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ABSTRACT
Given a point set P ⊆ Rd the k-means clustering problem is
to find a set C = {c1, . . . , ck} of k points and a partition of P
into k clusters C1, . . . , Ck such that the sum of squared errors∑k

i=1

∑
p∈Ci

‖p − ci‖2
2 is minimized. For given centers this cost

function is minimized by assigning points to the nearest center. The
k-means cost function is probably the most widely used cost func-
tion in the area of clustering.

In this paper we show that every unweighted point set P has a
weak (ε, k)-coreset of size poly(k, 1/ε) for the k-means clustering
problem, i.e. its size is independent of the cardinality |P | of the
point set and the dimension d of the Euclidean space Rd. A weak
coreset is a weighted set S ⊆ P together with a set T such that
T contains a (1 + ε)-approximation for the optimal cluster centers
from P and for every set of k centers from T the cost of the centers
for S is a (1± ε)-approximation of the cost for P.

We apply our weak coreset to obtain a PTAS for the k-means
clustering problem with running time O(nkd + d · poly(k/ε) +

2
eO(k/ε)).

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms and Prob-
lem Complexity—Nonnumerical Algorithms and Problems

General Terms
Algorithms, Theory
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1. INTRODUCTION
Clustering is the process to partition a given set of objects into

sets called clusters such that objects in the same cluster are similar
and objects in different sets are dissimilar. Clustering has many ap-
plications in different areas including bioinformatics, pattern recog-
nition, data compression, and information retrieval. Because of the
wide variety of applications, there is no general formulation of clus-
tering. However, some formulations have been very successful for
a variety of applications. One of these is the k-means clustering
problem. In this problem we are given a set P of points in Rd and
we try to find a set C ⊆ Rd of k cluster centers {c1, . . . , ck} and a
corresponding partition C1, . . . , Ck of P into k clusters such that
the sum of squared errors

∑k
i=1

∑
p∈Ci

‖p − ci‖2
2 is minimized.

The k-means clustering problem has been studied intesively both
in theory and practice. One of the most widely used clustering al-
gorithm is Lloyd’s algorithm [15]. Although this algorithm is only
a heuristic, i.e. it does not guarantee a certain approximation guar-
antee, it has proved to be very useful in many applications. Try-
ing to explain the popularity of Lloyd’s algorithm, Ostrovsky et al.
[19] showed that for well-separated instances, a variant of this al-
gorithm is a (1+ε)-approximation algorithm for k-means clustering
with running time O(2(k/ε)dn). However, their separation crite-
rion depends on ε, i.e. the smaller ε becomes the stronger separa-
tion is required.

Early work PTAS for k-means clustering started with the work
of Inaba et al. [12] who observed that the number of Voronoi par-
titions of k points in Rd is ndk and thus an optimal clustering be
computedin time O(ndk+1). Matousek [17] presented a (1 + ε)-
approximation algorithm for k-means clustering, with running time
O(nε−2k2d logk n). Har-Peled and Mazumdar [10] used coresets
to improve the running time to O(n + kk+2ε−(2d+1) logk+1 n

logk+1 1/ε). Fernandez de la Vega et al. [4] proposed a (1 + ε)-
approximation algorithm, for high dimensions (they refer to it as
l2
2 k-median clustering), with running time O(g(k, ε)dO(1)n

logO(k) n), where g(k, ε) = exp
{
(k3/ε8)(ln(k/ε)) ln k

}
. Ku-

mar et al. [13, 14] showed a (1 + ε)-approximation algorithm for
k-means clustering running in O(2(k/ε)O(1)

dn) time. Chen [3]
gave a new coreset construction that can be combined with the pre-
viously mentioned algorithm[13] to improve the running time to
O(ndk + 2(k/ε)O(1)

d2nσ).

Our results.
In this paper we develop a (1+ε)-approximation for the k-means

clustering problem with running time O(nkd + d · poly(k/ε) +

2
eO(k/ε)). This significantly improves the previous best PTAS with

running time O(ndk + 2(k/ε)O(1)

d2nσ) [3].
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The main ingredient of our algorithm is a procedure to compute
in O(nkd) time a weak (k, ε)-coreset of size poly(k/ε), which is
independent of |P | and d. This weak coreset is a weighted set S
of points together with another set of points T such that the cost
any set of k centers from T is a (1 ± ε)-approximstion of the cost
of P and T contains a (1 + ε)-approximation of the optimal so-
lution. Such a set is called (k, ε)-approximate centroid set. Our
coreset implies that one can construct in O(nkd) time a (k, ε)-
approximate centroid set of size independent of n and d.

Another interesting application of our coreset is the kernel k-
means algorithm. In this algorithm points are implicitly mapped
to a high dimensional space. The dimension of this space may be
very large (possibly infinite) and so coreset constructions that de-
pend on d are of little use. Also we cannot apply dimensionality
reduction techniques since the point coordinates in the high dimen-
sional space are not known. If this space has finite dimension we
can apply our coreset construction and obtain a PTAS for the kernel
k-means algorithm.

Finally, we remark that our construction can be carried over to
the k-median problem. Further, we can also apply a variant of our
coreset to obtain data streaming algorithms, but the size will be
depend on log n.

Our techniques.
The main new technique in this paper is a non-uniform sampling

scheme to construct the coreset. Points are sampled based on their
distance from a constant factor approximation. In contrast to previ-
ous approaches we also use non-uniformly distributed weights for
the points.

