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Abstract

Life-logging video streams, financial time series, and Twitter tweets are a
few examples of high-dimensional signals over practically unbounded time. We
consider the problem of computing optimal segmentation of such signals by a
k-piecewise linear function, using only one pass over the data by maintaining a
coreset for the signal. The coreset enables fast further analysis such as automatic
summarization and analysis of such signals.

A coreset (core-set) is a compact representation of the data seen so far, which
approximates the data well for a specific task – in our case, segmentation of the
stream. We show that, perhaps surprisingly, the segmentation problem admits core-
sets of cardinality only linear in the number of segments k and independent of both
the dimension d of the signal, and its number n of points. More precisely, we con-
struct a representation of size O(k/ε2) that provides a (1 + ε)-approximation for
the sum of squared distances to any given k-piecewise linear function. Moreover,
such coresets can be constructed in a parallel streaming approach. Our results rely
on a novel reduction of statistical estimations to problems in computational ge-
ometry. We empirically evaluate our algorithms on very large synthetic and real
data sets from GPS, video and financial domains, using 255 machines in Amazon
cloud.

1 Introduction
There is an increasing demand for systems that learn long-term, high-dimensional data
streams. Examples include video streams from wearable cameras, mobile sensors,
GPS, financial data and biological signals. In each, a time instance is represented as a
high-dimensional feature, for example location vectors, stock prices, or image content
feature histograms.

We develop real-time algorithms for summarization and segmentation of large streams,
by compressing the signals into a compact meaningful representation. This representa-
tion can then be used to enable fast analyses such as summarization, state estimation,
prediction. The proposed algorithms support data streams that are too large to store
in memory, afford easy parallelization, and generic in that they apply to different data
types and analyses. For example, the summarization of wearable video data can be
used to efficiently detect different scenes and important events, while collecting GPS
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data for citywide drivers can be used to learn weekly transportation patterns and char-
acterize driver behavior.

In this paper we use a data reduction technique called coresets [1, 9] to enable rapid
content-based segmentation of data streams. Informally, a coresetD is problem depen-
dent compression of the original data P , such that running algorithm A on the coreset
D yields a result A(D) that provably approximates the result A(P ) of running the
algorithm on the original data. If the coreset D is small and its construction is fast,
then computing A(D) is fast even if computing the result A(P ) on the original data is
intractable. See definition 2 for the specific coreset which we develop in this paper.

1.1 Main Contribution
The main contributions of the paper are: (i) A new coreset for the k-segmentation
problem (as given in Subsection 1.2) that can be computed at one pass over streaming
data (withO(log n) insertion time/space) and supports distributed computation. Unlike
previous results, the insertion time per new observation and required memory is only
linear in both the dimension of the data, and the number k of segments. This result is
summarized in Theorem 4, and proven in the supplementary material. Our algorithm
is scalable, parallelizable, and provides a provable approximation of the cost function.
(ii) Using this novel coreset we demonstrate a new system for segmentation and com-
pression of streaming data. Our approach allows realtime summarization of large-scale
video streams in a way that preserves the semantic content of the aggregated video
sequences, and is easily extendable. (iii) Experiments to demonstrate our approach
on various data types: video, GPS, and financial data. We evaluate performance with
respect to output size, running time and quality and compare our coresets to uniform
and random sample compression. We demonstrate the scalability of our algorithm by
running our system on an Amazon cluster with 255 machines with near-perfect paral-
lelism as demonstrated on 256, 000 frames. We also demonstrate the effectiveness of
our algorithm by running several analysis algorithms on the computed coreset instead
of the full data. Our implementation summarizes the video in less than 20 minutes,
and allows real-time segmentation of video streams at 30 frames per second on a single
machine.

Streaming and Parallel computations. Maybe the most important property of core-
sets is that even an efficient off-line construction implies a fast construction that can be
computed (a) Embarrassingly in parallel (e.g. cloud and GPUs), (b) in the streaming
model where the algorithm passes only once over the (possibly unbounded) streaming
data. Only small amount of memory and update time (∼ log n) per new point insertion
is allowed, where n is the number of observations so far.

