
An Effective Coreset Compression Algorithm for Large
Scale Sensor Networks

Dan Feldman
MIT

Computer Science and AI Lab,
32 Vassar Street,

Cambridge, Massachusetts
dannyf@csail.mit.edu

Andrew Sugaya
MIT

Computer Science and AI Lab,
32 Vassar Street,

Cambridge, Massachusetts
asugaya@csail.mit.edu

Daniela Rus
MIT

Computer Science and AI Lab,
32 Vassar Street,

Cambridge, Massachusetts
rus@csail.mit.edu

ABSTRACT
The wide availability of networked sensors such as GPS and
cameras is enabling the creation of sensor networks that gen-
erate huge amounts of data. For example, vehicular sensor
networks where in-car GPS sensor probes are used to model
and monitor traffic can generate on the order of gigabytes
of data in real time. How can we compress streaming high-
frequency data from distributed sensors? In this paper we
construct coresets for streaming motion. The coreset of a
data set is a small set which approximately represents the
original data. Running queries or fitting models on the core-
set will yield similar results when applied to the original data
set.
We present an algorithm for computing a small coreset of

a large sensor data set. Surprisingly, the size of the coreset
is independent of the size of the original data set. Com-
bining map-and-reduce techniques with our coreset yields a
system capable of compressing in parallel a stream of O(n)
points using space and update time that is only O(logn).
We provide experimental results and compare the algorithm
to the popular Douglas-Peucker heuristic for compressing
GPS data.

Categories and Subject Descriptors
H.3.1 [INFORMATION STORAGE AND RETRIEVAL]:

General Terms
Algorithms

Keywords
Linear Simplification, Streaming, Coresets, GPS, Douglas-
Peucker

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IPSNŠ12, April 16–20, 2012, Beijing, China.
Copyright 2012 ACM 978-1-4503-1227-1/12/04 ...$10.00.

Field-deployed sensor networks are collecting massive amounts
of data in real time in applications ranging from environmen-
tal systems [18] to traffic [1] to city-scale observation systems
[27]. In this paper we describe an algorithm that receives
as input the data stream generated by a sensor network
and produces as output a much smaller data set that ap-
proximates the original data with guaranteed bounds. The
smaller data set can be used for faster, real-time processing.
The results of computing on the smaller set are guaranteed
to approximate the same computation on the original set
within specified bounds.

We are motivated by traffic applications using vehicular
sensor networks such as the network of 16,000 taxis in Sin-
gapore. Even in one hour, the GPS devices installed in
the taxis in Singapore generate time-stamped GPS location
triples (time, latitude, longitude) that require approximately
40MB. If we add acceleration, imaging, and status data, the
amount of information is significantly larger. Yet we wish
to collect and process this data in real time, in order to ac-
curately predict city-scale congestion and traffic patterns.
This data can also enable geo-location analysis, to identify
the set of places visited by a particular device. But given
a stream of GPS traces, how do we decide which points are
critical for identifying the location of the vehicle in a human-
readable way, such as “National University of Singapore” or
“Starbucks”? One option is to pose a Google query for ev-
ery data point. However, Google has a 2500 daily cap on
queries, and running such a query for every GPS trace would
be impractical.

By learning the critical points contained within the data
and summarizing the data stream, we compress the orig-
inal data and represent it using a much smaller set that
ultimately enables much faster processing for a large set of
applications.

If we store or send all the data from a given fielded sen-
sor network, analyzing the data in real time is significantly
harder. Most of the analysis tools today are based on data
mining algorithms (e.g, MATLAB, Weka, SPSS, SPlus, R).
They can only handle blocks of static data on the order of
a few gigabytes, that fit in the internal memory (RAM). A
small number of applications, for example IBM infosphere [7]
and Apache Mahout [25]) support larger data sets for a few
very specific model fitting heuristics, usually without qual-
ity guarantees. The user of such applications has to follow
the constraints of the database and programming language
used by the application. Spatiotemporal data mining ap-
plications face storage-space problems as well as problems

(a) Tree for coreset construction

Figure 1: (a) Tree construction for generating core-
sets in parallel or from data streams. Black ar-
rows indicate “merge-and-reduce” operations. The
(intermediate) coresets C1, . . . , C7 are enumerated in
the order in which they would be generated in the
streaming case. In the parallel case, C1, C2, C4 and
C5 would be constructed in parallel, followed by par-
allel construction of C3 and C6, finally resulting in
C7.

in efficiently accessing the motion data. For example, as-
suming that a GPS point takes 12 bytes and a GPS point
is generated (i.e., sampled) every second for 24 hours a day,
10M cellular subscribers will generate a daily volume of over
9600 gigabytes.

Coresets.
We propose to use coresets as a way of approximating

large data sets.
The existence and construction of coresets has been inves-

tigated for a number of problems in computational geometry
(such as k-means and k-median) in many recent papers (cf.
surveys in [13, 3]). Here we demonstrate how these tech-
niques from computational geometry can be lifted to the
realm of sensor networks. As a by-product of our analy-
sis, we also provide a solution to the open question on the
possibility of compressing GPS data.
More specifically, the input to the coreset algorithm de-

scribed in this paper is a constant ε > 0 and a set P of
n points in Rd (representing n signals from d sensors) that
can be approximated by a k-spline or k segments. Our al-
gorithm returns a coreset of O(k) points (independent of n)
such that that the Hausdorff Euclidean distance from P to
any given query set of points is preserved up to an additive
error of ε (Theorem 5.1 Corollary 5.2).
To our knowledge, this is the first type of compression

that provides a guarantee on the approximation error for
any query and not for a specific family of queries (k-points,
k-lines, etc.).

Streaming and parallel computation.
One major advantage of coresets is that they can be con-

structed in parallel, as well as in a streaming setting where
data points arrive one by one. For streaming data it is im-
possible to remember the entire data set due to memory
constraints. The key insight is that coresets satisfy certain
composition properties, described in Section 9 and Fig. 1(a).

(a) f ∩ ℓ ̸= ∅

(b) f ∩ ℓ = ∅

Figure 2: (left) dist(p, f) = sin θ · dist(p, c), Hence, c,
weighted by sin θ, replaces f for points on ℓ. (right)
dist(p, f) = sin θ · dist(p, c), for any pair (ℓ, f) of lines
in Rd, where c is a point on the line that spans the
shortest distance between ℓ and f , placed at distance
dist(ℓ, f)/ sin θ from the point c′ ∈ ℓ, nearest to f , and
θ is the angle between the (orientations of the) lines
ℓ and f (a routine exercise in stereometry).

