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Abstract

In this thesis we investigate the construction and applications of coresets (small
sets which approximately represent much larger input sets, in term of various
objective measures) to several problems in geometric optimization.

Bi-criteria approximation algorithms

We consider the problem of approximating a set P of n points in Rd by a collection
of k j-dimensional flats, and extensions thereof, under the median / mean / center
measures, in which we wish to minimize, respectively, the sum of the Euclidean
distances from each point of P to its nearest flat, the sum of the squares of these
distances, and the maximum such distance. Problems of this kind belong to the
area of projective clustering.

Such problems cannot be approximated in polynomial time, for every ap-
proximation factor, unless P=NP but do allow bi-criteria approximations, where
one allows some leeway in both the number of flats and the quality of the ob-
jective function. We give a very simple randomized bi-criteria approximation
algorithm, which produces, with high probability, at most α(k, j, n) = log n ·
(jk log log n)O(j) flats, which exceeds the optimal objective value for any k j-
dimensional flats by a factor of no more than β(j) = 2O(j).

We use this bi-criteria approximation in the construction of coresets for pro-
jective clustering; see Chapter 4. Our bi-criteria algorithm has many advantages
over previous work, in that it is much more widely applicable (wider set of ob-
jective functions and classes of clusters) and much more efficient — reducing the
running time bound from O(npoly(k,j)) to O(dn) · (jk)O(j).

We give full details of this work in Chapter 3. A preliminary version has
appeared in [FFSS07]; Since the publication of [FFSS07] in 2007 it has been
cited and used in subsequent work [FL08, FFKN09, FMSW10].
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Coresets for projective clustering

We develop efficient (1 + ε)-approximation algorithms for projective clustering
problems, where k = 1 or j = 1 (one j-dimensional flat or many lines in Rd).

To achieve coresets for projective clustering we introduce coresets for weighted
(point) facilities. These prove to be useful for such generalized facility location
problems, and may be of additional independent interest.

Applications include approximations for generalized k-median and k-mean
line problems, i.e., finding k lines that minimize the sum (or sum of squares)
of the distances from each input point to its nearest line. Other applications are
generalizations of linear regression problems to multiple regression lines, new
SVD/PCA generalizations, and many more. The results significantly improve on
previous work, which deals efficiently only with special cases.

We give full details of this work in Chapter 4. A preliminary version has
appeared in [FFS06]; Since the publication of [FFS06] in 2006 it has been cited
and used in many subsequent works [FMSW10, Des07, DV07, FFSS07, FMS07,
SV07, DDH+08, LS08].
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Chapter 1

Background

In this chapter we give the background required to place our contributions in con-
text.

We introduce coresets and give examples of their use. We introduce a variety
of problems related to projective clustering.

1.1 Coresets
Approximation algorithms in computational geometry often make use of random
sampling [CKMN01, Mul93], feature extraction [DM98, CC01], and ε-samples
[Hau92].

Coresets can be viewed as a general concept that includes all of the above,
and more. See a comprehensive survey on this topic by Agarwal, Har-Peled, and
Varadarajan [AHPV04].

It is not clear that there is any commonly agreed-upon definition of a coreset,
despite several inconsistent attempts to do so [HPM04, AHPV05, Cla05, HPK07,
DRVW06, FMS07].

In our context, the input is a set P of points in Rd, and we consider a set F of
k points or affine subspaces in Rd. P is typically much larger than F . Let cost be
some function of P and F . We interpret cost(P, F ) as the result of a query F on
dataset P .

Typically, we will be interested in queries that measure the distance between
P and F , where this distance could be the sum of the Euclidean distances from
each point of P to the nearest object in F , or the sum of squares of such distances,
or the maximum such distance. In addition to point sets P , we also consider

1
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Fig. 1.1: (a) A set P of n points in the plane and two facilities. (b) A weighted
coreset (black points) of P with the same two facilities.

weighted point sets S, where every p ∈ S has an associated multiplicative weight
w(p) ∈ R. We extend the definition of cost(P, F ) in a natural manner.

A concrete example is the set of k-median queries, where each query is of the
form F = {f1, f2, . . . , fk}, where each fi is a point, or an affine subspace of Rd,
and returns the sum of distances

cost(P, F ) =
∑
p∈P

min
1≤i≤k

dist(p, fi).

For a set S of weighted points, we define

cost(S, F ) =
∑
p∈S

w(p) · min
1≤i≤k

dist(p, fi).

Let F be the set of all possible queries. Fix F , i.e., fix both the types of
objects in F (called facilities) and the function cost(P, F ). A coreset scheme A
for a class of queries F is an algorithm that gets as input a finite set P of points
and a parameter ε > 0, and outputs a setA(P ) = S of weighted points in Rd such
that for every F ∈ F :

(1− ε) · cost(P, F ) ≤ cost(A(P ), F ) ≤ (1 + ε) · cost(P, F ).
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The set S is called a coreset. Typically, one expects S to be much smaller than P .
In the concrete example given above, it would be a coreset for k-median.

As a motivating example, let P be a set of n points in R2. Har-Peled and
Kushal [HPK07] describe how to construct a coreset for k-median of size inde-
pendent of n. See Fig 1.1.

The sum of distances is used in “median” problems; in “mean” problems we
replace it by the sum of squared distances. Har-Peled and Kushal [HPK07] also
provide a construction of a small coreset for k-mean. That is, rather than sum of
the Euclidean distances to the nearest facilities, one takes the sum of the squared
Euclidean distances.

Such coresets imply an efficient approximation algorithm for the k-median (or
k-mean) problem: an optimal set of k facilities for S is a good approximation to
the optimal set for P , and, since S is small, the former set may possibly be found
efficiently, e.g., via brute force.

Coresets have been the subject of many recent papers [HP04a, APV02, BHPI02,
HPV02, HP04b, HPM04, Cha04, AHPV05, HPK07, Che06, FFS06, FMS07] and
several surveys [AHPV05, CS07]. Coresets have been used to great effect for
a host of geometric and graph problems, including k-median [HPM04, HPK07,
Che06, FMS07], k-mean [HPM04, HPK07, FMS07], k-center [HPV04], sub-
space approximation [HPV02, HP04b, FFS06], shape fitting [AHPV04], k-line
median [FFS06], k-line center [HPV02, HPV04], moving points [HP04a], max
TSP [FS05], minimum spanning tree [CEF+05, FIS08], maximal margin learning,
etc. Coresets also imply streaming algorithms for many of these problems [HPM04,
AHPV05, FS05, BFLS07, FMS07, FIS08, LS08].

1.2 Projective Clustering
Clustering is the process of partitioning objects into clusters such that objects in
the same cluster are similar, and objects in different clusters are dissimilar. Clus-
tering is a central problem in computer science. It has many applications in dif-
ferent areas including bioinformatics, pattern recognition, data compression, and
information retrieval. It is relevant to issues of unsupervised learning, classifica-
tion, databases, spatial range-searching, data-mining, etc.

Input points to be clustered may be in a very high-dimensional space, (e.g.,
documents represented as a bag of English words in 600,000-dimensional space
or gene expression data for 10,000 genes). Because of the wide variety of applica-
tions, there is no general formulation of clustering (except for the vague one given
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above).
Let P ⊂ Rd be a set of n points in d-dimensional space. A reasonable goal

is to “approximate” P by a small collection, F , of “shapes” in Rd. Depending
on the problem, elements of F may be restricted to be single points, lines, or j-
dimensional subspaces of Rd (j < d). (Of course, shapes can also be non linear,
such as spheres or cylinders, but in this thesis we only consider the linear case.)

For a point p ∈ P , let c = c(p) ∈ F be the element c ∈ F closest to p
in Euclidean distance, i.e. dist(p, c) = minq∈c ∥p− q∥ (ties broken arbitrarily).
Every c ∈ F represents a cluster, and point p ∈ P is said to be associated with
cluster c(p). The set F is called a projective clustering of P .

Typically, the projective clustering problem pre-specifies the class of allowable
cluster shapes in F and their number, k. The value of a projective clustering F is
some function of the distances between points p ∈ P and their associated clusters
c(p). A good projective clustering is one of small value.

Common objectives are to minimize
∑

p∈P dist(p, c(p)),
∑

p∈P
(
dist(p, c(p))

)2,
or maxp∈P dist(p, c(p)), where dist(·, ·) is the Euclidean distance. A projective
clustering F that minimizes one of these three main objective functions, is re-
ferred to as a k-median, k-mean, or k-center, respectively.

Example: k-line median. In Fig 1.2 we see a set F = {ℓ1, ℓ2} of two lines
in R2, and c(p) = ℓ1 (as p is closer to ℓ1 than to ℓ2). The k-line median is a
special case of projective clustering problem, where the set F is k lines in Rd, that
minimizes the sum of distances

∑
p∈P dist(p, c(p)); see Fig. 1.3.

1l
2l

1dist( , )p l

2dist( , )p lp

F = {ℓ1, ℓ2}

Fig. 1.2: dist(p, F ) = min {dist(p, ℓ1), dist(p, ℓ2)}

The case where F is a set of k low-dimensional flats (affine subspaces) in Rd

has been the subject of many studies (for example, [AGGR98, APW+99, AP00,
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ℓ2
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F = {ℓ1, ℓ2}

),(distmax Fp
Pp∈

ℓ1

ℓ2
F = {ℓ1, ℓ2}

Fig. 1.3: (left) 2-line median: minF

∑
p∈P dist(p, F ). (right) 2-line center:

minF maxp∈P dist(p, F ).

AY00, HP04a, AJMP02, AHPV05, DV07, SV07]). Heuristics for projective clus-
tering can be found in [AM04]. In this case, the problem is to find a set of k
low-dimensional flats that approximately matches the input points. This problem
appears in a great many areas. For example, “one of the most fundamental prob-
lems in computer vision is to find straight lines in an image” [Bre96]. Other exam-
ples include: matrix approximation [DRVW06], other problems in image process-
ing [TT96], data compression [Ric86], graphics [KS90], socioeconomics [KA04],
and many more.

A β-approximation algorithm for a k-projective clustering problem should
produce a k-projective clustering, F , with value not greater than β times the opti-
mum, i.e., the smallest value of any k-projective clustering.

Unfortunately, even for planar point sets P , it is NP-complete to determine
whether there exist k lines (1-flats) whose union covers P [MT83], when k is part
of the input. If the k lines indeed cover the points of P , then the sum of distances,
sum of squared distances, and maximal distance, are all zero. Hence, any finite
approximation to the k-line median, mean, or center problems is NP-hard, even
for point sets P in the plane.

