
Quadcopter Tracks Quadcopter via Real Time Shape Fitting

Dror Epstein1 and Dan Feldman2*

Abstract
We suggest a novel algorithm that tracks given

shapes in real-time from a low quality video stream. The
algorithm is based on a careful selection of a small sub-
set of pixels, that suffices to obtain an approximation of
the observed shape. The shape can then be extracted
quickly from the small subset. We implemented the al-
gorithm in a system for mutual localization of a group
of low-cost toy-quadcopters. Each quadcopter carries
only a single 8-gram RGB camera, and stabilizes itself
via real-time tracking of the other quadcopters in ∼ 30
frames per second.

Existing algorithms for real-time shape fitting are
based on more expensive hardware, external cameras,
or have significantly worse performance. We provide
full open source to our algorithm, experimental results,
benchmarks, and video that demonstrates our system.
We then discuss generalizations to other shapes, and
extensions for more robotics applications.

1. Introduction
Motivation. The problem of shape fitting into a set
of points is fundamental in computer vision and image
processing, with many applications in robotics. It be-
came an integral part of our everyday life, including:
Safety activities such as tracking objects or people [1,2],
recognition of barriers and obstacles for autonomous
vehicles [3,4], identification of markers for guiding and
navigation implementation by robots [5, 6], automatic
inspection of manufactured products [7], eye tracking
for robot-human communication [8, 9] and many more.
These systems raise the needs of a robust, accurate
and very fast algorithms for shape fitting, which is the
recognition of known geometric shapes in an image.

While there are many potential applications for
real-time shape fitting, this paper was specifically mo-
tivated by the application of mutual localization in a
swarm of toy quadcopters, which require update rate of
about 30 FPS (frames per second).

In recent years, such toy micro quadcopters are ex-
tremely common and easy to purchase in supermarkets

*1Dror Epstein and Dan Feldman are with the Robotic & Big Data
Lab at the Department of Computer Science, University of Haifa, Is-
rael dror.epstein,dannyf.gmail.com

and on-line stores such as Amazon. Moreover, they are
usually legal, relatively low-cost ($20-$50), and safe
for indoor navigation. However, the lack of sensors
makes them extremely unstable, and requires ∼ 30 re-
mote controller commands per second for a stable hov-
ering, which is impossible for a human.

Most of the existing solutions for control and nav-
igation of vehicles are based on external sensors such
as cameras, GPS and radars. However, for autonomous
vehicles such as toy-quadcopters, these solutions are ex-
pensive, heavy, large and demand some mechanical sta-
bilization mechanism. Sensors such as GPS cannot be
carried by such quadcopters, but even for larger quad-
copters, we aim for an error of at most few centimeters,
and indoor robots that lack GPS support.

Example applications and IoT. Our main motivation
was mutual real-time stabilization, but we expect that
our open system will be used and extended for many
other real-time applications for robots and devices that
need tracking algorithms that are based on or want to
use a single weak low-weight noisy RGB-camera. Ex-
amples include real-time tracking of people or objects,
visual SLAM (simultaneous localization and mapping),
autonomous cars or crawler robots, for indoor opera-
tion, GPS denied environment and many more. In par-
ticular, IoT (Internet of Things) applications usually run
on such weak, lightweight, and low-cost devices and
mini-computers that e.g. can be carried by toy drones
or are wearable by a human; see survey of such appli-
cations in [10]. For example, the 8-gram camera that is
used by our system with its tiny battery can be used as
a wearable device or part of it, and our algorithm may
be extended for real-time tracking, e.g., for sports ac-
tivities. Our quadcopters are also controlled by a mini-
computer that is common in IoT applications. See “Ar-
duino” in the hardware section.

While there are many other solutions for these ap-
plications, our algorithm specialized in real-time shape
fitting with performance and quality that we were not
able to achieve with existing results for our following
application.

Localization of quadcopters via quadcopters. We
demonstrate our algorithm with a system for localiza-

tion of a swarm of quadcopters, where each quadcopter
carries only a (monocular) low-weight (few grams)
camera. To avoid collision, maintain formation, or just
to hover in the sky when there are no visual markers
around, each quadcopter may localize itself by using
only other surrounding quadcopters. This is maybe sim-
ilar to flocking behavior of birds, where each bird posi-
tions itself based on other birds. To simplify the detec-
tion, we attach a balloon to each quadcopter; see Fig. 1
and our video [11]. This system, as the other appli-
cations above, raises the following problem of robust
real-time shape fitting.

