], the Frank-Wolfe algorithm was used to
construct different types of coresets than ours, and for different problems. Our approach is based
on a solution that we give to an open problem in [5], however we can see how it can be used to
compute the coresets in [5] and vice versa. For the special case z = 2 (sum of squared distances),
a coreset of size O(k/ε2) was suggested in [8] with a randomized version in [7] for a stream of n
points that, unlike the standard approach of using merge-and-reduce trees, returns a coreset of size
independent of n with a constant probability. These result minimizes the ‖ ·‖2 error, while our result
minimizes the Frobenius norm, which is always higher, and may be higher by a factor of d. After
appropriate weighting, we can apply the uniform sampling of size O(k/ε2) to get a coreset with a
small Frobenius error [14], as in our paper. However, in this case the probability of success is only
constant. Since in the streaming case we compute roughly n coresets (formally, O(n/m) coresets,
where m is the size of the coreset) the probability that all these coresets constructions will succeed
is close to zero (roughly 1/n). Since the probability of failure in [14] reduces linearly with the size
of the coreset, getting a constant probability of success in the streaming model for O(n) coresets
would require to take coresets of size that is no smaller than the input size.

There are many papers, especially in recent years, regarding data compression for computing the
SVD of large matrices. None of these works addresses the fundamental problem of computing a
sparse approximated PCA for a large matrix (in both rows and columns), such as Wikipedia. The

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

reason is that current results use sketches which do no preserve the sparsity of the data (e.g. because
of using random projections). Hence, neither the sketch nor the PCA computed on the sketch is
sparse. On the other side, we define coreset as a small weighted subset of rows, which is thus
sparse if the input is sparse. Moreover, the low rank approximation of a coreset is sparse, since
each of its right singular vectors is a sum of a small set of sparse vectors. While there are coresets
constructions as defined in this paper, all of them have cardinality of at least d points, which makes
them impractical for large data matrices, where d ≥ n. In what follows we describe these recent
results in details.

The recent results in [8, 7] suggest coresets that are similar to our definition of coresets (i.e., weighted
subsets), and do preserve sparsity. However, as mentioned above they minimize the 2-norm error and
not the larger Frobesnius error, and maybe more important, they provide coresets for k-SVD (i.e.,
k-dimensional subspaces) and not for PCA (k-dimensional affine subspaces that might not intersect
the origin). In addition [7] works with constant probability, while our algorithm is deterministic
(works with probability 1).

Software. Popular software for computing SVD such as GenSim [21], redsvd [12] or the MATLAB
sparse SVD function (svds) use sketches and crash for inputs of a few thousand of documents and
a dimensionality reduction (approximation rank) k < 100 on a regular laptop, as expected from
the analysis of their algorithms. This is why existing implementations (including Gensim) extract
topics from large matrices (e.g. Wikipedia), based on low-rank approximation of only small subset
of few thousands of selected words (matrix columns), and not the complete Wikipedia matrix.Even
for k = 3, running the implementation of sparse SVD in Hadoop [23] took several days [13]. Next
we give a broad overview of the very latest state of the dimensionality reduction methods, such as
the Lanczoz algorithm [16] for large matrices, that such systems employ under the hood.

Coresets. Following a decade of research in [24] it was recently proved that an (ε, k)-coreset for low
rank approximation of size |C| = O(dk3/ε2) exists for every input matrix. The proof is based on a
general framework for constructing different kinds of coresets, and is known as sensitivity [10, 17].
This coreset is efficient for tall matrices, since its cardinality is independent of n. However, it is
useless for “fat” or square matrices (such as the Wikipedia matrix above), where d is in the order
of n, which is the main motivation for our paper. In [5], the Frank-Wolfe algorithm was used to
construct different types of coresets than ours, and for different problems. Our approach is based on
a solution that we give to an open problem in [5].

Sketches. A sketch in the context of matrices is a set of vectors u1, · · · , us in Rd such that the sum of
squared distances

∑n
i=1(dist(ai, S))2 from the input n points to every k-dimensional subspace S in

Rd, can be approximated by
∑n
i=1(dist(ui, S))2 up to a multiplicative factor of 1±ε. Note that even

if the input vectors a1, · · · , an are sparse, the sketched vectors u1, · · · , us in general are not sparse,
unlike the case of coresets. A sketch of cardinality d can be constructed with no approximation error
(ε = 0), by defining u1, · · · , ud to be the d rows of the matrix DV T where UDV T = A is the SVD
of A. It was proved in [11] that taking the first O(k/ε) rows of DV T yields such a sketch, i.e. of
size independent of n and d.

The first sketch for sparse matrices was suggested in [6], but like more recent results, it assumes that
the complete matrix fits in memory. Other sketching methods that usually do not support streaming
include random projections [2, 1, 9] and randomly combined rows [20, 25, 22, 18].

The Lanczoz Algorithm. The Lanczoz method [19] and its variant [15] multiply a large matrix by a
vector for a few iterations to get its largest eigenvector v1. Then the computation is done recursively
after projecting the matrix on the hyperplane that is orthogonal to v1. However, v1 is in general not
sparse even A is sparse. Hence, when we project A on the orthogonal subspace to v1, the resulting
matrix is dense for the rest of the computations (k > 1). Indeed, our experimental results show that
the MATLAB svds function which uses this method runs faster than the exact SVD, but crashes on
large input, even for small k.

This paper builds on this extensive body of prior work in dimensionality reduction, and our approach
uses coresets to solve the time and space challenges.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

2.2 Key Contributions

Our main result is the first algorithm for computing an (k, ε)-coreset C of size independent of
both n and d, for any given n × d input matrix. The algorithm takes as input a finite set of d-
dimensional vectors, a desired approximation error ε, and an integer k ≥ 0. It returns a weighted
subset S (coreset) of k2/ε2 such vectors. This coreset S can be used to approximate the sum of
squared distances from the matrix A ∈ Rn×d, whose rows are the n vectors seen so far, to any
k-dimensional affine subspace in Rd, up to a factor of 1± ε. For a (possibly unbounded) stream of
such input vectors the coreset can be maintained at the cost of an additional factor of log2 n.

The polynomial dependency on d of the cardinality of previous coresets made them impractical for
fat or square input matrices, such as Wikipedia, images in a sparse feature space representation, or
adjacency matrix of a graph. If each row of in input matrix A has O(nnz) non-zeroes entries, then
the update time per insertion, the overall memory that is used by our algorithm, and the low rank
approximation of the coreset S is O(nnz · k2/ε2), i.e. independent of n and d.

We implemented our algorithm to obtain a low-rank approximation for the term-document matrix
of Wikipedia with provable error bounds. Since our streaming algorithm is also “embarrassingly
parallel” we run it on Amazon Cloud, and receive a significantly better running time and accuracy
compared to existing heuristics (e.g. Hadoop/MapReduce) that yield non-sparse solutions.

The key contributions in this work are:

1. A new algorithm for dimensionality reduction of sparse data that uses a weighted subset of
the data, and is independent of both the size and dimensionality of the data.

2. An efficient algorithm for computing such a reduction, with provable bounds on size and
running time. (The project codebase will be open-sourced upon acceptance of this paper.)