In Table 1.1 we summarize recent work on approximate projective clustering
of k j-dimensional flats in Rd. The constant in the notation O(·) is assumed to be
an absolute constant, independent of j and k.

Note that all the algorithms in the table are (at least) exponential in k. Also,
for the general case of j > 1 and k > 1 the existing algorithms are inefficient, and
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take time Ω(npoly(k,j)). Heuristics that address the projective clustering problem
for j, k > 1 include PROCLUS [APW+99], ORCLUS [AY00], DOC [AJMP02],
and CLIQUE [AGGR98]. Other heuristics for projective clustering can be found
in [AM04], with more references therein.

In the next section we define a different kind of approximation, known as an
(α, β) bi-criteria approximation. In Sections 1.2.2 and 1.2.3, we discuss related
work that gives constant factor approximations of this kind for projective cluster-
ing when either j = 1 or k = 1.

1.2.1 Bi-criteria Approximations
As noted in the previous section and Section 1.1, the best known algorithms for
projective clustering where k, j > 1 take time Ω(npoly(k,j)). Moreover, as also
mentioned, the problem is NP-hard for non-constant k, even for j = 1 and d = 2;
see [MT83]. It is thus natural to try to find a bi-criteria approximation, where one
allows some leeway in both the number of flats and the quality of the objective
function. Bi-criteria approximation have appeared in many contexts [MI94, AP00,
HP04a, HPM04, ABG06, Che06, DV07, Yan08].

Definition 1.1 ((α, β)-bi-criteria approximation for projective clustering). For a
given point set P ⊂ Rd, an (α, β)-bi-criteria approximation for k-projective clus-
tering by j-dimensional flats is a set F of α j-dimensional flats whose value is
within a factor of β from the minimal value of any k j-dimensional flats.

The parameters α and β in Definition 1.1 may depend on k, j, d, and n, where
the dependence on n should be small (say, polylogarithmic), or — even better —
independent of n.

In Table 1.2 we summarize the current state of affairs regarding such bi-criteria
approximations for projective clustering.

In Chapter 3, we present a new algorithm for constructing bi-criteria approx-
imation for the general projective clustering problem, that takes time linear in n
and only polynomial in k. These results appear in rows marked ⋆ in Table 1.2, and
have appeared in print as [FFSS07].

1.2.2 k-Line Median/Mean Clustering (j = 1)
Recall that the problem of approximate k-line median (resp., mean) is the special
case of approximate projective clustering, with j = 1, in which we seek a set of k
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Flat k = # Objective Approx Ref. Time
dim. j Flats Function

1 k ≥ 1 median FPTAS ⋆ ⋆ [FFS06] nd · kO(1)

mean +(ε−d log n)O(dk2)

j ≥ 1 1 median FPTAS ⋆ ⋆ [FFS06] nd · (j)O(j2)

+(ε−1 polylog n)O(d2j2)

j ≥ 1 1 mean Exact SVD [Pea01] min {O(nd2), O(n2d)}
j ≥ 1 1 mean PTAS [DV06, HP06b, Sar06] nd poly(j, 1/ε)

j ≥ 1 k ≥ 1 mean PTAS [DRVW06] d(n/ε)O(jk3/ε)

j ≥ 1 1 median PTAS [SV07] nd · 2O(j/ε log2(1/ε))

j = 1 1 median Exact [Dey98] O(n4/3 log2 n)
d = 2

j ≥ 1 k ≥ 1 median PTAS [SV07] d(n/ε)poly(j,k,1/ε))

j ≥ 1 1 center PTAS [HPV02] dnO
(
j/ε5 log(1/ε)

)
j ≥ 1 1 center PTAS [Pan04] dn · exp

(
2O(j2)

ε2
log 1

ε

)
j ≥ 1 k ≥ 1 center PTAS [HPV02] dnO

(
jk/ε5 log(1/ε)

)
1 k ≥ 1 center FPTAS [APV02] n log n · εO(−d−k)kO(k)

+ log n · (k/ε)O(d2k2)

j = 1 2 center Exact [JK95] O(n2 log2 n)
d = 2
j = 1 2 center 3-approx [AP00] O(n log n)
d = 2

Table 1.1: Approximate projective clustering. The input is a set P ⊂ Rd, |P | = n, the goal
is to find a good approximation for P , within relative error 1 + ε, using k j-dimensional
flats. Unless P=NP, all such approximations must be superpolynomial in k. The first two
rows above, marked ⋆⋆, form part of the thesis; see Chapter 4.
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`

`

ℓ3
ℓ2

ℓ1

F = {ℓ1, ℓ2, ℓ3}

∑

p∈P

dist(p, F ) ≤ 2 · opt

(a)
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Fig. 1.4: (a) A (3, 2)-approximation for the 2-line median of P . (b) A (4, 1/2)-
approximation for the 2-line median of P .
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P ⊂ Rd Flat Objective α β Ref. Time
dim. j Function

d = 2 j = 1 center O(k log k) 6 [AP00] O(nk2 log4 n)
d = 2 j = 1, center O(k log k) 1 [HP04a] O(n log k)

k ≤ n1/6

d = 3 j = 2 center O(k log k) 24 [AP00] n3/2k11/4 logO(1) n

d ≥ 1 j = 1 center O(dk log k) 8 [AP00] O(dnk3 log4 n)

d ≥ 1 j ≥ 1 center log n 2O(j) ⋆ [FFSS07] O(dn) · (jk)O(j)

mean ·(jk log log n)O(j)

median
d ≥ 1 j ≥ 1 center (2djk log n)O(j) 1/2 ⋆ [FFSS07] O(dn) · (jk)O(j)

mean + (2djk log n)O(j)

median

Table 1.2: Results on bi-criteria approximate projective clustering. The input is a set P ⊂ Rd,
|P | = n, the goal is to find an approximation for P using α j-dimensional flats to within a
β factor off the optimal such approximation by k j-dimensional flats. The last two entries are
contributions of this thesis. Our bi-criteria approximation holds simultaneously for all three
main objective functions.
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lines in Rd such that the sum of the distances (resp., squared distances), from the
points of P to their closest lines is minimized, up to a factor of (1 + ε).

Exact solutions are available in certain special cases. In particular, the 1-line
mean can be computed in O(n) time using the Singular Value Decomposition, for
any fixed d; see [Pea01]. For k = 1 and d = 2, Yamamoto et al. [YKII88] give an
O(n1.5 log2 n)-time algorithm that computes a 1-line median for a set of n input
points. Using Dey’s improved bound on the number of halving lines [Dey98], the
algorithm can be improved to O(n4/3 log2 n). In previous work [Fel04], we gave
an exact (optimal) solution for the k-line-mean in the plane, which takes O(n3)
time for k = 2, and nO(k2) for k ≥ 3.

No near linear time approximation algorithms are known for the k-line mean
or k-median where k > 1, or for the 1-line median where d > 2. A simple ex-
ample is, for an input set of points in R3, to find a 1-dimensional flat (line) in
R3 that approximately minimizes the sum of distances from the points. Recently,
Deshpadne et al. [DRVW06] gave an (n/ε)O(k/ε) PTAS (polynomial-time approx-
imation scheme) for computing the k-line mean.

Many heuristics for the k-line median problem, such as the Hough transform
and Independent Component Analysis (ICA), have also been proposed (see refer-
ences in [HOK01]).

1.2.3 Approximation of Points by an Affine Subspace (k = 1)
Confronted with high-dimensional data arising from either word-document count,
global climate patterns or any one of the myriad other sources, most scientific
approaches attempt to extract a good low-dimensional summary. This desire to
reduce dimensionality may be seen as a consequence of Occam’s Razor, and the
scientific methodologies we have in mind include data mining and statistics.

A flat (an affine subspace) f in Rd is defined to be a translation of a linear
subspace. We are interested in the following approximate flat fitting problem:
Given P as above, and an integer 1 ≤ j ≤ d − 1, find a j-dimensional flat f (a
j-flat in short) such that the sum of distances (or the sum of squared distances)
from the points of P to f is minimized, up to a factor of (1 + ε). We will refer to
the special case where ε = 0 as the exact flat fitting problem.

The optimal j-subspace (which passes through the origin) that minimizes the
sum of squared distances from P is obtained by the span of the j right singu-
lar vectors corresponding to the top j singular values of the singular value de-
composition (SVD) of the n × d matrix whose rows correspond to the points of
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P [Pea01]. This leads to a polynomial (in fact, O(ndmin{n, d})-time) algorithm
for this problem; see the discussion in [Pea01].

Similarly, one can compute the j-flat f that minimizes the sum of squared
distances from P (the j-flat mean problem) by using the fact that f contains the
point p̄ =

∑
p∈P p/ ∥p∥ (also known as the center of mass). Hence, f can be

computed by translating the origin to p̄, and computing the optimal j-subspace
for the new set {p− p̄ | p ∈ P}. This method is called principal component
analysis (PCA) [Jol86].

For the ε-approximate problem for small j, recent work gives algorithms that
are near linear in ndj/ε [SV07].

Although the j-flat mean can be computed in polynomial time, no analogous
efficient algorithms are known for the j-flat median or its approximations, for 1 ≤
j < d− 1. Prior to our work, no polynomial time approximation was known for a
j-flat (1 ≤ j < d−1) that minimizes the sum of distances to P (even for j = 1 and
d = 3); these are cited as “interesting open problems” in [Sch99, DH02, BMS99].

The 1-point median problem is known as the Fermat-Weber problem, which
reduces to minimizing a (complicated but) convex function over Rd. A polynomial
time approximation algorithm for the problem is given in [FMS07].

The case j = d−1 is referred to as the median hyperplane problem. Assuming
the input point set P spans Rd, it was observed that the optimal hyperplane is the
span of a subset of d points of P . Based on this, algorithms that run in O(nd) time
are known for this problem [BMS99]; see also the surveys [MS98, KM93].

In Chapter 4 of this thesis, we give algorithms that compute a
(1 + ε)-approximation to the j-flat/subspace median in linear time, for any fixed
d and for any 1 ≤ j ≤ d − 1. A preliminary version of this result has appeared
in [FFS06].

1.3 Variations of Projective Clustering
In this section we present several extensions and variations of the projective clus-
tering problem that was introduced in Section 1.2.

Restricted Facility Location: Approximate the k-line median/mean or j-flat
median/mean with additional constraints on the allowed location of the lines/flat,
by forbidding them, or alternatively forcing them, to pass through certain loca-
tions.

Polynomial-time algorithms for a good approximate (d − 1)-flat with respect
to the sum of distances or squared distances, and subject to additional restrictions,
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are given in [DH02, Sch99]. Note that even in the case of one flat, or even one
line in the plane (j = 1, d = 2), algebraic methods, such as the SVD/PCA, cannot
handle constraints.

