
Visual Precis Generation using Coresets

Rohan Paul Dan Feldman Daniela Rus Paul Newman

Abstract— Given an image stream, our on-line algorithm will
select the semantically-important images that summarize the
visual experience of a mobile robot. Our approach consists
of data pre-clustering using coresets followed by a graph
based incremental clustering procedure using a topic based
image representation. A coreset for an image stream is a
set of representative images that semantically compresses the
data corpus, in the sense that every frame has a similar
representative image in the coreset. We prove that our algo-
rithm e�ciently computes the smallest possible coreset under
natural well-defined similarity metric and up to provably small
approximation factor. The output visual summary is computed
via a hierarchical tree of coresets for di↵erent parts of the
image stream. This allows multi-resolution summarization (or a
video summary of specified duration) in the batch setting and a
memory-e�cient incremental summary for the streaming case.

I. Introduction
Imagine a mobile robot operating for long periods, day-

after-day accruing visual information. Given an incessant
stream of images recording its traversal, how does a robot
summarize its visual experience capturing what was ordinary
as well as perplexing? We explore the task of extracting
a set of canonical images that provide a succinct topical
representation of its operating workspace. In particular, we
address the problem of summarizing continuous or incre-
mental image streams possessing high degree of redundancy
and perceptual similarity. This scenario is common for robot
applications requiring high fidelity or large scale appearance-
based mapping such as [1] and [2]. A direct organization
of such data streams using proposed approaches like [3]
and [4] can quickly become impractical even for moderate
sized traversal. Further, due to the nature of data collection in
real-life robotic applications, we seek an incremental online
approach that scales well with time and saliency of data.

In this work, we present a hierarchical data-driven,
algorithm that combines a semantic-compression or pre-
clustering with a graph organization algorithm for generating
visual summaries. Additionally, we leverage probabilistic
topic models providing a thematic representation for image
data [3]. The central idea is to compute online a semantically
compressed subset, called coreset, for the image stream,
possessing the property that every frame in the original
stream has a similar representative in the coreset (under
natural definitions of similarity). As computing the smallest
possible coreset is NP-hard, we present an e�cient algorithm
for computing coresets whose size larger than the optimal by
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a provable small factor using memory poly-logarithmic in the
size of the input. Importantly, the result obtained by running a
summarisation algorithm on the coreset yields approximately
the same results as running on the original stream. Since
the coreset is significantly smaller than the original input,
the overall running time is expected to be faster. Further,
coresets can be constructed e�ciently in merge-reduce style
which allows our system to run in the streaming setting as
well as in parallel. Combined with the incremental graph
clustering, coreset trees allow generation of multi-resolution
summaries as well as incremental summaries for streaming
data with bounded memory use, see Figure 1. In summary,
the main contributions of this paper are:
• An algorithm for near linear-time construction of small

coresets for star clustering based summarisation in batch
as well as the streaming setting.

• Theoretical guarantees for the existence, size and con-
struction of coresets as defined above, and a proof that
the star clustering algorithm applied to a coreset is
within epsilon approximation to the equivalent result on
the full data set.

• Construction of coreset trees in a map-reduce style
combined with the incremental star clustering algorithm,
yielding multi-resolution summaries in the o✏ine case
and bounded memory use summaries for the incremental
case.

• Evaluation of the technique on publicly available data
sets from a mobile platform demonstrating significant
timing speed-ups with minimal or no loss of perfor-
mance with summaries on coresets.

This paper is structured as follows. The next section
reviews related e↵orts. Section III discusses image represen-
tation as a point in a low-dimensional topic space and the
incremental star clustering approach [3]. Section IV presents
the construction algorithm and theoretical guarantees for
coresets. Section V discusses the multi-resolution and in-
cremental summary generation. The experimental evaluation
appears in Section VI and Section VII concludes this paper.