Other related work.
Har-Peled and Mazumdar [10] used (strong) coresets to obtain

faster algorithms for clustering problems. Roughly speaking, a
strong coreset for k-means is a weighted subset S of P , so that for
any set of k points in Rd, the weighted sum of squared distances
from points in S to the nearest centers is approximately the same
as (differs by a factor of 1 ± ε from) the sum of squared distances
from points in P to the nearest centers. Their coreset was of size
O(kε−d log n). They also used coresets to compute an (1 + ε)-
approximation k-median and k-means clustering in the streaming
model of computation using O(kε−d log2d+2 n) space. Their al-
gorithms handle streams with insertions only. Then Frahling and
Sohler [7] showed that they can maintain a coreset of size O(kε−d−2

log n) for the same problem using a different coreset construction,
which also works for data streams with insertions and deletions.
Har-Peled and Kushal [9] recently showed that one can construct
coresets for k-means with size independent of n, namely of size
O(k3ε−d−1). Very recently Feldman, Fiat, and Sharir [6] ex-
tended this type of coresets for linear centers or facilites where fa-
cilities can be lines, flats. For high dimensional spaces Chen [3]
proposed a coreset of size O(k2dε−2 log2 n).

Matousek’s result [17] was based on the idea of centroid set.
A centroid set is a set that contains at least one k-tuple, which
forms (approximately) optimal centers for k-means clustering. In
particular, he showed that there exists an ε-approximate centroid
set of size n/εd log(1/ε). Effros and Shulman [5] showed that
there exists a centroid set of size ε−d−1(k4 + k2ε−2). This result
showed that it might be possible to have a centroid set and coreset
independent of input set. Then Har-Peled and Mazumdar [10] and
Har-Peled and Kushal [9] used from this fact that Matousek’s con-
struction is weight sensitive and they used their coreset as input set
for Matousek’s construction to obtain an ε-approximate centroid
set of size k/ε2d log n log(1/ε) and k3/ε2d+1 log(1/ε) respec-

tively. We should mention that an implicit result of Kumar et al.
[12, 13, 14] is an ε-approximate centroid set of size n1/ε.

2. PRELIMINARIES
A set of points P in Rd is weighted, if each point p ∈ P is

associated with a weight wp > 0. We define w(P) =
∑

p∈P wp

to be the total weight of P . We consider an (unweighted) set of
points P ⊆ Rd as a weighted set with wp = 1, for each p ∈ P .

For two points p, q ∈ Rd we use dist(p, q) to denote the Eu-
clidean distance between p and q. ∆(p, q) = (dist(p, q))2 will
denote the square of the Euclidean distance. We generalize these
definitions to sets: Given a point p ∈ Rd and a set of points Q ⊆
Rd we define dist(p, Q) = minq∈Q dist(p, q) and ∆(p, Q) =
minq∈Q ∆(p, q). For a weighted set P ⊆ Rd and unweighted
set K ⊆ Rd we define cost(P, K) =

∑
p∈P w(p) · ∆(p, K).

Further, we define the distance between two sets Q, R ⊆ Rd as
dist(Q, R) = minq∈Q dist(q, R).

DEFINITION 1 (k-MEANS CLUSTERING). Given a set P of
points in the Rd the k-means problem is to find a set of k centers
K ⊆ Rd such that cost(P, K) is minimized.

Given an integer k ≥ 1, we denote by OPT(P, k) = min|K|=k

cost(P, K) the optimal k-mean cost of P . A set K ⊂ Rd, |K| =
k, is a β-approximation for an optimal k-means solution of P, if

cost(P, K) ≤ β ·OPT(P, k). The point µP(P) =

∑
p∈P p

|P|
is the

centroid ofP . For the 1-means problem the centroid is known to be
the optimal cluster center, i.e. OPT(P, 1) =

∑
p∈P ∆(p, µP(P)).

Inaba and et al.[12] showed that if we draw a random sample U

of size O(1/ε) with constant probability the centroid of U is with
constant probability a (1 + ε)-approximation for the centroid of
point set P , that is, cost(P, µP(U)) ≤ (1 + ε)cost(P, µP(P)) .
This implies (see also [13, 14])

COROLLARY 2. Let P be a set of points in Rd. Then there
exists a set U ⊆ P of size 2/ε, such that

cost(P, µP(U)) ≤ (1 + ε)cost(P, µP(P)) .

A set T ⊆ IRd is a (k, ε)-approximate centroid set forP , if there
exists a subset C ⊆ T of size k such that cost(P, C) ≤ (1 + ε) ·
OPT(P, k). For technical reasons our definition of a weak coreset
slightly differs from previous definitions given in [2] and [11].

DEFINITION 3 (WEAK (k, ε)-CORESET). Let P be a (possi-
bly) weighted set in IRd. A pair (S, T), S ⊆ P , is called a weak
(k, ε)-coreset, if T is a (k, ε)-approximate centroid set for P and

|cost(S, K) − cost(P, K)| ≤ ε · cost(P, K)

for any set K ⊆ T with |K| = k.

Notice that our coreset does not imply that an optimal solution
for S is a (1+ε)-approximation forP . We can only give guarantees
for points from T.

3. THE CORESET CONSTRUCTION
The first step of our algorithm is similar to the coreset construc-

tions in [10] and [3]. We run the constant factor approximation al-
gorithm for k-means clustering due to [18] that in O(nkd) time re-
turns k centers C = {c1, · · · , ck}. Let β denote the approximation
factor of this algorithm and let Ci denote the set of points from P
that are nearer to ci than to any other center in C (ties can be broken
arbitrarily). We partition each Ci into two sets Cin

i and Cout
i . The
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set Cin
i contains all points that are close to ci, i.e. all points con-

tained in a closed ball b(ci, ri) = {p ∈ Rd | dist(p, ci) ≤ ri}

with center ci and radius ri =
q

cost(Ci,ci)
ε·|Ci|

). Thus we have

Cin
i = Ci

T
b(ci, ri). The set Cout

i contains the remaining points
of Ci, i.e. Cout

i = Ci \ b(ci, ri).
To construct the coreset we proceed differently for the points in

Cin
i and Cout

i . From the sets Cin
i we draw a set of sin

i points inde-
pendently and uniformly at random. Then we assign to each point
the weight |Cin

i |/sin
i . Let Sin

i denote the resulting weighted sample.
From each set Cout

i we draw a sample set Sout
i = {s1, · · · , ssout

i
} ac-

cording to a non-uniform probability distribution. The weights of
the points will also be distributed non-uniformly.