1.2 Problem Statement
The k-segment mean problem optimally fits a given discrete time signal of n points by
a set of k linear segments over time, where k ≥ 1 is a given integer. That is, we wish to
partition the signal into k consecutive time intervals such that the points in each time
interval are lying on a single line; see Fig. 1(left) and the following formal definition.
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We make the following assumptions with respect to the data: (a) We assume the
data is represented by a feature space that suitably represents its underlying structure;
(b) The content of the data includes at most k segments that we wish to detect auto-
matically; An example for this are scenes in a video, phases in the market as seen by
stock behaviour, etc. and (c) The dimensionality of the feature space is often quite
large (from tens to thousands of features), with the specific choice of the features being
application dependent – several examples are given in Section 3. This motivates the
following problem definition.

Definition 1 (k-segment mean). A setP in Rd+1 is a signal ifP = {(1, p1), (2, p2), · · · , (n, pn)}
where pi ∈ Rd is the point at time index i for every i = [n] = {1, · · · , n}. For an inte-
ger k ≥ 1, a k-segment is a k-piecewise linear function f : R → Rd that maps every
time i ∈ R to a point f(i) in Rd. The fitting error at time t is the squared distance
between pi and its corresponding projected point f(i) on the k-segments. The fitting
cost of f to P is the sum of these squared distances,

cost(P, f) =

n∑
i=1

‖pi − f(i)‖22, (1)

where ‖ · ‖ denotes the Euclidean distance. The function f is a k-segment mean of P
if it minimizes cost(P, f).

Figure 1: For every k-segment f , the cost of input points (red) is approximated by the cost of the coreset
(dashed blue lines). Left: An input signal and a 3-segment f (green), along with the regression distance
to one point (dashed black vertical lines). The cost of f is the sum of these squared distances from all the
input points. Right: The coreset consists of the projection of the input onto few segments, with approximate
per-segment representation of the data.

For the case k = 1 the 1-segment mean is the solution to the linear regression prob-
lem. If we restrict each of the k-segments to be a horizontal segment, then each segment
will be the mean height of the corresponding input points. The resulting problem is
similar to the k-mean problem, except each of the voronoi cells is forced to be a single
region in time, instead of nearest center assignment, i.e. the regions are contiguous.

In this paper we are interested in seeking a compact representation D that approxi-
mates cost(P, f) for every k-segment f using the above definition of cost′(D, f). We
denote a set D as a (k, ε)-coreset according to the following definition,

Definition 2 ((k, ε)-coreset). Let P ⊆ Rd+1, k ≥ 1 be an integer, for some small
ε > 0. A set D, with a cost function cost′(·) is a (k, ε)-coreset for P if for every
k-segment f we have

(1− ε)cost(P, f) ≤ cost′(D, f) ≤ (1 + ε)cost(P, f).
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We present a new coreset construction with provable approximations for a family
of natural k-segmentation optimization problems. This is the first such construction
whose running time is linear in both the number of data points n, their dimensionality
d, and the number k of desired segments. The resulting coreset consists of O(dk/ε2)
points that approximates the sum of square distances for any k-piecewise linear func-
tion (k segments over time). In particular, we can use this coreset to compute the
k-piecewise linear function that minimize the sum of squared distances to the input
points, given arbitrary constraints or weights (priors) on the desired segmentation. Such
a generalization is useful, for example, when we are already given a set of candidate
segments (e.g. maps or distribution of images) and wish to choose the right k segments
that approximate the input signal.

Previous results on coresets for k-segmentation achieved running time or coreset
size that are at least quadratic in d and cubic in k [12, 11]. As such, they can be used
with very large data, for example to long streaming video data which is usually high-
dimensional and contains large number of scenes. This prior work is based on some
non-uniform sampling of the input data. In order to achieve our results, we had to
replace the sampling approach by a new set of deterministic algorithms that carefully
select the coreset points.