II. RelatedWork
Within mobile robotics, Girdhar and Dudek [4] extract

k-most novel images from a visual map using set-theoretic
surprise and bag-of-words image model. In [5] they used a
classic 2-approximation for the k-center problem in order
to extract such images. However, they could not obtain
a provably correct streaming version for their algorithm
and it is not clear how to run the algorithm in parallel.
Our paper deals with these issues using coresets and their
ability to run in a merge-and-reduce fashion. In addition,
the guarantee of our compression is (1 + ") approximation



Fig. 1: Visual summary computed on a binary coreset tree. The figure shows three highest levels with leaf size 300 on the New College data set.
Examine the lowest level (from left to right), the initial summaries consist of representative images from the cloisters area leading into the quad section.
Later summaries contain images from the parklands, car park before returning to the cloisters area. Summary at the parent level is computed by merge-
reduce operation on coresets at the lower level, representing scenes from a larger traversal sequence. This allows multi-resolution summaries in the batch
setting and memory e�cient summarization in the streaming setting.

rather than 2. Unlike previous algorithms that take k as the
input parameter, our main algorithm gets the error parameter
as input and computes the appropriate k that achieves this
bound. Ranganathan et. al. [6] use Bayesian surprise for
identifying salient landmarks for topological mapping with
vision and laser features. Konolige et. al. [7] present view
based maps, an online mapping technique with stereo data
where the map is pruned by keyframe extraction using a
distance-based heuristic scaling linearly with map length.

The existence and properties of coresets has been actively
studied within computational geometry. The problem of
computing an r-coreset for a set of points in Rd is closely
related to the classic k-center problem [10], where we wish to
minimize the maximum distance from a set of n clients to a
set of k servers. Gonzalez [11] suggested a 2-approximation
for the k-center problem that takes time O(nk). Exact or
even (1 + ")-approximations to these optimization problems
generally require exponential computation time in k and
have given rise to many approximation methods including
coresets, or sparse representative sets [12]. This paper uses
the o↵-line coreset from [13] and the streaming framework
from [14], using logO(d) n memory and update time per point,
where the error " and the number of centers k are constants.

III. Visual Summary Generation

We present a brief overview of the visual summarisation
system used in this work [3]. For a mobile robot continually
accruing images, the task is to produce a story board of
canonical images summarizing the robot’s visual experience.
It captures the ordinary as well as novel appearances and
evolves incrementally with acquired data.

To reduce the dimension of the Euclidean space that
contain the images, we use probabilistic topic models as
described next.

A. Topic Space Representation

An acquired image is described as a vector of visual
words [15] and further encoded as a mixture of latent visual

topics [16], leading to a thematic representation in topic
vector space. Topics are distributions over visual words
and probabilistically capture co-occurring features. Topic
distributions are estimated once o✏ine from a large corpus.
A new image can be situated in the thematic model by
estimating its topic proportions conditioned on the learnt
topic distributions. By mapping images to a low-dimensional
thematic representation, images with common topics can get
associated even if they have few words in common. Topic
models based on Latent Dirichlet Allocation [16] are used
for estimating the topic distributions and topic proportions
per image vector. Inference is carried out using an MCMC
Gibbs sampling procedure [17] in the state space of topic
labels for observed visual words.

B. Incremental organisation using Star Clustering

After obtaining a suitable representation of images in topic
space, the collected imagery is organised incrementally using
an e�cient graph clustering technique. For each cluster in
the graph, the cluster center acts as its exemplar. The set
of cluster centers forms a visual summary of the robot’s
experience. The graphical organisation evolves over time
as new imagery is collected, yielding an ever-improving
workspace summary.

The star clustering algorithm [18] is used for topic-driven
clustering. The algorithm aims to maximise similarity within
intra-cluster elements using the cosine similarity metric. The
number of clusters is not specified a-priori. Instead, it is
naturally induced from the desired intra-cluster similarity,
�. Procedurally, the star algorithm constructs a pairwise
similarity graph thresholded on the similarity � specified.
The thresholded graph is covered by a minimum cover of
maximally sized star subgraphs containing a central vertex
linked to satellite vertex nodes. The star cover can be
computed o✏ine for static data as a greedy cover on the
thresholded graph as well as online for dynamic data (inser-
tions and deletions) with potential re-arrangement of existing
stars [18]. The resulting cover obtained using incremental



approach is equivalent to the o✏ine cover.
In essence, the image corpus is represented as points on

a unit sphere. The similarity between two points p, q on the
sphere of angle ✓ between them is defined to be cos(p, q) :=
|cos(✓)|. The algorithm seeks the minimum number of centers
or stars such that every image point is associated with a
center with similarity at least �, for a given threshold � > 0.