Experimental results and application.
We describe and analyze the coreset algorithm and eval-

uate it on several real data sets. We also show that core-
sets can be used to geo-locate vehicular networks efficiently.
Using the GPS data streams from in-car networked devices
(e.g. smart phones or customized sensor network probes), we
demonstrate a sensor data processing application that gen-
erates a readable textual description (known as reverse geoc-
iting) for the node’s current position using traffic landmarks
retrieved from Google maps, e.g. “Elm street”, ”NUS”,“Star-
bucks”, etc.

This GPS-to-text service enables automatic logging and
reporting. Databasing the output allows new types of text
queries, searches, and data mining algorithms that were un-
suitable for the original raw GPS points.

2. OUR TECHNIQUE
The most related technique to the coreset construction in

this paper is the coreset for the k-line center by Agarwal
et al. [4]. In the k-line center the input is a set of points
P in Rd and the output is a set S∗ of k-lines that mini-
mizes the maximum distance D(P, S∗) between every point
in P to its closest line in S∗. Agarwal et al. proved that
there is a (core)set C ⊆ P of size |C| = 2O(kd)/εd such that
D(C, S) ≥ (1− ε)D(P, S) for every (query) set S of k-lines.

An approximation to the k-line center of P can then be ob-
tained by computing the k-line center of the small set C.
However, they did not suggest an efficient construction for
this coreset. This is essentially the same problem that we
encounter in the simple construction of Section 4.3. Still,
they provide an algorithm that takes time O(n log(n) · |C|)
and computes a (1 + ε) approximation to the k-line center
of P . The fact that a small coreset C exists was used only
in the analysis.
Similarly to the inefficient construction of [4], our algo-

rithm first projects P onto a few segments, and then scans
the projected points from left to right. However, we were
able to construct the coreset efficiently using bi-criteria ap-
proximation (Section 4.1). It is straightforward to plug our
bi-criteria technique to the second part of the paper of Agar-
wal and obtain the first efficient (O(n) time) construction
of coresets for k-lines. In particular, this coreset yields an
improved algorithm for computing a (1 + ε) multiplicative
approximation for the k-line center in only O(n) time.
Unlike the case of our paper that deals with k-segments

and k-splines, the Hausdorff distance between a point and a
line is infinite; see Definition 2. Also, when k-lines queries
are replaced by k-segments queries, there is no similar core-
set C as described above; see [17]. Instead, we use a small
additive error in the definition of our coreset (Definition 4.1).
This also allows the coreset to approximate every query (and
not just k-lines or k-segments queries).
Another difference between our coresets and coresets for k-

lines (as in [4]) is that there is a lower bound of 2k for coresets
that provides a (1 + ε) approximation for distances to any
k-lines [17]. This bound is impractical for our applications,
where usually k > 100. However, we were able to construct
coresets of size linear in k for our problem, using the same
relaxation of ε-additive error that was described above.
Our construction uses the fact that, after projecting a set

of points on a line ℓ, every query line f can be replaced by a
weighted point c; see Fig. 2. While this is trivial for lines on
the plane (the case d = 2, Fig. 2(a)), it is less intuitive for the
case d ≥ 3 (Fig. 2(b)). We use the fact that when the angle
between the two lines f and ℓ is θ = ε, then the distance
from every point p ∈ ℓ to f is similar to the (unweighted)
distance to some fixed point c ∈ Rd, up to a multiplicative
factor of O(ε).
One of the unique advantages of our coreset is its prov-

able ability to handle streaming and parallel data. To this
end, we had to use a different approach than those used by
existing algorithms. For example, if P is a set of points on a
single segment, existing algorithms will usually choose only
the two endpoints of the segment (e.g. [2]). While this makes
sense for static input, when new points are added to P , the
distribution of the original points on the segment might be
necessary for sub-dividing the segment, or merging it with
a new one. Indeed, our algorithm adds such representatives
to the output coreset, even if they are all lying on the same
line.

Our contribution.
Our coreset is significantly different from previous com-

pression techniques. (i) It guarantees both a threshold ε
and a small coreset size that depends on ε; (ii) the con-
struction is more involved, and based on global optimiza-
tion, rather than on local relations between input points;
and (iii) our coreset C is a set of points, not segments. In

fact, the first step of our coreset construction computes a set
of only O(k/ε) segments that are provably close to P (See
Lemma 4.2), but the final coreset C is a subset of P . This
allows us to replace P with C while using existing algorithms
that accept points as input, as in the database techniques
above. For example, a road map can be used together with
C in order to compute the final segments or trajectory that
will approximate P . This problem of compressing the data
in a way that will allow us to handle constraints such as
road-maps was suggested as an open problem in [8].

To our knowledge, our coresets are the first that sup-
port the merge-and-reduce model with bounds on both error
and space. In particular, we didn’t find other parallel (dis-
tributed) computing algorithms for compressing trajectories
with similar bounds.

Open problems addressed in this paper.
Abam et al. recently stated [2] that an obvious question is

whether we can have a streaming algorithm that can approx-
imate S using exactly k-segments (and not β = 2k as in [2]).
We answer this question in the affirmative by computing
the optimal k-spline of our streaming coreset; see Section 8.
In [2] it is also stated that the authors couldn’t apply the
merge-and-reduce technique on their coreset. They suggest
the open problem of constructing such a coreset, which we
answer in the affirmative in this paper.

Streaming heuristics such as Douglas-Peucker Heuristic
(DPH), unlike [2], do not assume monotone/convex input,
and provide bounds either on the running time or on the ap-
proximation error ε. Streaming simplification is considered a
“challenging issue” and “important topic of future work” [8].
Our coreset provides the first bound on both the error and
the update time/space simultaneously.

Abam et al. provided the first provable linear simplifi-
cation streaming α = O(1)-approximation algorithm, under
the monotone/convex assumption, using O(k2) space. They
suggested a second open problem for reducing this (some-
times impractical) size to O(k), and the possibility of com-
pression using the merge-and-reduce technique. Indeed, our
coresets are of size O(k) for every constant α = ε > 0. They
are suitable for the merge-and-reduce technique. In addi-
tion, our coresets yield the first algorithm that supports par-
allel (distributed) computing for line simplification. Other
compressions that use the merge-and-reduce technique fail
either in the merge or the reduce part of the method.

In [8] it was suggested to investigate the issues that arise
when the uncertainty of the location technology (e.g. GPS)
is combined with the ε-error due to the simplification. In-
deed, the error of our coreset depends on ε, but also on the
additional parameter k that corresponds to the optimal lin-
ear k-simplification of the input path. Unlike with existing
heuristics that require the adjustment of the error param-
eter during the streaming, since our error depends on the
current optimal solution, there is no need to adjust it.

3. K-SPLINE CENTER
Let P be a set of points in Rd, where d ≥ 1 is constant

and every point p ∈ P is of the form p = (x1, · · · , xd−1, t).
The first coordinates (x1, · · · , xd−1) represent outputs (real
numbers) from d − 1 sensors at time t. We denote the last
coordinates of a point p = (x1, · · · , xd−1, xd) by p(t) := xd.