3. A system that implements this dimensionality reduction algorithm and an application of
the system to compute latent semantic analysis (LSA) of the entire English Wikipedia.

3 Technical Solution

Given a n×dmatrixA, we propose a construction mechanism for a matrixC of size |C| = O(k2/ε2)
and claim that it is a (k, ε)-coreset forA. We use the following corollary for Definition 1 of a coreset,
based on simple linear algebra that follows from the geometrical definitions (e.g. see [11]).
Property 1 (Coreset for sparse matrix). Let A ∈ Rn×d, k ∈ [1, d − 1] be an integer, and let ε > 0
be an error parameter. For a diagonal matrix W ∈ Rn×n, the matrix C = WA is a (k, ε)-coreset
for A if for every matrix X ∈ Rd×(d−k) such that XTX = I , we have

(i)

∣∣∣∣1−
‖WAX‖
‖AX‖

∣∣∣∣ ≤ ε, and (ii) ‖A−WA‖ < ε var(A) (2)

where var(A) is the sum of squared distances from the rows of A to their mean.

The goal of this paper is to prove that such a coreset (Definition 1) exists for any matrix A (Prop-
erty 1) and can be computed efficiently. Formally,
Theorem 1. For every input matrix A ∈ Rn×d, an error ε ∈ (0, 1] and an integer k ∈ [1, d− 1]:

(a) there is a (k, ε)-coreset C of size |C| = O(k2/ε2);

(b) such a coreset can be constructed in O(k2/ε2) time.

Theorem 1 is the formal statement for the main technical contribution of this paper. Sections 3–5
constitute a proof for Theorem 1.

To establish Theorem 1(a), we first state our two main results (Theorems 2 and 3) axiomatically, and
show how they combine such that Property 1 holds. Thereafter we prove the these results in Sections
4 and 5, respectively. To prove Theorem 1(b) (efficient construction) we present an algorithm for
computing a matrix C, and analyze the running time to show that the C can be constructed in
O(k2/ε2) iterations.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Algorithm 1 CORESET-SUMVECS(A, ε)

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Algorithm 1 CORESET-SUMVECS(A, ε)

1: Input: A: n input points a1, . . . , an in Rd

2: Input: ε ∈ (0, 1): the approximation error
3: Output: w ∈ [0,∞)n: non-negative weights
4: A← A−mean(A)
5: A← cA where c is a constant s.t. var(A) = 1
6: w ← (1, 0, . . . , 0)
7: j ← 1, p← Aj , J ← {j}
8: Mj =

{
y2 | y = A ·AT

j

}
9: for i = 1, . . . , n do

10: j ← argmin {wJ ·MJ}
11: G←W ′ ·AJ where W ′

i,i =
√
wi

12: ‖c‖ = ‖GTG)‖2F
13: c · p =∑|J|

i=1Gp
T

14: ‖c− p‖ =
√
1 + ‖c‖2 − c · p

15: compp(v) = 1/‖c− p‖ − (c · p) /‖c− p‖
16: ‖c− c′‖ = ‖c− p‖ − compp(v)
17: α = ‖c− c′‖/‖c− p‖
18: w ← w(1− |α|)
19: wj ← wj + α
20: w ← w/

∑n
i=1 wi

21: Mj ←
{
y2 | y = A ·AT

j

}

22: J ← J ∪ {j}
23: if ‖c‖2 ≤ ε then
24: break
25: end if
26: end for
27: return w

1

(a) Coreset for sum of vectors algorithm

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

c2

a3

c3

a1 = c1

a2
a4

a5

(b) Illustration showing first 3 steps of the computation

Let A ∈ Rn×d be a matrix of rank d, and let UΣV T = A denote its full SVD. Let W ∈ Rn×n be a
diagonal matrix. Let k ∈ [1, d− 1] be an integer. For every i ∈ [n] let

vi =

(
Ui,1, · · · , Ui,k,

Ui,k+1:dΣk+1:d,k+1:d

‖Σk+1:d,k+1:d‖
, 1

)
. (3)

Then the following two results hold:
Theorem 2 (Coreset for sum of vectors). For every set of of n vectors v1, · · · , vn in Rd and every
ε ∈ (0, 1), a weight vectorw ∈ (0,∞)n of sparsity ‖w‖0 ≤ 1/ε2 can be computed deterministically
in O(nd/ε) time such that ∥∥∥∥∥

n∑

i=1

vi −
n∑

i=1

wivi

∥∥∥∥∥ ≤ ε
n∑

i=1

‖vi‖2. (4)

Section 4 establishes a proof for Theorem 2.
Theorem 3 (Coreset for Low rank approximation). For every X ∈ Rd×(d−k) such that XTX = I ,

∣∣∣∣1−
‖WAX‖2
‖AX‖2

∣∣∣∣ ≤ 5

∥∥∥∥∥
n∑

i=1

viv
T
i −Wi,iviv

T
i

∥∥∥∥∥ . (5)

Section 5 establishes a proof for Theorem 3.

3.1 Proof of Theorem 1

Proof of Theorem 1(a). Replacing vi with vivTi and ε by ε/(5d) in Theorem 2 yields∥∥∥∥∥
∑

i

viv
T
i −Wi,iviv

T
i

∥∥∥∥∥ ≤ (ε/5d)

n∑

i=1

‖vivTi ‖2.

Combining this inequality with (4) gives
∣∣∣∣1−

‖WAX‖2
‖AX‖2

∣∣∣∣ ≤ 5

∥∥∥∥∥
n∑

i=1

viv
T
i −Wi,iviv

T
i

∥∥∥∥∥ ≤ (ε/5d)

n∑

i=1

‖vivTi ‖2 .

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Thus the left-most term is bounded by the right-most term, which proves (2). This also means that
C = WA is a coreset for k-SVD, i.e., (non-affine) k-dimensional subspaces. To support PCA
(affine subspaces) the coreset C = WA needs to satisfy the expression in the last line of Property 1
regarding its mean. This holds using the last entry (one) in the definition of vi (3), which implies
that the sum of the rows is preserved as in equation (4). Therefore Property 1 holds for C = WA,
which proves Theorem 1(a).

Claim Theorem 1(b) follows from simple analysis of Algorithm 2 that implements this construction.

4 Coreset for Sum of Vectors (k = 0)

In order to prove the general result Theorem 1(a), that is the existence of a (k, ε)-coreset for any
k ∈ [1, d−1], we first establish the special case for k = 0. In this section, we prove Theorem 2 by
providing an algorithm for constructing a small weighted subset of points that constitutes a general
approximation for the sum of vectors.

To this end, we first introduce an intermediate result that shows that given n points on the unit ball
with weight distribution z, there exists a small subset of points whose weighted mean is approxi-
mately the same as the weighted mean of the original points.

Let Dn denote the union over every vector z ∈ [0, 1]n that represent a distribution, i.e.,
∑
i zi = 1.

Our first technical result is that for any finite set of unit vectors a1, . . . , an in Rd, any distribution
z ∈ Dn, and every ε ∈ (0, 1], we can compute a sparse weight vector w ∈ Dn of sparsity (non-
zeroes entries) ‖w‖0 ≤ 1/ε2.