Approximate k-regression lines and M -estimators: Solve projective clustering
with vertical (regression) distances (in the direction of the xd-axis), squared or
non-squared, instead of Euclidean distances.

A (1 + ε)-approximation for the j-flat mean, for squared regression distances
with no constraints, can also be computed in O(n) time using SVD. The 1-mean
(regression) line in the plane (d = 2), can be computed in O(n) time [YKII88].
For d > 2, a PTAS that takes O(n log n)dO(1) + O(n)(1/ε)O(1) time was recently
suggested in [Cla05] for the hyperplane median problem (j = d−1) with vertical
(regression) distances. Prior to the work described in this thesis, no results were
known for the case 1 < j < d − 1, or when there are constraints on the location
of the flat.

Data Fitting with lines and points: For a fixed k and k′, or for a fixed value of
k + k′, find a set of k lines and k′ points that minimizes the sum of distances, or
of squared distances, from each input point to its nearest facility (with or without
location constraints).

One possible interpretation of the data fitting problem is that we want to fit the
data to k lines, and allow (up to) k′ clusters of outliers; however, in this formu-
lation the quality of the solution still depends on the distance from the outliers to
the centers of their clusters. Since k′ represents the number of outlier clusters and
not the number of outliers, this may suggest a way to deal with outliers when their
exact number is not known. Outliers were investigated for the k-(point) mean and
median problems [COP03, HPW04].

Apart from the work described herein (Chapter 4) we do not know of other
generalizations for linear facilities, even for a single line in the plane.

For all these variants of the problem, we give efficient approximations in
Chapter 4.



Chapter 2

Our Contributions

In this chapter we describe the contributions of this thesis. In Section 2.1 we
describe our results that relate to projective clustering of k affine j-dimensional
subspaces in Rd. In Section 2.2, we describe our coresets for the special cases
j = 1 and k = 1 and their applications. We construct these coresets using coresets
for weighted facilities, which are described in Section 2.3.

2.1 Bi-criteria Approximation Algorithms For
Projective Clustering

In Chapter 3, we present an algorithm that produces an (α, β) bi-criteria ap-
proximation for k-projective clustering, for point sets in any dimension d ≥ 1,
by lines or flats of any dimension j ≤ d − 1. Our algorithm is motivated by
and related to prior work on bi-criteria approximations for other problems, such
as [HP04a, HPM04, Ind99].

We achieve (α, β)-bi-criteria approximation with

α(k, j, n) = log n · (jk log log n)O(j) and β(j) = 2O(j),

in time O(dn) · (jk)O(j). Furthermore, this bi-criteria approximation holds simul-
taneously for all three objective functions: median, mean, and center.

It is noteworthy that the running time has only linear dependence on both the
dimension d, and the number of input points n.

As Table 1.2 states, prior work on such approximations has only dealt with
very limited projective clustering problems, and only for k-center clustering prob-
lems.

13
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Some implications of bi-criteria approximation

Table 1.1 includes projective clustering approximation results from this thesis.
Rows marked ⋆⋆ describe an FPTAS (fully polynomial-time approximation scheme)
for the mean and median objective functions for any number k of line clusters or
for a single j-flat cluster, j ≥ 2. The FPTAS of [FFS06], which also described
in Chapter 4, is obtained by first constructing a coreset for the corresponding
problem. As in many other coreset constructions, the construction of this coreset
requires a bi-criteria approximation for the problem to start with — the subject of
Chapter 3.

We remark that many other results follow from our bi-criteria approximation.
For example, using this approximation, one can derive an FPTAS for the k-line
center clustering problem that takes O(n) time, improving upon the O(n log n)
bound of [APV02]. One can also derive explicit and efficient constructions for re-
lated coresets (see [AHPV05, FFS06]), previously unknown, such as coresets for
a single j-flat or for k lines (center/mean/median). Some of these developments
are given in this thesis.

2.2 Coresets for Projective Clustering
We develop efficient (1+ε)-approximation for linear facilities (lines or j-dimensional
flats in Rd). Although coresets for linear facilities are discussed in several places
[AHPV05, DRVW06], no constructions have been suggested prior to the work
described in this thesis.

Using these coresets we obtain an LTAS (linear-time approximation scheme,
i.e., O(n)-time, (1+ ε)-approximation algorithm) for the following problems and
the extended problems in Section 1.3, all having as input a set P of n points in
Rd.

Coreset for linear and point facilities: We find a small weighted subset that well
approximates the sum of distances, or of squared distances, from the points of P
to any given set of 0 ≤ i ≤ k lines and at most k − i points in Rd, up to a factor
of (1 + ε). We construct such coresets of size ε−d−k(log n)O(1) in O(n) time, for
any fixed k, d ≥ 1. The same coreset also approximates the sum of (squared or
unsquared) regression distances (i.e., distances measured in the xd-direction) that
is defined as follows. The regression distance from the point x = (x1, · · · , xd) to a
hyperplane f is the minimum Euclidean distance between x to a point y ∈ f such
that (y1, . . . , yd−1) = (x1, . . . , xd−1). If there is no such point y, the regression
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distance is infinite.

Coreset for a single flat: We find a small weighted subset that well approximates
the sum of distances, or of squared distances, from P to any (single) j-dimensional
flat, 1 ≤ j ≤ d− 1. We construct such coresets of size ε−d−1(log n)O(j2) in O(n)
time, for any fixed d ≥ 1.

Each of the problems in Section 1.3 is easy to solve once a coreset S is
available: Since S has small size, we can use any (possibly inefficient) algo-
rithm for computing, say, the exact or approximate k-line median for S (see, e.g.,
[DRVW06, YKII88]), and then report it as an approximate k-line median for the
whole input set. The same approach handles each of the other variants.

2.3 Coresets For Weighted Facilities.
To tackle projective clustering problems that deal with linear facilities where ei-
ther k = 1 or j = 1, we introduce a novel tool, called coresets for weighted
facilities.

We define the notion of a (k, ε)-coreset S for weighted facilities for a point
set P on a line. We give an algorithm to construct such (k, ε)-coresets of size
2O(k)ε−2k−1 log4k−3 n in O(nk) time. Given any set of points P ⊂ Rd, for fixed
d ≥ 1, we construct these weighted facility coresets for projections of subsets of P
onto certain lines, and then combine them to form the desired coreset for P itself.
Following the publication of this result in [FFS06], Har-Peled [HP06a] proposed
a different, more involved construction of a coreset for k-weighted facility, of size
2O(k)ε−k−1 logk+1 n.

Formally, let P be a set of weighted points on a line ℓ, and let C be a set
of weighted facilities (points) in Rd, where each c ∈ C has some positive mul-
tiplicative weight W (c). We define ν ′

C(P )
(
resp., µ′

C(P )
)

as the overall sum of
the weighted distances (resp., weighted squared distances) from each point to its
nearest facility. That is,

ν ′
C(P ) =

∑
p∈P

(
w(p) ·min

c∈C
{W (c) ∥p− c∥}

)
, and

µ′
C(P ) =

∑
p∈P

(
w(p) ·min

c∈C

{
(W (c) ∥p− c∥)2

})
.

Fix k and ε > 0. A (possibly differently) weighted set S ⊆ P is called a
(k, ε)-coreset for weighted facilities, if for any weighted set of k facilities (points)
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Fig. 2.1: (top) The distance function dist(p, c) from a fixed center c to a point p on
the x-axis . (middle) Four weighted facilities on a line, the lower envelope of their
respective weighted distance functions, and their corresponding Voronoi intervals.
(bottom) Eight weighted facilities in the plane, and the resulting partition of ℓ into
12 Voronoi intervals, induced by their eight planar Voronoi regions.
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C ⊂ Rd, (i) and (ii) hold:

(i) (1− ε)ν ′
C(P )≤ν ′

C(S) ≤ (1 + ε)ν ′
C(P ), (2.1)

(ii) (1− ε)µ′
C(P )≤µ′

C(S) ≤ (1 + ε)µ′
C(P ).

In other words, a coreset for weighted facilities is a (weighted) subset of the input
set, so that for any k facilities, with any associated weights, the sum of minimum
weighted (squared or unsquared) distances to the facilities is about the same for
the original set and for the subset.

This problem is interesting in its own right, and arises naturally in facility
location (see [DH02]). However, we only know how to construct (k, ε)-coresets
for weighted facilities when the points of P all lie on a line (but the facilities can
be anywhere in Rd), and it is open at the moment whether the construction can be
extended to arbitrary input sets in Rd, d ≥ 2.

Nevertheless, (k, ε)-coresets for weighted facilities for point sets on a line,
are sufficient for solving optimization problems for generalized facilities of the
kinds mentioned above, for arbitrary point sets in Rd. Specifically, they lead to
construction of new coresets for generalized facilities, with no restriction on the
input set P in Rd.

For a collection of flats Y , let dist(p, Y ), p ∈ Rd, denote distance from point
p to the closest flat y ∈ Y . We obtain coresets for linear and point facilities for
arbitrary P ⊂ Rd. That is, given k and ε, the coreset S computed from P has the
property that for any (mixed) set Y that contains 0 ≤ i ≤ k lines and at most k− i
points in Rd, (i) and (ii) hold:

(i) (1− ε)νY (P ) ≤ νY (S) ≤ (1 + ε)νY (P )

(ii) (1− ε)µY (P ) ≤ µY (S) ≤ (1 + ε)µY (P ),

where
νY (P ) =

∑
p∈P

(
w(p) · dist(p, Y )

)
,

and
µY (P ) =

∑
p∈P

(
w(p) · (dist(p, Y ))2

)
.

Thus, this coreset is a generalization of coresets for k-median, and simulta-
neously, a generalization of coresets for k-mean. Additionally, this coreset ap-
proximately preserves distances to both point facilities and line facilities. It is
interesting that, unlike prior constructions (such as [HPM04]), we get the same
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coreset for both k-mean and k-median (for point and line facilities). However,
the significance of our construction mainly lies in its applications to generalized
linear facilities.

In addition, for arbitrary input point sets P in Rd, our corresponding coreset S
has the property that, for any single j-flat f , with 0 ≤ j ≤ d− 1, (i) and (ii) hold:

(i) (1− ε)ν{f}(P ) ≤ ν{f}(S) ≤ (1 + ε)ν{f}(P )

(ii) (1− ε)µ{f}(P ) ≤ µ{f}(S) ≤ (1 + ε)µ{f}(P ),

where ν{f}(·), and µ{f}(·) are defined in an analogous manner to the preceding
definitions.