1.3 Related Work
Our work builds on several important contributions in coresets, k-segmentations, and
video summarization.
Approximation Algorithms. One of the main challenges in providing provable guar-
antees for segmentation w.r.t segmentation size and quality is global optimization. Cur-
rent provable algorithms for data segmentation are cubic-time in the number of desired
segments, quadratic in the dimension of the signal, and cannot handle both parallel and
streaming computation as desired for big data. The closest work that provides provable
approximations is that of [12].

Several works attempt to summarize high-dimensional data streams in various ap-
plication domains. For example, [19] describe the video stream as a high-dimensional
stream and run approximated clustering algorithms such as k-center on the points of
the stream; see [14] for surveys on stream summarization in robotics. The resulting
k-centers of the clusters comprise the video summarization. The main disadvantages
of these techniques are (i) They partition the data stream into k clusters that do not
provide k-segmentation over time. (ii) Computing the k-center takes time exponential
in both d and k [16]. In [19] heuristics were used for dimension reduction, and in [14] a
2-approximation was suggested for the off-line case, which was replaced by a heuristic
forstreaming. (iii) In the context of analysis of video streams, they use a feature space
that is often simplistic and does not utilize the large data available effciently. In our
work the feature space can be updated on-line using a coreset for k-means clustering
of the features seen so far.
k-segment Mean. The k-segment mean problem can be solved exactly using dynamic
programming [4]. However, this takes O(dn2k) time and O(dn2) memory, which is
impractical for streaming data. In [15, Theorem 8] a (1 + ε)-approximation was sug-
gested using O(n(dk)4 log n/ε) time. While the algorithm in [15] support efficient
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streaming, it is not parallel. Since it returns a k-segmentation and not a coreset, it can-
not be used to solve other optimization problems with additional priors or constraints.
In [12] an improved algorithm that takes O(nd2k + ndk3) time was suggested. The
algorithm is based on a coreset of size O(dk3/ε3). Unlike the coreset in this paper, the
running time of [12] is cubic in both d and k.

The result in [12] is the last in a line of research for the k-segment mean problem
and its variations; see survey in [11, 15, 13]. The application was segmentation of
3-dimensional GPS signal (time, latitude, longitude). The coreset construction in [12]
and previous papers takes time and memory that is quadratic in the dimension d and
cubic in the number of segments k. Conversely, our coreset construction takes time
only linear in both k and d.

While the recent results suggest running time that is linear in n, and space that is
near-logarithmic in n, the computation time is still cubic in k, the number of segments,
and quadratic in d, the dimension. Since the number k represents the number of scenes,
and d is the total number of possible features, such a running time is prohibitive.
Video Summarization One motivating application for us is online video summariza-
tion, where input video stream can be represented by a set of points over time in an
appropriate feature space. Every point in the feature space represents the frame, and
we aim to produce a compact approximation of the video in terms of this space and
its Euclidean norm. Application-aware summarization and analysis of ad-hoc video
streams is a difficult task with many attempts aimed at tackling it from various per-
spectives [5, 18, 2]. The problem is highly related to video action classification, scene
classification, and object segmentation [18]. Applications where life-long video stream
analysis is crucial include mapping and navigation medical / assistive interaction, and
augmented-reality applications, among others. Our goal differs from video compres-
sion in that compression is geared towards preserving image quality for all frames, and
therefore stores semantically redundant content. Instead, we seek a summarization ap-
proach that allows us to represent the video content by a set of key segments, for a
given feature space.

This paper is organized as follows. We begin by describing the k-segmentation prob-
lem and the proposed coresets, and describe their construction, and their properties in
Section 2. We perform several experiments in order to validate the proposed approach
on data collected from GPS and werable web-cameras, and demonstrate the aggre-
gation and analysis of multiple long sequences of wearable user video in Section 3.
Section 4 concludes the paper and discusses future directions.

2 A Novel Coreset for k-segment Mean
The key insights for constructing the k-segment coreset are: i) We observe that for the
case k = 1, a 1-segment coreset can be easily obtained using SVD. ii) For the general
case, k ≥ 2 we can partition the signal into a suitable number of intervals, and compute
a 1-segment coreset for each such interval. If the number of intervals and their lengths
are carefully chosen, most of them will be well approximated by every k-segmentation,
and the remaining intervals will not incur a large error contribution.