Lemma 1. Let z ∈ Dn be a distribution over n unit vectors a1, · · · , an in Rd. For ε ∈ (0, 1), a
sparse weight vector w ∈ Dn of sparsity s ≤ 1/ε2 can be computed in O(nd/ε2) time such that

∥∥∥∥∥
n∑

i=1

zi · ai −
n∑

i=2

wi ai

∥∥∥∥∥
2

≤ ε. (6)

Proof of Lemma 1. Please see Supplementary Material, Section A.

We prove Theorem 2 by providing a computation of such a sparse weight vector w. The intuition
for this computation is as follows. Given n input points a1,. . . ,an in Rd, with weighted mean∑
i zi ai = 0, we project all the points on the unit sphere. Pick an arbitrary starting point a1 = c1.

At each step find the farthest point aj+1 from cj , and compute cj+1 by projecting the origin onto
the line segment [cj , aj+1]. Repeat this for j= 1,. . . ,N iterations, where N = 1/ε2. We prove that
‖ci‖2 = 1/i, thus if we iterate 1/ε2 times, this norm will be ‖c1/ε2‖ = ε2. The resulting points ci
are a weighted linear combination of a small subset of the input points. The output weight vector
w ∈ Dn satisfies cN =

∑n
i=1 wi ai, and this weighted subset forms the coreset.

Fig. 1a contains the pseudocode for Algorithm 1. Fig. 1b illustrates the first steps of the main com-
putation (lines 9–26). Please see Supplementary Material, Section C for a complete line-by-line
analysis of Algorithm 1.

Proof of Theorem 2. The proof of Theorem 2 follows by applying Lemma 1 after normalization of
the input points and then post-processing the output.

5 Coreset for Low Rank Approximation (k > 0)

In Section 4 we presented a new coreset construction for approximating the sum of vectors, showing
that given n points on the unit ball there exists a small weighted subset of points that is a coreset
for those points. In this section we describe the reduction of Algorithm 1 for k = 0 to an efficient
algorithm for any low rank approximation with k ∈ [1, d−1].

Conceptually, we achieve this reduction in two steps. The first step is to show that Algorithm 1 can
be reduced to an inefficient computation for low rank approximation for matrices. To this end, we
first prove Theorem 3, thus completing the existence clause Theorem 1(a).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Algorithm 2 CORESET-LOWRANK(A, k, ε)

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Algorithm 1 CORESET-LOWRANK(A, k, ε)

1: Input: A: A sparse n×d matrix
2: Input: k ∈ Z>0: the approximation rank
3: Input: ε ∈

(
0, 12
)
: the approximation error

4: Output: w ∈ [0,∞)n: non-negative weights
5: Compute UΣV T = A, the SVD of A
6: R← Σk+1:d,k+1:d

7: P ← matrix whose i-th row ∀i ∈ [n] is
8: Pi = (Ui,1:k, Ui,k+1:d · R

‖R‖F
)

9: X ← matrix whose i-th row ∀i ∈ [n] is
10: Xi = Pi/‖Pi‖F
11: w ← (1, 0, . . . , 0)
12: for i = 1, . . . ,

⌈
k2/ε2

⌉
do

13: j ← argmini=1,...,n{wXXi}
14: a =

∑n
i=1 wi(X

T
i Xj)

2

15: b =
1− ‖PXj‖2F +

∑n
i=1 wi‖PXi‖2F

‖P‖2F
16: c = ‖wX‖2F
17: α = (1− a+ b) / (1 + c− 2a)
18: w ← (1− α)Ij + αw
19: end for
20: return w

1

(a) 1/2: Initialization

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Algorithm 1 CORESET-LOWRANK(A, k, ε)

1: Input: A: A sparse n×d matrix
2: Input: k ∈ Z>0: the approximation rank
3: Input: ε ∈

(
0, 12
)
: the approximation error

4: Output: w ∈ [0,∞)n: non-negative weights
5: Compute UΣV T = A, the SVD of A
6: R← Σk+1:d,k+1:d

7: P ← matrix whose i-th row ∀i ∈ [n] is
8: Pi = (Ui,1:k, Ui,k+1:d · R

‖R‖F
)

9: X ← matrix whose i-th row ∀i ∈ [n] is
10: Xi = Pi/‖Pi‖F
11: w ← (1, 0, . . . , 0)
12: for i = 1, . . . ,

⌈
k2/ε2

⌉
do

13: j ← argmini=1,...,n{wXXi}
14: a =

∑n
i=1 wi(X

T
i Xj)

2

15: b =
1− ‖PXj‖2F +

∑n
i=1 wi‖PXi‖2F

‖P‖2F
16: c = ‖wX‖2F
17: α = (1− a+ b) / (1 + c− 2a)
18: w ← (1− α)Ij + αw
19: end for
20: return w

1

(b) 2/2: Computation

Proof of Theorem 3. Let ε = ‖∑n
i=1(1 −W 2

i,i)viv
T
i ‖. For every i ∈ [n] let ti = 1 −W 2

i,i. Set
X ∈ Rd×(d−k) such that XTX = I . Without loss of generality we assume V T = I , i.e. A = UΣ,
otherwise we replace X by V TX . It thus suffices to prove that

∣∣∑
i ti‖Ai,:X‖2

∣∣ ≤ 5ε ‖AX‖2.
Using the triangle inequality, we get

∣∣∣∣∣
∑

i

ti‖Ai,:X‖2
∣∣∣∣∣ ≤

∣∣∣∣∣
∑

i

ti‖Ai,:X‖2 −
∑

i

ti‖(Ai,1:k,0)X‖2
∣∣∣∣∣ (7)

+

∣∣∣∣∣
∑

i

ti‖(Ai,1:k,0)X‖2
∣∣∣∣∣ . (8)

We complete the proof by deriving bounds on (7) and (8), thus proving (5). For the complete proof,
please see Supplementary Material, Section B.

Together, Theorems 2 and 3 show that the error of the coreset is a 1 ± ε approximation to the true
weighted mean. By Theorem 3, we can now simply apply Algorithm 1 to the right hand side of (5)
to compute the reduction. The intuition for this inefficient reduction is as follows. We first compute
the outer product of each row vector x in the input matrix A ∈ R[n×d]. Each such outer products
xTx is a matrix in Rd×d. Next, we expand every such matrix into a vector, in Rd2 by concatenating
its entries. Finally, we combine each such vector back to be a vector in the matrix P ∈ Rn×d2 . At
this point the reduction is complete, however it is clear that this matrix expansion is inefficient.

The second step of the reduction is to transform the slow computation of running Algorithm 1 on the
expanded matrix P ∈ Rn×d2 into an equivalent and provably fast computation on the original set of
points A ∈ Rd. To this end we make use of the fact that each row of P is a sparse vector in Rd to
implicitly run the computation in the original row space Rd. We present Algorithm 2 and prove that
it returns the weight vector w=(w1, · · · , wn) of a (k, ε)-coreset for low-rank approximation of the
input point set P , and that this coreset is small, namely, only O(k2/ε2) of the weights (entries) in w
are non-zeros. Fig. 5 contains the pseudocode for Algorithm 2. Please see Supplementary Material,
Section D for a complete line-by-line analysis of Algorithm 2.