Why coresets for weighted facilities?

To motivate the relationship between weighted facilities and linear facilities, con-
sider the following (restrictive) scenario: The (unweighted) input point set P re-
sides on some line ℓ ⊂ Rd, f ⊂ Rd is another line, and ℓ∩ f ̸= ∅. It follows from
elementary trigonometry, that the distance between a point p ∈ ℓ and f is equal
to ∥c− p∥ sin θ, where c is the point ℓ∩ f , and θ is the angle formed at c by these
two lines. See Fig. 2.2(left).

This simple observation lies at the heart of our work. It extends to arbitrary
(skew) lines ℓ and f

(
see Fig. 2.2(right)

)
. I.e., for any lines ℓ and f , such that

f is not a translation of ℓ, there exist some weighted point facility c ∈ Rd such
that the (weighted) distance from any point p ∈ ℓ to c is equal to the distance
between p and f . This claim can be further generalized to the case where f is
a j-flat, of arbitrary dimension j ≤ d − 1, and also for vertical (regression) dis-
tances between points and hyperplanes. See Fig. 2.3. This seemingly suggests
a very general transformation. Subject to the restriction that the input point set
P be contained in some line, there is a general reduction from any optimization
problem that involves distances between points of P and arbitrary j-flats, to an-
other optimization problem that involves distances between the points of P and
weighted (point) facilities.

Unfortunately, for general sets of points P ⊂ Rd, and for an arbitrary linear
facility f , there is no point c ∈ Rd such that the distance between f and a point
p ∈ P is proportional to the distance between p and c. We show how to overcome
this setback by reducing the general case to several subproblems involving points
on a line. This machinery is presented in full detail in Chapter 4.
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(a) f ∩ ℓ ̸= ∅ (b) f ∩ ℓ = ∅

Fig. 2.2: (left) dist(p, f) = W (c) · dist(p, c), with W (c) = sin θ. Hence, c,
weighted by sin θ, replaces f for points on ℓ. (right) dist(p, f) = W (c) ·dist(p, c)
with W (c) = sin θ, for any pair (ℓ, f ) of lines in Rd, where c is a point on
the line that spans the shortest distance between ℓ and f , placed at distance
dist(ℓ, f)/ sin θ from the point c′ ∈ ℓ, nearest to f , and θ is the angle between
the (orientations of the) lines ℓ and f (a routine exercise in stereometry).
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Fig. 2.3: (top) The distance from a point p in the plane H to another plane f ,
is dist(p, f) = sinα · dist(p, ℓ ′), where α is the angle between H and f , and
ℓ ′ is the intersection of H and f . By denoting θ as the angle between ℓ and ℓ′,
we thus get dist(p, f) = W (c)dist(p, c), where W (c) = sinα sin θ and c is the
intersection between ℓ and ℓ′. (bottom) In the plane, the vertical distance from
p to a line f is W (c)dist(p, c), where c is the intersection between ℓ and f , and
W (c) = tan θ1 cos θ2 + sin θ2.



Chapter 3

Bi-criteria Linear-time
Approximations

3.1 Informal Overview
Recall the setup that we face, as described in Chapters 1 and 2. We have a set
P ⊆ Rd of n points, and two parameters k ≥ 1, 1 ≤ j ≤ d − 1, and we seek a
small set F of α j-flats so that the value of the objective function (median, mean,
or center) at F is not much larger than that at the optimal k j-flats. One can view
our algorithm as an instance of the following “meta algorithm” for a bi-criteria
projective clustering for input point sets P ⊂ Rd:

• Choose a set F ′ of k′ j-flats (for some parameter k′), for which there exists
a set P ′ ⊂ P of size ≥ |P |/2, such that the value of the objective function
(or, rather, of all three objective functions) for F ′ on P ′ is no more than c
times the value of the optimal k j-flats (for P ) on P ′, for some constant
factor c.

• Set P = P \ P ′ and repeat until P is very small, in which case take F ′ to
be the set of all j-flats spanned by P .

As |P | keeps shrinking by factors of 2, this process can be repeated at most
log |P | times. By taking the union of the sets F ′, we get a set F of k′ log |P | j-
flats, for which the value of the objective function, over the entire set P , is off by
no more than a factor of c.

In fact, our real algorithm, given below, is very similar to the meta algorithm
above, with the following (minor and technical) variations:

21
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• The set F ′ is simply the set of all j-flats determined by a small set of ran-
domly chosen points from P .

• The set P ′ consists of the |P |/2 points of P that are closest to the flats of
F ′. Some intuition comes from the argument that many of the points near
the flats of F ′ are not much farther from F ′ than they are to some other
(arbitrary) set of k j-flats.

• Unfortunately, not all points “close” to F ′ have the property that F ′ is a
good approximation to the optimal set of flats; these are “bad” points.

• Fortunately, we can amortize the high contribution to the objective func-
tion by these “bad” points against the next round of points to be chosen.
The contribution to the objective function, appropriately scaled, of the good
points of the next round will dominate that of the current “bad” points.

3.2 The Algorithm
We first briefly review some notation. For a (j + 1)-tuple X = (p1, · · · pj+1) of
j + 1 (not necessarily distinct) points in Rd, we denote by flat(X) a j-flat that
passes through all the points of X . If there is more than one such flat, we choose
one of them arbitrarily. For k ≥ 1, we denote by F(k, j, d) the collection of all
sets of at most k flats in Rd, each of dimension at most j. For a j-flat f and a
point p in Rd, we denote by dist(p, f) the minimum Euclidean distance from p to
f . For a set of flats F , we denote by dist(p, F ) = minf∈F dist(p, f) the distance
of p to its nearest flat in F .
The pseudo-code of our bi-criteria approximation algorithm is given in Figure 3.1.

Theorem 3.1. Let P be a set of n points in Rd, and k, j integers, such that k ≥ 1
and 1 ≤ j ≤ d − 1. Then the procedure APPROX-K-J-FLATS(P, k, j), given
in Figure 3.1, returns a set F of log n · (jk log log n)O(j) j-flats, such that, with
probability at least 1/2, we have, for every integer v ≥ 1,∑

p∈P

(
dist(p, F )

)v ≤ 2v(j+1)+1 min
F ∗∈F(k,j,d)

∑
p∈P

dist(p, F ∗)

max
p∈P

dist(p, F ) ≤ 2j+1 min
F ∗∈F(k,j,d)

max
p∈P

dist(p, F ∗).

The running time of this procedure is O(dn) · (jk)O(j).
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Algorithm APPROX-K-J-FLATS(P, k, j)
Input. A set of n points P ⊂ Rd, and two integers k ≥ 1, 1 ≤ j ≤ d− 1.
Output. A set of j-flats F that satisfies Theorem 3.2.

1 t← 1, Q← P , F ← ∅
2 while |Q| ≥ 32k(j + 1)
3 for i← 0 to j
4 Pick a random sample Si of

⌈32k(j + 1)
(
2 + log(j + 1) + log k +min {t, log log n}

)
⌉ i.i.d. points from Q.

5 F ′ ← {flat(X) | X ∈ S0 × S1 × · · · × Sj}.
6 Compute a set Rt ⊆ Q of the closest ⌈|Q| /2⌉ points to F ′,

where ties are broken arbitrarily.
7 F ← F ∪ F ′

8 Q← Q \Rt

9 t← t+ 1
10 F ← F ∪ {flat(X) | X ∈ Qj+1}
11 tmax ← t, Rtmax ← Q (used only for analysis)
12 return F

Fig. 3.1: The bi-criteria algorithm APPROX-K-J-FLATS.
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The proof of Theorem 3.1 relies on the following main technical result.

Theorem 3.2. Let P be a set of n points in Rd, and k, j integers, such that k ≥ 1
and 1 ≤ j ≤ d − 1. Let F be the set of flats that is returned by the bi-criteria
approximation algorithm APPROX-K-J-FLATS(P, k, j) (see Fig. 3.1). For an ar-
bitrary set of flats F ∗ ∈ F(k, j, d), define

Pbad = {pbad ∈ P | dist(pbad, F ) > 2j+1dist(pbad, F
∗)}.

Then, with probability at least 1/2, we can map each point pbad ∈ Pbad to a
distinct point p ∈ P \ Pbad, such that dist(pbad, F ) ≤ 2j+1dist(p, F ∗).

We defer the proof of Theorem 3.2 to Section 3.3.

Proof of Theorem 3.1. Let F ∗ be an arbitrary set of flats in F(k, j, d). Assuming
Theorem 3.2 holds, we now conclude the proof of Theorem 3.1. Then we have,
with probability at least 1/2, for all v ≥ 1, that∑

p∈P

(
dist(p, F )

)v
=

∑
p∈P\Pbad

(
dist(p, F )

)v
+
∑

b∈Pbad

(
dist(b, F )

)v
≤

∑
p∈P\Pbad

((
dist(p, F )

)v
+ 2v(j+1)

(
dist(p, F ∗)

)v)
≤ 2v(j+1)+1

∑
p∈P

(
dist(p, F ∗)

)v
,

where the first inequality follows from Theorem 3.2, and the second inequality
follows from the definition of P \ Pbad. In particular, v = 1 implies the case
of sum of distances and v = 2 implies the case of sum of squares. The same
arguments imply that

max
p∈P

dist(p, F ) = max

{
max

p∈P\Pbad

dist(p, F ), max
b∈Pbad

dist(b, F )

}
≤ max

p∈P\Pbad

{
dist(p, F ), 2j+1dist(p, F ∗)

}
≤ 2j+1max

p∈P
dist(p, F ∗).

We next analyze the size of F and the time for its construction. Since the
size of Q is reduced by at least half in each iteration, we have tmax − 1 ≤ log n
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iterations. In line 10, at most
(
32k(j + 1)

)j+1 flats are added to F (as |Q| <
32k(j + 1) by Line 2). The overall size of the output set of flats is

tmax−1∑
t=1

⌈32k(j + 1)
(
2 + log(j + 1) + log k +min {t, log log n}

)
⌉j+1

+
(
32k(j + 1)

)j+1

=
tmax−1∑
t=1

(
O(jk) · (jk + log log n)

)j+1

= log n · (jk log log n)O(j).

The running time of the tth iteration is dominated by the running time of Line 6
which, using the simplest algorithm that goes point by point, takes time

O(d |Q| · |F ′|) = O(dn/2t) ·
(
32k(j + 1)(2 + log(j + 1) + log k + t)

)j+1

= O(dn/2t) · (64kj)j+1 ·
(
2 + log(2jk) + t

)j+1
.