Based on these observations, we propose the following construction. 1) Estimate
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the signal’s complexity, i.e., the approximated fitting cost to its k-segment mean. We
denote this step as a call to the algorithm BICRITERIA. 2) Given an complexity mea-
sure for the data, approximate the data by a set of segments with auxiliary information,
which is the proposed coreset, denoted as the output of algorithm BALANCEDPARTITION.

We then prove that the resulting coreset allows us to approximate with guarantees
the fitting cost for any k-segmentation over the data, as well as compute an optimal
k-segmentation. We state the main result in Theorem 4, and describe the proposed
algorithms as Algorithms 1 and 2, we refer the reader to the supplementary material
for further details and proofs.

2.1 Computing a k-Segment Coreset
We would like to compute a (k, ε)-coreset for our data. A (k, ε)-coreset D for a set P
approximates the fitting cost of any query k-segment to P up to a small multiplicative
error of 1± ε. We note that a (1, 0)-coreset can be computed using SVD; See the sup-
plementary material for details and proof. However, for k > 2, we cannot approximate
the data by a representative point set (we prove this in the supplementary material).
Instead, we define a data structure D as our proposed coreset, and define a new cost
function cost′(D, f) that approximates the cost of P to any k-segment f .

The set D consists of tuples of the type (C, g, b, e). Each tuple corresponds to a
different time interval [b, e] in R and represents the set P (b, e) of points of P in this
interval. The set C is a (1, ε)-coreset for P (b, e).

We note the following: 1) If all the points of the k-segment f are on the same
segment in this time interval, i.e, {f(t) | b ≤ t ≤ e} is a linear segment, then the cost
from P (b, e) to f can be approximated well by C, up to (1+ ε) multiplicative error. 2)
If we project the points of P (b, e) on their 1-segment mean g, then the projected set L
of points will approximate well the cost of P (b, e) to f , even if f corresponds to more
than one segment in the time interval [b, e]. Unlike the previous case, the error here
is additive. 3) Since f is a k-segment there will be at most k − 1 time intervals that
will intersect more than two segments of f , so the overall additive error is small . This
motivates the following definition of D and cost′.

Definition 3 (cost′(D, f)). Let D = {(Ci, gi, bi, ei)}mi=1 where for every i ∈ [m] we
have Ci ⊆ Rd+1, gi : R→ Rd and bi ≤ ei ∈ R. For a k-segment f : R→ Rd and i ∈
[m] we say that Ci is served by one segment of f if {f(t) | bi ≤ t ≤ ei} is a linear seg-
ment. We denote by Good(D, f) ⊆ [m] the union of indexes i such that Ci is served by
one segment of f . We also define Li = {gi(t) | bi ≤ t ≤ ei}, the projection ofCi on gi.
We define cost′(D, f) as

∑
i∈Good(D,f) cost(Ci, f) +

∑
i∈[m]\Good(D,f) cost(Li, f).

Our coreset construction for general k > 1 is based on an input parameter σ > 0
such that for an appropriate σ the output is a (k, ε)-coreset. σ characterizes the desired
complexity of the approximation. The BICRITERIA algorithm, given as Algorithm 1,
provides us with such an approximation. Properties of this algorithms are described in
the supplementary material.

Theorem 4. Let P = {(1, p1), · · · , (n, pn)} such that pi ∈ Rd for every i ∈ [n]. Let
D be the output of a call to BALANCEDPARTITION(P, ε, σ), and let f be the output
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Algorithm 1: BICRITERIA(P, k)

Input: A set P ⊆ Rd+1 and an integer k ≥ 1
Output: An (O(log n), O(log n))-approximation to the k-segment mean of P .