We call a set S ⊆ Rd a k-spline if it is the union of k
segments s0s1, s1s2, . . . , sk−1sk for some s0, · · · , sk ∈ Rd,

(a) 4-Spline (b) Optimal 4-spline (c) ε-Rotation of the optimal spline

Figure 3: k-Splines

where s0(t) < · · · < sk(t). The segment si−1si is called the
ith segment of S, for i ∈ {1, . . . , k}. See Fig. 3(a).
The regression distance distR({p} , S) between a point p ∈

Rd and a k-spline S is the Euclidean distance between p and
S along the last coordinate axis, i.e,

distR({p} , S) :=

{
∥p− s∥ if ∃s ∈ S s.t. p(t) = s(t)

∞ otherwise,
.

where ∥·∥ denotes the Euclidean norm. The regression dis-
tance between a set P ⊆ Rd and a k-spline S is the maximum
regression distance between a point in P to S, i.e,

distR(P, S) := max
p∈P

distR({p} , S).

A k-spline center S∗ = S∗(P, k) of P is a k-spline that
minimizes the regression distance to P among all the possi-
ble k-splines in Rd:

min
S

distR(P, S) = distR(P, S
∗). (1)

See Fig. 3(b).

The k-spline S̃ = S̃(P, k) is an ε-rotation of a k-spline
center, if there is a k-spline center S∗ of P such that, for
every i ∈ {1, · · · , k}, the ith segment of S̃ is a rotation
of the ith segment of S∗ by an angle ε around some point
si ∈ Si. See Fig. 3(c).

4. ε-CORESETS

4.1 Overview of construction
Let P be a set of points in Rd for some constant integer

d ≥ 1 and let ε > 0. In Section 4.3 we prove that a small
ε-coreset C exists for P under the assumption that it can
be approximated by an ε-rotation of its k-line center S∗ for
some integer k ≥ 1. See Fig 4 for a sketch of the final coreset
construction. See Fig 5 for example run on a real set of 5000
GPS points.
The set C is computed by first constructing a dense set

T of O(k/ε) segments around every one of the k segments
in S∗. Then, we project every point of P onto its nearest
segment in T . We prove that the resulting set C′ (which con-
tains n points) has a small Hausdorff distance to P . Since
C′ is contained in T , we can now scan the projected points
on each segment t of T from left to right and select a rep-
resentative point from every ε2-fraction of t. The union of
representatives is denoted by C′′. Note that every point
p′′ ∈ C′′ is a projection of some point p ∈ P on T . Our

output ε-coreset C is the union of points in P whose projec-
tion is in C′′. We prove that for every such input set P , the
resulting set C is a small ε-coreset with size independent of
n.

The above construction is inefficient, since we assume that
the optimal k-spline S∗ was already computed. In Section 5
we will replace this assumption by a rough and fast approx-
imation to S∗, called (α, β) or bi-criteria approximation.

4.2 Necessary assumptions
We define distH(A,B) as the Hausdorff Euclidean dis-

tance between a pair of sets A,B ⊆ Rd:

distH(A,B) :=

max

{
max
p∈P

min
p′∈C

∥∥p− p′
∥∥ ,max

p′∈C
min
p∈P

∥∥p′ − p
∥∥} .

(2)

Definition 4.1 (ε-coreset). An ε-coreset for P is a
set C ⊆ P such that

distH(P,C) ≤ ε.

By scaling the points of P , we can see that in general an
ε-coreset for P must contain all the points of P . Hence,
we will add the assumption that P is not an arbitrary set
of points, because it can be roughly approximated by its
k-spline center for some k ≥ 1.

Formally, let S∗ = S∗(P, k) denote a k-spline center of P .
We assume that

distR(P, S
∗) ≤ c (3)

for some constant c ∈ (0,∞) (that is independent of n).
Hence, it suffices to prove that

distH(P,C) ≤ ε · distR(P, S∗) (4)

to conclude that C is an cε-coreset. By applying the con-
struction with ε/c instead of ε we obtain an ε-coreset.

Using assumption (3) we compute in the next section a
set C (denoted by C′) that satisfies (4). The resulting ε-
coreset C′ is still large (of size n = |P |), but is contained
in only O(k/ε) segments. Unfortunately, it is impossible
to compute a small ε-coreset C′, even if (3) holds for a
small constant c. For example, if P is a set of points on a
line, then distH(P, S∗(P, k)) = 0 and we must have C′ =

P . Therefore, we replace S∗(P, k) with its ε-rotation S̃ =

S̃(P, k) in our assumption (3); see Section 3 for definition

of S̃. Using the new assumption and the fact that C′ is
contained in a few segments we prove in Theorem 5.1 and
Corollary 5.2 that we can always compute a small ε-coreset
C for P in O(n) time.

4.3 Inefficient Construction Algorithm
Let P be a sequence of n points in Rd, ε > 0 and k ≥ 1.

In order to clarify the algorithm and its analysis, we first
prove that a small ε-coreset C exists. For a point p ∈ P ,
and a segment Si of a k-spline S, we say that Si serves p
if there is s ∈ Si such that p(t) = s(t). That is, the last
coordinates of s and p are identical. For a set Y ⊆ Rd, we
define dist(p, Y) = miny∈Y ∥p− y∥, and for a set X ⊆ Rd

we define dist(X,Y) = minx∈X dist(x, Y). For simplicity,
we first describe the construction when P is a set of points
on the plane (i.e., d = 2).

Step 1: Constructing C′.
Let S∗ = S∗(P, k) denote a k-spline center of P . Although

we don’t know how to compute S∗, such an optimum exists.
Fix a segment Si of S∗, and let Pi denote the points of P
that are served by Si. Let Ti denote an ε-grid of segments
around Si. More formally, Ti is the union of ⌈2/ε⌉ parallel
segments, each of length |Si| + dist(P, S∗), such that the
distance from a point p ∈ P to its closest segment t in Ti is
ε than its distance to Si:

dist(p, Ti) ≤ εdist(p, Si). (5)

Let p′ be the projection of p ∈ Pi onto its closest segment
in Ti. Let C′

i = {p′ | p ∈ P} be the union of these points,
T =

∪
1≤i≤k Ti and C′ =

∪
1≤i≤k Ci

Step 2: Constructing C.
Let t ⊆ Ti denote one of the segments of Ti that was

constructed in Step 1, that contains at least one point from
C′, i.e., C′ ∩ t ̸= ∅. Let p′L, p

′
R denote the leftmost and

rightmost points from C′ on t, respectively. Partition the
segment p′L, p

′
R ⊆ t, into r = ⌈10/ε⌉ equal sub-segments

t1, · · · , tr. For every such sub-segment tj , 1 ≤ j ≤ r that
contains at least one point from C′, pick a single point p′j ∈
C′ ∩ tj . We call p′j the representative of every p′ ∈ C′ ∩ tj .
Let C′

t =
{
p′j | 1 ≤ j ≤ r, tj ∩ C′ ̸= ∅

}
be the union of these

representatives on t. Let C′′ =
∪

t C
′
t where the union is

over all the segments of T . Recall that every point p′ ∈
C′′ ⊆ C′ is the projection of some p ∈ P on t. Let C =
{p ∈ P | p′ ∈ C′′} be the final output set of the construction.