6 Evaluation and Experimental Results

The coreset construction algorithm described in Section 5 was implemented in MATLAB. We make
use of the redsvd package [12] to improve performance, but it is not required to run the system. We
evaluate our system on two types of data: synthetic data generated with carefully controlled param-
eters, and real data from the English Wikipedia under the “bag of words” (BOW) model. Synthetic
data provides ground-truth to evaluate the quality, efficiency, and scalability of our system, while
the Wikipedia data provides us with a grand challenge for latent semantic analysis computation.

For our synthetic data experiments, we used a moderate size sparse input of (5000×1000) to evaluate
the relationship between the error ε and the number of iterations of the algorithm N . We then
compare our coreset against uniform sampling and weighted random sampling using the squared
norms of U (A = UΣV T) as the weights. Finally, we evaluate the efficiency of our algorithm by

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Coreset size (number of points)
0 10 20 30 40 50 60

R
el

at
iv

e
er

ro
r

#10 -4

0

0.5

1

1.5

2

2.5

3

3.5

4

SVD Coreset
Uniform Random Sampling
Weighted Random Sampling

(a) Relative error (k = 10)

Coreset size (number of points)
0 10 20 30 40 50 60 70 80

R
el

at
iv

e
er

ro
r

#10 -4

0

1

2

3

4

5 SVD Coreset
Uniform Random Sampling
Weighted Random Sampling

(b) Relative error (k = 20)

Coreset size (number of points)
0 10 20 30 40 50 60 70 80 90 100

R
el

at
iv

e
er

ro
r

#10 -3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SVD Coreset
Uniform Random Sampling
Weighted Random Sampling

(c) Relative error (k = 50)

Number of iterations N
0 200 400 600 800 1000 1200 1400 1600 1800 2000

f(
N

)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A[5000x1000], sparsity=0.0333

f(N) = eps
f(N) = N eps
f(N) = N logN eps
f(N) = N2 eps
f(N) = f*(N)+C

(d) Synthetic data errors (e) Wikipedia running time (x-axis log scale)

Number of million points streamed
0 0.5 1 1.5 2 2.5 3 3.5

lo
g

10
 e

ps

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Wikipedia approximation log error

k = 1
k = 10
k = 100

(f) Wikipedia log errors

Figure 1: Experimental results for synthetic data (Fig. 1a–1d) and Wikipedia (Fig. 1e–Fig. 1f).

comparing the running time against the MATLAB svds function and against the most recent state
of the art dimensionality reduction algorithm [7]. Figure 1a–1d show the exerimental results. Please
see Supplementary Material, Section E for a complete description of the experiments.

6.1 Latent Semantic Analysis of Wikipedia

For our large-scale grand challenge experiment, we apply our algorithm for computing Latent Se-
mantic Analysis (LSA) on the entire English Wikipedia. The size of the data is n= 3.69M (docu-
ments) with a dimensionality d=7.96M (words). We specify a nominal error of ε=0.5, which is a
theoretical upper bound for N = 2k/ε iterations, and show that the coreset error remains bounded.
Figure 1f shows the log approximation error, i.e. sum of squared distances of the coreset to the sub-
space for increasing approximation rank k=1, 10, 100. We see that the log error is proportional to
k, and as the number of streamed points increases into the millions, coreset error remains bounded
by k. Figure 1e shows the running time of our algorithm compared against svds for increasing
dimensionality d and a fixed input size n=3.69M (number of documents).

Finally, we show that our coreset can be used to create a topic model of 100 topics for the entire
English Wikipedia. We construct the coreset of size N = 1000 words. Then to generate the topics,
we compute a projection of the coreset onto a subspace of rank k= 100. Please see Supplementary
Material, Section F for more details, including an example of the topics obtained in our experiments.

7 Conclusion

We present a new approach for dimensionality reduction using coresets. Our solution is general and
can be used to project spaces of dimension d to subspaces of dimension k < d. The key feature
of our algorithm is that it computes coresets that are small in size and subsets of the original data.
We benchmark our algorithm for quality, efficiency, and scalability using synthetic data. We then
apply our algorithm for computing LSA on the entire Wikipedia – a computation task hitherto not
possible with state of the art algorithms. We see this work as a theoretical foundation and practical
toolbox for a range of dimensionality reduction problems, and we believe that our algorithms will
be used to construct many other coresets in the future. Our project codebase will be open-sourced
upon acceptance of this paper, for reproducing the results and the benefit of the community.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

References
[1] D. Achlioptas and F. Mcsherry. Fast computation of low-rank matrix approximations. Journal of the ACM

(JACM), 54(2):9, 2007.

[2] S. Arora, E. Hazan, and S. Kale. A fast random sampling algorithm for sparsifying matrices. In Approx-
imation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 272–279.
Springer, 2006.

[3] J. Batson, D. A. Spielman, and N. Srivastava. Twice-ramanujan sparsifiers. SIAM Journal on Computing,
41(6):1704–1721, 2012.

[4] C. Carathéodory. Über den variabilitätsbereich der fourierschen konstanten von positiven harmonischen
funktionen. Rendiconti del Circolo Matematico di Palermo (1884-1940), 32(1):193–217, 1911.

[5] K. L. Clarkson. Coresets, sparse greedy approximation, and the frank-wolfe algorithm. ACM Transactions
on Algorithms (TALG), 6(4):63, 2010.

[6] K. L. Clarkson and D. P. Woodruff. Low rank approximation and regression in input sparsity time. In
Proceedings of the forty-fifth annual ACM symposium on Theory of computing, pages 81–90. ACM, 2013.

[7] M. B. Cohen, C. Musco, and J. W. Pachocki. Online row sampling. CoRR, abs/1604.05448, 2016.

[8] M. B. Cohen, J. Nelson, and D. P. Woodruff. Optimal approximate matrix product in terms of stable rank.
arXiv preprint arXiv:1507.02268, 2015.

[9] P. Drineas and A. Zouzias. A note on element-wise matrix sparsification via a matrix-valued bernstein
inequality. Information Processing Letters, 111(8):385–389, 2011.

[10] D. Feldman and M. Langberg. A unified framework for approximating and clustering data. In Proc. 41th
Ann. ACM Symp. on Theory of Computing (STOC), 2010. Manuscript available at arXiv.org.

[11] D. Feldman, M. Schmidt, and C. Sohler. Turning big data into tiny data: Constant-size coresets for k-
means, pca and projective clustering. Proceedings of ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2013.

[12] Google. redsvd. https://code.google.com/archive/p/redsvd/, 2011.

[13] N. P. Halko. Randomized methods for computing low-rank approximations of matrices. PhD thesis,
University of Colorado, 2012.

[14] M. Inaba, N. Katoh, and H. Imai. Applications of weighted voronoi diagrams and randomization to
variance-based k-clustering. In Proceedings of the tenth annual symposium on Computational geometry,
pages 332–339. ACM, 1994.

[15] M. Journée, Y. Nesterov, P. Richtárik, and R. Sepulchre. Generalized power method for sparse principal
component analysis. The Journal of Machine Learning Research, 11:517–553, 2010.