The localization problem is then reduced to the fol-
lowing visual pattern recognition problem.

Figure 1: A snapshot from the experiment in our lab,
where quadcopters hover based on mutual tracking of
other quadcopters. The leftmost quadcopter positions
itself based on the middle quadcopter, which in turn lo-
calizes itself via the last quadcopter which is assumed
to be relatively stable.

Problem statement. The basic problem definition of
Circle Detection is to compute a circle that best fits a
collection of pixels in an image and reduces the sum
of distances between the circle to each of the points in
the collection. Moreover, we aim to detect such a mov-
ing circle in a real-time video. The algorithm thus gets
as input a real-time video stream at frame rate of up to
roughly 500 FPS. Each image is assumed to contain a
circle, but also to be noisy, unstable, and to have an un-
known background. The output of the algorithm is a
stream of estimated position of circles, where each cir-
cle (radius and center) corresponds to a frame in the in-
put stream. the main challenge is to handle these output
rates but still obtain the desired accuracy.

Novel technique: real-time match-set. Instead of
trying to develop a new algorithm from scratch, our ap-
proach is to first carefully select a very small set of pix-
els in the image, called matched-set. This set represents
the original (full) set of pixels in the sense that running
a simple and fast algorithm on the matched set yields a

result (approximated shape) that is similar to the result-
ing circle that we get by running the algorithm on the
original image (full set of pixels). Furthermore, an ad-
vantage of our algorithm is that we can extract the shape
even if parts of the shape are missing or obscured. Since
the main algorithm is run only on the matched-set, our
main algorithm has running time that is sub-linear in
the input size.

In theory, the cost for using this data summarization
approach is that we get only an approximated solution
to the desired shape. In practice, the resulting shape is
even more similar to the ground truth, i.e., the shape in
the real-world, since the matched set also avoids the se-
lection of outliers and noisy pixels. The main challenge
in this paper is to compute such a matched set that we
can (a) track in real-time, and (b) get sufficiently accu-
rate and fast approximation for our application.

Another common disadvantage of existing algo-
rithms such as [12, 13] is that they are unstable: the
output circles are too far from each other in each iter-
ation. Our algorithm outputs in each frame a circle that
is close to the previous detected circle, so that the posi-
tion and size of the detected circles are relatively stable
and consistent.

Generalizations and extension to other shapes. For
simplification, we present our algorithm and the
matched-set paradigm for detecting circles. However,
our algorithm is relatively generic and can easily be
adopted for other convex shapes. More precisely, there
are two requirements for our algorithm: (1) each shape
in the desired family of shapes has small complexity in
the sense that it can be described by a small number
of parameters. This size of the matched-set is approx-
imately linear with this number, and (2) a “black box”
algorithm that fits a non-noisy small matched set (sub-
set) to a given image.

Our main contributions are as follows.
1. An algorithm for real-time circle detection in a

streaming video of a rate of up to 500 FPS.

2. Experimental results on both synthetic and real
data, as well as comparison to state of the art al-
gorithms.

3. A system for mutual tracking of toy quadcopters
using our algorithm. Each quadcopter carries only
an 8-gram monocular RGB camera and a balloon.

Related work. Detection of circular objects in digital
images is an important and recurring problem in image
processing [14] and computer vision [15]. In [16], the
authors describe the process and the challenge of shape
fitting such as unsterile environment, background noise
and outliers. Most of the circle detection algorithms

are based on the well known Circle Hough transform
(CHT) [17, 18], or geometric characteristics. The pur-
pose of these techniques is to find circles in imperfect
image inputs. The circle candidates are produced by
voting in the Hough parameter space and then select the
local maxima in a so-called accumulator matrix. The
main drawback of these techniques is their running time
complexity which is usually linear while sub-linear time
algorithms are needed. Moreover, since we deal with
corrupted images, the CHT technique is able to detect
different parts of circle from different area of the bal-
loon for each image, and therefore the algorithm outputs
a circle that moves in a non-continuous form (circles in
consecutive frames may be very far from each other).

Cuevas et al. [19] present Learning Automata (LA),
which is a heuristic method to solve complex multi-
modal optimization problems. The detection process is
considered as a multi-modal optimization problem, al-
lowing the detection of multiple circular shapes through
only one optimization procedure.

