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Abstract

How can we train a statistical mixture model on a massive data set? In this paper, we
show how to construct coresets for mixtures of Gaussians and natural generalizations. A
coreset is a weighted subset of the data, which guarantees that models fitting the coreset
will also provide a good fit for the original data set. We show that, perhaps surprisingly,
Gaussian mixtures admit coresets of size independent of the size of the data set. More
precisely, we prove that a weighted set of O(dk3/ε2) data points suffices for computing
a (1 + ε)-approximation for the optimal model on the original n data points. Moreover,
such coresets can be efficiently constructed in a map-reduce style computation, as well as
in a streaming setting. Our results rely on a novel reduction of statistical estimation to
problems in computational geometry, as well as new complexity results about mixtures of
Gaussians. We empirically evaluate our algorithms on several real data sets, including a
density estimation problem in the context of earthquake detection using accelerometers in
mobile phones.

1 Introduction
We consider the problem of training statistical mixture models, in particular mixtures of Gaussians
and some natural generalizations, on massive data sets. Such data sets may be distributed across
a cluster, or arrive in a data stream, and have to be processed with limited memory. In contrast to
parameter estimation for models with compact sufficient statistics, mixture models generally require
inference over latent variables, which in turn depends on the full data set. In this paper, we show that
Gaussian mixture models (GMMs), and some generalizations, admit small coresets: A coreset is a
weighted subset of the data which guarantees that models fitting the coreset will also provide a good
fit for the original data set. Perhaps surprisingly, we show that Gaussian mixtures admit coresets of
size independent of the size of the data set.

We focus on ε-semi-spherical Gaussians, where the covariance matrix Σi of each component i has
eigenvalues bounded in [ε, 1/ε], but some of our results generalize even to the semi-definite case.
In particular, we show that given a data set D of n points in Rd, ε > 0 and k ∈ N, how one can
efficiently construct a weighted set C of O(dk3/ε2) points, such that for any mixture of k ε-semi-
spherical Gaussians θ = [(w1, µ1,Σ1), . . . , (wk, µk,Σk)] it holds that the log-likelihood lnP (D |
θ) of D under θ is approximated by the (properly weighted) log-likelihood lnP (C | θ) of C under
θ to arbitrary accuracy as ε→ 0. Thus solving the estimation problem on the coreset C (e.g., using
weighted variants of the EM algorithm, see Section 3.3) is almost as good as solving the estimation
problem on large data set D. Our algorithm for constructing C is based on adaptively sampling
points from D and is simple to implement. Moreover, coresets can be efficiently constructed in a
map-reduce style computation, as well as in a streaming setting (using space and update time per
point of poly(dkε−1 log n log(1/δ))).

Existence and construction of coresets have been investigated for a number of problems in compu-
tational geometry (such as k-means and k-median) in many recent papers (cf., surveys in [1, 2]). In
this paper, we demonstrate how these techniques from computational geometry can be lifted to the
realm of statistical estimation. As a by-product of our analysis, we also close an open question on
the VC dimension of arbitrary mixtures of Gaussians. We evaluate our algorithms on several syn-
thetic and real data sets. In particular, we use our approach for density estimation for acceleration
data, motivated by an application in earthquake detection using mobile phones.
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2 Background and Problem Statement
Fitting mixture models by MLE. Suppose we are given a data set D = {x1, . . . ,xn} ⊆ Rd. We
consider fitting a mixture of Gaussians θ = [(w1, µ1,Σ1), . . . , (wk, µk,Σk)], i.e., the distribution
P (x | θ) =

∑k
i=1 wiN (x;µi,Σi), where w1, . . . , wk ≥ 0 are the mixture weights,

∑
i wi = 1, and

µi and Σi are mean and covariance of the i-th mixture component, which is modeled as a multivariate
normal distribution N (x, µi,Σi) = 1√

|2πΣi|
exp

(
− 1

2 (x− µi)TΣ−1
i (x− µi)

)
. In Section 4, we

will discuss extensions to more general mixture models. Assuming the data was generated i.i.d., the
negative log likelihood of the data is L(D | θ) = −