[16] C. Lanczos. An iteration method for the solution of the eigenvalue problem of linear differential and
integral operators. United States Governm. Press Office Los Angeles, CA, 1950.

[17] M. Langberg and L. J. Schulman. Universal ε approximators for integrals. Proceedings of ACM-SIAM
Symposium on Discrete Algorithms (SODA), 2010.

[18] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin, and M. Tygert. Randomized algorithms for the
low-rank approximation of matrices. Proceedings of the National Academy of Sciences, 104(51):20167–
20172, 2007.

[19] C. C. Paige. Computational variants of the lanczos method for the eigenproblem. IMA Journal of Applied
Mathematics, 10(3):373–381, 1972.

[20] C. H. Papadimitriou, H. Tamaki, P. Raghavan, and S. Vempala. Latent semantic indexing: A probabilistic
analysis. In Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles
of database systems, pages 159–168. ACM, 1998.

[21] R. Ruvrek, P. Sojka, et al. Gensimstatistical semantics in python. 2011.

[22] T. Sarlos. Improved approximation algorithms for large matrices via random projections. In Foundations
of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pages 143–152. IEEE, 2006.

[23] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file system. In Mass Storage
Systems and Technologies (MSST), 2010 IEEE 26th Symposium on, pages 1–10. IEEE, 2010.

[24] K. Varadarajan and X. Xiao. On the sensitivity of shape fitting problems. arXiv preprint arXiv:1209.4893,
2012.

[25] S. S. Vempala. The random projection method, volume 65. American Mathematical Soc., 2005.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Supplementary Material

A Proof of Lemma 1

Lemma 1. Let z ∈ Dn be a distribution over n unit vectors a1, · · · , an in Rd. For ε ∈ (0, 1), a
sparse weight vector w ∈ Dn of sparsity s ≤ 1/ε2 can be computed in O(nd/ε2) time such that

∥∥∥∥∥
n∑

i=1

zi · ai −
n∑

i=2

wi ai

∥∥∥∥∥
2

≤ ε. (9)

We note that the Caratheodory Theorem [4] proves Lemma 1 for the special case ε = 0 using only
d + 1 points. Our approach and algorithm can thus be considered as an ε-approximation for the
Caratheodory Theorem, to get coresets of size independent of d. Note that our Frank-Wolfe-style
algorithm might run more than d+ 1 or n iterations without getting zero error, since the same point
may be selected in several iterations. Computing in each iteration the closest point to the origin that
is spanned by all the points selected in the previous iterations, would guarantee coresets of size at
most d+1, and fewer iterations. Of course, the computation time of each iteration will also be much
slower. ’

Proof. We assume that
∑
i ziai = 0, otherwise we subtract

∑
j zjaj from each input vector ai. We

also assume ε < 1, otherwise the claim is trivial for w = 0. Let w ∈ Dn such that ‖w‖0 = 1, and
denote the current mean approximation by c =

∑
i wiai. Hence, ‖c‖2 = ‖ai‖ = 1.

The following iterative algorithm updates c in the end of each iteration until ‖c‖2 < ε. In the
beginning of the N th iteration the squared distance from c to the mean (origin) is

‖c‖22 ∈ [ε,
1

N
]. (10)

The average distance to c is thus
∑

i

zi‖ai − c‖22 =
∑

i

zi‖ai‖22 + 2cT
∑

i

ziai +
∑

i

zi‖c‖22 = 1 + ‖c‖22 ≥ 1 + ε ,

where the sum here and in the rest of the proof are over [n]. Hence there must be a j ∈ [n] such that

‖qj − c‖22 ≥ 1 + ε. (11)

Let r be the point on the segment between aj and c at a distance ρ := 1/‖aj − c‖2 from aj . Since
‖aj − r‖2 = ρ = ρ‖aj − 0‖2, and ‖aj − 0‖2 = 1 = ρ‖aj − c‖2, and ∠(0, aj , c) = ∠(c, aj ,0), the
triangle whose vertices are aj , r and 0 is similar to the triangle whose vertices are aj , 0, and c with
a scaling factor of ρ. Therefore,

‖r − 0‖2 = ρ · ‖0− c‖2 =
‖c‖2

‖qj − c‖2
. (12)

From (11) and (12), by letting c′ be the closest point to 0 on the segment between aj and c, we
obtain

‖c′‖22 ≤ ‖r‖22 =
‖c‖22

‖aj − c‖22
≤ ‖c‖

2
2

1 + ε
.

Combining this with (10) yields

‖c′‖22 ≤
1
N

1 + ε
≤

1
N

1 + 1
N

=
1

N + 1
.

Since c′ is a convex combination of aj and c, there is α ∈ [0, 1], such that c′ = αaj + (1 − α)c.
Therefore,

c′ = αaj + (1− α)
∑

i

wiai

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

and thus we have c′ =
∑
i w
′
iai, where w′ = (1 − α)w + αej , and ej ∈ Dn is the jth standard

vector. Hence, ‖w′‖0 = N + 1. If ‖c′‖22 < ε the algorithm returns c′. Otherwise

‖c′‖22 ∈ [ε,
1

N + 1
] (13)

We can repeat the procedure in (10) with c′ instead of c and N + 1 instead of N . By (29) N + 1 ≤
1/ε so the algorithm ends after N ≤ 1/ε iterations. After the last iteration we return the center
c′ =

∑n
i=1 w

′
iai so ∥∥∥∥∥

∑

i

(zi − w′i)ai
∥∥∥∥∥

2

2

= ‖c′‖22 ≤
1

N + 1
≤ ε.

B Proof of Theorem 3

Theorem 3 (Coreset for Low rank approximation). For every X ∈ Rd×(d−k) such that XTX = I ,
∣∣∣∣1−

‖WAX‖2
‖AX‖2

∣∣∣∣ ≤ 5

∥∥∥∥∥
n∑

i=1

viv
T
i −Wi,iviv

T
i

∥∥∥∥∥ . (14)

Proof of Theorem 3. Let ε = ‖∑n
i=1(1 −W 2

i,i)viv
T
i ‖. For every i ∈ [n] let ti = 1 −W 2

i,i. Set
X ∈ Rd×(d−k) such that XTX = I . Without loss of generality we assume V T = I , i.e. A = UΣ,
otherwise we replace X by V TX . It thus suffices to prove that

∣∣∣∣∣
∑

i

ti‖Ai,:X‖2
∣∣∣∣∣ ≤ 5ε ‖AX‖2. (15)

Using the triangle inequality, we get
∣∣∣∣∣
∑

i

ti‖Ai,:X‖2
∣∣∣∣∣ ≤

∣∣∣∣∣
∑

i

ti‖Ai,:X‖2 −
∑

i

ti‖(Ai,1:k,0)X‖2
∣∣∣∣∣ (16)

+

∣∣∣∣∣
∑

i

ti‖(Ai,1:k,0)X‖2
∣∣∣∣∣ . (17)

We complete the proof by deriving bounds on (16) and (17).