Akinlar and Topal [13] present an algorithm that
makes use of the contiguous (connected) set of edge
segments produced by there edge drawing parameter
free (EDPF) algorithm. They suggest an algorithm with
time complexity of O(n2) for such an image.

In [20], Zhou et al. present a new circular ob-
ject detection method based on geometric property and
polynomial fitting in polar coordinates instead of im-
plementing it in Cartesian coordinates. It is tailored for
2-Dimension (2D) LIDAR data.

Zhang, Wiklund and Andersson [21] provide a cir-
cle detection algorithm based on randomized sampling
of isosceles triangles (ITs), that provides distinctive
probability distribution for circular shapes with a low
amount of iterations. Although they introduced an ac-
curate and robust detection at sharp images, it does not
handle corrupted and moving images.

Zhou and He [22] propose a modified version of
Hough Transform, called Vector Quantization (VQHT),
to detect circles more efficiently, by decompose the
edges in the image into many subimages, then, the edge
points resided in each sub-image are considered as one
circle candidate group.

In [23], the authors introduce ChromaTag, a col-
ored fiducial marker and detection algorithm that ac-
complish detection within 1.4 millisecond.

Overview. In Section 2 we present and describe our
circle detection algorithm. Section 3 explains how to
obtain localization from the streaming circles using few
formulas. Section 4 presents our real-time system for
autonomous group of toy-quadcopters. Section 5 shows
experimental results using our algorithm, and measures
its accuracy and running time compared to other algo-

rithms. Section 6 concludes our work.

2. Circle Detection Algorithm

In this section we present our main circle detection
algorithm. It aims to quickly detect a circle while over-
coming noise that might occur due to hidden objects,
image corruptions, light distortion, distorted shapes and
other types of noise that are common in a video stream
from an RGB camera that is mounted on an unstable
device such as a hovering quadcopter.

The algorithm first identifies a small subset of
points, called matched-set, which represents an existing
circle. Then, it matches each point in this match-set to
a point in the new image. Finally, it extracts and output
the new circle from the “clean” matched set in the new
image, based on a naive and fast algorithm.

Notation. The set {1, · · · ,n} is denoted by [n]. An
image M ∈ {0,1}n×n is a binary matrix. For every
(x,y,r) ∈ R3, we denote by C(x,y,r) the circle of ra-
dius r on the plane that is centered at pC := (x,y). for
convenience we define C(x,y,r) := C(pc,r). A point
(x,y) ∈ [n]2 is white if the (x,y)-entry of M is 1, and
black otherwise.

The points on the boundary of the fitted circle are
called edge-points. The expected width of the circle (its
margin) is denoted by ∂ > 0. We denote by ∇ > 0 the
threshold that defines the required difference between
black area and white area. These parameters are de-
fined based on the expected type of noise and robustness
of our algorithm. Larger margins and high threshold
will allow the algorithm to be more robust to outliers,
noise, blurring etc. but will result in a larger matched set
and thus slower computation time. Smaller margins and
threshold assume less noise and will result in a smaller
and accurate matched-set.

Each edge is also associated with its orientation or
direction dir ∈ directions = {right, le f t,upper, lower}.

Formally, for a point p = (x,y) ∈ [n]2, we define
I(p,∂ ,dir) to be the set of white points in M of distance
at most ∂ in the direction dir from p = (x,y) as follows.

I(p,∂ ,dir) = { (x′,y′) ∈ [n]2 |M(x′,y′) = 1, and
x′ ∈ [x,x+∂],y = y′ if dir = right,
x′ ∈ [x−∂ ,x],y = y′ if dir = le f t,
x = x′,y′ ∈ [y−∂ ,y] if dir = upper,
x = x′,y′ ∈ [y,y+∂] if dir = lower

}.
(1)

For ∇ > 0 and ∂ > 0, the point p is called right-
edge if |I(p,∂ , le f t)| − |I(p,∂ ,right)| > ∇ and we de-
note the union of all right-edges in M over p ∈ [n]2

by E(M)right . Similarly, in a symmetric way, we de-
note by E(M)le f t , E(M)upper and E(M)lower respec-
tively the union sets of the left-edges, upper-edges and

lower-edges. Their union of edge points is E(M) ={
E(M)right ∪E(M)le f t ∪E(M)upper ∪E(M)lower

}
. An

example for right-edge points with the parameters ∇ =
0.1 and ∂ = 6 is shown in Fig. 2.