∑
j lnP (xj | θ), and we wish to obtain the

maximum likelihood estimate (MLE) of the parameters θ∗ = argminθ∈C L(D | θ), where C is a set
of constraints ensuring that degenerate solutions are avoided1. Hereby, for a symmetric matrix A,
specA is the set of all eigenvalues of A. We define

C = Cε = {θ = [(w1, µ1,Σ1), . . . , (wk, µk,Σk)] | ∀i : spec(Σi) ⊆ [ε, 1/ε]}
to be the set of all mixtures of k Gaussians θ, such that all the eigenvalues of the covariance matrices
of θ are bounded between ε and 1/ε for some small ε > 0.

Approximating the log-likelihood. Our goal is to approximate the data set D by a weighted set
C = {(γ1,x

′
1), . . . , (γm,x

′
m)} ⊆ R × Rd, such that L(D | θ) ≈ L(C | θ) for all θ, where we

define L(C | θ) = −
∑
i γi lnP (x′i | θ).

What kind of approximation accuracy may we hope to expect? Notice that there is a nontrivial
issue of scale: Suppose we have a MLE θ∗ for D, and let α > 0. Then straightforward linear
algebra shows that we can obtain an MLE θ∗α for a scaled data set αD = {αx : x ∈ D} by simply
scaling all means by α, and covariance matrices by α2. For the log-likelihood, however, it holds
that L(αD | θ∗α) = d lnα+ L(D | θ∗). Therefore, optimal solutions on one scale can be efficiently
transformed to optimal solutions at a different scale, while maintaining the same additive error.
This means, that any algorithm which achieves absolute error ε at any scale could be used to achieve
parameter estimates (for means, covariances) with arbitrarily small error, simply by applying the
algorithm to a scaled data set and transforming back the obtained solution. An alternative, scale-
invariant approach may be to strive towards approximating L(D | θ) up to multiplicative error
(1 + ε). Unfortunately, this goal is also hard to achieve: Choosing a scaling parameter α such that
d lnα + L(D | θ∗) = 0 would require any algorithm that achieves any bounded multiplicative
error to essentially incur no error at all when evaluating L(αD | θ∗). The above observations hold
even for the case k = 1 and Σ = I , where the mixture θ consists of a single Gaussian, and the
log-likelihood is the sum of squared distances to a point µ and an additive term.

Motivated by the scaling issues discussed above, we use the following error bound that was sug-
gested in [3] (who studied the case where all Gaussians are identical spheres). We decompose the
negative log-likelihood L(D | θ) of a data set D as

L(D | θ) = −
n∑
j=1

ln

k∑
i=1

wi√
|2πΣi|

exp

(
−1

2
(xj − µi)TΣ−1

i (xj − µi)
)

= −n lnZ(θ) + φ(D | θ)

where Z(θ) =
∑
i

wi√
|2πΣi|

is a normalizer, and the function φ is defined as

φ(D | θ) = −
n∑
j=1

ln

k∑
i=1

wi

Z(θ)
√
|2πΣi|

exp

(
−1

2
(xj − µi)TΣ−1

i (xj − µi)
)
.

Hereby, Z(θ) plays the role of a normalizer, which can be computed exactly, independently of the
set D. φ(D | θ) captures all dependencies of L(D | θ) on D, and via Jensen’s inequality, it can be
seen that φ(D | θ) is always nonnegative.

We can now use this term φ(D | θ) as a reference for our error bounds. In particular, we call θ̃ a
(1 + ε)-approximation for θ if (1− ε)φ(D | θ) ≤ φ(D | θ̃) ≤ φ(D | θ)(1 + ε).

Coresets. We call a weighted data set C a (k, ε)-coreset for another (possibly weighted) set D ⊆
Rd, if for all mixtures θ ∈ C of k Gaussians it holds that

(1− ε)φ(D | θ) ≤ φ(C | θ) ≤ φ(D | θ)(1 + ε).