Bound on (16): It was proven in [1] that for every pair of k-subspaces S1, S2 in Rd there is u ≥ 0
and a (k − 1)-subspace T ⊆ S1 such that the distance from every point p ∈ S1 to S2 equals to its
distance to T multiplied by u. By letting S1 denote the k-subspace that is spanned by the first k
standard vectors of Rd, letting S2 denote the k-subspace that is orthogonal to each column of X ,
and y ∈ Rk be a unit vector that is orthogonal to T , we obtain that for every row vector p ∈ Rk,

‖(p,0)X‖2 = u2(py)2. (18)

After defining x = Σ1:k,1:ky/‖Σ1:k,1:ky‖, (16) is bounded by
∑

i

ti‖(Ai,1:k,0)X‖2 =
∑

i

ti · u2‖Ai,1:ky‖2

= u2
∑

i

ti‖Ai,1:ky‖2

= u2
∑

i

ti‖Ui,1:kΣ1:k,1:ky‖2

= u2‖Σ1:k,1:ky‖2
∑

i

ti‖(Ui,1:k)x‖2. (19)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

The left side of (19) is bounded by substituting p = Σj,1:k in (18) for j ∈ [k], as

u2‖Σ1:k,1:ky‖2 =

k∑

j=1

u2(Σj,1:ky)2 =

k∑

j=1

‖(Σj,1:k,0)X‖2

=

k∑

j=1

σ2
j ‖Xj,:‖2 ≤

d∑

j=1

σ2
d‖Xj,:‖2

= ‖ΣX‖2 = ‖UΣX‖2 = ‖AX‖2. (20)

The right hand side of (19) is bounded by
∣∣∣∣∣
∑

i

ti‖(Ui,1:k)x‖2
∣∣∣∣∣ =

∣∣∣∣∣
∑

i

ti(Ui,1:k)TUi,1:k · xxT
∣∣∣∣∣ =

∣∣∣∣∣xx
T ·
∑

i

ti(Ui,1:k)TUi,1:k

∣∣∣∣∣

≤ ‖xxT ‖ · ‖
∑

i

ti(Ui,1:k)TUi,1:k‖ (21)

≤ ‖
∑

i

ti(vi,1:k)T vi,1:k‖ ≤ ‖
∑

i

tiv
T
i vi‖ = ε (22)

where (21) is by the Cauchy-Schwartz inequality and the fact that ‖xxT ‖ = ‖x‖2 = 1, and in (22)
we used the assumption Ai,j = Ui,jσj = vi,j for every j ∈ [k].

Plugging (20) and (22) in (19) bounds (16) as

|
∑

i

ti‖(Ai,1:k,0)X‖2| ≤ ε‖AX‖2. (23)

Bound on (17): For every i ∈ [n] we have

‖Ai,:X‖2 − ‖(Ai,1:k,0)X‖2

= 2(Ai,1:k,0)XXT (0, Ai,k+1:d)
T + ‖(0, Ai,k+1:d)X‖2

= 2Ai,1:kX1:k,:(Xk+1:d,:)
T (Ai,k+1:d)

T + ‖(0, Ai,k+1:d)X‖2

= 2

k∑

j=1

Ai,jXj,:(Xk+1:d,:)
T (Ai,k+1:d)

T + ‖(0, Ai,k+1:d)X‖2

=

k∑

j=1

2σjXj,:(Xk+1:d,:)
T · ‖σk+1:d‖vi,j(vi,k+1:d)

T+

‖σk+1:d‖2‖(0, vi,k+1:d)X‖2. (24)

Summing this over i ∈ [n] with multiplicative weight ti and using the triangle inequality, will
bound (17) by

∣∣∣∣∣
∑

i

ti‖Ai,:X‖2 −
∑

i

ti‖(Ai,1:k,0)X‖2
∣∣∣∣∣

≤
∣∣∣
∑

i

ti

k∑

j=1

2σjXj,:(Xk+1:d,:)
T (25)

· ‖σk+1:d‖vi,j(vi,k+1:d)
T
∣∣∣

+

∣∣∣∣∣
∑

i

ti‖σk+1:d‖2‖(0, vi,k+1:d)X‖2
∣∣∣∣∣ . (26)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

The right hand side of (25) is bounded by
∣∣∣∣∣∣

k∑

j=1

2σjXj,:(Xk+1:d)
T · ‖σk+1:d‖

∑

i

tivi,j(vi,k+1:d)
T

∣∣∣∣∣∣

≤
k∑

j=1

2σj‖Xj,:Xk+1:d‖ · ‖σk+1:d‖‖
∑

i

tivi,jvi,k+1:d‖ (27)

≤
k∑

j=1

(εσ2
j ‖Xj,:‖2 +

‖σk+1:d‖2
ε

‖
∑

i

tivi,jvi,k+1:d‖2) (28)

≤ 2ε‖AX‖2, (29)

where (27) is by the Cauchy-Schwartz inequality, (28) is by the inequality 2ab ≤ a2 + b2. In (29)
we used the fact that

∑
i ti(vi,1:k)T vi,k+1:d is a block in the matrix

∑
i tiviv

T
i , and

‖σk+1:d‖2 ≤ ‖AX‖2 and
k∑

j=1

σ2
j ‖Xj,:‖2

= ‖Σ1:k,1:kX1:k,:‖2 ≤ ‖ΣX‖2 ≤ ‖AX‖2.
(30)

Next, we bound (26). Let Y ∈ Rd×k such that Y TY = I and Y TX = 0. Hence, the columns
of Y span the k-subspace that is orthogonal to each of the (d − k) columns of X . By using the
Pythagorean Theorem and then the triangle inequality,

‖σk+1:d‖2|
∑

i

ti‖(0, vi,k+1:d)X‖2| (31)

=‖σk+1:d‖2|
∑

i

ti‖(0, vi,k+1:d)‖2

−
∑

i

ti‖(0, vi,k+1:d)Y ‖2|

≤ ‖σk+1:d‖2|
∑

i

ti‖vi,k+1:d‖2| (32)

+ ‖σk+1:d‖2|
∑

i

ti‖(0, vi,k+1:d)Y ‖2|. (33)

For bounding (33), observe that Y corresponds to a (d− k) subspace, and (0, vi,k+1:d) is contained
in the (d−k) subspace that is spanned by the last (d−k) standard vectors. Using same observations
as above (18), there is a unit vector y ∈ Rd−k such that for every i ∈ [n] ‖(0, vi,k+1:d)Y ‖2 =
‖(vi,k+1:d)y‖2. Summing this over ti yields,

|
∑

i

ti‖(0, vi,k+1:d)Y ‖2| = |
∑

i

ti‖vi,k+1:dy‖2|

= |
∑

i

ti

d∑

j=k+1

v2i,jy
2
j−k| = |

d∑

j=k+1

y2j−k
∑

i

tiv
2
i,j |.