1 if n ≤ 2k + 1 then
2 f := a 1-segment mean of P ;
3 return f ;

4 Set t1 ≤ · · · ≤ tn and p1, · · · , pn ∈ Rd such that P = {(t1, p1), · · · , (tn, pn)}
5 m← {t ∈ R | (t, p) ∈ P}
6 Partition P into 4k sets P1, · · · , P2k ⊆ P such that for every i ∈ [2k − 1]:

(i) | {t | (t, p) ∈ Pi} | =
⌊m
4k

⌋
, and (ii) if (t, p) ∈ Pi and (t′, p′) ∈ Pi+1 then t < t′.7

;8 for i := 1 to 4k do
9 Compute a 2-approximation gi to the 1-segment mean of Pi

10 Q := the union of k + 1 signals Pi with the smallest value cost(Pi, gi) among
i ∈ [2k].

11 h := BICRITERIA(P \Q, k); Repartition the segments that did not have a good
approximation

12 Set

f(t) :=

{
gi(t) ∃(t, p) ∈ Pi such that Pi ⊆ Q
h(t) otherwise

.

;13 return f ;

of BICRITERIA(P, k); Let σ = cost(f). Then D is a (k, ε)-coreset for P of size
|D| = O(k) ·

(
log n/ε2

)
, and can be computed in O(dn/ε4) time.

Proof. We give a sketch of the proof, which is given in Theorem 10 in the supplemen-
tary material, and accompanying theorems. Lemma 8 states that given an estimate σ
of the optimal segmentation cost, BALANCEDPARTITION(P, ε, σ) provides a (k, ε)-
coreset of the data P . This hinges on the observation that given a fine enough segmen-
tation of the time domain, for each segment we can approximate the data by an SVD
with bounded error. This approximation is exact for 1− segments (See claim 2 in the
supplementary material), and can be bounded for a k-segments because of the number
of segment intersections. According to Theorem 9 of the supplementary material, σ as
computed by BICRITERIA(P, k) provides such an approximation.

For efficient k-segmentation we run a k-segment mean algorithm on our small core-
set instead of the original large input. Since the coreset is small we can apply dynamic
programming (as in [4]) in an efficient manner. In order to compute an (1 + ε) ap-
proximation to the k-segment mean of the original signal P , it suffices to compute a
(1+ ε) approximation to the k-segment mean of the coreset, where cost is replaced by
cost′. However, since D is not a simple signal, but a more involved data structure, it is
not clear how to run existing algorithms on D. In the supplementary material we show
how to apply such algorithms on our coresets. In particular, we can run naive dynamic
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Algorithm 2: BALANCEDPARTITION(P, ε, σ)

Input: A set P = {(1, p1), · · · , (n, pn)} in Rd+1

an error parameters ε ∈ (0, 1/10) and σ > 0.
Output: A set D that satisfies Theorem 4.

1 Q := ∅; D = ∅ ; pn+1:= an arbitrary point in Rd ;
2 for i := 1 to n+ 1 do
3 Q := Q ∪ {(i, pi)}; Add new point to tuple
4 f∗ := a linear approximation of Q; λ := cost(Q, f∗)
5 if λ > σ or i = n+ 1 then
6 T := Q \ {(i, pi)} ; take all the new points into tuple
7 C := a (1, ε/4)-coreset for T ; Approximate points by a local

representation
8 g := a linear approximation of T , b := i− |T |, e := i− 1; save

endpoints
9 D := D ∪ {(C, g, b, e)} ; save a tuple

10 Q := {(i, pi)} ; proceed to new point

11 return D

programming [4] on the coreset and get a (1 + ε) approximate solution in an efficient
manner, as we summarize as follows.

Theorem 5. Let P be a d-dimensional signal. A (1+ε) approximation to the k-segment
mean of P can be computed in O (ndk/ε+ d(klog(n)/ε)

O(1)
)) time .

2.2 Parallel and Streaming Implementation
One major advantage of coresets is that they can be constructed in parallel as well as
in a streaming setting. The main observation is that the union of coresets is a coreset
— if a data set is split into subsets, and we compute a coreset for every subset, then
the union of the coresets is a coreset of the whole data set. This allows us to have
each machine separately compute a coreset for a part of the data, with a central node
which approximately solves the optimization problem; see [10, Theorem 10.1] for more
details and a formal proof. As we show in the supplementary material, this allows us
to use off-line coresets in the streaming and parallel model.