1equivalently, C can be interpreted as prior thresholding.
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(a) Example data set
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(b) Iteration 1
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(c) Iteration 3
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(d) Final approximation B (e) Sampling distribution (f) Coreset

Figure 1: Illustration of the coreset construction for example data set (a). (b,c) show two iterations of con-
structing the set B. Solid squares are points sampled uniformly from remaining points, hollow squares are
points selected in previous iterations. Red color indicates half the points furthest away from B, which are
kept for next iteration. (d) final approximate clustering B on top of original data set. (e) Induced non-uniform
sampling distribution: radius of circles indicates probability; color indicates weight, ranging from red (high
weight) to yellow (low weight). (f) Coreset sampled from distribution in (e).

Hereby φ(C | θ) is generalized to weighted data sets C in the natural way (weighing the contribu-
tion of each summand x′j ∈ C by γj). Thus, as ε → 0, for a sequence of (k, ε)-coresets Cε we
have that supθ∈C |L(Cε | θ)− L(D | θ)| → 0, i.e., L(Cε | θ) uniformly (over θ ∈ C) approximates
L(D | θ). Further, under the additional condition that all variances are sufficiently large (formally∏
λ∈spec(Σi)

λ ≥ 1
(2π)d

for all components i), the log-normalizer lnZ(θ) is negative, and conse-
quently the coreset in fact provides a multiplicative (1 + ε) approximation to the log-likelihood, i.e.,

(1− ε)L(D | θ) ≤ L(C | θ) ≤ L(D | θ)(1 + ε).
More details can be found in the supplemental material.

Note that if we had access to a (k, ε)-coresetC, then we could reduce the problem of fitting a mixture
model on D to one of fitting a model on C, since the optimal solution θC is a good approximation
(in terms of log-likelihood) of θ∗. While finding the optimal θC is a difficult problem, one can use
a (weighted) variant of the EM algorithm to find a good solution. Moreover, if |C| � |D|, running
EM on C may be orders of magnitude faster than solving it on D. In Section 3.3, we give more
details about solving the density estimation problem on the coreset.

The key question is whether small (k, ε)-coresets exist, and whether they can be efficiently con-
structed. In the following, we answer this question affirmatively. We show that, perhaps surprisingly,
one can efficiently find coresets C of size independent of the size n of D, and with polynomial de-
pendence on 1

ε , d and k.

3 Efficient Coreset Construction via Adaptive Sampling
Naive approach: uniform sampling. A naive approach towards approximating D would be to
just pick a subset C uniformly at random. In particular, suppose the data set is generated from a
mixture of two spherical Gaussians (Σi = I) with weights w1 = 1√

n
and w2 = 1 − 1√

n
. Unless

m = Ω(
√
n) points are sampled, with constant probability no data point generated from Gaussian

2 is selected. By moving the means of the Gaussians arbitrarily far apart, L(D | θC) can be made
arbitrarily worse than L(D | θD), where θC and θD are MLEs on C and D respectively. Thus, even
for two well-separated Gaussians, uniform sampling can perform arbitrarily poorly. This example
already suggests that, intuitively, in order to achieve small multiplicative error, we must devise a
sampling scheme that adaptively selects representative points from all “clusters” present in the data
set. However, this suggests that obtaining a coreset requires solving a chicken-and-egg problem,
where we need to understand the density of the data to obtain the coreset, but simultaneously would
like to use the coreset for density estimation.
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Better approximation via adaptive sampling. The key idea behind the coreset construction is
that we can break the chicken-and-egg problem by first obtaining a rough approximation B of the
clustering solution (using more than k components, but far fewer than n), and then to use this so-
lution to bias the random sampling. Surprisingly, a simple procedure which iteratively samples a
small number β of points, and removes half of the data set closest to the sampled points, provides
a sufficiently accurate first approximation B for this purpose. This initial clustering is then used to
sample the data points comprising coreset C according to probabilities which are roughly propor-
tional to the squared distance to the set B. This non-uniform random sampling can be understood as
an importance-weighted estimate of the log-likelihood L(D | θ), where the weights are optimized
in order to reduce the variance. The same general idea has been found successful in constructing
coresets for geometric clustering problems such as k-means and k-median [4]. The pseudocode for
obtaining the approximation B, and for using it to obtain coreset C is given in Algorithm 1.