C. Scalability of Summarisation using Star Clustering
While we can run a summarisation system based only on

the star algorithm and the topic model, the running time is
dominated by the graph clustering algorithm that scales as
O(n2log2n) for a graph of n vertices. This can be prohibitive
for real applications such as summarisation of large scale
topological maps [19] or high frame-rate data sets [20] with
overlaps and redundancy. In this work, we develop a scalable
data-driven approach for summarisation. Instead of sending
all collected imagery for star organisation, a pre-clustering
or data reduction step is undertaken before running star
organisation only on the representative samples. The central
idea is to e�ciently extract a small representative coreset
from a given image corpus that further guarantees that any
star clustering result obtained using the coreset is a bounded
approximation to the equivalent result expected on the entire
data set, which we discuss next.

IV. Coresets and Semantic Compression
In this section, we introduce coresets for visual summaries.

We present a polynomial time algorithm for extracting core-
sets and provide theoretical guarantees for existence. We
prove that the result of the star clustering algorithm on the
coreset is within a provably close bound to the equivalent
result on the full data set. E�cient construction of coresets
in a map-reduce style is discussed in the following section.

A. Coreset Construction
A coreset can be considered a semantic compression of the

data. Formally, we model every image in the streaming video
as a point in a low d-dimensional topic space. A coreset is
defined as:

Definition 4.1: For a given threshold r > 0, a set C is
an r-coreset for the set P of points (frames, images) seen so
far in a stream, if each p 2 P has a representative c in C of
Euclidean distance at most r, i.e, dist(p, c)  r.

The coreset construction algorithm is given in Algo-
rithm 1. Our coreset algorithm computes r-coreset of size
that is larger by a small factor of compared to the smallest
possible r-coreset of the stream in every given moment as
summarised in the following theorem:

Theorem 4.2: Let P be a set of n points in Rd. Let r > 0,
and let k = k(P, r) denote the size of the smallest r-coreset
for P. Then Algorithm 1 returns, with probability at least
1 � 1/n, an "r-coreset C for P of size |C|= O(k log3 n/"d).
The running time is (nk + k/"d) · (log n)O(1).

Note that since two points on the unit sphere that are very
close to each other, also has small angle between them, this
includes the optimisation function of the star algorithm as
follows.

Algorithm 1: Eps-Coreset(P, k, ")
Input: A set P ✓ Rd, an integer k � 1 and an error

parameter " � 0.
Output: A set C ✓ P that satisfies Theorem 4.2.

1 C  ;
2 while |P|� 1 do
3 n |P|
4 Pick a uniform random sample of

⇠
⇥(k log2 n)
"2

⇡
i.i.d.

points from P
5 Set Q to be the dn/2e points p 2 P with the smallest

value dist(p, S )
6 Set r  dist(Q, S ) = maxp2Q dist(p, S )
7 for each s 2 S do
8 Gs  a squared grid of side length 2r that is

centered at s and contains cells with side length
"r

9 for each cell � of Gs do
10 q an arbitrary point in �
11 C  C [ {q}
12 P P \ Q
13 return C

Algorithm 2: r-coreset(P, r, ")
Input: A set P ✓ Rd, a threshold r � 1, and error

parameter " > 0.
Output: A set Ck ✓ P that satisfies Proposition 4.4.

1 imin  1; imax  n
2 while imin  imax do

3 k  
⇠ imin + imax

2

⇡

4 Ck  Eps-Coreset(P, k, ")
/* See Algorithm 1 */

5 rk  dist(P,Ck)
/* Where dist(P,Ck) := maxp2P minc2Ck kp � ck.
*/

6 if rk > r then
7 imax  k � 1
8 else
9 imin  k + 1

1111 return Ck

Observation 4.3: Let P be a set of n points in Rd, and
�, " > 0. Suppose that S is a set of star images (points on the
unit sphere), that has similarity of at least � to each image
in P. Then S has similarity of at least �(1�") to each point
in an ("�)-coreset of P.