We proceed for each cluster separately. The probability of choos-
ing point q ∈ Cout

i is pq = Pr[q ∈ Sout
i ] = ∆(q,ci)

cost(Cout
i

,ci)
. Each sam-

ple point q is assigned a weight wq =
cost(Cout

i ,ci)

sout
i

∆(q,ci)
, i.e. the weight

of a point depends on its distance to the center ci. The further a
point is away from the center, the smaller its weight.

Finally, we set S =
Sk

i=1

�
Sin

i ∪ Sout
i

�
and T will be the set

of all centroids of combinations of 2/ε points from S (we allow
repetition of points). We will show that for large enough sample
sizes, our construction indeed gives a weak coreset. We remark
that the set T depends on the choice of the set S.

4. ANALYSIS

Overview.
We first show that T is a (k, 6ε)-approximate centroid set, if the

cost of any subset K ⊆ T, |K| = k, and the cost of an optimal solu-
tion O are approximated within a factor of (1± ε). Then we show
that for an arbitrary set K of k centers |cost(S, K)−cost(P, K)| ≤
ε · cost(P, K) with probability 1 − λ for large enough sin

i and sout
i .

This implies that with this probability T is a (k, 6ε)-approximate
centroid set. Finally, we show that for any subset of T of size k

we get |cost(S, K) − cost(P, K)| ≤ ε · cost(P, K). Here, the dif-
ficulty is that the set T depends on the random process and hence
there are dependencies (this is, why we cannot immediately apply
the previous result).

T is a (k, ε)-approximate centroid set.

LEMMA 4. Let P ⊆ Rd be a point set and let 0 < ε < 1/2

and k ≥ 1. Let S ⊆ Rd be a weighted point set, and let T be the
set of all centroids of combinations (with repetition) of 2/ε points
from S. If we have |cost(S, K)− cost(P, K)| ≤ ε · cost(P, K) for
every set K ⊆ T of k points and if |cost(S,O) − cost(P,O)| ≤
ε · cost(P,O) for an optimal set O ⊆ Rd of k centers, then T is a
(k, 6ε)-approximate centroid set.

Proof. Let O denote an optimal set of cluster centers and let
O1, . . . , Ok be the induced clustering. By Corollary 2 we know
that for every cluster Oi the set T contains a (1+ε)-approximation.
Since the cost of O is approximated within a factor of (1± ε) and
we lose at most another factor of (1 + ε) when we move each
center to the nearest point from T, we have a set K∗ of k cen-
ters in T with cost(S, K∗) ≤ (1 + ε)2 · cost(P, O). Since we
also know that cost(S, K∗) ≥ (1 − ε)cost(P, K∗), we know that
cost(P, K∗) ≤ (1 + ε)2/(1 − ε) · cost(P,O) . For ε ≤ 1/2 we
can obtain that T is a (k, 6ε)-approximate centroid set.

Arbitrary centers are approximated within a factor (1±
ε).

The first step of our analysis will be to show that for an arbitrary
fixed set K = {k1, · · · , kl, · · · , kk} of k centers, the cost of S
is a (1 ± ε)-approximation of the cost of P . We will prove the
following lemma.

LEMMA 5. Given a point set P in IRd and a set K ⊆ Rd of
k centers. Let ε, λ > 0 be parameters. Then there is a constant
c such that for sin

i , sout
i ≥ c · ln(k/λ)

ε4 , 1 ≤ i ≤ k, the sample
set S =

Sk
i=1

�
Sin

i ∪ Sout
i

�
computed by our algorithm satisfies

|cost(S, K) − cost(P, K)| ≤ ε · cost(P, K) with probability ≥
1 − λ.

Proof. Let Si = Sin
i ∪Sout

i and let kl denote the nearest center from
K to b(ci, ri). The analysis will distinguish between the cases (a)
dist(kl, ci) ≥ ri + ri

ε
= ri(1+ε)

ε
and (b) dist(kl, ci) < ri + ri

ε
=

ri(1+ε)
ε

. We will assume ε ≤ 1/2.

Case (a).
Every point p ∈ b(ci, ri) has distance at least dist(b(ci, ri), kl)

to the nearest center from K. Since we are in case (a), it has dis-
tance at most dist(b(ci, ri), kl)+2ri ≤ (1+2ε)·dist(b(ci, ri), kl)
to the nearest center from K. By our construction we have that the
sum of the weights of the points in Sin

i is exactly |Cin
i |. Hence, we

get ��cost(Cin
i , K) − cost(Sin

i , K)
��

≤ |C
in
i |
��

(1 + 2ε) · dist(b(ci, ri), kl)
�2

− dist(b(ci, ri), kl)
2
�

≤ 8 · ε · |Cin
i | · ∆(b(ci, ri), kl)

≤ 8 · ε · cost(Cin
i , K) .

Next we consider the points from Cout
i . Let W =

∑
p∈Sout

i
wp be

the random variable for the sum of weights of points in Sout
i . In case

(a) we will approximate the error for the outer points by the sum of
their contributions. We have

|cost(Cout
i , K) − cost(Sout

i , K)|

≤ cost(Cout
i , K) + cost(Sout

i , K)

≤
∑

q∈Cout
i

cost(q, kl) +
∑

p∈Sout
i

wp · cost(p, kl) .