Lemma 4.2. Let P be a set of points in Rd, k ≥ 1 and
ε ∈ (0, 1). There is a set C′ that is contained in O(k/ε)
segments such that

distH(P,C′) ≤ εdistR(P, S
∗(P, k)).

Proof. We use the construction in the beginning of this
section and its notation. Let Ci = C′ ∩ Pi for every i,
1 ≤ i ≤ k. We have

distH(P,C′) ≤ max
1≤i≤k

distH(Pi, Ci)

Put i, 1 ≤ i ≤ k. Then

distH(Pi, Ci)

≤ max

{
max
p∈Pi

min
q∈Ci

∥p− q∥ ,max
q∈Ci

min
p∈P

∥q − p∥
}

≤ max

{
max
p∈Pi

∥∥p− p′
∥∥ , max

p′∈Ci

∥∥p′ − p
∥∥}

≤ max
p∈Pi

∥∥p− p′
∥∥ .

Let p ∈ Pi. By (5),∥∥p− p′
∥∥ = dist(p, Ti) ≤ εdist(p, Si)

≤ εmax
p∈Pi

dist(p, Si)

≤ εdistR(Pi, Si) ≤ εdistR(P, S
∗).

(6)

Combining the last inequalities yields

distH(P,C′) ≤ max
1≤i≤k

distH(Pi, Ci)

≤ max
1≤i≤k

max
p∈Pi

∥∥p− p′
∥∥

≤ εdistR(P, S
∗).

Since C′ ⊆ T , the last inequality proves the lemma.

Lemma 4.3. Let P be a set of points in Rd, k ≥ 1 and
ε > 0. There is a set C ⊆ P of size |C| = O(k/ε3) such that

distH(P,C) ≤ εdistR(P, S̃(P, k)).

Proof. We use the construction and notation from the
beginning of this section, and prove that

distH(P,C) ≤ 10εdistR(P, S̃(P, k)) (7)

By replacing ε with ε/10 in the construction, this would
prove the lemma.

Using the triangle inequality,

distH(P,C) ≤
distH(P,C′) + distH(C′, C′′) + distH(C′′, C).

By (6) and the definition of S∗,

distH(P,C′) + distH(C′′, C) ≤ 2max
p∈P

∥∥p− p′
∥∥

≤ 2εdistR(P, S
∗)

≤ 2εdistR(P, S̃).

For every p′ ∈ C′ let p′′ denote its representative in C′′ (as
defined in the construction of C′′). Hence,

distH(C′, C′′)

= max

{
max
q′∈C′

min
q′′∈C′′

∥∥q′ − q′′
∥∥ , max

q′′∈C′′
min
q′∈C′

∥∥q′′ − q
∥∥}

≤ max
p′∈C′

∥∥p′ − p′′
∥∥ .

Combining the last three inequalities yields

distH(P,C) ≤ 2εdistR(P, S̃) + max
p′∈C′

∥∥p′ − p′′
∥∥ . (8)

Next, we compute a bound for ∥p− p′′∥.
Let p ∈ P . Suppose that p′ ∈ C′ is the projection of p

on the segment t ⊆ Ti. Let P
′
L and P ′

R denote, respectively,
the leftmost and rightmost point of C′ ∩ t. By construction,∥∥p′ − p′′

∥∥ ≤ ε2
∥∥p′R − p′L

∥∥ . (9)

We now bound ∥p′R − p′L∥.
Recall that every segment of Ti, including t, is parallel to

Si. Let S̃i denote the corresponding ε-rotation of Si in S̃.
Let ℓi denote the line on the plane that contains S̃i. Let ℓ
denote the line that contains t. Let x denote the intersection
point between ℓ and ℓi. The farthest point from x in C′ ∩ t

(a) Pick a random sample from the
input points

(b) Approximate sample by a k-
spline. Remove ∼ n/2 closest
points to the k-spline and goto step
(a) till no points left.

(c) Take the union of k-splines from
all the O(logn) iterations

(d) Construct O(1/εd) grid of seg-
ments around every segment of the
k-splines

(e) Project input points on the grids (f) Partition each grid’s segment
into equal O(1/ε) sub-segments

(g) Pick a representative point from
each sub-segment

(h) Find the corresponding input
point for every representative

(i) Return the union of correspond-
ing points

Figure 4: Algorithm for constructing ε-coreset that approximates every k-spline.

(a) Input: n = 5000 points. (b) Pick a random sample of 10k =
100 points.

(c) Compute optimal k = 10 spline
for sample

(d) Compute distances from the n
input points to the spline. Here,
different colors mean different clus-
ters.

(e) Remove closest n/2 points to
spline.

(f) Repeat from step (b) on remain-
ing n/2 points, until n < 10k

(g) Take the union of 50 segments
that were computed in Step (c) on
all 5 iterations .

(h) Extend to 80 segments that are
parallel to the 50 segments

(i) Project every point onto its near-
est segment

(j) Pick 5 points from each segment (k) Output corresponding input points

Figure 5: Example coreset construction C for n = 5000 input points, and any k = 10 spline, where |C| = 300.

is either P ′
R or P ′

L. Hence,∥∥p′R − p′L
∥∥ ≤

∥∥P ′
L − x

∥∥+
∥∥x− P ′

R

∥∥
≤ 2max

{∥∥P ′
L − x

∥∥ , ∥∥P ′
R − x

∥∥}
≤ 2 max

q′∈C′

∥∥q′ − x
∥∥ . (10)

We denote by θ(ℓ′) the sinus of the angle between ℓ and
a given line ℓ′. Hence, θ(ℓi) = sin(ε) ≥ 2ε/π ≥ ε/2. Since
p′ ∈ ℓ, we thus have

dist(p′, ℓi) = sin(θ(ℓi))
∥∥p′ − x

∥∥ ≥ ε

2

∥∥p′ − x
∥∥ .

That is, ∥∥p′ − x
∥∥ ≤ 2dist(p′, ℓi)/ε. (11)

Since S̃i ⊆ ℓi, we have

dist(p′, ℓi) ≤ dist(p′, S̃i) ≤
∥∥p′ − p

∥∥+ dist(p, S̃i)

≤ distH(P,C′) + distR(P, S̃).