Algorithm 1: Coreset construction
Input: Data set D, ε, δ, k
Output: Coreset C =

{
(γ(x1),x1), . . . , (γ(x|C|),x|C|)

}
D′ ← D; B ← ∅;
while |D′| > 10dk ln(1/δ) do

Sample set S of β = 10dk ln(1/δ) points uniformly at random from D′;
Remove d|D′|/2e points x ∈ D′ closest to S (i.e., minimizing dist(x, S)) from D′;
Set B ← B ∪ S;

Set B ← B ∪D′;
for each b ∈ B do Db ← the points in D whose closest point in B is b. Ties broken arbitrarily;
for each b ∈ B and x ∈ Db do

m(x)←
⌈

5
|Db|

+ dist(x,B)2∑
x′∈D dist(x′,B)2

⌉
;

Pick a non-uniform random sample C of 10ddk|B|2 ln(1/δ)/ε2e points from D, where for every x′ ∈ C and
x ∈ D, we have x′ = x with probability m(x)/

∑
x′∈Dm(x′);

for each x′ ∈ C do γ(x′)←
∑

x∈D m(x)

|C|·m(x′) ;

We have the following result, proved in the supplemental material:
Theorem 3.1. Suppose C is sampled from D using Algorithm 1 for parameters ε, δ and k. Then,
with probability at least 1− δ it holds that for all θ ∈ Cε,

φ(D | θ)(1− ε) ≤ φ(C | θ) ≤ φ(D | θ)(1 + ε).

In our experiments, we compare the performance of clustering on coresets constructed via adaptive
sampling, vs. clustering on a uniform sample. The size of C in Algorithm 1 depends on |B|2 =
log2 n. By replacing B in the algorithm with a constant factor approximation B′, |B′| = l for the
k-means problem, we can get a coreset C of size independent of n. Such a set B′ can be computed
in O(ndk) time either by applying exhaustive search on the output C of the original Algorithm 1 or
by using one of the existing constant-factor approximation algorithms for k-means (say, [5]).

3.1 Sketch of Analysis: Reduction to Euclidean Spaces
For space limitations, the proof of Theorem 3.1 is included in the supplemental material, we only
provide a sketch of the analysis, carrying the main intuition. The key insight in the proof is that the
contribution logP (x | θ) to the likelihood L(D | θ) can be expressed in the following way:
Lemma 3.2. There exist functions φ, ψ, and f such that, for any point x ∈ Rd and mixture model
θ, lnP (x | θ) = −fφ(x)(ψ(θ)) + Z(θ), where

fx̃(y) = − ln
∑
i

w̃iexp
(
−Widist(x̃− µ̃i, si)2

)
.

Hereby, φ is a function that maps a point x ∈ Rd into x̃ = φ(x) ∈ R2d, and ψ is a function that
maps a mixture model θ into a tuple y = (s, w, µ̃,W ) where w is a k-tuple of nonnegative weights
w̃1, . . . , w̃k summing to 1, s = s1, . . . , sk ⊆ R2d is a set of k d-dimensional subspaces that are
weighted by weights W1, · · · ,Wk > 0, and µ̃ = µ̃1, · · · , µ̃k ∈ R2d is a set of k means.

The main idea behind Lemma 3.2 is that level sets of distances between points and subspaces
are quadratic forms, and can thus represent level sets of the Gaussian probability density func-
tion (see Figure 2(a) for an illustration). We recognize the “soft-min” function ∧w′(η) ≡
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(a) Gaussian pdf as Euclidean distances
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(b) Tree for coreset construction

Figure 2: (a) Level sets of the distances between points on a plane (green) and (disjoint) k-dimensional sub-
spaces are ellipses, and thus can represent contour lines of the multivariate Gaussian. (b) Tree construction for
generating coresets in parallel or from data streams. Black arrows indicate “merge-and-compress” operations.
The (intermediate) coresets C1, . . . , C7 are enumerated in the order in which they would be generated in the
streaming case. In the parallel case, C1, C2, C4 and C5 would be constructed in parallel, followed by parallel
construction of C3 and C6, finally resulting in C7.