Now we use the doubled triangle inequality, i.e. ∆(p, r) ≤ 2(∆(p, q)
+ ∆(q, r)) for all p, q, r ∈ Rd, to obtain∑

q∈Cout
i

∆(q, kl) +
∑

p∈Sout
i

wp · ∆(p, kl)

≤
∑

q∈Cout
i

2 (∆(p, ci) + ∆(ci, kl))

+
∑

p∈Sout
i

2wp (∆(p, ci) + ∆(ci, kl))

≤
∑

q∈Cout
i

2
�
∆(q, ci) + 2(r2

i + ∆(b(ci, ri), kl))
�

+
∑

p∈Sout
i

2wp

�
∆(p, ci) + 2(r2

i + ∆(b(ci, ri), kl))
�

≤
�
6cost(Ci, ci) + 4|C

out
i | · ∆(b(ci, ri), kl)

�
+

� ∑
p∈Sout

i

6wp∆(p, ci) +
∑

p∈Sout
i

4wp∆(b(ci, ri), kl)
�
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≤
�
6r

2
i ε · |Ci| + 4ε · |Ci| · ∆(b(ci, ri), kl)

�
+

�
6cost(Cout

i , ci) + 4∆(b(ci, ri), kl)
∑

p∈Sout
i

wp

�

≤
�
6r

2
i ε · |Ci| + 4ε · |Ci| · ∆(b(ci, ri), kl)

�
+

�
6 · cost(Ci, ci) + 4W · ∆(b(ci, ri), kl)

�
≤

�
6r

2
i ε · |Ci| + 4ε · |Ci| · ∆(b(ci, ri), kl)

�
+

�
6r

2
i ε · |Ci| + 4W · ∆(b(ci, ri), kl)

�

Since dist(b(ci, ri), kl) ≥ ri
ε

implies r2
i ≤ ε2 ·∆(b(ci, ri), kl)

we have for ε ≤ 1/2:

≤ (2ε · |Ci| · ∆(Cin
i , kl) · (6ε

2 + 2) + 4W · ∆(b(ci, ri), kl)

≤ 10ε · |Cin
i | · ∆(b(ci, ri), kl) + 4W · ∆(b(ci, ri), kl)

Next we show that W is at most ε · |Cin
i | with high probability. De-

fine the random variable Yj = wsj to be the weight of the jth sam-

ple point in Sout
i . Hence W =

∑sout
i

j=1 Yj. The expected value E[Yj]

of Yj is, by definition, E[Yj] =
∑

q∈Cout
i

pqwq =
|Cout

i |

sout
i

≤ ε|Ci|

sout
i

.

We also have |Cin
i | ≥ (1 − ε)|Ci|. Hence, E[Yj] ≤ 2ε·|Cin

i |

sout
i

for

ε ≤ 1/2. Thus, E[W] ≤ 2ε · |Cin
i |. An upper bound for the

weight of sample point q ∈ Cout
i is given by wq =

cost(Cout
i ,ci)

sout
i

∆(q,ci)
≤

cost(Cout
i ,ci)

sout
i

cost(Ci,ci)

ε|Ci|

≤ ε|Ci|

sout
i

. Define Zj =
Yj

ε|Ci|

sout
i

≤ 1. Let Z =
∑sout

i
j=1 Zj

then E[Z] ≤ sout
i . By Hoeffding bound we obtain:

Pr
�
|

sout
i∑

j=1

Yj − E[Y]| > ε|Ci|
�

= Pr
�
|Z − E[Z]| > s

out
i

�

≤ Pr
�
|Z − E[Z]| >

sout
i

E[Z]
E[Z]

�

≤ 2 exp

0
BB@−

E[Z] ·min
{�

sout
i

E[Z]

�
,
�

sout
i

E[Z]

�2
}

3

1
CCA

= 2 exp
�

− s
out
i /3

�
.

We choose sout
i ≥ 3 ln(2k/λ). This implies Pr[|Y − E[Y]| >

ε|Ci|] ≤ λ/k. Hence, we get that Pr[W > 4ε · |Cin
i |] ≤ λ/k.

It follows that∑
q∈Cout

i

cost(q, kl) +
∑

p∈Sout
i

wp · cost(p, kl) (1)

≤ 26ε · |Cin
i | · ∆(b(ci, ri), kl) (2)

with probability at least 1−λ/k. Since |cost(Cout
i , K)−cost(Sout

i , K)|
≤ cost(Cout

i , K)+cost(Sout
i , K) this is an upper bound for the error

of the outer points. Overall error for the sample set Sin
i ∪Sout

i in case
(a) would be

|cost(Sin
i ∪ S

out
i , K) − cost(Cin

i ∪ C
out
i , K)|

≤ 8εcost(Cin
i , K) + 26εcost(Cin

i , K) ≤ 34εcost(Cin
i , K).

Case (b).

LEMMA 6 (HAUSSLER [8]). Let h(·) be a function defined
on a set P , such that for all p ∈ P , we have 0 ≤ h(p) ≤ M,
where M is a fixed constant. Let S = {p1, . . . , ps} be a multi-
set of s samples drawn independently and identically from P , and
let δ > 0 be a parameter. If s ≥ (M2/2δ2) · ln (2/λ), then

Pr
h���h(P)

|P|
− h(S)

|S|

��� ≥ δ
i
≤ λ, where h(S) =

∑
s∈S h(s).