By Lemma 4.2, distH(P,C′) ≤ εdistR(P, S
∗). By the as-

sumption ε < 1 and the definition of S∗, the last inequality
implies distH(P,C′) ≤ distR(P, S̃). Combining the last in-
equalities with (11) yields∥∥p′ − x

∥∥ ≤ 2dist(p′, ℓi)/ε

≤ 2

ε
(distH(P,C′) + distR(P, S̃))

≤ 4distR(P, S̃)

ε
.

By plugging the last inequality in (9) and (10), we obtain∥∥p′ − p′′
∥∥ ≤ ε2

∥∥p′R − p′L
∥∥

≤ 2ε2 max
q′∈C′

∥∥q′ − x
∥∥

≤ 8εdistR(P, S̃).

By (8), this proves (7) as

distH(P,C) ≤ 2εdistR(P, S̃) + max
p′∈C′

∥∥p′ − p′′
∥∥

≤ 10εdistR(P, S̃).

5. EFFICIENT CONSTRUCTION
The above construction is inefficient since it assumes that

we already computed a k-spline center S∗ of P , which we
don’t know how to do in time near-linear in n. In Sec-
tion 5, we prove that C can be constructed efficiently (in
O(n) time). The k-spline S∗ can be replaced in our con-
struction by a rough approximation S called bi-criteria ap-
proximation or (α, β)-approximation for S∗. The distance
from P to S is larger by a multiplicative constant factor α
than its distance to S∗. Still, we couldn’t find any algorithm
in literature that computes such a constant factor approx-
imation for P in near-linear time. Hence, we add a relax-
ation that S can contain β = O(k logn) segments instead of
k segments. We use random projections to obtain a simple
algorithm that computes such an (α, β)-approximation S for
the k-line center of P in O(n) time as follows.
First, we pick a small uniform random sample Q of O(k/ε)

points from P . Next, we compute the k-spline center S∗(Q, k)

of the small set Q using an existing inefficient optimal al-
gorithm for spline approximation, and remove from P the
|P |/2 points that are closest to S∗(Q, k). We then repeat
this algorithm recursively until P is empty. The output of
the algorithm is the union of the computed k-splines.

The algorithm runs using at most O(logn) iterations, and
thus outputs O(logn) k-splines. This is straightforward
from PAC-learning theory, and the technique is also pop-
ular for sensor networks applications [16]. The size of the
final coreset is O(logn). In order to have a coreset of size
independent of n, we compute a k-spline approximation S
on our existing coresets, and repeat the construction with
S instead of using the O(logn) splines from the bi-criteria
approximation. De-randomization and straightforward gen-
eralization for other distance functions can be obtained using
the framework of [13] with our observations.

Theorem 5.1. Let P be a set of n points in Rd. Let ε ∈
(0, 1) and k ≥ 1. Then a set C ⊆ P of size |C| = O(k/ε3)
can be constructed in O(n) time, such that

distH(P,C) ≤ εdistR(P, S̃(P, k)).

Corollary 5.2. Let P be a set of n points in Rd. Let ε ∈
(0, 1) be a constant and k ≥ 1 be an integer. If distR(P, S̃(P, k) ∈
O(1) then an ε-coreset C for P can be computed in O(n)
time. That is,

distH(P,C) ≤ ε.

Proof. Since distR(P, S̃(P, k)) ≤ c for some constant c =
O(1), we can replace ε with ε/c in Theorem 5.1 to obtain

distH(P,C) ≤ (ε/c)distR(P, S̃(P, k)) ≤ ε.

6. EXPERIMENT AND RESULTS
The data. We tested the practical compression ratio of

our coreset construction by implementing it and running ex-
periments using a public dataset of GPS traces [26]. This
dataset contains mobility traces of taxi cabs in San Fran-
cisco, USA. It contains GPS coordinates of 500 taxis col-
lected over 30 days in the San Francisco Bay Area.

The experiment. We applied the following procedure
independently to every trace in the data set. The input set
P was partitioned into two parts containing 10,000 traces
each. We applied our coresets construction on each part to
obtain two coresets of approximately 200 points. We then
merged the two coresets and compressed the new set (of size
400) again, as shown in Fig 1(a). On the resulting coreset
of 200 points, we then applied DPH with k = 100 (i.e, DPH
approximates the coreset using 100 points, or 100-spline) to
get a k-spline (k = 100) SC which approximates the original
set.

We then repeated the experiment, using DPH itself as
the compression algorithm, as was done in [8]. That is, we
partitioned the original 20k into two sets and applied DPH
independently on every set using k = 200. We then applied
DPH on the merged set of 400 points using k = 200. On the
resulting set D of 200 points, we applied DPH using k = 100
to get a k-spline SD.

The results. We computed the Hausdorff error between
the original set P and the k-spline SC that was obtained
from our coreset. Similarly, we computed the error between

Figure 6: Comparison of experiments on traces of
500 taxi-cabs over a month. The y-axis is the Haus-
dorff distance from the original set to the k-spline
approximation that was constructed on the compres-
sion. The x-axis is a sample of the first 20 taxi-cabs
that had at least 20000 GPS traces.

P and the k-spline SD that was constructed on the DPH-
compressed set. The results for 20 such experiments on each
taxi-cab are shown on Fig 6, where the y-axis is the error.
Additional points would result in more merges that increase
the comparison gap exponentially with the levels of the tree
in Fig. 1(a).
The implementation. We implemented our algorithm

in MATLAB [22]. We also used the official implementation
of MATLAB for the DPH algorithm. DPH uses as input pa-
rameter the maximum allowed error ε instead of the number
of desired segments k. We overcome this problem by apply-
ing binary search on the value of ε until DPH returned k
lines.
For the bi-criteria approximation during the coreset con-

struction, we used a random sample of 5 points, and con-
nected them by a 5-spline S. We then removed half of the
closest input points to S recursively as explained in Sec-
tion 5 .We used 5 additional segments for the ε-grid around
every segment of S. Sampling more input points and using
a more involved algorithm for computing S, as in Section 5,
will likely improve the result. We are in the process of test-
ing this hypothesis. In addition, since we did not try to
configure the parameters of the construction to obtain bet-
ter results, another direction of our current work is to tune
the parameters.