Figure 2: Illustration for edge points detection.

For a circle C(x,y,r), an edge-points set E(M) and
a threshold ε ∈ (0,1), we denote by E(M,C) the edge-
points which are approximately on the circle, i.e., of
distance r± ε from the center (x,y). In Fig. 3a the set
E(M,C) is marked in black. Formally,

E(M,C) ={
e ∈ E(M) | ‖e− (x,y)‖ ∈ [r− ε,r+ ε]

}
.

(2)

We define the set of arc-segments for a point p as
the collection of edge-points such that their black area
side is closer to point p then the white area. In Fig. 3b
the set A(M, p) is marked in black. Formally,

A(M, p) =
e |

e ∈ {E(M)le f t ∪E(M)lower}
if p is above and right to point e,

e ∈ {E(M)right ∪E(M)lower}
if p is above and left to point e,

e ∈ {E(M)le f t ∪E(M)upper}
if p is below and right to point e,

e ∈ {E(M)right ∪E(M)upper}
if p is below and left to point e

.

(3)

Let C be a circle, and Pc denotes its center. The match-
set of C is the union of edge-points such that each edge-
point is also in an arc segments of the circle C. In Fig. 3c
the match-set S(M,C) is marked in black. Formally,

S(M,C) = {E(M,C)∩A(M, pC)}. (4)

Figure 3: (a) E(M,C) - An edge-points set that lies on
the boundary of the circle C. (b) A(M, p) - arc segments
set of the point p. (c) S(M,C) - match-set of C.

(a) (b) (c)

Let s1,s2,s3 ∈ S(M,C) represents three match
points of the circle match-set. We denote by
CENTER(s1,s2,s3) the center point of the circumscribed
circle related to points s1,s2 and s3. Let T be a set
of points. We denote by AVERAGECENTER(T) the
middle point (x,y) of all points in T . We denote
by DISTANCE(pa, pb) the Euclidean distance between
points pa and pb. We denote by CLOSESTPOINT(p,A)
the closest point from the set A to a point p.
Overview of Algorithm 1: circle detection. The cir-
cle detection algorithm, as shown in Algorithm 1, con-
tinuously detects circles over a video stream. The de-
tection is based on the matched-set as defined in (4),
which represents the edge-points on the detected circle
that is computed in Algorithm 2. For each frame we
then apply Algorithm 3 that tracks those edge-points in
the new frame to extract the desired circle by a naive
algorithm that estimates a circle from non-noisy data.
In Algorithm 1, the ith iteration corresponds to the ith
image, for every i≥ 1.

Algorithm 1: CIRCLEDETECTION

Input: A stream of images M0,M1 · · · ∈ [n]2.
Output: A stream of circles C0,C1, . . . ∈ R2.

/* Circle initialization */
1 Set (C0,S)←INITCIRCLE(M0)
2 Output C0
/* Iterative tracking over

stream frames. */
3 for i← 0 to ∞ do
4 Set (Ci,S)← TRACKCIRCLE((Mi,S,Ci−1))
5 Output Ci

Overview of Algorithm 2: initialization. In Line 1
we identify all the edge-points in the image as defined
in (2); see Fig. 4b. In Lines 2– 5, we extract a circle in
a way that is similar to the CHT algorithm; see Fig. 4c.
In Line 6, we identify the circle match-set union; see
Fig. 4d.

Algorithm 2: INITCIRCLE(M)

Input: An image M ∈ [n]2.
Output: A circle C′, and a match-set S′.

/* Detect edges; See Fig. 4b.

*/
1 Set E← union of edge-points in M ; See (2)
2 Set C′←C(0,0,0)
// Identify circle; See Fig. 4c.

3 for each (x,y,r) ∈ [n]3 do
4 if |S(M,C(x,y,r))|> |S(M,C′)| then
5 Set C′←C(x,y,r)
/* Compute match-set. */

6 Set S′← S(M,C′) ; See (4)
7 Output C′,S′

Overview of Algorithm 3: tracking. In Line 1 we fit
each point on the circle match-set to one of the edge-
points; see Fig. 4e. The fitting technique ensures that
each of the selected edge-points represents a real seg-
ment arc that belongs to the new circle. This enables us,
in Lines 3– 6, to approximate an accurate new circle via
analytic solution, while using some technique to elimi-
nate outliers and improve our detection; see Fig. 4f. In
Line 7, we update the match-set according to the new
detected circle for the next iteration; see Fig. 4d. Fi-
nally, in Line 8, we output the detected circle. For sim-
plicity, we removed validation parts from the algorithm
e.g., division by 0.