We want to apply Lemma 6 to analyze the error of the uniform sam-
pling from Cin

i . Therefore, let h(p) = ∆(p, K) for p ∈ Cin
i . Since

Cin
i is contained in a ball of radius ri we get that maxp∈P h(p) ≤

(dist(Cin
i , K) + 2ri)

2 ≤ 2(∆(Cin
i , K) + 4r2

i ). Hence, we can use

M = 2(∆(Cin
i , K) + 4r2

i ). We define costavg(Cin
i , K) =

h(Cin
i )

|Cin
i

|
,

and costavg(Sin
i , K) =

h(Sin
i )

|Sin
i

|
. Then we set δ = ξM. Thus, if

sin
i ≥ 1

2ξ2 · ln (4k/λ), then

Pr[|costavg(Cin
i , K) − costavg(Sin

i , K)| ≥ ξ2(∆(Cin
i , K) + 4r

2
i )]

≤ λ/2k.

As w(Cin
i ) = w(Sin

i ) we have with probability at least 1 − λ/2k

|cost(Cin
i , K) − cost(Sin

i , K)| ≤ 2ξ|C
in
i |(∆(Cin

i , K) + 4r
2
i )

It is easy to see that |Cin
i |∆(Cin

i , K) ≤ cost(Cin
i , K) and summing

this up for all sets Cin
i , for i = 1, · · · , k, we have |cost(∪iC

in
i , K)−

cost(∪iS
in
i , K)| ≤ 2ξ

�∑
i cost(Cin

i , K) +
∑

i |Cin
i |4r2

i

�
. As ri =q

cost(Ci,ci)
ε·|Ci|

and Cin
i ≤ Ci, we have

|cost(∪iC
in
i , K) − cost(∪iS

in
i , K)|

≤ 2ξ

 ∑
i

cost(Cin
i , K) +

∑
i

4
cost(Ci, ci)

ε

!

≤ 2ξ

 ∑
i

cost(Cin
i , K) + 4

OPT(P, k)

βε

!
.

Recall that β is the approximation factor of the solution {c1, . . . , ck}.
We set ξ = βε2/10. Then we get |cost(∪iC

in
i , K)−cost(∪iS

in
i , K)|

≤ ε
�∑

i cost(Cin
i , K)

�
≤ ε · cost(P, K) which holds with proba-

bility at least 1 − λ/2 and for sin
i ≥ 50

β2ε4 ln(4k/λ).

Let costavg(Cout
i , K) =

cost(Cout
i ,K)

|Cout
i

|
. Define the random variable

Xj =
wsj

|Cout
i

|
·∆(sj, K) for the average contribution of the jth sample

point in Sout
i to the nearest center of K. The expected value of E[Xj]

is

E[Xj] =
∑

q∈Cout
i

pq ·
wq

|Cout
i |

· ∆(q, K)

=
1

sout
i · |Cout

i |

∑
q∈Cout

i

∆(q, K) =
costavg(Cout

i , K)

sout
i

.

We define costavg(Sout
i , K) = 1

|Cout
i

|
·
∑

p∈Sout
i

wp · ∆(p, K) =∑sout
i

j=1 Xj (notice that the averaging is done by dividing by |Cout
i |

and not by the sum of the weights of the points in Sout
i ). Hence,

E[costavg(Sout
i , K)] =

∑sout
i

j=1 E[Xj] = costavg(Cout
i , K). For each

14



q ∈ Cout
i we have

∆(q, kl) ≤ 2 (∆(q, ci) + ∆(ci, kl))

≤ 2

�
∆(q, ci) + (

ri(1 + ε)

ε
)2

�

≤ 4∆(q, ci)

�
(1 + ε)2

ε2

�
.

Observe that each Xj satisfies

Xj =
wsj

|Cout
i |

· ∆(sj, K)

≤
wsj

|Cout
i |

· ∆(sj, kl) ≤
wsj

|Cout
i |

· 4∆(sj, ci)

�
(1 + ε)2

ε2

�

≤ cost(Cout
i , ci)

∆(sj, ci) · sout
i · |Cout

i |
· 4∆(sj, ci)

�
(1 + ε)2

ε2

�

≤ 4

�
(1 + ε)2

ε2

�
· costavg(Cout

i , ci)

sout
i

.

Define random variable Zj =
Xj

4

�
(1+ε)2

ε2

�
·

costavg(Cout
i

,ci)

sout
i

≤ 1

and let Z =
∑sout

i
j=1 Zj. Applying Hoeffding bound we have

Pr[|costavg(Sout
i , K) − costavg(Cout

i , K)| ≥ ε ·
costavg(Cout

i , ci)]

= Pr[|
sout

i∑
j=1

Xj −

sout
i∑

j=1

E[Xj]| ≥ ε · costavg(Cout
i , ci)]

= Pr[|Z − E[Z]| ≥ ε3sout
i

4(1 + ε2)E[Z]
E[Z]]

≤ 2 exp

0
B@−

E[Z] ·min(
ε3sout

i

4((1+ε)2)E[Z]
,
�

ε3sout
i

4((1+ε)2)E[Z]

�2

)

3

1
CA

Choosing sout
i ≥ 12((1+ε)2)

ε3 ln(4k/λ) gives Pr[|costavg(Sout
i , K)−

costavg(Cout
i , K)| ≥ ε · costavg(Cout

i , ci)] ≤ λ/(2k). Multiplying
by |Cout

i | gives

|cost(Sout
i , K) − cost(Cout

i , K)| ≤ ε · cost(Cout
i , ci)

with probability at least 1 − λ/(2k).
Now we can combine cases (a) and (b). Summing up over all

sets Cin
i and Cout

i , for i = 1, · · · , k, there exists a constant c ′ such
that for sin

i , sout
i ≥ c ′ · ln(k/λ)

ε4 :

|cost(S, K) − cost(P, K)| ≤ 34ε · cost(P, C) (3)
≤ 34εβ · cost(P,O) (4)
≤ 34εβ · cost(P, K) (5)

with probability at least 1 − λ and where S =
Sk

i=1

{
Sin

i ∪ Sout
i

}
and O is an optimal solution for P . Replacing ε by ε/(34β) gives
Lemma 5.