7. DISCUSSION IN THE CONTEXT OF RE-
LATED WORK

The challenge of compressing trajectories semantically (also
known as“line simplification”) has been tackled from various
perspectives: geographic information systems [11], databases, [10],
digital image analysis [21], computational geometry [5], and
especially in the context of sensor networks [6]. The input
to this problem is a sequence P of n points that describes
coordinates of a path over time. The output is a set Q of
k points (usually subset of P) that approximates P . More
precisely, the k-spline S that is obtained by connecting every
two consecutive points in Q via a segment should be close to
P according to some distance function. The set Q is some-
times called a coreset [2] since it is a small set that approxi-

mates P . However, our definition of coreset for this problem
is significantly different (see Definition 4.1) and more similar
to its original definition in computational geometry [3].

Several books have been written about the line simpli-
fication problem [15]. Yet, it seems that every discipline
improves the solution with respect to some parameters, but
deteriorates others. Our coreset was inspired by several pre-
vious techniques, aiming to formalize the trade-offs and sug-
gest a unified solution that enjoys the good benefits of all
previous ones.

Simple heuristics.
The oldest heuristic [8] for line simplification is the Douglas-

Peucker heuristic (DPH) [11]. DPH gets an input threshold
ε > 0 and returns a set Q that represents a k-spline S as
defined above. DPH guarantees that the Euclidean distance
from every p ∈ P to S is at most ε. This is also the attrac-
tiveness of DPH, compared to other lossy data compression
techniques such as wavelets [9]. DPH is very simple, easy to
implement, and has a very good running time in practice [8].
The guaranteed ε-error allows us to merge two compressed
sets Q1 and Q2 in the streaming model, while keeping the
ε-error for Q1 ∪Q2.

We compared our experimental results to DPH not only
because it is popular, but also because it “achieves near-
optimal savings at a far superior performance” [8].

While DPH has a guaranteed ε-error, it suffers from se-
rious space problems due to its local (ad-hoc, greedy) opti-
mization technique. In particular, the size k of its output is
unbounded, and might be arbitrarily larger than the small-
est set Q ⊆ P that obtained such an ε-error. While merging
two sets preserves the error, it is not clear how to reduce the
merged set again. The size of the compressed output will
increase linearly with the input stream. Choosing a larger
ε will result in too small or empty set Q for the first com-
pressions. The worst case running time for the basic (and
practical) implementation is O(n2). More modern versions
of the DPH ([24]) appear to have similar pros and cons.

Approximation Algorithms.
Provable approximation algorithms from theoretical com-

puter science and computational geometry seem to have op-
posite properties. They are based on much more involved
global optimization algorithms with theoretical worst-case
guarantees on the running time, error, and space. This is
also their main disadvantage: the papers (at least in our con-
text) usually do not contain experimental results (e.g. [2]),
and it is not clear that an efficient implementation is possi-
ble due to problems such as numerical stability and hidden
constants in the O() notation. Few exceptions are recently
available [12]. We run a popular heuristic (Douglas-Peucker)
against itself, by simply running the heuristic once on P and
once on C. Surprisingly, the running time improves and the
approximation error is reduced on the representative set C
as compared to the original P . This might be due to noise
removal as a side effect of the coreset construction. In ad-
dition, since C is significantly smaller than P , we can apply
the heuristic many more times, using different initial pa-
rameters, during a single competitive run on P . Overall,
this technique combines provable guarantees with practical
heuristics.

The optimal algorithm for simplifying 2d-polygonal chain
runs in O(n2) time for any Euclidean metrics and O(n4/3+δ)

for L1 and L∞ metrics [5]. Sophisticated variations of DPH
can be implemented inO(n logn) time [19] and evenO(n log∗ n)
time [20]. Still, we couldn’t find implementations for these
algorithms, and DPH seems to have much more popularity
and better running time in practice [8].
Abam, de Berg, Hachenberger and Zarei [2] recently sug-

gested the provable construction of a coreset C for P un-
der the streaming model. The set C is of size O(k2) and
allows us to compute an α = O(1) (α > 2) multiplicative-
approximation to the optimal k-spline S of P using β-spline,
where β = 2k. In our paper such an approximation is
also used in the coreset construction and is called (α, β)-
approximation; (see Section 4.1). The algorithms are non-
trivial, interesting and followed by deep computational ge-
ometry proofs. However, this result holds only if S is xy-
monotone or a convex linear function [2]. This assumption
on S is unlikely to hold in many situations. The O(k2) space
might also be infeasible for large values of k. While C can
be computed in the streaming model, it cannot be computed
in parallel.
Results that are similar or improve upon the results of

Abam et al. can be obtained using our coreset as follows.
The first step of our construction projects P onto O(k/ε)
segments with a provable small ε-error. The maximum dis-
tance from a point on a segment to a monotone path will
be obtained by either the leftmost or rightmost point on
the segment. Hence, selecting these two points from P in
each segment to the coreset C suffices to approximate ev-
ery monotone function. Since there are O(k/ε) segments,
the resulting coreset will be of size O(k). Similarly, our
coreset approximates convex paths (using simple observation
from [17]). Unlike the coreset of Abam et al., our coreset
also supports the parallel computation model.

Database techniques.
Popular database servers, such as MySQL, support spa-

tial queries (such as: nearest road or station to a given tra-
jectory). Unlike the previous two approaches, here we are
interested in a data structure for compressing P that will be
used to answer general queries, rather than just to compute
a line simplification S for P . Our coreset (Definition 4.1)
is inspired by this approach and different from all previous
coresets: it guarantees that every input point in P has an
ε-close representative in the coreset C. Using the triangle
inequality, the error for every query set is bounded by ε, re-
gardless of the specific type of query (k-points, k-segments,
etc.).
The lack of locality in trajectories makes their compres-

sion harder than other databases (that represent more static
data such as house locations or ages). Indeed, there are
small coresets for (1 + ε) multiplicative approximation of P
by k points for several distance functions [4], while there are
lower bounds of 2k for the size of such compression for k
lines [17]. Unlike the case of points, covering P by k-lines is
NP-hard [23] and bounding the complexity of the Voronoi
diagram of k-lines is one of the main open problems in ge-
ometry.
Our coreset construction cannot be described as partition-

ing the space into simple shapes or cells and taking a single
representative from each cell. The first step of our coreset
construction projects the points onto linear objects, rather
then compressing them. We prove that for a set of points
projected onto the same segment, the distance to a given

query segment or line can be represented as a distance to
a point; see Fig 2. This observation allows us (in the sec-
ond step) to partition the segments into cells and cluster the
points on them, as in the database techniques.

8. APPLICATIONS
A small ε-coreset C for P can help us reduce the space

and running time of many applications in the field of sensor
networks.

Database queries.
Our coreset is a new type of compression that guarantees

a small additive error for general types of queries, which
makes it suitable for answering SQL or GIS spatial queries
on the reduced coreset C as suggested in [10].