3 Experimental Results
We now demonstrate the results of our algorithm on four data types of varying length
and dimensionality. We compare our algorithms against several other segmentation
algorithms. We also show that the coreset effectively improves the performance of
several segmentation algorithms by running the algorithms on our coreset instead of
the full data.
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(a) Coreset size vs coreset error (b) (k, ε)-coreset size vs construc-
tion time

(c) Coreset dimensionality vs
coreset error

Figure 2: Figure 2a shows the coreset error (ε) decreasing as a function of coreset size. The dotted black
line indicates the point at which the coreset size is equal to the input size. Figure 2b shows the coreset
construction time in minutes as a function of coreset size. Trendlines show the linear increase in construction
time with coreset size. Figure 2c shows the reduction in coreset error as a function of the dimensionality of
the 1-segment coreset, for a fixed input size (note that in practice dimensionality is often reduced down to
R2.

3.1 Segmentation of Large Datasets
We first examine the behavior of the algorithm on synthetic data which provides us with
easy ground-truth, to evaluate the quality of the approximation, as well as the efficiency,
and the scalability of the coreset algorithms. We generate synthetic test data by drawing
a discrete k-segment P with k = 20, and then add Gaussian and salt-and-pepper noise.
We then benchmark the computed (k, ε)-coreset D by comparing it against piecewise
linear approximations with (1) a uniformly sampled subset of control pointsU and (2) a
randomly placed control points R. For a fair comparison between the (k, ε)-coreset D
and the corresponding approximations U,R we allow the same number of coefficients
for each approximation. Coresets are evaluated by computing the fitting cost to a query
k-segment Q that is constructed based on the a-priori parameters used to generate P .

Approximation Power: Figure 2a shows the aggregated fitting cost error for 1500
experiments on synthetic data. We varied the assumed k′ segment complexity. In the
plot we show how well a given k′ performed as a guess for the true value of k. As
Figure 2a shows, we significantly outperform the other schemes. As the coreset size
approaches the size P the error decreases to zero as expected.

Coreset Construction Time: Figure 2b shows the linear relationship between input
size and construction time of D for different coreset size. Figure 2c shows how a high
dimensionality benefits coreset construction. This is even more apparent in real data
which tends to be sparse, so that in practice we are typically able to further reduce the
coreset dimension in each segment.

Scalability: The coresets presented in this work are parallelizable, as discussed in
Section 2.2. We demonstrate scalability by conducting very large scale experiments
on both real and synthetic data, running our algorithm on a network of 255 Amazon
EC2 vCPU nodes. We compress a 256,000-frame bags-of-words (BOW) stream in
approximately 20 minutes, representing an almost-perfect scalability. For a comparable
single node running on the same data dataset, we estimate a total running time of
approximately 42 hours.
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Figure 3: Segmentation from Google Glass. Black vertical lines present segment boundaries, overlayed on
top of the bags of word representation. Icon images are taken from the middle of each segment.

3.2 Real Data Experiments
We compare our coreset against uniform sample and random sample coresets, as well as
two other segmentation techniques: Ramer-Douglas-Peucker (RDP) algorithm [20, 8],
and the Dead Reckoning (DR) algorithm [23]. We also show that we can combine
our coreset with segmentation algorithms, by running the algorithm on the coresets
itself. We emphasize that segmentation techniques (RDP, DR) were purposely chosen
as simple examples and are not intended to reflect the state of the art – the point is to
demonstrate how the k-segment coreset can be used to improve on any given algorithm.

To demonstrate the general applicability of our techniques, we run our algorithm
using financial (1D) time series data, as well as GPS data (2D). For the 1D case we
use Bitcoin price data from the Mt.Gox Bitcoin exchange. Bitcoin is of general interest
because its price has grown exponentially with its popularity in the past two years.
Bitcoin has also sustained several well-documented market crashes [3],[6] that we can
relate to our analysis. For the 2D case we use GPS data from a taxi fleet of 343 taxis
in San Francisco. This is of interest because a taxi-route segmentation has an intuitive
spacial interpretation that we can easily evaluate, and on the other hand GPS data forms
an increasingly large information source which we are interested of analysing.