− ln
∑
i w
′
iexp (−ηi) as an approximation upper-bounding the minimum min(η) = mini ηi for

ηi = Widist(x̃− µ̃i, si)2 and η = [η1, . . . , ηk]. The motivation behind this transformation is that it
allows expressing the likelihood P (x | θ) of a data point x given a model θ in a purely geometric
manner as soft-min over distances between points and subspaces in a transformed space. Notice
that if we use the minimum min() instead of the soft-min ∧w̃(), we recover the problem of approx-
imating the data set D (transformed via φ) by k-subspaces. For semi-spherical Gaussians, it can be
shown that the subspaces can be chosen as points while incurring a multiplicative error of at most
1/ε, and thus we recover the well-known k-means problem in the transformed space. This insight
suggests using a known coreset construction for k-means, adapted to the transformation employed.
The remaining challenge in the proof is to bound the additional error incurred by using the soft-min
function ∧w̃(·) instead of the minimum min(·). We tackle this challenge by proving a general-
ized triangle inequality adapted to the exponential transformation, and employing the framework
described in [4], which provides a general method for constructing coresets for clustering problems
of the form mins

∑
i fx̃(s).

As proved in [4], the key quantity that controls the size of a coreset is the pseudo-dimension of the
functions Fd = {fx̃ for x̃ ∈ R2d}. This notion of dimension is closely related to the VC dimension
of the (sub-level sets of the) functions Fd and therefore represents the complexity of this set of
functions. The final ingredient in the proof of Theorem 3.1 is a new bound on the complexity of
mixtures of k Gaussians in d dimensions proved in the supplemental material.

3.2 Streaming and Parallel Computation
One major advantage of coresets is that they can be constructed in parallel, as well as in a streaming
setting where data points arrive one by one, and it is impossible to remember the entire data set due
to memory constraints. The key insight is that coresets satisfy certain composition properties, which
have previously been used by [6] for streaming and parallel construction of coresets for geometric
clustering problems such as k-median and k-means.

1. Suppose C1 is a (k, ε)-coreset for D1, and C2 is a (k, ε)-coreset for D2. Then C1 ∪ C2 is
a (k, ε)-coreset for D1 ∪D2.

2. Suppose C is a (k, ε)-coreset for D, and C ′ is a (k, δ)-coreset for C. Then C ′ is a (k, (1 +
ε)(1 + δ)− 1)-coreset for D.

In the following, we review how to exploit these properties for parallel and streaming computation.

Streaming. In the streaming setting, we assume that points arrive one-by-one, but we do not have
enough memory to remember the entire data set. Thus, we wish to maintain a coreset over time,
while keeping only a small subset ofO(log n) coresets in memory. There is a general reduction that
shows that a small coreset scheme to a given problem suffices to solve the corresponding problem
on a streaming input [7, 6]. The idea is to construct and save in memory a coreset for every block of
poly(dk/ε) consecutive points arriving in a stream. When we have two coresets in memory, we can
merge them (resulting in a (k, ε)-coreset via property (1)), and compress by computing a single core-
set from the merged coresets (via property (2)) to avoid increase in the coreset size. An important
subtlety arises: While merging two coresets (via property (1)) does not increase the approximation
error, compressing a coreset (via property (2)) does increase the error. A naive approach that merges
and compresses immediately as soon as two coresets have been constructed, can incur an exponen-
tial increase in approximation error. Fortunately, it is possible to organize the merge-and-compress
operations in a binary tree of height O(log n), where we need to store in memory a single coreset

5



for each level on the tree (thus requiring only poly(dkε−1 log n) memory). Figure 2(b) illustrates
this tree computation. In order to construct a coreset for the union of two (weighted) coresets, we
use a weighted version of Algorithm 1, where we consider a weighted point as duplicate copies of
a non-weighted point (possibly with fractional weight). A more formal description can be found
in [8]. We summarize our streaming result in the following theorem.