Our algorithm computes r-coreset of size that is larger
by a factor of � = (log n)O(d) compared to the smallest
possible r-coreset of the stream in every given moment.
While theoretical lower bounds [21], [22] imply that sig-
nificantly better approximations do not exist, we show that
our implementation yields much better approximation than
� in practice. This is probably due to the fact that real video
streams contain much more structure than the worst case (and



(a) Uniform random sampling
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(d) ✏-grid construction

 

 

 

 

   

 

    

 

 

 

 

   

 

   

 

 

 

 

   

(e) Select representative points (f) Remove and recurse

Fig. 2: Corset construction. An illustration of Algorithm 1 with an example data set. (a) A small uniform random sample S (red points) from the input
points P (in yellow) is picked (line 3). (b) For each input point p 2 P (in yellow) the distance dist(p, S ) to its nearest sample point in S (red) is determined
(line 4). (c) The subset Q containing half of the input points closest to the red sample points in S is computed (line 4). (d) A single representative point
(in red) from each cell in the grid Gs is added to the output coreset (lines 7–9). (e) The grid Gs is computed and the coreset C (in red) is updated for
each cluster of input points (blue) that were closest to the same sample point (in yellow) see (lines 6– 10). (f) The algorithm is repeated recursively from
(a), with the remaining points P \ Q (that were not covered by the grids) as the input (lines 1–11).

syntectic) examples that are used in the analysis.
For example, P is a coreset of itself for every r � 0.

However, in order to get an e�cient compression for P, we
wish to compute a small r-coreset for P; see Fig. 3(a). In
other words, we wish to cover the points of P by a small
number of balls, each of radius r. The centers of these balls
will be the desired r-coreset. Given a set of centers C ✓ Rd,
we denote the needed radius to cover P by balls that are
centered at these centers as

dist(P,C) := max
p2P

dist(p,C) = max
p2P

min
c2C

dist(p, c).

Since the coreset size is only poly-logarithmic in n,
running the star algorithm on the coreset would also take
poly-logarithmic time. Since the coreset construction takes
time linear in n, the overall running time on the coreset is
thus linear in n, rather than O(n2 log2 n).

B. Overview of Algorithm
Figure 2(a) illustrates the key stages of the coreset con-

struction algorithm, Eps-Coreset(P, k, "). The algorithm gets
as input a set P of n points in Rd, the size k = k(r) of the
smallest r-coreset for P, and " > 0. It returns an ("r)-coreset
C ✓ P that satisfies Theorem 4.2.

We first pick a uniform random sample S of ⇥(k log2 n/"2)
points from P; see Fig. 2(a). Next, we determine the set
Q of the half closest input points to S and remove them
from P; see Fig. 2(b)-2(c). The next steps compute semantic
compression CQ for the set Q.

Let r = dist(Q, S ) denote the maximum distance from a
point in Q to its closest point in S . For each s 2 S , construct
a square grid Gs that is centered at s. The side length of Gs
is 2r and each of its cells is a square whose side length is

"r; see Fig 2(d). Hence, there are O(1/"d) squares in Gs and
the union of the grids covers Q.

For every s 2 S , pick a representative point p 2 Q
from each cell in Gs. Hence, every point of Q has a
representative at distance of at most

p
d"r, so the union CQ

of representatives is an ("r
p

d)-coreset for Q; see Fig. 2(e)
We now remove Q from P, and recursively compute

coresets for the rest of the points by running the algorithm
again for the remaining set of points P \ Q instead of P;
see Fig. 2(f). We repeat to run iterations until there are no
points left in P. The algorithm returns C0 =

S
CQ, the union

of coresets that were constructed during all the iterations.
Note that Algorithm 1 requires k the size of the smallest

possible coreset as an input. This is obtained via a binary
search on the value of k using Algorithm Algorithm 2. In
order to convert the coreset for k-center into an r-coreset,
we run a binary search on the value of k using Algorithm 2.
We discuss this in the next sub-section.