Replacing (33) in (31) by the last inequality yields

‖σk+1:d‖2|
∑

i

ti‖(0, vi,k+1:d)X‖2|

≤ ‖σk+1:d‖2(|
∑

i

tiv
2
i,d+1|+

d∑

j=k+1

y2j−k‖
∑

i

tiviv
T
i ‖) (34)

≤ ‖σk+1:d‖2(ε+ ε

d∑

j=k+1

y2j−k) ≤ 2ε‖AX‖2, (35)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Algorithm 1 CORESET-SUMVECS(A, ε)

1: Input: A: n input points a1, . . . , an in Rd
2: Input: ε ∈ (0, 1): the approximation error
3: Output: w ∈ [0,∞)n: non-negative weights
4: A← A−mean(A)
5: A← cA where c is a constant s.t. var(A) = 1
6: w ← (1, 0, . . . , 0)
7: j ← 1, p← Aj , J ← {j}
8: Mj =

{
y2 | y = A ·ATj

}
9: for i = 1, . . . , n do

10: j ← argmin {wJ ·MJ}
11: G←W ′ ·AJ where W ′i,i =

√
wi

12: ‖c‖ = ‖GTG)‖2F
13: c · p =

∑|J|
i=1Gp

T

14: ‖c− p‖ =
√

1 + ‖c‖2 − c · p
15: compp(v) = 1/‖c− p‖ − (c · p) /‖c− p‖
16: ‖c− c′‖ = ‖c− p‖ − compp(v)
17: α = ‖c− c′‖/‖c− p‖
18: w ← w(1− |α|)
19: wj ← wj + α
20: w ← w/

∑n
i=1 wi

21: Mj ←
{
y2 | y = A ·ATj

}

22: J ← J ∪ {j}
23: if ‖c‖2 ≤ ε then
24: break
25: end if
26: end for
27: return w

where (34) follows since
∑
i tiv

2
i,j is an entry in the matrix

∑
i tiviv

T
i , in (35) we used (30) and the

fact that ‖y‖2 = 1. Plugging (29) in (25) and (35) in(20) gives the desired bound on (17) as

|
∑

i

ti‖Ai,:X‖2 −
∑

i

ti‖(Ai,1:k,0)X‖2| ≤ 4ε‖AX‖2.

Finally, using (23) in (16) and the last inequality in (17), proves the desired bound of (15).

C Analysis of Algorithm 1

Algorithm 1 contains the full listing of the construction algorithm for the coreset for sum of vectors.

Input: A: n input points a1, . . . , an in Rd; ε > 0: the nominal approximation error.

Output: a non-negative vector w ∈ [0,∞)n of only O(1/ε2) non-zeros entries which are the non-
negative weights of the corresponding points selected for the coreset.

Analysis: The first step is to translate and scale the input points such that the mean is zero and the
variance is 1 (lines 4–5). After initialization (lines 6–8), we begin the main iterative steps of the
algorithm. First we find the index j of the farthest point from the initial point a1. The next point
added to the coreset is denoted by p = aj . Next we compute ‖c− p‖, the distance from the current
point p to the previous center c. In order to do this we compute G = W ′ · AJ where J is the set of
all previously added indices j, starting with the first point, and W ′ is defined in line 11. Note that G
also gives us the error of the current iteration, ε = trace(GGT) (line 23). Next we find the point c′
on the line from c to p that is closest to the origin, and find the distance between the current center
c and the new center c′ (lines 12–16). Finally, the ratio of distances between the current center,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Algorithm 2 CORESET-LOWRANK(A, k, ε)

1: Input: A: A sparse n×d matrix
2: Input: k ∈ Z>0: the approximation rank
3: Input: ε ∈

(
0, 12
)
: the approximation error

4: Output: w ∈ [0,∞)n: non-negative weights
5: Compute UΣV T = A, the SVD of A
6: R← Σk+1:d,k+1:d

7: P ← matrix whose i-th row ∀i ∈ [n] is
8: Pi = (Ui,1:k, Ui,k+1:d · R

‖R‖F)
9: X ← matrix whose i-th row ∀i ∈ [n] is

10: Xi = Pi/‖Pi‖F
11: w ← (1, 0, . . . , 0)
12: for i = 1, . . . ,

⌈
k2/ε2

⌉
do

13: j ← argmini=1,...,n{wXXi}
14: a =

∑n
i=1 wi(X

T
i Xj)

2

15: b =
1− ‖PXj‖2F +

∑n
i=1 wi‖PXi‖2F

‖P‖2F
16: c = ‖wX‖2F
17: α = (1− a+ b) / (1 + c− 2a)
18: w ← (1− α)Ij + αw
19: end for
20: return w

farthest point, and new center give us a value for α, the amount by which we update the coreset
weights (lines 17–20).

The algorithm then updates the recorded indices J , update the lookup table M of previously com-
puted row inner products for subsequent iterations, and repeat lines 10–26 until the loop terminates.
The terminating conditions depend on the system specification – we may wish to bound the error,
or the number of iterations. Moreover, if the update value α is below a specified threshold, we may
also terminate the loop if such threshold is lower than a desired level of accuracy.

D Analysis of Algorithm 2

Algorithm 2 contains the full listing of the construction algorithm for the coreset for low rank ap-
proximation.

Input: A: n input points a1, . . . , an in Rd; k ≥ 1: the approximation rank; ε > 0: the nominal
approximation error.

Output: a non-negative vector w ∈ [0,∞)n of only O(1/ε2) non-zeros entries which are the non-
negative weights of the corresponding points selected for the coreset.

Analysis: Algorithm 2 starts by computing the k-SVD of input matrix A (line 5). This is possible
because we use the streaming model, so that the input arrives in small blocks. For each block we
perform the computation to create its coreset. By merging the resulting coresets we preserve sparsity
and can aggregate the coreset forA. Lines 7–8 use the k-SVD of this small input block to restructure
the input matrixA into a combination of the columns ofA corresponding to its k largest eigenvalues
and the remaining columns of D, the singular values of A.

After initialization, we begin the main iterative steps of the algorithm. Note that lines 12–19 of
Algorithm 2 are heavily optimized but functionally equivalent to lines 9–27 of Algorithm 1 – the
end result in both cases is a computation of α at each iteration of the for loop, and an update to the
vector of weights w. First we find the index j of the farthest point from the initial point a1 (Line 13).
The next point is implicitly added to the coreset is by updating w, and in turn affects the next farthest
point as the computation wXXi is performed iteratively. The variables a, b, c implicitly compute
the distance from the current point p to the previous center q, the error of the current iteration ε, the
point on the line from the p to q that is closest to the origin, and the distance between the current

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Algorithm 3 MATRIXPRODUCTAPPROX(A, k, ε)
Algorithm 1: SVD-Coreset(A, ε, k)

Input: A matrix A ∈ Rn×d, and an error parameter ε > 0.
Output: A vector w ∈ [0,∞)n of O(k/ε2) non-zeros entries.

1 Xu ← kI
2 Xl ← −kI
3 δu ← ε+ 2ε2

4 δl ← ε− 2ε2

5 Set w ← (0, · · · , 0)
6 Set Z to be the d× d zero matrix.
7 for m← 1, 2, . . . to k/ε2 do
8 Set

Mu ← ((Xu + δuA
TA)− Z)−1.

9 Set

Ml ← (Z − (Xl + δlA
TA))−1.