Centers from T are approximated within a factor (1 ±
ε).

Now we want to prove the following lemma.

LEMMA 7. Let P be a set of points in Rd and let 0 < ε, δ <

1/2 and k ≥ 1 be parameters. Let S be a weighted set of points
sampled fromP according to our coreset construction using sin

i , sout
i

≥ c · k ln(k/δ)

ε5 · ln(k/ε · ln(1/δ)) for some large enough constant
c. Let T be the set of centroids of subsets from S (with repetition)
of size 2/ε. Then with probability 1 − δ we get

∀K ⊆ T, |K| = k : |cost(S, K)− cost(P, K)| ≤ ε · cost(P, K) .

Proof. Let N denote the set of centroids of all subsets from
P of size 2/ε. We say that K ⊆ N is well approximated, if��cost(S, K) − cost(P, K)

�� ≤ ε · cost(P, K). We want to show
that every set K ⊆ T, |K| = k, is also well approximated. Recall
that T ⊆ N consists of the centroids of all subsets (with repetition)
of size 2/ε of S. Wlog. we will assume that for each point p ∈ T

there is a unique multiset µ−1
P (p) of 2/ε points from S that gener-

ates p, i.e. µP(µ−1
P (p)) = p. We cannot directly apply Lemma 5

to show that K ⊆ T is well approximated, because K ⊆ T imposes
the condition that µ−1

P (K) ⊆ S, where µ−1
P (K) =

S
p∈K µ−1

P (p).
Here and in the following we regard both µ−1

P (K) and S as (un-
weighted) multisets, i.e. we replace each point p with weight wp

by wp copies of p. We assume that all relations between multi-
sets take the multiplicity of points into accout. For example, the
expression µ−1

P (K) ⊆ S implies that if µ−1
P (K) contains a point

multiple times, it appears at least the same number of times in S.
Given δ > 0 we want to show that

Pr[∀K ⊆ T, |K| = k : K is well approximated ]

= 1 − Pr[∃K ⊆ T, |K| = k : K is not well approximated ]

≥ 1 − δ .

We use the fact that

Pr[∃K ⊆ T, |K| = k : K is not well approximated ] (6)

≤
∑

K⊆N ,|K|=k

Pr[K is not well approximated | µ
−1
P (K) ⊆ S]

· Pr[µ−1
P (K) ⊆ S] .

We have

Pr[K is not well approximated | µ
−1
P (K) ⊆ S]

≤ Pr[|cost(∪k
i=1S

out
i , K) − cost(∪k

i=1C
out
i , K)|

> ε · cost(∪k
i=1C

out
i , K) | µ

−1
P (K) ⊆ S]

+ Pr[|cost(∪k
i=1S

in
i , K) − cost(∪k

i=1C
in
i , K)|

> ε · cost(∪k
i=1C

in
i , K) | µ

−1
P (K) ⊆ S] .

The condition fixes 2k/ε points of the sample set. All remaining
points are drawn at random according to the specified distribution.
Let us denote by Fin

i and Fin
out these random points, i.e. Sin

i =
Fin

i ∪
�
Cin

i ∩ µ−1
P (K)

�
and Sout

i = Fout
i ∪

�
Cout

i ∩ µ−1
P (K)

�
. We get

Pr[|cost(Sin
i , K) − cost(Cin

i , K)| > ε · cost(Cin
i , K) | µ

−1
P (K) (7)
⊆ S] (8)

= Pr[|cost(Fin
i , K) + cost(Cin

i ∩ µ
−1
P (K), K) − cost(Cin

i , K)| > ε ·
cost(Cin

i , K)]

≤ Pr[|cost(Fin
i , K) − cost(Cin

i , K)| > ε · cost(Cin
i , K) − cost(Cin

i ∩
µ

−1
P (K), K)]

In a similar way we obtain

Pr[|cost(Sout
i , K) − cost(Cout

i , K)| > ε · cost(Cout
i , K) | µ

−1
P (K) (9)
⊆ S] (10)
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≤ Pr[|cost(Fout
i , K) − cost(Cout

i , K)| > ε · cost(Cout
i , K)

−cost(Cout
i ∩ µ

−1
P (K), K)]

After rescaling the weights of points in Fin
i by |Sin

i |/|Fin
i | we can

apply the proof of Lemma 5. Let Errin
i , Errout

i denote the error
bounds derived in the proof of Lemma 5. We distinguish between
cases (a) and (b). In case (a) we obtain by Lemma 5 for Errin

i =

8 · ε · cost(Cin
i , K,) and |Fin

i | ≥ c · ln(k/λ)

ε4

λ/(2k)

≥ Pr
��� |Sin

i |

|Fin
i |
· cost(Fin

i , K) − cost(Cin
i , K)

�� > Errin
i

�

= Pr
���cost(Fin

i , K) −
|Fin

i |

|Sin
i |

cost(Cin
i , K)

�� >
|Fin

i |

|Sin
i |
· Errin

i

�

≥ Pr
���cost(Fin

i , K) − cost(Cin
i , K)

�� >
|Fin

i |

|Sin
i |
· Errin

i

+ (1 −
|Fin

i |

|Sin
i |

) · cost(Cin
i , K)

�
≥ Pr

���cost(Fin
i , K) − cost(Cin

i , K)
�� > Errin

i

+ ε · cost(Cin
i , K)

�
Similarly, we obtain for Errout

i = 26ε · |Cin
i | · ∆(b(ci, ri), kl)

λ/(2k)

≥ Pr
���cost(Fout

i , K) − cost(Cout
i , K)

�� > Errout
i

+ ε · cost(Cout
i , K)

�
In a similar way we can obtain bounds for case (b). Summing up
over all clusters gives for F =

Sk
i=1(Fin

i ∪ Fout
i ):

Pr
���cost(F , K) − cost(P, K)

�� ≤ 2ε · cost(P, K)
�
≤ λ . (11)

We will now prove cost(µ−1
P (K), K)K ≤ ε/2 · cost(P, K). Then

replacing ε by ε/4 in equation (11) and combining it with equa-
tions (8) and (10) gives

Pr[K is not well approximated | µ
−1
P (K) ⊆ S] ≤ λ .