C. From k-Center to Coresets

The problem of computing the smallest r-coreset is a
variant of the well known k-center problem, where, for a
given integer k, we wish to cover P by k identical balls whose
radius is minimal. That is, compute a set that minimizes
dist(P,C) over every set C ✓ Rd of size |C|= k. Suppose that
the optimal (smallest) r-coreset has size k. That is, k is the
minimum number of balls of radii r that are needed to cover
P. Hence, the smallest radii that is needed to cover P by k
balls is at most r. In particular, for the k-center C⇤ of P we
have dist(P,C)  r, implying that C⇤ is an r-coreset for P.

From the previous paragraph, we conclude that given the
size k of the smallest r-coreset, the k-center C⇤ of the input



 

 
 

   

 

 
 

 

 
 

 

 
 

   

 
 
 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

(a) Optimal coreset

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

  

 
 

 
 

 

   

 

 

 

 

 
 

   

 

 
 

 
 

 

 
 

   
 

 
 

 

 

 

 

 
 

 

 

 

 

 

(b) ↵-approximation

 

 
 

 
 

 

 

 

 

 

 
 

 

 

  

 

 
 

   

 

 

  

 
 

 

 
 

 

 
 

   

 

 
 

 
 

 

 
 

   
 

 
 

 

 

 

 

 
 

 

 

 

 

 

(c) (↵, �)-approximation

Fig. 3: Optimal coresets and approximations. (a) The smallest r-coreset C⇤ is the minimum number k(r) of balls of radii r that are needed to cover the
input points in Rd . The points are on the plane (d = 2), and the k(r) = 2 centers C⇤ = {c1, c2} of the balls are red. The radius of each ball is r = dist(P,C⇤).
A set C of centers is an: (b) ↵-approximation for the smallest r-coreset C⇤ if it has the same size |C|= |C⇤ |= k(r) as the smallest r-coreset, but the maximum
distance from each point to its closest center in C is only larger by a factor of at most ↵, i.e, C is an ↵r-coreset. In the general case, ↵ cannot be smaller
than one. Each of the |C|= 2 balls around the red points has radius at most ↵r. (c) (↵, �)-approximation for the smallest r-coreset C⇤ if it consists of more
centers than C⇤ by a factor of �, and the maximum distance between an input point to its center is only ↵r, i.e., C is an ↵r-coreset of size at most � · |C⇤ |.
Here |C|= 4 = �|C⇤ | so � = 2. Since C uses more centers than the smallest r-coreset C⇤, it might be that ↵ ⌧ 1.

set is the desired coreset. Since we do not know the value
of k in advance. Instead, we can simply compute the k-
center Ck of P for all the possible values of k from 1 till
n, and return the smallest k such that dist(P,Ck)  r. A
better implementation would be to use the fact that dist(P,Ck)
can only decrease with larger values of k, and therefore
use binary search over k, as shown in Algorithm 2 that
evaluate the k-center for only O(log n) number of iterations.
We summarize this result in Proposition 4.4.

Proposition 4.4: Let C⇤ denote the k-center of P. Suppose
that for every k � 1, Eps-Coreset(P, k, ") returns a set C such
that

dist(P,C)  dist(P,C⇤).

Then for every r > 0, the output C = r-coreset(P, r, k-center)
of Algorithm 2 is an r-coreset for P. Moreover, if also |C|= k
then C is the smallest among all possible r-coreset of P.

Similar reduction works for the opposite direction: using
an algorithm that computes an r-coreset for P, we can
compute the k-center of P for a given k � 1 by running
binary search on the value of r.

D. Approximations for k-Center

Since the k-center problem is NP-hard for non-fixed k, i.e,
has running time that is at least exponential in k, we conclude
the following from Proposition 4.4.

Proposition 4.5: Every algorithm that computes the
smallest r-coreset C⇤ for P has running time at least ex-
ponential in the size of C⇤.