Figure 4a shows the results for the Bitcoin data. Notable market crash events are
highlighted by local price highs (green) and lows (red). We observe that running the
simple DR algorithm on our k-segment coreset to compute a segmentation captures
these events quite well. Figures 4b,4c show example results for a single taxi. Again,
we observe that computing a DR segmentation produces segments with a meaningful
spatial interpretation. Figure 5 shows a plot of coreset errors for the first 50 taxis
(right), and the table gives a summary of experimental results for the Bitcoin and GPS
experiments.

3.3 Semantic Video Segmentation
In addition, we demonstrate use of the proposed coreset for video streams summariza-
tion and compression. While different choices of frame representations for video sum-
marization are available [22, 17, 18], we used BOWs based on color-augmented SURF
features, quantized into 5000 visual words, trained on the ImageNet 2013 dataset[7].
The resulting signals are compressed in a streaming coreset. Computation in on a single
core runs at 6Hz; A parallel version achieves 30Hz on a single i7 machine, processing
6 hours of video in 4 hours on a single machine, i.e. faster than real-time.

In Figure 3 we demonstrate segmentation of a video feed taken from Google Glass
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(see the supplementary video for sample segments). We visualize the BOWs, as well
as the segments suggested by the k-segment mean algorithm [4] run on the coreset.
Inspecting the results, most segment transitions occur at scene and room changes.

We note that computing the optimal segmentation cannot be done in real-time. We
note that semantic segmentation of video is still unsolved and in particular, it can not
be done in real-time. Our method for segmentation runs in real-time and can further
be used to automatically summarize the video by associating representative frames
with segments. To evaluate the “semantic” quality of our segmentation, we compared
the resulting segments to uniform segmentation by contrasting them with a human
annotation of the video into scenes. Our method gave a 25% improvement (in the
Rand index [21]) over a 3000 frames sequence.

Apr−2013 Jul−2013 Oct−2013 Jan−2014
−200

0

200

400

600

800

1000

1200

1400

Date

P
ric

e 
(U

S
D

/B
T

C
)

MTGOXUSD

 

 

MTGOXUSD D1 closing price
Dead Reckoning segmentation
Local price maxima
Local price minima

(a) MTGOXUSD daily price
data

Time

La
tit

ud
e 

(t
op

),
 L

on
gi

tu
de

 (
bo

tto
m

)

 

 

X1: Latitude (top)
X2: Longitude (bottom)
Dead Reckoning segmentation

(b) GPS taxi data

37.6 37.65 37.7 37.75 37.8 37.85
−122.47

−122.46

−122.45

−122.44

−122.43

−122.42

−122.41

−122.4

−122.39

−122.38

−122.37

Latitude (X1)

Lo
ng

itu
de

 (
X

2)
(c) GPS taxi data

Figure 4: (a) shows the daily Bitcoin price data from 2013 on, overlayed with a DR segmentation computed
on our coreset. The red/green triangles indicate prominent market events. (b) 4c shows normalized GPS data
overlayed with a DR segmentation computed on our coreset. (c) shows a lat/long plot (right) demonstrating
that the segmentation yields a meaningful spacial interpretation.

Average ε Bitcoin data GPS data
k-segment coreset 0.0092 0.0014

Uniform sample coreset 1.8726 0.0121
Random sample coreset 8.0110 0.0214

RDP on original data 0.0366 0.0231
RDP on k-segment 0.0335 0.0051

DeadRec on original data 0.0851 0.0417
DeadRec on k-segment 0.0619 0.0385
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Figure 5: Table: summary of experimental results with Bitcoin and GPS data. Plot: visualization
of GPS error and standard deviation results for the first 50 taxis.

4 Conclusions
In this paper we demonstrated a new framework for segmentation and event summa-
rization of video data from robot cameras. We have shown the effectiveness and scala-
bility of the algorithms proposed, and its applicability for large distributed video anal-
ysis with multiple devices. In the context of video processing, we demonstrate how
using the right framework for analysis and clustering, even relatively straightforward
representations of image content lead to a meaningful and reliable segmentation of
video streams at real-time speeds.
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