Theorem 3.3. A (k, ε)-coreset for a stream of n points in Rd can be computed for the ε-
semi-spherical GMM problem with probability at least 1 − δ using space and update time
poly(dkε−1 log n log(1/δ)).

Parallel/Distributed computations. Using the same ideas from the streaming model, a (non-
parallel) coreset construction can be transformed into a parallel one. We partition the data into
sets, and compute coresets for each set, independently, on different computers in a cluster. We then
(in parallel) merge (via property (1)) two coresets, and compute a single coreset for every pair of
such coresets (via property (2)). Continuing in this manner yields a process that takes O(log n)
iterations of parallel computation. This computation is also naturally suited for map-reduce [9] style
computations, where the map tasks compute coresets for disjoint parts of D, and the reduce tasks
perform the merge-and-compress operations. Figure 2(b) illustrates this parallel construction.

Theorem 3.4. A (k, ε)-coreset for a set of n points in Rd can be computed for the ε-semi-
spherical GMM problem with probability at least 1 − δ using m machines in time (n/m) ·
poly(dkε−1 log(1/δ) log n).

3.3 Fitting a GMM on the Coreset using Weighted EM
One approach, which we employ in our experiments, is to use a natural generalization of the EM
algorithm, which takes the coreset weights into account. We here describe the algorithm for the case
of GMMs. For other mixture distributions, the E and M steps are modified appropriately.

Algorithm 2: Weighted EM for Gaussian mixtures
Input: Coreset C, k, TOL
Output: Mixture model θC
Lold =∞; Initialize means µ1, . . . , µk by sampling k points from C with probability proportional to their
weight. Initialize Σi = I and wi = 1

k
for all i;

repeat
Lold = L(C | θ); for j = 1 to n do for i = 1 to k do Compute ηi,j = γi

wiN (x′
j ;µi,Σi)∑

` w`N (x′
j ;µ`,Σ`)

;

for i = 1 to k do
wi ← wi/

∑
` wi; µi ←

∑
j ηi,jx

′
j/
∑
j ηi,j ; Σi ←

∑
j ηi,j

(
x′j − µi

)(
x′j − µi

)T
/
∑
j ηi,j ;

until L(C | θ) ≥ Lold − TOL ;

Using a similar analysis as for the standard EM algorithm, Algorithm 2 is guaranteed to converge,
but only to a local optimum. However, since it is applied on a much smaller set, it can be initialized
using multiple random restarts.

4 Extensions and Generalizations
We now show how the connection between estimating the parameters for mixture models and
problems in computational geometry can be leveraged further. Our observations are based on the
link between mixture of Gaussians and projective clustering (multiple subspace approximation) as
shown in Lemma 3.2.

Generalizations to non-semi-spherical GMMs. For simplicity, we generalized the coreset con-
struction for the k-means problem, which required assumptions that the Gaussians are ε-semi-
spherical. However, several more complex coresets for projective clustering were suggested recently
(cf., [4]). Using the tools developed in this article, each such coreset implies a corresponding coreset
for GMMs and generalizations. As an example, the coresets for approximating points by lines [10]
implies that we can construct small coresets for GMMs even if the smallest singular value of one of
the corresponding covariance matrices is zero.

Generalizations to `q distances and other norms. Our analysis is based on combinatorics (such
as the complexity of sub-levelsets of GMMs) and probabilistic methods (non-uniform random sam-
pling). Therefore, generalizations to other non-Euclidean distance functions, or error functions such
as (non-squared) distances (mixture of Laplace distributions) is straightforward. The main property
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Figure 3: Experimental results for three real data sets. We compare likelihood of the best model obtained on
subsets C constructed by uniform sampling, and by the adaptive coreset sampling procedure.

that we need is a generalization of the triangle inequality, as proved in the supplemental material.
For example, replacing the squared distances by non-squared distances yields a coreset for mixture
of Laplace distributions. The double triangle inequality ‖a− c‖2 ≤ 2(‖a− b‖+ ‖b− c‖2) that we
used in this paper is replaced by Hölder’s inequality, ‖a− c‖2 ≤ 2O(q) ‖a− b‖+ 2 ‖b− c‖2. Such
a result is straight-forward from our analysis, and we summarize it in the following theorem.