The last proposition suggests the use of approximation
algorithms or heuristics for computing r-coresets. Let k(r)
denote the size of the smallest r-coreset of P. It is left to
show that we can actually compute such a small "r-coreset C.
The algorithm Eps-Coreset(P, k, ") constructs such a coreset
under the assumption that the size k = k(r) of the smallest
r-coreset for P is known and given as input. It returns an
"r-coreset whose size is proportional to k. We will get rid
of this assumption and replace the input parameter k(r) by r
using binary search on k, as shown in Algorithm 2.

V. Coreset Tree and Scalable Summarisation
A key advantage of coresets is that they can be constructed

in parallel with batch access to data or in a streaming

setting where data arrives incrementally. Coresets satisfy the
following composition properties.
• Merge. If C1 is an ("r)-coreset for P1, and C2 is a

("r)-coreset for P2. Then C1 [C2 is an ("r)-coreset for
P1 [ P2.

• Reduce. If C is an ("r)-coreset for P, and D is an ("r)-
coreset for C. Then D is a (2"r)-coreset for P.

The merge operation leads to an increase in the coreset size
but does not increase the approximation error. The reduce
operation does increase the error but yields a resultant coreset
of a smaller size. A naive reduction strategy can cause and
exponential increase in the approximation error. However,
this is prevented by organising the merge and reduce oper-
ations as a binary tree of height O(log n) where each level
contains coresets for the previous level of coresets. Using the
compositional properties and the reduction explored earlier
in [13], [14], [23] the following theorem can be obtained.

Theorem 5.1: An ("r)-coreset C of size O(k log3 n/"d) for
a set of n points in a stream of images can be computed using
O(k logd n/"d) memory and update time per point insertion.

We use the parallel coreset construction property to gen-
erate multi-resolution summaries of a data set (that may be
stored distributed) where batch access is possible. Further,
the streaming construction allows incremental visual sum-
mary generation in the scenario where memory is bounded
and not all data points can be stored. This is presented next.

A. Multi-resolution Summaries with Parallel Coresets
In the batch setting, the data is partitioned into sets and

coresets are constructed for each set independently. We then
merge in parallel the two coresets, and compute a single
coreset for every pair of such coresets. Continuing in this
manner yields a process that takes O(log n) iterations of
parallel computation, Fig. 4. Applying the star clustering
algorithm to the coreset at each level in the constructed
tree leads to a hierarchical summarization for the entire data
set. We assume that the coreset-tree is saved in memory
or disk in the batch setting. The user can browse the
summary generated (or video) in a multi-resolution manner
specified as a time interval or equivalently as an error bound.
For example, the root of the tree represents the semantic
compression of all the captured images. The left child of
the root contains summary of images for the first half of the
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Fig. 4: Batch and online construction of coreset trees. Blue arrows indi-
cate merge-and-reduce. Image sequence (red arrow) is chunked according to
a specified leaf-size. (a) Batch operation C1,C2,C4 and C5 are constructed
in parallel, followed by C3 and C6, finally resulting in C7. (b) Incremental
data stream: the (intermediate) coresets C1, . . . ,C7 are enumerated in the
order of construction, only O(logn) coresets are retained in memory (gray).

time interval, while the right child contains summary for the
second half. The user can thus zoom in/out time intervals to
focus on the relevant compression via browsing the coresets
tree organized as star clusters.

B. Bounded-memory Summaries using Streaming Coresets
In the streaming setting, an incremental summary is gen-

erated keeping only a small subset of O(log n) coresets in
memory (each of a small size). Each data element received
is inserted into the star clustering. Coresets are constructed
and saved in memory for each data block. Two coresets in
memory, we can merge them (resulting in an "r-coreset)
and reduce them by computing a single coreset from the
merged coresets to avoid an increase in the coreset size. In
e↵ect, points in the merged set, not part of the coreset can
be deleted from the star clustering graph while retaining the
representative coreset points in the graph. See Fig. 4 for the
online construction process. Note that star clustering supports
e�cient insert and delete operations asymptotically scaling
O(n2 log2 n) for a sequence of n operations.