Summing this over all iterations t, we get a sum of the form

O

(
dn · (64jk)j+1

∑
t≥1

(
2 + log(2jk) + t

)j+1

2t

)
= dn · f(j, k),

where

f(j, k) = (2jk)O(j)
∑
t≥1

(
2 + t+ log(2jk)

)j+1

2t

= (2jk)O(j)

log(2jk)∑
t=1

(
2 log(jk)

)j+1

2t
+ (jk)O(j)

∑
t≥log(jk)+1

tj+1

2t

= (2jk)O(j)
[(

log(2jk)
)j+1

+ jj+1
]
= (2jk)O(j).

This concludes the proof of Theorem 3.1.

The probability that the resulting set F of APPROX-K-J-FLATS satisfies the in-
equalities of Theorem 3.1 can be made arbitrarily close to 1, by running APPROX-
K-J-FLATS repeatedly x times with independent random choices each time. Then
we take the three sets which respectively minimize the three expressions in Theo-
rem 3.1, over all the x runs. The union of these sets will satisfy all three inequali-
ties, with probability at least 1− 1/2x.



CHAPTER 3. BI-CRITERIA LINEAR-TIME APPROXIMATIONS 26

3.3 Proof of Theorem 3.2
We first provide a brief overview of the proof. It begins with Lemma 3.3, which is
a simple probabilistic lemma, giving a bound on the size of a random sample from
a set Q that guarantees, with high probability, that it hits each of k given subsets
of Q of some given size.

Lemma 3.4 says that if we choose an arbitrary line ℓ through the origin, and a
line sp(b) connecting some arbitrary point b to the origin, then for all points whose
angle with ℓ is greater than the angle between sp(b) and ℓ, the distance to sp(b) is
at most a constant factor times the distance to ℓ. This simple observation is later
generalized to higher-dimensional flats in Lemma 3.6.

Lemma 3.7 deals with one iteration of the algorithm. It uses the preceding
lemmas to argue that the set of flats F ′ chosen by the algorithm has the property
that the set of bad points (points close to F ′ that are much closer to F ∗) is small.

Finally, the proof amortizes the contribution of the (relatively few) bad points
against the contribution of other good points in subsequent steps of the algorithm,
concluding the proof of the theorem.

Lemma 3.3. Let Q be a set of m points, k ≥ 1 an integer, and c > k, 1 ≤ β ≤ m
parameters. Let Q1, Q2, . . . , Qk be any k subsets of Q, each containing β points.
Assume that we pick at least (m/β) ln c random independent samples from Q
(with or without repetitions). Then the probability that every one of the subsets
contains a sample point is at least 1− k/c.

Proof. The probability that the first sampled point is not contained in Q1 is 1 −
β/m. Therefore, the probability that none of the sampled points are in Q1 is at
most (

1− β

m

)(m/β) ln c

≤ e− ln c =
1

c
.

The same holds for each Qi, 1 ≤ i ≤ k. Hence, the probability that at least one of
the Qi does not intersect the sample is at most k/c.

In the following analysis, we use the notation sp(X) for the linear span of a
set X; when X is a singleton b, the shorthand notation sp(b) thus denotes the line
through b and the origin.

Lemma 3.4. Let ℓ be a line in Rd that passes through the origin. Let Q be a set
of points in Rd. Then, for any natural number β ≤ |Q| there is a set B ⊆ Q of β
points, such that for all b ∈ B and q ∈ Q \B

dist(q, sp(b)) ≤ 2dist(q, ℓ).
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(a) θ(q, sp(b)) ≤ 2θ(q, ℓ)

f

`

0f

B

0b
 

q

(b) dist(q, f0) ≤ 2dist(q, f)

 f

`

0f

 

q

1b
0b

1f

(c) dist(q, f1) ≤ 4dist(q, f)

Fig. 3.2: The case of one line in the plane (d = 2, j = 1). (a) The set B contains
the β points in the gray areas. (b) The set B consists of the β points of P closest
to f . (c) dist(q, f1) ≤ 2dist(q, f0) ≤ 4dist(q, f) for every q outside the gray area
(q ∈ Q \Qbad).

Proof. For a point q ∈ Q, denote by θ(q, ℓ) the acute angle formed by the lines
sp(q) and ℓ; see Figure 3.2(a) for the planar case. Let B ⊆ Q be the set consisting
of the β points q with the smallest values of θ(q, ℓ), and let b ∈ B. For q ∈ Q \B
we thus have θ(b, ℓ) ≤ θ(q, ℓ), and therefore

θ(q, sp(b)) ≤ θ(q, ℓ) + θ(b, ℓ) ≤ 2θ(q, ℓ),
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or θ(q, sp(b))/2 ≤ θ(q, ℓ), which implies that

sin θ(q, sp(b)) = 2 sin
θ(q, sp(b))

2
cos

θ(q, sp(b))

2

≤ 2 sin
θ(q, sp(b))

2
≤ 2 sin θ(q, ℓ).

The distance from q to sp(b) can then be bounded by

dist(q, sp(b)) = ∥q∥ sin θ(q, sp(b))
≤ ∥q∥ · 2 sin θ(q, ℓ) = 2dist(q, ℓ).

Lemma 3.5. Let f = sp(v1, . . . , vj−1, vj) be a j-dimensional subspace of Rd, for
some given tuple of j mutually orthogonal unit vectors v1, . . . , vj .
Let {vj+1, . . . , vd} be a set of mutually orthogonal unit vectors that span the sub-
space orthogonal to f .
Let q ∈ Rd, and let q′ denote the projection of q on the subspace
M = sp(v1, vj+1, vj+2, . . . , vd). Then

dist(q, f) = dist(q′, sp(v1)).

Proof. Without loss of generality, we assume that v1, . . . , vd is the standard base
of Rd, where vi is a unit vector in the xi-direction, 1 ≤ i ≤ d. This can always be
enforced by an appropriate rotation of the coordinate frame. Hence,

dist(q, f) =

√√√√ d∑
i=j+1

q2i =

√√√√ d∑
i=2

(q′i)
2 = dist(q′, sp(v1)).

Lemma 3.6. Let Q be a set of n points in Rd, and f = sp(v1, . . . , vj−1, vj) be
a j-dimensional subspace of Rd, for some given tuple of j mutually orthogonal
unit vectors v1, . . . , vj . Then, for any natural number β ≤ n, there exists a subset
Z ⊆ Q of β points, such that for every point b ∈ Z , and the corresponding
subspace f(b) = sp(b, v2, v3, . . . , vj), we have

dist
(
q, f(b)

)
≤ 2dist(q, f),

for all q ∈ Q \ Z .
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Proof. Let {vj+1, . . . , vd} be a set of mutually orthogonal unit vectors that span
the subspace orthogonal to f . For a point x ∈ Rd we denote by x′ the projection
of x onto the subspace M = sp(v1, vj+1, vj+2, . . . , vd). For a set X ⊆ Rd, we
define X ′ = {x′ | x ∈ X}.

By applying Lemma 3.4 with ℓ = sp(v′1) = sp(v1) (by construction, v′1 = v1),
and with the projection set Q′ as the set Q in that lemma, we conclude that for any
natural number β ≤ n there exists a set B′ ⊆ Q′ of β points, such that for every
b′ ∈ B′, the corresponding line sp(b′) satisfies

dist(q′, sp(b′)) ≤ 2dist(q′, sp(v′1)) = 2dist(q′, sp(v1)), (3.1)

for all q′ ∈ Q′ \B′.
We define B to be the set of those b ∈ Q such that b′ ∈ B′. We claim that for

each point b ∈ B, its corresponding subspace f(b) = sp(b, v2, v3, . . . , vj) satisfies
dist

(
q, f(b)

)
≤ 2dist(q, f), for all q ∈ Q \B. Indeed, let q be any point in Q \B.

Since b− b′ ∈ sp(v2, v3, . . . , vj), we have

f(b) = sp(b, v2, v3, . . . , vj) = sp(b′, v2, . . . , vj) = sp(b′/ ∥b′∥ , v2, . . . , vj).

Using this equation, applying Lemma 3.5 with f = f(b) and v1 = b′/ ∥b′∥ yields

dist
(
q, f(b)

)
= dist(q′, sp(b′/ ∥b′∥)) = dist(q′, sp(b′)).

Similarly, by Lemma 3.5 (with the original f and v1) we have

dist(q, f) = dist(q′, sp(v1)).

Using the last two equations and Equation (3.1) gives us

dist
(
q, f(b)

)
= dist(q′, sp(b′)) ≤ 2dist(q′, sp(v1)) = 2dist(q, f),

which completes the proof of Lemma 3.6.

Lemma 3.7. Let F ∗ be a set of k arbitrary j-flats in Rd, where k ≥ 1 and 1 ≤
j ≤ d − 1. Consider the sets Q and F ′ at the tth iteration of APPROX-K-J-
FLATS(P, k, j), and define

Qbad = {q ∈ Q | dist(q, F ′) > 2j+1dist(q, F ∗)}.

Then |Qbad| ≤ |Q| /16 with probability at least 1− 2−2−min{t,log logn}.
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Proof. For a j-flat f ∈ F ∗, let B ⊂ Q be the set of the β = ⌊|Q| /
(
16k(j + 1)

)
⌋

points of Q closest to f , where ties are broken arbitrarily; see Fig. 3.2(b). Fix a
point b0 ∈ B, and let f0 be the j-flat that is parallel to f and passes through b0.
Note that for every point q ∈ Q \B we have dist(b0, f) ≤ dist(q, f) by definition
of B. Thus,

dist(q, f0) ≤ dist(q, f) + dist(b0, f) ≤ 2dist(q, f). (3.2)

Without loss of generality, we assume that the point b0 is the origin, and f0 =
sp(v1, v2, . . . , vj−1, vj), for an appropriate set of j mutually orthogonal vectors
v1, · · · , vj . By Lemma 3.6, there exists a set B(b0) ⊆ Q of β points, such that for
every b1 ∈ B(b0), and the corresponding j-flat f1 = sp(b1, v2, . . . , vj), we have

dist(q, f1) ≤ 2dist(q, f0) ≤ 4dist(q, f) (3.3)

for all q ∈ Q \B(b0); see Fig. 3.2(c).
Fix a point b1 ∈ B(b0). By substituting f = f1 in Lemma 3.6, we conclude

that there is a set B(b0, b1) ⊆ Q of β points, such that for every b2 ∈ B(b0, b1),
and the corresponding j-flat f2 = sp(b1, b2, v3, v4, . . . , vj), we have

dist(q, f2) ≤ 2dist(q, f1),

for all q ∈ Q \B(b0, b1). Combining (3.3) with the last equation yields

dist(q, f2) ≤ 2dist(q, f1) ≤ 8dist(q, f),

for all q ∈ Q \
(
B ∪B(b0) ∪B(b0, b1)

)
.