Theorem 4.1. Let q ≥ 1 be an integer. Consider Algorithm 1, where dist(·, ·)2 is replaced by
dist(·, ·)q and ε2 is replaced by εO(q). Suppose C is sampled from D using this updated version of
Algorithm 1 for parameters ε, δ and k. Then, with prob. at least 1− δ it holds that for all θ ∈ Cε,

φ(D | θ)(1− ε) ≤ φ(C | θ) ≤ φ(D | θ)(1 + ε),

where Z(θ) =
∑
i
wi

g(θi)
and φ(D | θ) = −

∑
x∈D ln

∑k
i=1

wi

Z(θ)g(θi)
exp

(
− 1

2

∥∥∥Σ
−1/2
i (x− µi)

∥∥∥q)
using the normalizer g(θi) =

∫
exp

(
− 1

2

∥∥∥Σ
−1/2
i (x− µi)

∥∥∥q) dx.
5 Experiments
We experimentally evaluate the effectiveness of using coresets of different sizes for training mixture
models. We compare against running EM on the full set, as well as on an unweighted, uniform
sample from D. Results are presented for three real datasets.

MNIST handwritten digits. The MNIST dataset contains 60,000 training and 10,000 testing
grayscale images of handwritten digits. As in [11], we normalize each component of the data to
have zero mean and unit variance, and then reduce each 784-pixel (28x28) image using PCA, retain-
ing only the top d = 100 principal components as a feature vector. From the training set, we produce
coresets and uniformly sampled subsets of sizes between 30 and 5000, using the parameters k = 10
(a cluster for each digit), β = 20 and δ = 0.1 (see Algorithm 1), and fit GMMs using EM with 3
random restarts. The log likelihood (LLH) of each model on the testing data is shown in Figure 3(a).
Notice that coresets significantly outperform uniform samples of the same size, and even a coreset
of 30 points performs very well. Further note how the test-log likelihood begins to flatten out for
|C| = 1000. Constructing the coreset and running EM on this size takes 7.9 seconds (Intel Xeon 2.6
GHz), over 100 times faster than running EM on the full set (15 minutes).

Neural tetrode recordings. We also compare coresets and uniform sampling on a large dataset
containing 319,209 records of rat hippocampal action potentials, measured by four co-located elec-
trodes. As done by [11], we concatenate the 38-sample waveforms produced by each electrode to
obtain a 152-dimensional vector. The vectors are normalized so each component has zero mean
and unit variance. The 319,209 records are divided in half to obtain training and testing sets. From
the training set, we produce coresets and uniformly sampled subsets of sizes between 70 and 1000,
using the parameters k = 33 (as in [11]), β = 66, and δ = 0.1, and fit GMMs. The log likelihood of
each model on the held-out testing data is shown in Figure 3(b). Coreset GMMs obtain consistently
higher LLH than uniform sample GMMs for sets of the same size, and even a coreset of 100 points
performs very well. Overall, training on coresets achieves approximately the same likelihood as
training on the full set about 95 times faster (1.2 minutes vs. 1.9 hours).