Suppose, for example, we require the nearest input point
to a query curve that represents a road, or to a query point
that represents a bus station. The property distH(P,C) ≤ ε
of the coreset guarantee that every point in P has a close
representative point in C. After computing the coreset C
we can delete the original set P , and still be able to answer
unbounded number of queries in O(1) time using C. We
give the following corollary.

Corollary 8.1. Let P be a set of points. Suppose that C
is an ε-coreset for P that was constructed using Theorem 5.1
for some constants k ≥ 1 and ε > 0. Then, for every subset
Q ⊂ Rd, we have

0 ≤ distH(P,Q)− distH(C,Q) ≤ ε.

Moreover, distH(C,Q) can be computed in O(1) time, if this
is the time it takes to compute the distance from a single
point p ∈ P to Q.

Proof. Since C ⊆ P by Theorem 5.1, we have distH(P,Q)−
distH(C,Q) ≥ 0. Since the Hausdorff distance is a metric,
it satisfies symmetry and the triangle inequality. Hence,

distH(P,Q) ≤ distH(P,C) + distH(C,Q)

≤ ε+ distH(C,Q) = distH(Q,C) + ε,

where in the second deviation we used Theorem 5.1. There-
fore distH(P,Q)− distH(C,Q) ≤ ε.

The time it takes to compute distH(C,Q) is |C|·t where t is
the time it takes to compute distH({p} , Q) for a single point
p ∈ C ⊆ P . By Theorem 5.1, we have |C| = O(k/ε3) =
O(1). For t = 1 we obtain t · |C| = O(1).

(1 + ε) Approximations.
In a vehicular network application, we may have a series

of GPS points representing a vehicle traveling between sev-
eral destinations. Instead of using all n GPS points on its
path to represent the path, we would like to create the k-
spline center in order to compress the data. The k-spline
center S∗(P, k) of a set P of n points is a set of k con-
nected segments that approximates P . The set S∗(P, k) is
also called the line simplification of P ; See Section 3 for
formal definitions. The time it takes to compute S∗(P, k) is
near-quadratic in n [5] and impractical [8]. Instead of trying
to improve this kind of optimization algorithms, we can ap-
ply the (possibly inefficient) algorithm on the small coreset
C to get its k-spline center S∗(C, k) in O(1) time. In partic-
ular, if distH(P, S∗(P, k)) ∈ O(1) then S∗(C, k) is a (1 + ε)
multiplicative approximation for the k-spline center of the
original set P as proved in the following corollary.

Corollary 8.2. Let P be a set of n points, and k ≥ 1 be
a constant integer. Let S∗ = S∗(P, k) be the k-spline center
of P . Let C be an ε-coreset of P for some constant ε > 0.
Then a k-spline S′ can be computed in O(1) time such that:

(i)

distH(P, S′) ≤ ε+ distH(P, S∗).

(ii) If distH(P, S∗) ≥ 1 then

distH(P, S′) ≤ (1 + ε)distH(P, S∗).

Proof. (i) The k-line center S′ = S∗(C, k) of C can be
computed in O(|C|3) = O(1) time using the algorithm in [5].
By the triangle inequality and the definition of S′,

distH(P, S′) ≤ distH(P,C) + distH(C, S′)

≤ distH(P,C) + distH(C, S∗)

Since C is an ε-coreset of P , we have distH(P,C) ≤ ε. To-
gether with the previous inequality this proves Claim(i).
(ii) straightforward from (i).

9. STREAMING AND PARALLEL COMPU-
TATION

In this section we show that our (static, off-line) coreset
scheme suffices to solve the corresponding problem in par-
allel and distributed computing, and in a streaming setting
where data points arrive one by one and remembering the
entire data set is futile due to memory constraints. We use a
map-and-reduce technique (popular today as“Google’s map-
and-reduce”). The key insight is that coresets satisfy certain
composition properties. Similar properties have previously
been used by [13] for streaming and parallel construction of
coresets for geometric clustering problems such as k-median
and k-means. We extend these results for Hausdorff dis-
tances as follows.

Observation 9.1.

(i) Suppose that C1 is an ε-coreset for P1, and C2 is a
ε-coreset for P2. Then C1 ∪ C2 is an ε-coreset for
P1 ∪ P2.

(ii) Suppose C is an ε-coreset for P , and D is an ε-coreset
for C. Then D is a 2ε-coreset for P .

Proof. (i) distH(C1 ∪ C2, P1 ∪ P2)
≤ max {distH(C1, P1),distH(C2, P2)}
≤ max {ε, ε} = ε.

(ii) distH(D,P) ≤ distH(D,C) + distH(C,P)
≤ 2ε.

In the following, we review how to exploit these properties
for streaming and parallel computation.

Streaming.
In the streaming setting, we wish to maintain a coreset

over time, while keeping only a small subset of O(log n) core-
sets in memory (each of small size). The idea is to construct
and save in memory a coreset for every block of consecutive
points arriving in a stream.

When we have two coresets in memory, we can merge
them (resulting in an ε-coreset via property (i)) and com-
press them by computing a single coreset from the merged
coresets (via property (ii)) to avoid an increase in the coreset
size.

Parallel computation.
Using the same ideas from the streaming model, a nonpar-

allel coreset construction can be transformed into a parallel
one. We partition the data into sets, and compute core-
sets for each set, independently, on different processors in
a cluster (sensors, computer networks, cloud services, etc).
We then (in parallel) merge (via property (i)) two coresets,
and compute a single coreset for every pair of such coresets
(via property (ii)). Continuing in this manner yields a pro-
cess that takes O(logn) iterations of parallel computation.
Fig. 1(a) illustrates this parallel construction.

GPU computation.
GPUs are installed today on most desktop computers and

recently on smart phones (such as the Nexus One and iPhone).
The GPU is essentially a set of dozens or hundreds of proces-
sors that are able to make parallel computations. However,
the model of computation is very restrictive. In particular,
non trivial linear algebra computations suffer from signif-
icant numerical problems. Our algorithm suggests a new
paradigm to deal with such problems by computing the core-
set on the GPU and using the CPU to compute the desired
result on the coreset. As we explained in Section 5, most of
the construction time of the coreset is spent on matrix mul-
tiplication (computing distances from points to segments)
that can be computed on the GPU. Also, division operations
(that usually cause the numerical problems) are applied by
optimization algorithms only on the CPU.

10. CONCLUSION
In this paper we presented an algorithm for compressing

the large data sets generated by sensor networks via core-
sets. Given a constant ϵ > 0 and a set P of n points repre-
senting signals from sensors, our ϵ-coreset algorithm returns
O(k) points (independent of n) such that the Hausdorff Eu-
clidean distance from P to any given query set of points is
preserved up to an additive error of ϵ. Our compression al-
gorithm departs from previous results by guaranteeing the
approximation error for any query as compared to previous
works that guarantee the solution quality only for subclasses
of queries. Because our coreset algorithm is parallelizable, it
can be used in off-line mode for historical data collected and
databased, as well as in on-line mode for streamed data from
sensors. To demonstrate the effectiveness of this coreset al-
gorithm, we showed data from an experiment with GPS data
collected from a vehicular network of taxis. We showed that
the practical compression ratio of our coreset construction
outperforms the Douglas-Peucker algorithm.