Similarly, by induction, for every j-flat f ∈ F ∗, and 0 ≤ i ≤ j, there is a
set Bf (b

f
0 , b

f
1 , . . . , b

f
i−1) ⊆ Q of β points (for i = 0, we denote the set simply as

Bf ), such that for every bfi ∈ Bf (b
f
0 , b

f
1 , . . . , b

f
i−1), and the corresponding j-flat

fi = bf0 + sp(bf1 , b
f
2 , . . . , b

f
i , v

f
i+1, . . . , v

f
j ), we have

dist(q, fi) ≤ 2i+1dist(q, f), (3.4)

for all q ∈ Q \
∪

0≤i≤j Bf (b
f
0 , . . . , b

f
i−1).

Consider the set Si for every 1 ≤ i ≤ j, as defined in Line 4 of Fig 3.1). We
claim that with probability at least 1 − 2−2−min{t,log logn}, for each f ∈ F ∗ and
0 ≤ i ≤ j, the set Si contains a point bfi ∈ Bf (b

f
0 , b

f
1 , . . . , b

f
i−1). Indeed, we have

k sets Bf , of size β each, for f ∈ F ∗. Lemma 3.3 shows that if we sample at least
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|Q|
β

ln c points from Q, the probability that at least one of the sets Bf will not

contain any sample point is at most k/c. Let c = 22+log(j+1)+log k+min{t,log logn},
and note that, by Line 2 of APPROX-K-J-FLATS, we have |Q| /

(
32k(j + 1)

)
≥ 1,

so
β = ⌊|Q| /

(
16k(j + 1)

)
⌋ ≥ |Q| /

(
32k(j + 1)

)
.

Hence

(|Q|/β) ln c ≤ ⌈32k(j + 1)
(
2 + log(j + 1) + log k +min {t, log log n}

)
⌉ = |S0| ,

and thus the probability that S0 misses at least one of the sets Bf is at most

k/c = k/22+log(j+1)+log k+min{t,log logn}

≤ 2−2−log(j+1)−min{t,log logn}.

Assume that this event does not arise (which happens with probability at least
1 − 2−2−log(j+1)−min{t,log logn}). Pick a point bf0 ∈ Bf ∩ S0 for each f ∈ F ∗,
and consider the k sets Bf (b

f
0), f ∈ F ∗. As in the case for S0, it can be shown

that S1 misses at least one of the sets Bf (b
f
0) with probability at most k/c ≤

2−2−log(j+1)−min{t,log logn}.
By repeating this process, we conclude that, for every f ∈ F ∗, the set S0 ×

S1×. . .×Sj contains a (j+1)-tuple bf0 , b
f
1 , . . . , b

f
j such that bfi ∈ Bf (b

f
0 , . . . , b

f
i−1)

for each 0 ≤ i ≤ j, with probability at least

1− (j + 1)k

c
≥ 1− (j + 1) · 2−2−log(j+1)−min{t,log logn} ≥ 1− 2−2−min{t,log logn}.

This implies that, with the same probability, F ′ contains a j-flat fj that passes
through bf0 , b

f
1 , . . . , b

f
j for every f ∈ F ∗. Refer to this event as E, and assume

that it occurs. In this case, by (3.4), dist(q, fj) ≤ 2j+1dist(q, f) for all q ∈
Q\
∪

0≤i≤j Bf (b
f
0 , . . . , b

f
i−1), where bfi is one of the points in Si∩Bf (b

f
0 , . . . , b

f
i−1)

which, since we assume that E occurs, is nonempty. Hence,

Qbad ⊆
∪

f∈F ∗

∪
0≤i≤j

Bf (b
f
0 , . . . , b

f
i−1).

Since, by construction, each of the sets in the union is of size β, we get

|Qbad| ≤

∣∣∣∣∣ ∪
f∈F ∗

∪
0≤i≤j

Bf (b
f
0 , . . . , b

f
i−1)

∣∣∣∣∣
≤ (j + 1)kβ ≤ |Q| /16

(3.5)
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with probability at least 1− 2−2−min{t,log logn}.
This completes the proof of Lemma 3.7.

Now we are ready to prove Theorem 3.2.

Proof of Theorem 3.2. Note that (R1, R2, . . . , Rtmax) is a partition of P , and for
every p ∈ Rtmax we have dist(p, F ) = 0, by Line 10 (i.e., Pbad ∩ Rtmax = ∅).
Thus,

Pbad =
∪

1≤t≤tmax−1

Pbad ∩Rt. (3.6)

Consider the sets Q and F ′ at the tth iteration, for some 1 ≤ t ≤ tmax − 1, of
APPROX-K-J-FLATS, and define

Qbad = {pbad ∈ Q | dist(pbad, F ′) > 2j+1dist(pbad, F
∗)}.

We first prove that, with probability at least 1− 2−2−min{t,log logn}, we have

|Qbad ∩Rt| ≤ |Rt+1 \Qbad| . (3.7)

Indeed, in Lemma 3.7 we proved that, with probability at least 1−2−2−min{t,log logn},
we have |Qbad| ≤ |Q| /16. By Line 2, |Q| ≥ 20, so, by definition of Rt+1 we have
|Q| /5 ≤ ⌊|Q| /4⌋ ≤ |Rt+1|. Hence,

|Qbad ∩Rt| ≤ |Qbad| ≤ |Q| /16 < |Q| /5− |Q| /16
≤ |Rt+1| − |Qbad| ≤ |Rt+1 \Qbad| ,

(3.8)

with probability at least 1− 2−2−min{t,log logn}.
Since F ⊇ F ′, and every point in Rt is closer to F ′ than any point in Rt+1,

we have by (3.7) that we can map each point b ∈ Qbad ∩ Rt to a distinct point
pb ∈ Rt+1 \Qbad, such that

dist(b, F ) ≤ dist(b, F ′) ≤ dist(pb, F
′) ≤ 2j+1dist(pb, F

∗).

Note that Pbad∩Rt ⊆ Qbad∩Rt, because Rt is a subset of the present Q, and if an
element of Q is in Pbad then it is also in Qbad (because dist(b, F ′) ≥ dist(b, F )).
Similarly, we have Rt+1 \ Qbad ⊆ Rt+1 \ Pbad. We thus conclude that, with
probability at least 1−2−2−min{t,log logn}, we can map each point pbad ∈ Pbad∩Rt
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to a distinct point pb ∈ Rt+1 \Pbad such that dist(b, F ) ≤ 2j+1dist(pb, F
∗). Thus,

the probability that this holds for all the tmax − 1 ≤ log n iterations is at least

1−
tmax∑
t=1

2−2−min{t,log logn}

= 1−
⌊log logn⌋∑

t=1

2−2−t −
tmax∑

t=⌊log logn⌋+1

2−2−log logn

≥ 1− 1

4
− log n

22+log logn
=

1

2
.

Using (3.6), this concludes the proof of Theorem 3.2.



Chapter 4

Coresets for Weighted and Linear
Facilities

In this chapter we deal with constructing coresets for weighted and linear facili-
ties. We also obtain, using the same construction with somewhat different param-
eters, coresets for a single j-flat.

We are given a set P of points in Rd as input. We seek to answer queries of the
form: what is the sum of distances from P to a set Q = {ℓ1, ℓ2, . . . , ℓk} of k lines
(in Rd). We want to be able to answer such queries by replacing P by a smaller
coreset, so that the answer for the coreset will be a good approximation to the
answer for P . To construct such coresets efficiently, we make use of the seemingly
much simpler problem where the points of P are not in a general position but are
all co-located on some line in Rd. Dealing with more general point sets P is
possible by choosing a (relatively) small number of lines and then projecting each
point of P onto its closest line, solving the problem for the projected points, and
then taking the union of all such coresets.

Coresets for one j-flat allow us to answer approximate queries of the form:
what is the distance from P to a set Q?, where Q is an affine space of dimension
j (j-flat).

Surprisingly, we show a strong connection between the problem of a coreset
for k lines in Rd, when the input points of P are co-located on a line, to another
problem, that of coresets for weighted (point) facilities. The problem of coresets
for weighted facilities assumes that the input points of P are on a line, and that
the query, Q, is a set of k weighted points, not necessarily on the line, where the
query output is the sum, over all points in p ∈ P , of the minimum of the weighted
Euclidean distances from p to the points q ∈ Q, or the sum of squares of these

34
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distances, where every such distance is multiplicatively weighted by the weight of
q.

We start with a technical lemma, Lemma 4.1, which we later use in two dif-
ferent contexts, that of a coreset for point queries, and to estimate the errors when
projecting points onto a collection of lines.

Most of this chapter deals with the conversion from k line queries to k weighted
point queries. Furthermore, we convert the problem of weighted point queries to
something we call V -coresets that deals with weighted point queries by consider-
ing the number of intervals along a line in the arrangement of the Voronoi regions
implied by weighted points. So, the parameter is not the number of points (k)
but the number of intervals induced by the k Voronoi regions. See Lemmas 4.5
and 4.9.

To get coresets for k lines, we project the points of P onto many lines and
compute coresets for weighted facilities separately for the projected points on
each line. To get coresets for a single j-flat, we project the points of P onto
several j-flats, and continue recursively, taking the union of the outputs to all
these subproblems as the final coreset.

4.1 ε-Coresets For a Single Facility
Let P be a weighted set of points in Rd and 0 < ε ≤ 1. We recall some notations
introduced in Chapter 1. For a set C ⊆ Rd, we define

νC(P ) =
∑
p∈P

(
w(p) · dist(p, C)

)
,

and
µC(P ) =

∑
p∈P

(
w(p) · (dist(p, C))2

)
.

A weighted set S ⊆ P is called an ε-coreset for a single facility if, for every
facility (point) c ∈ Rd, (i) and (ii) hold:

(i) (1− ε)ν{c}(P ) ≤ ν{c}(S) ≤ (1 + ε)ν{c}(P ) (4.1)

(ii) (1− ε)µ{c}(P ) ≤ µ{c}(S) ≤ (1 + ε)µ{c}(P ).

Note that an ε-coreset for a single facility approximates the sum (or sum of squares)
of distances also in the case that the facility itself is also weighted.
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Algorithm SINGLE-FACILITY-CORESET(P, ε)
Input. A set of n points P ⊂ Rd, and ε > 0.
Output. A single facility 9ε-coreset for P .