LEMMA 8. For sin
i , sout

i ≥ ck
ε5 , where c ≥ 8, we have

cost(µ−1
P (K), K) ≤ ε/2 · cost(P, K) .

Proof. The analysis will again distinguish between the cases (a)
dist(kl, ci) ≥ ri + ri

ε
= ri(1+ε)

ε
and (b) dist(kl, ci) < ri + ri

ε
=

ri(1+ε)
ε

. We will assume ε ≤ 1/2.

Case (a).
First for Cin

i

cost(Cin
i ∩ µ

−1
P (K), K)

≤ 2k

ε

|Cin
i |

sin
i

h
2
�
(2ri)

2 + ∆(b(ci, ri), kl)
�i

≤ 2k

ε

|Cin
i |

ck
ε5

h
2
�
4ε

2
∆(b(ci, ri), kl) + ∆(b(ci, ri), kl)

�i
≤ ε

4
|C

in
i | · ∆(b(ci, ri), kl) ≤ ε

4cost(Cin
i , K).

Then for Cout
i

cost(Cout
i ∩ µ

−1
P (K), K) ≤

∑
p∈Cout

i
∩µ−1

P (K)

wp · cost(p, kl)

cost(Cout
i ∩ µ

−1
P (K), kl)

≤
∑

p∈Cout
i
∩µ−1

P (K)

2wp · (∆(p, ci) + ∆(ci, kl))

≤
∑

p∈Cout
i
∩µ−1

P (K)

2wp · (∆(p, ci)

+ 2(r2
i + ∆(b(ci, ri), kl)))

≤
∑

p∈Cout
i
∩µ−1

P (K)

2wp · (∆(p, ci)

+ 2(∆(p, ci) + ∆(b(ci, ri), kl)))

≤
∑

p∈Cout
i
∩µ−1

P (K)

2wp · (3∆(p, ci)

+ 2∆(b(ci, ri), kl))

≤ 6r
2
i ε|C

in
i | +

∑
p∈Cout

i
∩µ−1

P (K)

4wp · ∆(b(ci, ri), kl)

≤ 6ε
3
|C

in
i |∆(b(ci, ri), kl)

+
∑

p∈Cout
i
∩µ−1

P (K)

4wp · ∆(b(ci, ri), kl)

≤ 2ε|C
in
i |∆(b(ci, ri), kl)(3ε

2 + 2)

≤ 6ε|C
in
i |∆(b(ci, ri), kl) ≤ 6εcost(Cin

i , kl).

Case (b).
Again first for Cin

i and having ri =
q

cost(Ci,ci)
ε.|Ci|

cost(Cin
i ∩ µ

−1
P (K), K) ≤ 2k

ε

|Cin
i |

sin
i

�
ri(1 + ε)

ε

�2

≤ 2k

ε

|Cin
i |

ck
ε5

�
ri(1 + ε)

ε

�2

≤ ε
2
|C

in
i |r

2
i

≤ ε/6cost(Cin
i , ci).

Then for Cout
i

cost(Cout
i ∩ µ

−1
P (K), K)

≤
∑

p∈Cout
i
∩µ−1

P (K)

wp · cost(p, kl)

≤
∑

p∈Cout
i
∩µ−1

P (K)

cost(Cout
i , ci)

ck
ε5 · ∆(p, ci)

· [2(∆(p, ci) + ∆(ci, kl))]

≤ ε
4 · cost(Cout

i , ci)

+
∑

p∈Cout
i
∩µ−1

P (K)

cost(Cout
i , ci)

ck
ε5 · ∆(p, ci)

· 2∆(ci, kl)

≤ ε
4 · cost(Cout

i , ci)

+
∑

p∈Cout
i
∩µ−1

P (K)

cost(Cout
i , ci)

ck
ε5 · r2

i

· 2(
ri(1 + ε)

ε
)2

≤ ε
4 · cost(Cout

i , ci)

+ ε
2 · cost(Cout

i , ci) ≤ ε
2 · cost(Cout

i , ci).
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Finally, replacing ε by ε/4 in equation (11) and combining it
with equations (8)and (10) gives

Pr[K is not well approximated | µ
−1
P (K) ⊆ S] ≤ λ .

Plugging this into equation (6) we get

Pr[∃K ⊆ T, |K| = k : K is not well approximated ]

≤
∑

K⊆N ,|K|=k

Pr[K is not well approximated | µ
−1
P (K) ⊆ S]

· Pr[µ−1
P (K) ⊆ S]

≤ λ ·
∑

K⊆N ,|K|=k

Pr[µ−1
P (K) ⊆ S] ≤ λ · |S |

2k/ε

It follows that for λ ≤ δ/|S |2k/ε we obtain the bound stated in the
lemma. This is satisfied for sin

i , sout
i ≥ c· k ln(k/δ)

ε5 ·ln(k/ε·ln(1/δ))
when c is a large enough constant.

The coreset.
Finally, we put things together.

THEOREM 9. Given a set P of n points in Rd and parameters
ε, λ > 0 and an appropriate constant c > 0, if S is a weighted set
of points obtained by our algorithm using sin

i , sout
i ≥ c · k ln(k/δ)

ε5 ·
ln(k/ε·ln(1/δ)) and T is the set of centroids of subsets of size 2/ε,
then (S, T) is a weak (k, ε)-coreset for point setP with probability
at least 1 − δ.