Algorithm 3: TRACKCIRCLE(M, H, R)

Input: An image M ∈ [n]2, a match-set H, and a circle R.
Output: A circle C′ and a match-set S′.

Set H ′← /0
/* Fit match-set; See Fig. 4e */

1 for each h ∈ H do
2 Set H ′← H ′∪{ClosestPoint(h,A(M, pR)}

See (3)
// Calculate circle; See Fig. 4f

3 Set T ={
Center(h′3i,h

′
3i+1,h

′
3i+2) | h′ ∈ H ′, i ∈ 0,1,2, ..., n

3

}
4 Set pc← AverageCenter(T)

5 Set r← ∑h′∈H′ Distance(pc,h′)
|H ′|

6 Set C′←C(pc,r)
// Update match-set; See Fig. 4d

7 Set S′←{h′ ∈ H ′ | ‖h′− pc‖ ∈ [r−1,r+1]}
8 Output (C′,S′)

Figure 4: Procedure snapshots. (a) Input image; (b)
Detect edges; (c) Identify circle; (d) Identify match-set;
(e) Fit match-set; (f) Calculate circle.

(a) (b) (c)

(d) (e) (f)

Run-time analysis. Algorithm 1 includes an initial-
ization part; see Algorithm 2, and iterative tracking part;
see Algorithm 3. Hence, the running time is domi-
nated by the tracking algorithm. The running time of

Table 1: Running time per frame in a streaming video.

Algorithm Detection time
(millisecond)

EDCircles [13] 9.9
GRCD-R [24] 52
Isophote [25] 20.5
ITCiD [21] 15.7
PolynomialFitting [20] 16.9
AR Aristo platform [26] 16.6
RuneTag [27] 51
AprilTag [28] 19
ChromaTag [23] 1.4
Algorithm 1 0.9

the tracking algorithm is the sum over the time for the
match-set fitting, line 1, circle calculating, line 3, and
the match-set updating, line 7, that run on a small sub-
set of points (match-set). The matche set is of size O(n)
since this is the size (number of pixels) of a circle in
an n× n grid of pixels. Hence, the total running time
complexity of the algorithm (excluding initialization) is
O(n), i.e., sub-linear in the input image size O(n2).

Table 1 compares the actual running time of our
algorithm with existing solutions.

3. Localization via Circle Fitting
Localization of an object based on other two known

objects, i.e, 6 degrees of freedoms (6DOF, position and
orientation) can be computed via the following simple
formulas. The approach is based on a visual perception
technique, parallax [29], which computes the position
of an object based on the appearance in the image of the
two observed objects (size and position).

The two referenced objects may be represented by
a ball (or its center) and a marker on the shell of the ball;
see Fig. 5 and Eq. (5)– (9). These equations are based
on the input parameters BR (the radius of the ball), β

(the camera’s field of view) and n (the number of pixels
per row). The rest of the parameters are the circle solu-
tions that computed by Algorithm 1, denoted by CB and
CP, respectively, for the blue ball and the purple marker
circles. For convenience, we denote by Cx,Cy and Cr
the circle parameters.
Figure 5: Geometric scheme for relative position.

distance =
n
2 ·BR

CB
r · tan

(
β

2

) (5)

side =
π2 ·distance · arcsin

(
CP

x −CB
x

CB
r

)
2

(6)

height =
π2 ·distance · arcsin

(
CP

y −CB
y

CB
r

)
2

(7)

heading =

√
distance2− side2−height2 (8)

yaw = arctan
(

CB
x − n

2
distance

)
(9)

4. System:Quadcopter Tracks Quadcopter
We implemented our algorithm and then designed

and built a system to evaluate its performance for our
application. The goal is to allow each quadcopter in
a swarm of quadcopters to localize itself, via a single
monocular camera and a marked balloon that is attached
to each quadcopter. Unlike other papers, we assume that
there are no external visual markers except the other
quadcopters. Each quadcopter tries to keep a stable
hovering solely based on the other quadcopters, inde-
pendently of the background, or environment.