CSN cell phone accelerometer data. Smart phones with accelerometers are being used by the
Community Seismic Network (CSN) as inexpensive seismometers for earthquake detection. In [12],
7 GB of acceleration data were recorded from volunteers while carrying and operating their phone in
normal conditions (walking, talking, on desk, etc.). From this data, 17-dimensional feature vectors
were computed (containing frequency information, moments, etc.). The goal is to train, in an online
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fashion, GMMs based on normal data, which then can be used to perform anomaly detection to de-
tect possible seismic activity. Motivated by the limited storage on smart phones, we evaluate coresets
on a data set of 40,000 accelerometer feature vectors, using the parameters k = 6, β = 12, and δ =
0.1. Figure 3(c) presents the results of this experiment. Notice that on this data set, coresets show an
even larger improvement over uniform sampling. We hypothesize that this is due to the fact that the
recorded accelerometer data is imbalanced, and contains clusters of vastly varying size, so uniform
sampling does not represent smaller clusters well. Overall, the coresets obtain a speedup of approx-
imately 35 compared to training on the full set. We also evaluate how GMMs trained on the coreset
compare with the baseline GMMs in terms of anomaly detection performance. For each GMM, we
compute ROC curves measuring the performance of detecting earthquake recordings from the South-
ern California Seismic Network (cf., [12]). Note that even very small coresets lead to performance
comparable to training on the full set, drastically outperforming uniform sampling (Fig. 3(d)).

6 Related Work
Theoretical results on mixtures of Gaussians. There has been a significant amount of work on
learning and applying GMMs (and more general distributions). Perhaps the most commonly used
technique in practice is the EM algorithm [13], which is however only guaranteed to converge to a
local optimum of the likelihood. Dasgupta [14] is the first to show that parameters of an unknown
GMM P can be estimated in polynomial time, with arbitrary accuracy ε, given i.i.d. samples from
P . However, his algorithm assumes a common covariance, bounded excentricity, a (known) bound
on the smallest component weight, as well as a separation (distance of the means), that scales as
Ω(
√
d). Subsequent works relax the assumption on separation to d1/4 [15] and k1/4 [16]. [3] is

the first to learn general GMMs, with separation d1/4. [17] provides the first result that does not
require any separation, but assumes that the Gaussians are axis-aligned. Recently, [18] and [19]
provide algorithms with polynomial running time (except exponential dependence on k) and sample
complexity for arbitrary GMMs. However, in contrast to our results, all the results described above
crucially rely on the fact that the data set D is actually generated by a mixture of Gaussians. The
problem of fitting a mixture model with near-optimal log-likelihood for arbitrary data is studied
by [3], who provides a PTAS for this problem. However, their result requires that the Gaussians
are identical spheres, in which case the maximum likelihood problem is identical to the k-means
problem. In contrast, our results make only mild assumptions about the Gaussian components.
Furthermore, none of the algorithms described above applies to the streaming or parallel setting.

Coresets. Approximation algorithms in computational geometry often make use of random sam-
pling, feature extraction, and ε-samples [20]. Coresets can be viewed as a general concept that
includes all of the above, and more. See a comprehensive survey on this topic in [4]. It is not clear
that there is any commonly agreed-upon definition of a coreset, despite several inconsistent attempts
to do so [6, 8]. Coresets have been the subject of many recent papers and several surveys [1, 2]. They
have been used to great effect for a host of geometric and graph problems, including k-median [6],
k-mean [8], k-center [21], k-line median [10] subspace approximation [10, 22], etc. Coresets also
imply streaming algorithms for many of these problems [6, 1, 23, 8]. A framework that generalizes
and improves several of these results has recently appeared in [4].

7 Conclusion
We have shown how to construct coresets for estimating parameters of GMMs and natural general-
izations. Our construction hinges on a natural connection between statistical estimation and cluster-
ing problems in computational geometry. To our knowledge, our results provide the first rigorous
guarantees for obtaining compressed ε-approximations of the log-likelihood of mixture models for
large data sets. The coreset construction relies on an intuitive adaptive sampling scheme, and can be
easily implemented. By exploiting certain closure properties of coresets, it is possible to construct
them in parallel, or in a single pass through a stream of data, using only poly(dkε−1 log n log(1/δ))
space and update time. Unlike most of the related work, our coresets provide guarantees for any
given (possibly unstructured) data, without assumptions on the distribution or model that generated
it. Lastly, we apply our construction on three real data sets, demonstrating significant gains over no
or naive subsampling.
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