10 for i = 1, 2, . . . to n do
11 Set ai ← a d× 1 column vector which is the ith row of A
12 Set

βl(i)←
aTi MlA

TAMlai
δltr(AMlATAMlAT)

− aTi Mlai

13 Set

βu(i)←
aTi MuA

TAMuai
δutr(AMuATAMuAT)

+ aTi Muai

14 Compute j ∈ [n] that maximizes βl(j)− βu(j)
15 Set wj ← 1

βu(j)

16 Set Z ← Z + w2
jaja

T
j

17 return w = (w1, · · · , wn)

1

Figure 2: Matrix product approximation algorithm [7]

center q and the new center q′. Finally, line 17 updates α and line 18 updates w using the new value
of α.

The algorithm terminates after k2/ε2 iterations, and we omit the explicit computation of ε since it
is implied in the guarantees proven in the following section. As in Algorithm 1, the terminating
conditions depend on the system specifications. We may wish to bound the error, or the number of
iterations, or the update value α.

E Experimental Results – Synthetic Data

Synthetic data provides us with a ground-truth to objectively evaluate the quality, efficiency, and
scalability of our system.

Approximation error. We carried out experiments on a moderate size sparse input of (5000×1000)
to evaluate the relationship between the error ε and the number of iterations of the algorithmN . for a
hyperplane coreset (i.e. k=d−1). Fig. 1d shows how the characteristic function of the approximation
error f(N) behaves with respect to increasing number of iterations N (normalized to N = n). Note
that three of the plotted functions f(N) converge as N increases, while the last one ramps up and
then increases linearly. From this we conclude that ε decreases at a true rate somewhere between the
rates of increase of f(N) = N logN and f(N) = N2. The true characteristic f∗(N) +C indicates
the theoretical breakpoint between increasing and decreasing error.

We then compare our coreset against uniform sampling and weighted random sampling, using the
squared norms of U (A = UΣV T) as the weights. Tests were carried out on a small subset of
Wikipedia (n= 1000, d= 257K) to ensure representative data structure. Figure 1a–1c shows the
results. As expected, approximation error decreases with coreset size, as well as the subspace rank.
(Note that since our algorithm is deterministic, there is zero variance in the approximation error.)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Approximation rank k
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
un

ni
ng

 ti
m

e
(m

in
)

0

100

200

300

400

500

600

700

800

A[10000x100000], sparsity=0.033

MATLAB svds
SVD Coreset

MATLAB
crashed

 SVD Coreset

 scales up arbitrarily

(a) Relative error (k = 10)

log number of input points (log N)
1 1.5 2 2.5 3 3.5 4 4.5 5

R
un

ni
ng

 ti
m

e
(m

in
s)

0

1

2

3

4

5

6

7

8
Synthetic data running times

SVD Coreset
Matrix Product Approximation

(b) Relative error (k = 20)

Figure 3: Fig. 3a shows the runtimes of our coreset compared against MATLAB svds. Fig. 3b shows the
runtimes of our coreset compared against the algorithm in [7].

Running time. We evaluate the efficiency of our algorithm by comparing the running time (coreset
construction) against the built-in MATLAB svds function and against the most recent state of the
art dimensionality reduction algorithm [7].

Algorithm 2 contains the pseudocode for our implementation of the algorithm presented in [7].
Fig. 3a shows the runtimes of our coreset compared against MATLAB svds. Fig. 3b shows the
running time of our algorithm compared against Algorithm 3 run on synthetic data for the same
set of input parameters. We used a fixed dimensionality d = 1000, approximation rank k = 100,
sparsity 10−6 and evaluated construction time for increasing input size N . The results are plotted as
a function of the log of the input size to show the order of magnitute difference in performance.

Besides the fact that our algorithm minimizes the Frobenius norm and support PCA, an important
advantage of our technique compared to existing coreset constructions is that it is much numerically
stable and faster in practice. For example, the result of [8] is based on the technique of [3]. This tech-
nique needs to compute many inverse of matrices during the computation, which makes it not only
less stable but also very inefficient. Indeed, we implemented the coreset construction of [8] and the
running time comparison to our algorithm for the same coreset size can be found in Fig. 3b. In con-
clusion, our algorithm is faster, numerically stable, and can be computed on practically unbounded
size input data.

F Experimental Results – Latent Semantic Analysis of Wikipedia

For these experiments we used three types of machines:

1. Regular desktop computer with quad-core Intel Xeon E5640 CPU @2.67GHz, 6GB RAM
(low spec).

2. Modern laptop with quad-core Intel i7-4500U CPU @1.8GHz, 16GB RAM (medium spec).

3. High-performance computing clusters on Amazon Web Services (AWS) as well as lo-
cal clusters, e.g. an EC2 c3.8xlarge machine with 32-core Intel Xeon E5-2680v2 vCPU
@2.8Ghz, 60GB RAM (high spec).

We compute the coreset using a buffer stream of size N/2, parallelized across 64 nodes on Ama-
zon Web Services (AWS) clusters. The 64 individual coresets are then unified into a single coreset.
Figure 1e shows the running time of our algorithm compared against svds for increasing dimen-
sionality d and a fixed input size n=3.69M (number of documents). Note that this is a log-scale plot
of dimensionality against running time, so the differences in performance represent orders of mag-
nitude. The desktop computer with 6GB RAM crashed for d=2000 and was omitted from the plot.
The same algorithm running on the cluster (blue plot) outperformed the laptop (red plot), which also
quickly ran out of memory. Comparing svds computation on AWS against our coreset (green plot)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

highlights the difference in performance for identical computer architectures. As the dimensionality
d increases, any algorithm dependent on d will eventually crash, given a large enough input.

We show that our coreset can be used to create a topic model of k=100 topics for the entire English
Wikipedia, with a fixed memory requirement and coreset size of just N=1000 words. We compute
the projection of the coresets on a subspace of rank k to generate the topics. Table 1 shows a
selection of 10 of the most highly weighted words from 4 of the computed topics. The total running
time, including coreset construction, merging and topic extraction was 140.66 min.

A cursory glance at the words suggests that the “themes” of these topics are (1) urban planning,
(2) economy and finance, (3) road safety, (4) entertainment. This serves as a qualitative proof of
concept that our system can produce meaningful results topics on very large datasets. We view this
result optimistically, as proof of concept that our system can be used to compute a topic model of the
English language. A more objective analysis would involve using a corpus of tagged documents as a
ground truth, projecting the corresponding vectors onto our topics, and comparing the classification
error against topics computed by other systems. This is the subject of our ongoing work.

Topic 1 Topic 2 Topic 3 Topic 4
US credit drivers comedy
highway risk distracted nominated
bridge plan phone actress
road union driver awards
river interest text television
traffic rating car episode
downtown earnings brain musical
bus capital accidents writing
harbor liquidity visual tv
street asset crash directing
· · · · · · · · · · · ·

Table 1: Example of the highest-weighted words from 4 topics of the k = 100 topic model of
Wikipedia computed by our algorithm

18

	Introduction
	Problem Formulation
	Related Work
	Key Contributions

	Technical Solution
	Proof of and , Theorem0 ??1 3

	Coreset for Sum of Vectors (k = 0)
	Coreset for Low Rank Approximation (k > 0)
	Evaluation and Experimental Results
	Latent Semantic Analysis of Wikipedia

	Conclusion