The resulting 6DOF of each quadcopter are being
sent to its controller. The controller computes the de-
sired corrections to fix the quadcopter in place. The re-
sulting commands are then sent to the remote controller
of the quadcopter. A rate of roughly 30 FPS is needed
to keep the quadcopter in place.

Our system suggests the first step toward such an
autonomous swarm of quadcopters, based on Algo-
rithm 1.

The setup. The system consists of three quadcopters.
The first quadcopter is equipped with a tiny camera that
is pointed toward the second quadcopter. The first quad-
copter positions itself in real-time only using the second
quadcopter. Similarly, the camera on the second quad-
copter is pointed toward the third quadcopter, which is
used to localize the second quadcopter. Finally, the third
quacopter is hanged by a swinging rope to the ceiling.

Hardware. The following is a list of the used hard-
ware in our system.
3x Toy quadcopters. Each quadcopter has no posi-
tioning sensors, weigh only 100 grams, costs less than
$50, and thus relatively safe and low-cost but unstable.
See [30].

2x Monecular camera. Two out of the three quad-
copters are equipped with a monocular RGB analog
camera, and weigh only 8 grams, including internal
video transmitter. It transmits 30 RGB FPS in PAL cod-
ing and resolution of 640×480 pixels. See [31].
2x Video receivers. Analog video receivers, each re-
ceives data from a different channel of a different TX
camera.
2x Analog to Digital converter. This converter is con-
nected to the video receiver and converts its analog
video to a digital video that is being sent to the laptop
below via USB 2.0 connection; see [32].
2x Laptops. The streaming input video is processed by
Algorithm 1 that is run on a standard laptop. The out-
put is a stream of commands that are sent to an Arduino
board below. We use Intelr 4810MQ,2.8 GHz CPU.
See [33].
2x Arduino mini-boards. Each board gets a stream of
serial I/O commands from the laptop and sends them to
the remote controller of the quadcopter. See [34].
2x Remote controllers. These controllers are shipped
with the SYMA quadcopters. We reverse engineered
their protocols and therefore can send commands from
the Arduino boards, instead of a human, in about 30
FPS.
2x balloons. Each balloon is blue with a purple small
ball marker in its center. It is carried by a quadcopter
and is used to localize the other quadcopters.

Processes and data flow. The rate of sending control
commands to our autonomous toy-quadcopter must be
of at least 30 FPS, even just to make sure that the quad-
copters will not get crashed to the walls. The follow-
ing pipe-line is computed independently for each of the
quadcopters that are equipped with a camera.

(1) Capture the real-time video using the analog
video receivers.

(2) Apply color filtering for (a) blue and purple, to
detect the balloons; see Fig. 6a. (b) Only purple filter-
ing, for marker detection.

(3) Apply Algorithm 1 to detect the blue circle (bal-
loon) in the current frame.

(4) Estimate the purple circle (marker) on the de-
tected balloon from the previous step. We used Open
CV’s blob detector [12].

(5) Predict the position of the neighbor quadcopters
based on all detected circles, markers and the position
of them, e.g. purple marker inside blue circle represents
a neighbor quadcopter.

(6) Compute 6DOF of the observed quadcopter,
based on the detected balloon and marker, as explained
in Section 3.

(7) Compute the desired correction based on the
computed 6DOF . The correction are computed based

on relative positioning using its previous and current
6DOF via a standard PID controller [35].

(8) The correction commands are then sent to the
remote controller via the Arduino board that is con-
nected to the laptop as describe in the “Hardware” para-
graph. The result is an autonomous hovering of each
quadcopter, independently of the other quadcopters.

5. Experimental Results
We present experimental results on our system, for

few example experiments as shown on our companion
video [11].

We compared our results to existing implementa-
tions that were chosen by OpenCV for HoughCircle de-
tection and BlobDetection. For each image frame, we
calculated the error of each of the algorithms as fol-
low; For an exact circle C(x,y,r) and a detected circle
C∗(x∗,y∗,r∗), we define

error = ‖x− x∗‖+‖y− y∗‖+‖r− r∗‖ . (10)

Fig. 6a shows the detected circle during the experiment,
which is marked by yellow. Fig. 6b shows a comparison
of the calculated error between the algorithms over 500
frames. Fig. 6c shows an histogram of the correspond-
ing error.