VI. Results
A. Data sets and Pre-processing

A data set traversing streets and park areas was col-
lected consisting of 2874 images, recorded 10m apart and
perpendicular to the robot’s motion. Image samples were
non-overlapping, excluded loop closures pairs and hence
approximated independent samples from the observation
distribution used for vocabulary and topic learning. A visual
vocabulary [15] of approximately 11k visual words was
generated by clustering SURF features [24] extracted from
this data set. Topic distributions were estimated using a Gibbs
sampling [17]. The Markov chain was randomly intialized
and was run till convergence to the target distribution using
data log-likelihood as a measure. The appropriate number of
topics was selected by maximizing the data log-likelihood for
the corpus given topics, P(w|T ) which was found maximum
using 50 topics [17] for the data set. Each image was
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decreases with a coarser ✏-grid or a higher removal fraction per iteration.

converted to a vector of visual words representation by first
extracting SURF features and then quantizing against the
learnt vocabulary. This was followed by estimating topic
proportions mapping to a topic space.

The visual summarization system was tested on two public
data sets [1]. The New College data set consists of 1355
images from a 2.1km traversal within a typical college in
Oxford consisting of medieval buildings and parkland areas.
The second data set City Centre data set is 2km in length,
possessing 1683 images from parks and city roads. These
data sets did not overlap with the Urban data set used for
learning topic distributions.

B. Pre-clustering using Coresets
An extracted coreset induces a pre-clustering for the

original data set with clusters obtained by associating each
data point to the nearest element in the coreset. Figure 5
visualizes three representative clusters from the New College
data set induced via a coreset of size 497 (37% of the original
data) using parameters � = 0.5 and ✏ = 0.5. The coreset
element (indicated in red) is shown first, followed by the
associated data set images in decreasing order of similarity.
The clustered views display a high degree of similarity
indicating an e↵ective compression and redundancy removal
using coresets.

C. Visual Summaries using Coreset Trees
Figure 1 visualizes summaries obtained using a binary

coreset tree constructed for the New College data set with a
leaf size of 300. Three levels are displayed. The summary
images are obtained at a similarity threshold of � = 0.6.
Examining the lowest level (from left to right), the initial
summaries consist of representative images from the cloisters
area leading into the quad section. Later summaries contain
images from the parklands, car park before returning to the
cloisters area. Summary at the parent level is computed
by a merge-reduce operation on the coresets at the lower
level, representing scenes from a larger traversal sequence.
Note that this allows multi-resolution summaries in the batch
setting and memory e�cient summaries in the incremental
case. Figure 6 presents the visual summary obtained on the
coreset and on the entire data set. Note that the summaries are
very similar, each possessing representative images from the
traversal including cloisters, quad and parkland areas, captur-
ing di↵erent modes of visual appearance of the workspace.



Fig. 5: What do coresets cluster? Visualisation of coreset clusters obtained by assigning data set points to the nearest element in the coreset. Coreset point
is indicated in red followed by associated data set images arranged in decreasing order of similarity. Highly similar views are clustered together indicating
that the coreset is e↵ective in removing redundancy in the data. New College data set. Coreset size 497 (37% of original data) with � = 0.5 and ✏ = 0.5.

(a) Using coreset (497 images) (b) Using full data set (1355 images)

Fig. 6: Comparing visual summaries. Summary obtained at the end of the traversal using (a) coreset (497 images, � = 0.5 and ✏ = 0.5) and (b) on the
full data set (1355 images) for the New College data set. Note the two summaries contain very similar views, each capturing images from cloisters, quad
and parkland areas, representing di↵erent modes of visual appearance. Images were picked randomly from the final summary set for display in this figure.

D. Approximation Error for Coreset-based Summaries

Next, we empirically compare the performance of the star
clustering algorithm when applied to the coreset and the
entire data set. For comparison, we define k-fraction error
metric computed as follows:

1) Let C be the coreset computed for point set P. Given
the star clustering similarity threshold �, run the star
clustering on C resulting in kc star centers.