Proof. We apply Lemma 5 to show that the cost of an optimal set
of centers is preserved upto a factor of (1 ± ε). Then we apply
Lemma 7 to show that this is true for all sets of centers from T.
From Lemma 4 is follows that T is a (k, 6ε)-approximate centroid
set with probability 1 − δ + λ. Replacing ε by ε/6, δ by δ/2 and
λ by δ/2 we obtain the theorem.

5. APPLICATIONS

5.1 A k-Means PTAS
We obtain the following PTAS for k-Means clustering. We first

compute a weak (k, ε)-coreset S. Then we do exhaustive search
over all subsets of size k from T. We can slightly improve the
running time of this approach using dimensionality reduction. The
idea is to use Johnson-Lindenstrauss transform to map S to a lower
dimensional space.

LEMMA 10 (JOHNSON-LINDENSTRAUSS LEMMA[16]). Any
set of n points in a Euclidean space can be mapped to Rt where
t = O( log n

ε2 ) with distortion ≤ 1 + ε in the distances. Such a
mapping can be found in O(nd log n/ε2).

We choose the dimension of the target space in such a way that
distances between the points in S ∪O ∪ T are distorted by at most
a factor of (1 + ε). Thus, t = O(log |T|/ε2). Since JL-transform
is a linear mapping, we know that the centroid of points is mapped
to the centroid of the mapped points. Since we may assume that the
centroids of subsets of T of size k are disjoint in the original space
they also will be disjoint in the target space (since their mutual
distances are preserved upto a factor of (1 + ε)). Thus, a centroid
of 2/ε points in the target space corresponds to a unique point (the
centroid of the points in the original space) and so we can map a
solution from the target space back to the original space. Finally, to
obtain a solution we do exhaustive search in the set of all subsets of

T of size k and evaluate the cost of each solution in the small target
space of the JL-transform.

THEOREM 11. Given a set P of n points in Rd and param-
eters ε, λ > 0 and an appropriate constant c > 0, there exists a
randomized algorithm that computes (1+ε)-approximate k-means
clustering of P in time O(nkd + d · (k/ε)O(1) + 2

eO(k/ε)) with
probability at least 1 − λ.

5.2 Streaming
In this section, we adapt the algorithm of Har-Peled and Mazum-

dar [10] to our randomized coreset. Their algorithm was based on
standard dynamization technique of Bentley and Saxe [1] and the
following observation about coresets.

OBSERVATION 12. [10] (i) If C1 and C2 are the (k, ε)-coresets
for disjoint sets P1 and P2 respectively, then C1 ∪ C2 is a (k, ε)-
coreset for P1 ∪ P2.

(ii) If C1 is (k, ε)-coreset for C2, and C2 is a (k, δ)-coreset for
C3, then C1 is a (k, (1 + ε)(1 + δ) − 1)-coreset for C3.

Suppose that a sequence of points p1, p2, ... in Rd arrive one by
one. We want to compute the k-means of the points that arrive so
far, and the result should be correct with probability ≥ 1 − λ. The
algorithm is quite similar to the ones in [10, 3] but unlike [10, 3],
works for weak coresets as well as strong coresets.

Conceptually, we use buckets B0, B1, . . . to store points. The
capacity of bucket B0 is M, where M = k2ε−5 log n, and the ca-
pacity of bucket Bi is 2i−1M, for i ≥ 1. We will keep an invariant
in the algorithm: Bi is either full or empty, for i ≥ 1. When pm

arrives, we insert pm into B0. If B0 has less than M points, then
we are done. Otherwise, we move all the points of B0 into a virtual
bucket B ′

1. If B1 is empty, move points of B ′
1 into B1, and we are

done; otherwise we merge the points of B ′
1 and B1 into a virtual

bucket B ′
2. Then we try to move points of B ′

2 into B2. We continue
the process until we reach a stage r where Br is empty; and then
the points of virtual bucket B ′

r are moved into Br.
We simulate the above tree computation in small space by play-

ing with weights. Let N denote the set of centroids of all subsets
fromP of size 2/ε. We maintain a weak coreset (Qi,N∪O) (resp.
(Q ′

i,N ∪ O)) for each bucket Bi (resp. virtual bucket B ′
i), for

i = 0, 1, . . ., as follows: Q0 is B0 itself; and whenever the points
of B ′

r and Br are merged into B ′
r+1, we compute a weak (k, ρr)-

coreset (Q ′
r+1,N ∪ O) of (Qr ∪ Q ′

r,N ∪ O) via coreset con-
struction of Lemma 5 with confidence parameter λn = λ/n2k/ε,
where r ≥ 1, ρr = ε/cr2, n is the number of points received so
far, and c is a large positive constant. Simple calculations shows
coreset size would be

2M +

log2 n∑
i=2

|Qi| = O
�
kε

−4 log9
n
�

log (kn
2k/ε

/λ)
��

= O(k2
ε

−5 log10
n)

To analyze the update time for k-means, observe that the amor-
tized time dealing with Q0 and Q1 is constant; and for j = 2, . . . ,

log2 n, Qj is constructed after every 2j−1M insertions are made.
Therefore the amortized time spent for an update is0

@log2 n∑
i=2

1

2i−1M
·O
�
|Qi−1|dk · log n

2k/ε
/λ
�1A

= O
�
dk

2
/ε log2

n
�

.
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We should mention Chen [3] also adapted this standard tech-
nique to maintain his coreset in the streaming context obtaining a
coreset size of O(k2dε−2 log8 n), so in comparison the new core-
set size is independent of d (which is interesting in the context of
kernel k-means), losing two more factors of log n and three of ε.
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