The above results show an average error of 1.73
pixels using our algorithm compared to 8.02 pixels of
the OpenCV circle detection algorithms and 18.86 pix-
els of the OpenCV Blob detection. Moreover, the per-
centage of valid detection (i.e. error< 5) was 94.6%
with our algorithm while OpenCV succeeds detection
with less then 50%. Furthermore, we observed a trem-
bling of 6.2 pixels with our algorithm, while OpenCV
algorithms observed with more then 15 pixels of detec-
tion trembling

6. Conclusion
We suggested a real-time accurate and robust al-

gorithm to detect convex shapes, and demonstrated it
for detecting circle objects in digital images. The algo-
rithm carefully selects a small subset of points (match-
set) that approximates the desired shape, and track only
those points to allow sub-linear run-time. This novel
approach and selection significantly reduces the run-
ning time and therefore the process time for each frame.
Moreover, we show how our algorithm is robust to out-
liers and to other image disorders. We then compared it
to other state-of-the-art algorithms and showed that it is
the only one that is sufficiently fast for our application,
while still producing the desired approximation for our
system.

Further work is to apply our algorithm for other
shapes and other applications, as well as a swarm of
many quadcopters outside the lab. We hope that our

Figure 6: Experimental results; (a) A snapshot of a cir-
cle detection on the captured image; (b) Comparison of
calculated error; (c) Comparison of error histogram.

(a)

(b)

(c)

open code would encourage researchers to explore these
research directions.

References

[1] Andreas Koschan, Sangkyu Kang, Joonki Paik, Besma
Abidi, and Mongi Abidi. Color active shape models for
tracking non-rigid objects. Pattern Recognition Letters,
24(11):1751–1765, 2003.

[2] Thomas B Moeslund, Adrian Hilton, and Volker Krüger.
A survey of advances in vision-based human motion
capture and analysis. Computer vision and image un-
derstanding, 104(2):90–126, 2006.

[3] Vladimir J Lumelsky and Alexander A Stepanov. Path-
planning strategies for a point mobile automaton moving
amidst unknown obstacles of arbitrary shape. Algorith-
mica, 2(1):403–430, 1987.

[4] Steven M LaValle. Planning algorithms. Cambridge
university press, 2006.

[5] Dongsung Kim and Ramakant Nevatia. Recognition
and localization of generic objects for indoor naviga-
tion using functionality. Image and Vision Computing,
16(11):729–743, 1998.

[6] Francisco Bonin-Font, Alberto Ortiz, and Gabriel
Oliver. Visual navigation for mobile robots: A survey.
Journal of intelligent and robotic systems, 53(3):263,
2008.

[7] Luciano da Fontoura Da Costa and Roberto Marcondes
Cesar Jr. Shape analysis and classification: theory and
practice. CRC Press, Inc., 2000.

[8] Zhiwei Zhu, Qiang Ji, Kikuo Fujimura, and Kuangchih
Lee. Combining kalman filtering and mean shift for real
time eye tracking under active ir illumination. In Pat-
tern Recognition, 2002. Proceedings. 16th International
Conference On, volume 4, pages 318–321. IEEE, 2002.

[9] Zhiwei Zhu, Kikuo Fujimura, and Qiang Ji. Real-time
eye detection and tracking under various light condi-
tions. In Proceedings of the 2002 symposium on Eye
tracking research & applications, pages 139–144. ACM,
2002.

[10] Biswas and Veloso. Depth camera based indoor mobile
robot localization and navigation. In Robotics and Au-
tomation (ICRA), 2012 IEEE International Conference
on, pages 1697–1702. IEEE, 2012.

[11] Haifa University Dror Epstein, RBD Lab. Experimantal
movie of quadcopter tracks quadcopter, 2017. Available
at https://youtu.be/-i2YIf2A0Ac.

[12] OpenCV Development Team. Opencv
api reference. 2015. Available at
http://docs.opencv.org/modules/core/doc/intro.html.

[13] Cuneyt Akinlar and Cihan Topal. Edcircles: A real-time
circle detector with a false detection control. Pattern
Recognition, 46(3):725–740, 2013.

[14] David A Forsyth and Jean Ponce. A modern approach.
Computer vision: a modern approach, pages 88–101,
2003.

[15] C Rafael Gonzalez and Richard Woods. Digital image
processing. Pearson Education, 2002.