0 if nd < 1
ε
log n

then return P
1 W ←

∑
p∈P w(p); p←

∑
p∈P

w(p)
W
· p ;

T ← 1
W

∑
p∈P ∥p− p∥; S ← ∅

2 for j ← 1 to ⌈logW ⌉
3 do Bj ← the closed ball in Rd with radius 2j−1T centered at p.

� Note: P ⊂ B⌈logW ⌉, since ∥p− p∥ ≤ WT ∀p ∈ P .
4 Gj ← an infinite grid of cell size 2j−2εT/

√
d with p as a vertex.

5 if j = 1
6 then V1 ← G1 ∩B1

7 else Vj ← Gj ∩ (Bj \Bj−1)
8 for each cell ∆ ∈ Vj intersecting P
9 do choose an arbitrary point p′ in P ∩∆

� Note: ∀p ∈ P ∩∆, ∥p− p′∥ ≤ ε ∥p− p∥ if j > 1,
� i.e., ∥p− p′∥ ≤ ε ·max{T, ∥p− p∥} ∀j ≥ 1.

10 w(p′)←
∑

p∈P∩∆ w(p)
11 S ← S ∪ {p′}
12 return S

Fig. 4.1: The algorithm SINGLE-FACILITY-CORESET

The algorithm SINGLE-FACILITY-CORESET given in Fig. 4.1 is very similar
to the one in [HPM04], but, unlike [HPM04], it produces a single coreset that
satisfies both (4.1)(i) and (ii). We use this algorithm later in this section, and in
Section 4.4.

The proof that SINGLE-FACILITY-CORESET indeed returns an ε-coreset for
P is a consequence of the following lemma; its somewhat cumbersome notation
is needed for further applications, where we use it to prove the correctness of
constructions of other coresets of interest, in Section 4.4.

Lemma 4.1. Let P and S be two weighted sets in Rd, and let g be a mapping from
P to S such that the weight w(p′) of p′ ∈ S is equal to the sum of the weights of
all points p ∈ P with g(p) = p′.

Let {P1, P2, . . . , Pm} be a partition of P , and let {C1, C2, . . . , Cm} be a col-
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lection of m facilities (sets) in Rd. Define R =
∑m

i=1 νCi
(Pi)/w(P ), where

w(P ) =
∑

p∈P w(p). Assume that for some 0 < ε ≤ 1 we have

∥p− g(p)∥ ≤ ε ·max{R, dist(p, Ci)},
for every p ∈ Pi, and every 1 ≤ i ≤ m. Then, for any Q ⊂ Rd,

(i)
m∑
i=1

νCi
(Pi) ≤ ανQ(P ), for some α ≥ 0, implies that

|νQ(P )− νQ(S)| ≤ 2αε · νQ(P ).

(ii)
m∑
i=1

µCi
(Pi) ≤ βµQ(P ), for some β ≥ 1, implies that

|µQ(P )− µQ(S)| ≤ 9βε · µQ(P ).

Proof. (i) Let Q be any set in Rd such that
∑m

i=1 νCi
(Pi) ≤ ανQ(P ). By the trian-

gle inequality, for any pair of points p, p′ ∈ P we have dist(p′, Q) ≤ dist(p,Q) +
∥p− p′∥, and dist(p,Q) ≤ dist(p′, Q) + ∥p− p′∥. Hence,

|dist(p,Q)− dist(p′, Q)| ≤ ∥p− p′∥ .
Thus, the error can be bounded by

|νQ(P )− νQ(S)| =

∣∣∣∣∣∑
p∈P

w(p)dist(p,Q)−
∑
p′∈S

w(p′)dist(p′, Q)

∣∣∣∣∣
=

∣∣∣∣∣∑
p∈P

w(p)
(
dist(p,Q)− dist(g(p), Q)

)∣∣∣∣∣
≤
∑
p∈P

w(p) |dist(p,Q)− dist(g(p), Q)|

≤
∑
p∈P

w(p) ∥p− g(p)∥ .

(4.2)

Let PR =
∪m

i=1{p | p ∈ Pi, dist(p, Ci) ≤ R}. By the assumption of the
lemma, ∥p− g(p)∥ ≤ εR for every p ∈ PR, and ∥p− g(p)∥ ≤ ε · dist(p, Ci) for
every p ∈ Pi \ PR, and i = 1, · · · ,m. Hence,∑

p∈P

w(p) ∥p− g(p)∥ =
∑
p∈PR

w(p) ∥p− g(p)∥+
m∑
i=1

∑
p∈Pi\PR

w(p) ∥p− g(p)∥

≤ w(P ) · εR + ε

m∑
i=1

νCi
(Pi).
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By definition of R, and the assumption
∑m

i=1 νCi
(Pi) ≤ ανQ(P ), this yields∑

p∈P

w(p) ∥p− g(p)∥ ≤ 2ε
m∑
i=1

νCi
(Pi) ≤ 2εα · νQ(P ),

which, together with (4.2), concludes the proof of part (i) of the lemma.
(ii) Similarly, the overall error in this case is bounded by∣∣µQ(P )− µQ(S)

∣∣ = ∣∣∣∣∑
p∈P

w(p)
(
dist(p,Q)

)2 −∑
p′∈S

w(p′)
(
dist(p′, Q)

)2∣∣∣∣
=

∣∣∣∣∣∑
p∈P

w(p)

((
dist(p,Q)

)2 − (dist(g(p), Q)
)2)∣∣∣∣∣

≤
∑
p∈P

w(p) |dist(p,Q)− dist(g(p), Q)| ·
(
dist(p,Q) + dist(g(p), Q)

)
.

As in the proof of (i), for any p ∈ P we have |dist(p,Q)− dist(g(p), Q)| ≤
∥p− g(p)∥, and also dist(p,Q) + dist(g(p), Q) ≤ 2dist(p,Q) + ∥p− g(p)∥. We
thus have∣∣µQ(P )− µQ(S)

∣∣
≤
∑
p∈P

w(p) ∥p− g(p)∥
(
2dist(p,Q) + ∥p− g(p)∥

)
=
∑
p∈P

2w(p) ∥p− g(p)∥ · dist(p,Q) +
∑
p∈P

w(p) ∥p− g(p)∥2 .

(4.3)

For each 1 ≤ i ≤ m and each p ∈ Pi, put x(p) = max{R, dist(p, Ci), dist(p,Q)}.
Thus, dist(p,Q) ≤ x(p). By the assumption of the lemma we have ∥p− g(p)∥ ≤
εx(p). Substituting this in (4.3) yields (for 0 < ε < 1),

|µQ(P )− µQ(S)| ≤ 2ε
∑
p∈P

w(p)x2(p) + ε2
∑
p∈P

w(p)x2(p)

≤ 3ε
∑
p∈P

w(p)x2(p).
(4.4)

Finally, we have∑
p∈P

w(p)x2(p) ≤ R2
∑
p∈P

w(p) +
m∑
i=1

µCi
(Pi) +

∑
p∈P

w(p) ·
(
dist(p,Q)

)2
≤w(P )R2 + βµQ(P ) + µQ(P ).

(4.5)
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Using the Cauchy-Schwarz inequality, we have

R2 =
1

w(P )2

(
m∑
i=1

νCi
(Pi)

)2

=
1

w(P )2

(
m∑
i=1

∑
p∈Pi

w(p)dist(p, Ci)

)2

≤ 1

w(P )2

(∑
p∈P

w(p)

)
·

(
m∑
i=1

∑
p∈Pi

w(p)
(
dist(p, Ci)

)2)

=
1

w(P )
·

m∑
i=1

µCi
(Pi).

Hence, by the assumption of the lemma,

R2 ≤ βµQ(P )

w(P )

Substituting this in (4.5) gives us∑
p∈P

w(p)x2 ≤ βµQ(P ) + βµQ(P ) + µQ(P ) ≤ 3βµQ(P ),

which, together with (4.4), concludes the proof of part (ii) of the lemma.

Corollary 4.2. Let P be a set of n (unweighted) points in Rd, and 0 < ε ≤ 1. Let
s = 2O(d) · (

√
d/ε)d log n. Then Then, with an appropriate choice of the constant

of proportionality, SINGLE-FACILITY-CORESET(P, ε/9) returns, in O(dn + s)
time, a single-facility ε-coreset for P of size s.

Proof. The size of S is bounded by the number of grid cells that contain the points
of P . For each j, the number of cells of Gj (empty or not) inside Bj is

O

(
(2jT )d

(2jεT
√
d)d

)
= 2O(d) · (

√
d/ε)d.

Summing over j, and observing that W = n in this case, the bound on |S| follows.
With careful implementation, SINGLE-FACILITY-CORESET takes O(dn + s)

time, using the log and floor functions. (One simply has to compute, for each
p ∈ P , the grid cell containing p. The number of points in each of the s cells can
then be computed using count sort with an array of size s.) We next argue that the
output set S of a call to SINGLE-FACILITY-CORESET(P, ε) is a 9ε-coreset. This
would prove the corollary by replacing ε with ε/9.
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Note that P is an unweighted set of points, so w(p) = 1 for each p ∈ P
and w(P ) = n. Let p = 1

n

∑
p∈P p, and T = ν{p}(P )/n, be as defined in

the procedure. As noted in Line 9 of SINGLE-FACILITY-CORESET, we have
∥p− g(p)∥ ≤ εmax{T, ∥p− p∥} for every p ∈ P and its representative g(p)
in the coreset. It is also well known (see [DHS00]) that for any q ∈ Rd we
have ν{p}(P ) ≤ 2ν{q}(P ), and µ{p}(P ) ≤ µ{q}(P ). Thus, substituting m = 1,
C1 = {p}, Q = {q}, α = 2, β = 1 in Lemma 4.1, shows that S is indeed a
9ε-coreset, and thus completes the proof of the corollary.

The following corollary is used in the next section. It states that in the special
case that P is contained in a line (in Rd), the size of its coreset is independent of
d.

Corollary 4.3. Let P be a set of n (unweighted) points on a line ℓ in Rd, and
0 < ε ≤ 1. Then a single-facility ε-coreset for P of size s = O

(
1
ε
log n

)
can be

computed in O(nd) time.

Proof. If nd < 1
ε
log n, the algorithm simply returns the input set P ; see Line 0.

Otherwise, we execute SINGLE-FACILITY-CORESET(P, ε/9) with the following
modifications: (i) We rotate the coordinate frame so that ℓ becomes one of the
axes. (ii) We choose the size of the grid Gj (in Line 4) to be 2j−2εT . Then the
number of cells ∆ in Line 8 is only O(1/ε), and the claim follows.