Our current results provide a theoretical step for enabling
off-line and on-line computation on large-scale sensor net-
works. Much work remains to be done in order to provide
practical solutions to in-network and off-line processing of
large data sets. We are currently integrating our algorithms
with sensor networks deployed in the field. This is a signifi-
cant engineering challenge, which is important to undertake
in order to close the loop from theory to practical applica-

tions. We are undertaking a more extensive experimental
evaluation of this algorithm using data from a roving ve-
hicular network of 15000 taxis, we are developing the geo-
referencing applications that take advantage of the potential
benefits of our solution in this paper.

11. ACKNOWLEDGEMENT
Fig 1(a) was drawn by Andreas Krause and is taken from [14].

This research was supported in part by the Foxconn Com-
pany and the Future Urban Mobility project of the Singapore-
MIT Alliance for Research and Technology (SMART) Cen-
ter, with funding from Singapore’s National Research Foun-
dation. We are grateful for it.

12. REFERENCES
[1] Mobile millennium. Technical report.

[2] M.A. Abam, M. de Berg, P. Hachenberger, and
A. Zarei. Streaming algorithms for line simplification.
Discrete and Computational Geometry, 43(3):497–515,
2010.

[3] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan.
Geometric approximations via coresets. Combinatorial
and Computational Geometry - MSRI Publications,
52:1–30, 2005.

[4] P. K. Agarwal, C. M. Procopiuc, and K. R.
Varadarajan. Approximation algorithms for k-line
center. In Proc. 10th Ann. European Symp. on
Algorithms (ESA), volume 2461 of Lecture Notes in
Computer Science, pages 54–63. Springer, 2002.

[5] P.K. Agarwal and K.R. Varadarajan. Efficient
algorithms for approximating polygonal chains.
Discrete & Computational Geometry, 23(2):273–291,
2000.

[6] J. Aslam, Z. Butler, F. Constantin, V. Crespi,
G. Cybenko, and D. Rus. Tracking a moving object
with a binary sensor network. In Proceedings of the 1st
international conference on Embedded networked
sensor systems, pages 150–161. ACM, 2003.

[7] A. Biem, E. Bouillet, H. Feng, A. Ranganathan,
A. Riabov, O. Verscheure, H. Koutsopoulos, and
C. Moran. Ibm infosphere streams for scalable,
real-time, intelligent transportation services. In
Proceedings of the 2010 international conference on
Management of data, pages 1093–1104. ACM, 2010.

[8] H. Cao, O. Wolfson, and G. Trajcevski.
Spatio-temporal data reduction with deterministic
error bounds. The Very Large Databases (VLDB)
Journal, 15(3):211–228, 2006.

[9] K. Chakrabarti, M. Garofalakis, R. Rastogi, and
K. Shim. Approximate query processing using
wavelets. The VLDB Journal, 10(2):199–223, 2001.

[10] P. Cudre-Mauroux, E. Wu, and S. Madden. Trajstore:
An adaptive storage system for very large trajectory
data sets. In Data Engineering (ICDE), 2010 IEEE
26th International Conference on, pages 109–120.
IEEE.

[11] D.H. Douglas and T.K. Peucker. Algorithms for the
reduction of the number of points required to represent
a digitized line or its caricature. Cartographica: The
International Journal for Geographic Information and
Geovisualization, 10(2):112–122, 1973.

[12] M. Feigin, D. Feldman, and Nir Sochen. From high
definition image to low space optimization. In Proc.
3rd Inter. Conf. on Scale Space and Variational
Methods in Computer Vision (SSVM 2011), 2011.

[13] D. Feldman and M. Langberg. A unified framework for
approximating and clustering data. In Proc. 41th Ann.
ACM Symp. on Theory of Computing (STOC), 2011.

[14] Dan Feldman, Matthew Faulkner, and Andreas
Krause. Scalable training of mixture models via
coresets. In Proc. Neural Information Processing
Systems (NIPS), 2011.

[15] L. Forlizzi, R.H. Güting, E. Nardelli, and
M. Schneider. A data model and data structures for
moving objects databases, volume 29. ACM, 2000.

[16] S. Gandhi, S. Suri, and E. Welzl. Catching elephants
with mice: sparse sampling for monitoring sensor
networks. ACM Transactions on Sensor Networks
(TOSN), 6(1):1, 2009.

[17] S. Har-Peled. Coresets for discrete integration and
clustering. FSTTCS 2006: Foundations of Software
Technology and Theoretical Computer Science, pages
33–44, 2006.

[18] J.K. Hart and K. Martinez. Environmental sensor
networks: A revolution in the earth system science?
Earth-Science Reviews, 78(3-4):177–191, 2006.

[19] J. Hershberger and J. Snoeyink. An o (n log n)
implementation of the douglas-peucker algorithm for
line simplification. In Proceedings of the tenth annual
symposium on Computational geometry, pages
383–384. ACM, 1994.

[20] J. Hershberger and J. Snoeyink. Cartographic line
simplification and polygon csg formulć in o (n log* n)
time. Computational Geometry, 11(3-4):175–185, 1998.

[21] J.D. Hobby. Polygonal approximations that minimize
the number of inflections. In Proceedings of the fourth
annual ACM-SIAM Symposium on Discrete
algorithms, pages 93–102. Society for Industrial and
Applied Mathematics, 1993.

[22] U. Matlab. The mathworks. Inc., Natick, MA, 1992,
1760.

[23] N. Meggido and A. Tamir. Finding least-distance
lines. SIAM J. on Algebric and Discrete Methods,
4:207–211, 1983.

[24] N. Meratnia and R.A. By. Spatiotemporal
compression techniques for moving point objects.
Advances in Database Technology-EDBT 2004, pages
561–562, 2004.

[25] S. Owen, R. Anil, T. Dunning, and E. Friedman.
Mahout in action. Online, pages 1–90, 2011.

[26] Michal Piorkowski, Natasa Sarafijanovic-Djukic, and
Matthias Grossglauser. CRAWDAD data set
epfl/mobility (v. 2009-02-24). Downloaded from
http://crawdad.cs.dartmouth.edu/epfl/mobility,
February 2009.

[27] S. Reddy, M. Mun, J. Burke, D. Estrin, M. Hansen,
and M. Srivastava. Using mobile phones to determine
transportation modes. ACM Transactions on Sensor
Networks (TOSN), 6(2):13, 2010.