[16] Christian Teutsch, Dirk Berndt, Erik Trostmann, and
Michael Weber. Real-time detection of elliptic shapes
for automated object recognition and object tracking. In
Electronic Imaging 2006, pages 60700J–60700J. Inter-
national Society for Optics and Photonics, 2006.

[17] Hough Paul VC. Method and means for recognizing
complex patterns, 1962. US Patent 3,069,654.

[18] Richard O Duda and Peter E Hart. Use of the hough
transformation to detect lines and curves in pictures.
Communications of the ACM, 15(1):11–15, 1972.

[19] Erik Cuevas, Fernando Wario, Valentı́n Osuna-Enciso,
Daniel Zaldivar, and Marco Pérez-Cisneros. Fast al-
gorithm for multiple-circle detection on images using
learning automata. IET Image Processing, 6(8):1124–

1135, 2012.
[20] Xianen Zhou, Yaonan Wang, Qing Zhu, and Zhiqiang

Miao. Circular object detection in polar coordinates for
2d lidar data. In Chinese Conference on Pattern Recog-
nition, pages 65–78. Springer, 2016.

[21] Hanqing Zhang, Krister Wiklund, and Magnus Ander-
sson. A fast and robust circle detection method us-
ing isosceles triangles sampling. Pattern Recognition,
54:218–228, 2016.

[22] Bing Zhou and Yang He. Fast circle detection using
spatial decomposition of hough transform. Interna-
tional Journal of Pattern Recognition and Artificial In-
telligence, 31(03):1755006, 2017.

[23] Joseph DeGol, Timothy Bretl, and Derek Hoiem. Chro-
matag: A colored marker and fast detection algorithm.
arXiv preprint arXiv:1708.02982, 2017.

[24] Kuo-Liang Chung, Yong-Huai Huang, Shi-Ming Shen,
Andrey S Krylov, Dmitry V Yurin, and Ekaterina V
Semeikina. Efficient sampling strategy and refinement
strategy for randomized circle detection. Pattern recog-
nition, 45(1):252–263, 2012.

[25] Tommaso De Marco, Dario Cazzato, Marco Leo, and
Cosimo Distante. Randomized circle detection with
isophotes curvature analysis. Pattern Recognition,
48(2):411–421, 2015.

[26] Zhongyang Zheng, Bo Wang, Yakun Wang, Shuang
Yang, Zhongqian Dong, Tianyang Yi, Cyrus Choi,
Emily J Chang, and Edward Y Chang. Aristo: An aug-
mented reality platform for immersion and interactivity.
2017.

[27] Filippo Bergamasco, Andrea Albarelli, Luca Cosmo,
Emanuele Rodola, and Andrea Torsello. An accurate
and robust artificial marker based on cyclic codes. IEEE
transactions on pattern analysis and machine intelli-
gence, 38(12):2359–2373, 2016.

[28] John Wang and Edwin Olson. Apriltag 2: Efficient and
robust fiducial detection. In Intelligent Robots and Sys-
tems (IROS), 2016 IEEE/RSJ International Conference
on, pages 4193–4198. IEEE, 2016.

[29] Geometric idea of Parallax. Available at
https://wikipedia.org/wiki/Parallax.

[30] Syma X5C Description. Available at
http://symatoys.com/goodshow/x5c-syma-x5c-
explorers.html.

[31] Walkera TX5805 Camera. Available at
https://amazon.com/NEEWER-TX5805-Camera-
Realtime-Display/dp/B00GUBQVEM.

[32] FAVOLCANO Easycap Converter. Available at
https://amazon.com/FAVOLCANO-Easycap-Converter-
Capture-Adapter/dp/B00LVTUX7E.

[33] Lenovo Laptop Description. Available at
http://lenovo.com/psref/pdf/withdraw.

[34] Arduino Mini-computer Description. Available at
https://arduino.cc/en/main/arduinoBoardUno.

[35] Amlan Basu, Sumit Mohanty, and Rohit Sharma. In-
troduction of fractional elements for improvising the
performance of pid controller for heating furnace using
amigo tuning technique. Perspectives in Science, 8:323–
326, 2016.

	Introduction
	Circle Detection Algorithm
	Localization via Circle Fitting
	System:Quadcopter Tracks Quadcopter
	Experimental Results
	Conclusion