2) Determine the minimum distance threshold rc such that
balls of radius rc

(1�✏) can cover set P using kc centers.
3) Apply the star clustering on P using similarity thresh-

old �c corresponding to distance rc to obtain k0 centers.
The k-fraction is defined as ( kc

k0 ).
Intuitively, for a given threshold �, the k-fraction metric

expresses the relative number of centers that can cover core-
set C compared to point set P using an equivalent threshold
�c. This is based on the fact that the algorithm output on
the coreset is guaranteed to be a (1±")-approximation to the
equivalent result on the full data set.

Figure 8(a-b) plots the k-fraction error for varying coreset
sizes for similarity threshold � ranging from 0.4 till 0.9
for the City Center data set, using the coresets obtained by
varying the parameters as discussed above. The k-fraction
error plots are observed to lie below one for a majority of
the values, except for few runs with � = 0.9 where the
error is marginally higher, indicating that the star clustering
algorithm on the coreset is a good approximation to the
resulting output on the full data set.

Note that coresets often yield better results (k-fraction
error below 1) while running heuristic algorithms like star
clustering. Intuitively, coresets smooth data, removing noise,
and reduce the number of bad local minima. Further, low

error values are observed even for relatively small coreset
sizes. A worse error is observed for runs with a higher
similarity threshold. Using a higher similarity threshold
yields more numerous clusters (with higher intra-cluster
similarity) inducing a cover with balls with a smaller radii.
Consequently, compression using coresets is less e↵ective in
this scenario as extra centers are required to cover the data
points with a smaller radius induced by the higher similarity
threshold. The result for the New College data set were found
to be similar.

E. Coreset Size
The size of the resulting coreset depends on the length

parameter, ✏ for the ✏-grid and the removal fraction of points
in each iteration during the construction process, Algorithm
Eps-Coreset(P, k, "). Figure 7 plots the coreset sizes obtained
by varying parameters logarithmically as {0, 1

32 ,
1
16 ,

1
8 ,

1
4 , 1}.

Using a finer ✏-grid or removing a higher removal fraction
of points leads to a larger coreset size.

F. Runtime E�ciency
Figures 8(c-d) plot the fraction of the time taken to run

the summarisation algorithm on the coreset compared to the
full data set. For a majority of the runs a significant speed-
up is observed. However, for few runs with higher similarity
threshold the run time was found to be greater. This can be
attributed to a large number of stars re-arrangements due to
the sequence in which the coreset points are incrementally
organised. Note that we used the incremental version of the
star clustering algorithm in our experiments.

VII. Conclusions
In this paper we described a scalable approach to gener-

ating visual summaries from streams of images acquired by
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Fig. 8: k-fraction coreset error for star clustering. (a-b) The error lies below one for majority of values except for some runs for � = 0.9 where a
marginally higher error is observed. Even relatively small coresets perform well with low error values indicating a good compression of the full set. Worse
errors are seen for higher thresholds where numerous clusters are obtained. Timing e�ciency. (c-d) Fractional running time of the summarization algorithm
on the coreset compared to the full data set. Significant speed-up is observed for a majority of runs. For few runs with higher similarity threshold show
increased running time, attributable to large number of stars re-arrangements dependent on the sequence in which coreset points appear.

long-duration traversal of a mobile robot. Current methods
do not scale well for natural traversals particularly with high
redundancy and perceptual similarity in image data. Our
approach identifies a sequence of images that thematically
summarize the robot’s visual experience. Our solution has
two algorithmic components. We demonstrate how coresets
of the image stream greatly reduce the amount of data to be
processed in order to generate such summaries and provide
a method for choosing the “right data” from the large data
stream with provable performance guarantees. By running
the star clustering algorithm on the image coreset tree we
generate a hierarchy of visual summaries for the robot’s
entire visual experience facilitating multi-resolution viewing
or video synthesis or a desired duration. In the streaming
setting, the method allows summaries with bounded memory
using a logarithmic number of coresets. Our experiments
indicate that the coreset-star-clustering approach to visual
summaries is practical, enabling a new capability for robots.
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