4.2 (k, ε)-Coresets for Weighted Facilities
In this section we assume that P is a set of n unweighted points on a line ℓ in Rd.
We first introduce several notations.

Voronoi region. Given a weighted set of point facilities C ⊂ Rd, with an as-
sociated weight function W : C 7→ R+, we define the Voronoi region V (c) as-
sociated with c ∈ C to be the set of points x ∈ Rd such that W (c) ∥x− c∥ ≤
W (c′) ∥x− c′∥ for all c′ ∈ C. See Fig. 2.1. The collection of these Voronoi re-
gions constitutes the multiplicatively-weighted Voronoi diagram of C; see [Don08].

Voronoi intervals and boundaries. Given a line ℓ ⊆ Rd, a set of facilities C ⊂
Rd, and an associated weight function W : C 7→ R+, a Voronoi interval for a
facility c ∈ C is a connected component of V (c) ∩ ℓ. Endpoints of Voronoi
intervals are called Voronoi boundaries. Two Voronoi intervals are called adjacent
if they share a Voronoi boundary.
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Remark 4.4. Note that if all the facilities have the same weight, then each facil-
ity has a single connected Voronoi interval; see Fig. 2.1(left). However, if their
weights are unequal, then a single facility may “serve” multiple intervals (in the
above sense); see Fig. 2.1(right).

Lemma 4.5. Let C ⊂ Rd be a weighted set of k facilities. The total number of
their Voronoi intervals on a fixed line ℓ is at most 2k − 1.

Proof. Let C = {c1, c2, . . . , ck}. For every point t on ℓ, consider the k weighted
distances W (ci) ∥t− ci∥ for 1 ≤ i ≤ k and observe that t lies in a Voronoi interval
of ci if and only if W (ci) ∥t− ci∥ attains the lower envelope of these functions at
t. It is easily checked that any pair of these functions intersect at most twice.
Hence, if we label each Voronoi interval on ℓ by the facility c that serves it, we
obtain a Davenport-Schinzel sequence of order 2 on k symbols [SA95], so the
number of resulting intervals is at most λ2(k) = 2k − 1.

In what follows we assume, without loss of generality, that ℓ is the x1-axis; for
further simplicity, we simply refer to it as the x-axis.

(k, ε)-V-coreset for P . A weighted set S ⊆ P is called a (k, ε)-V-coreset, if,
for any weighted set C ⊂ Rd of facilities, such that P is contained in at most k
adjacent Voronoi intervals of C, (i) and (ii) hold:

(i) (1− ε)ν ′
C(P ) ≤ ν ′

C(S) ≤ (1 + ε)ν ′
C(P ),

(ii) (1− ε)µ′
C(P ) ≤ µ′

C(S) ≤ (1 + ε)µ′
C(P ),

where

ν ′
C(P ) =

∑
p∈P

(
w(p) ·min

c∈C
{W (c) ∥p− c∥}

)
, and

µ′
C(P ) =

∑
p∈P

(
w(p) ·min

c∈C

{
(W (c) ∥p− c∥)2

})
.

Note that k here differs from the number of facilities (but at most by a factor
of 2); recall also that here P is unweighted (i.e., the weights of its points are all
1).
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4.3 The Construction of V -Coresets
Let P be a set of n points on the x-axis, k ≥ 1 an integer, and 0 < ε ≤ 1. As we
will shortly show, the algorithm V-CORESET, given in Fig. 4.3, returns a weighted
subset S ⊆ P of size

|S| =
(
log n

ε

)O(k)

,

which is a (k, ε)-V-coreset for P .
In the main part of the algorithm, we assume that |P | > ⌈δ/ε⌉ (for the constant

δ specified in the algorithm). Otherwise, we take P itself as the coreset (Line 2
of V-CORESET). The algorithm is recursive and makes use of (k−1, ε)-V-coresets
for various subsets of P , where the base case for the recursion is the case k =
1, discussed in Section 4.1, and solved using the SINGLE-FACILITY-CORESET

routine. In this case (Line 4) the weight of the single facility is irrelevant for
the property that we seek. Thus, an ε-coreset for P , as constructed in Line 4, is
also a (1, ε)-V-coreset for P (a single facility always introduces a single Voronoi
interval, namely, the entire line).

Otherwise (k > 1), the loop in Lines 7-10 splits the left half of P into subsets
B1, B2, . . . , by intersecting P with a sequence of intervals, drawn from right to
left, whose lengths increase by a factor of 2. Then, the loop in lines 12-23 splits
each set Bi into subsets Bi1, Bi2, . . .. It scans B1 from left to right and the sets Bj ,
j > 1, from right to left. During the scan, it creates ⌊δ/ε⌋ subsets of size 1, then
⌊δ/ε⌋ subsets of size 2, and keeps doubling the sizes until all of Bi is exhausted.

The collection of these sets {Bij}, over all i and j, is denoted by Z . In Lines
24-26, we construct recursively a coreset for k − 1 weighted facilities, for each
B ∈ Z . We let Sℓ be the union of the resulting coresets. So far the construction is
applied only for the left side of P . In Line 27 we repeat a mirror-image construc-
tion for the right half of P , resulting in a set Sr. The output coreset is the union
of these two sets Sℓ and Sr.
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Fig. 4.2: (top) The high-level partition of the set Pℓ of the ⌊n/2⌋ leftmost points
of P into intervals and sets. (bottom) The partition of B1 into subsets. The other
subsets Bi, for i > 1, are similarly partitioned, but from right to left rather than
from left to right.
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Algorithm V-CORESET (P, k, ε)
Input: P : set of n points on a line, k ≥ 1 an integer, and 0 < ε ≤ 1.
Output: (k, 3ε)-V-coreset of P for weighted facilities.

1 if |P | ≤ ⌈δ/ε⌉ � δ is a constant, defined later in Lemma 4.10
2 then return P
3 if k = 1
4 then return SINGLE-FACILITY-CORESET(P, ε/3)
5 p1 ← leftmost point of P ; p⌊n/2⌋ ← ⌊n/2⌋-leftmost point of P
6 end ← p⌊n/2⌋
7 for i← 1 to 2⌈log n⌉+ 1
8 do begin ← end − 2i−1

∣∣p⌊n/2⌋ − p1
∣∣ /n2

9 Bi ← P ∩ (begin, end]
10 end ← begin
11 Z ← ∅ � Z is a collection of sets
12 for i← 1 to 2⌈log n⌉+ 1
13 do Bi1 ← ∅; size ← 1; j ← 1;
14 for m← 1 to |Bi|
15 do if i = 1
16 then add to Bij the mth leftmost point of Bi

17 else add to Bij the mth rightmost point of Bi

18 if |Bij| = size
19 then Z ← Z ∪ {Bij}
20 j ← j + 1
21 Bij ← ∅
22 if (j mod ⌈δ/ε⌉) = 0
23 then size ← 2 · size
24 Sℓ ← ∅
25 for each B ∈ Z
26 Sℓ ← Sℓ∪ V-CORESET(B, k − 1, ε/3)
27 Repeat Lines 5–26 for the ⌈n/2⌉ rightmost points of P , resulting in a set Sr

� (Use a mirror-image construction)
28 return Sℓ ∪ Sr

Fig. 4.3: The algorithm V-CORESET



CHAPTER 4. CORESETS FOR WEIGHTED AND LINEAR FACILITIES 45

Lemma 4.6. |Z| = O(ε−1 log2 n).

Proof. No Bij ∈ Z can have more than ⌈2εn/δ⌉ points. Indeed, for j ≤ ⌊δ/ε⌋,
|Bij| = 1 by construction. Suppose to the contrary that for j > ⌊δ/ε⌋, there exists
a set Bij with more than ⌈2εn/δ⌉ points. Then, by construction, each of the ⌊δ/ε⌋
sets Bij′ that precedes Bij satisfies |Bi,j′ | ≥ 1/2 |Bij| ≥ ⌈εn/δ⌉. This would
imply, in turn, that |P | > n, a contradiction. The size of the largest subset of each
Bi is thus at most ⌈2εn/δ⌉. Since the partition of Bi consists of ⌈δ/ε⌉ subsets of
size 2t, for t = 0, 1, . . ., and since the maximum size is ⌈2εn/δ⌉ it follows that
the number of subsets of Bi is O(ε−1 log(εn)) = O(ε−1 log n). Since there are
O(log n) sets Bi, it follows that |Z| = O(ε−1 log2 n).

Lemma 4.7. The number of points in the set S is at most

2O(k)ε−k log2k−1 n.

Proof. We only consider Sℓ; the proof is similar for Sr. Define T (k, ε, n) to be
the maximum size of Sℓ for given k and ε, and for any input set P of n points.
We establish the upper bound T (k, ε, n) ≤ bkε−k log2k−1 n, for an appropriate
absolute constant b, using induction on k. From the construction for k = 1,
it follows that T (1, ε, n) = O

(
logn
ε

)
, which satisfies the bound asserted in the

lemma for an appropriate choice of b. We also make b sufficiently large so that
the bound in Lemma 4.6 is at most bε−1 log2 n. Then, by construction and the
induction hypothesis, we have

T (k, ε, n) ≤ |Z| · T (k − 1, ε, n) ≤ bkε−k log2k−1 n,

as claimed.

To prove that S is a (k, ε)-V-coreset, we will frequently use the following
simple observation. We denote by I(X) the smallest interval containing a set X .
We denote by Pℓ the set of ⌊n/2⌋ leftmost points of P .

Observation 4.8. (i) The length of the interval I(Bi), for i > 1, is less than twice
the length of the interval spanned by the rightmost point of Bi and the rightmost
points of Pℓ (i.e., p⌊n/2⌋; cf. Fig. 4.2(top)).
(ii) For any Bij ∈ Z that contains at least two points, we have (cf. Fig. 4.2(bottom))
|Bij| ≤ (2ε/δ)

∑
m<j |Bim|.

Theorem 4.9. Let P be a set of n points on a line in Rd, k ≥ 1 an integer,
and 0 < ε ≤ 1. The algorithm V-CORESET(P, k, ε) returns, in O(ndk) time, a
(k, 3ε)-V-coreset S for P of size 2O(k)ε−k log2k−1 n.
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Proof. The bound on the size of S is given in Lemma 4.7. Each execution of V-
CORESET, excluding the recursive calls, can be implemented in O(nd) time. In-
deed, Lines 5–10 of V-CORESET can be easily implemented, in O(nd) time (with-
out sorting P ), using the log and floor functions. Lines 11–23 can be implemented
in O(nd) time (again, avoiding sorting) by computing the sets Bij backwards,
finding the points in the ⌊δ/ε⌋ last (largest) subsets Bij ⊆ Bi in O(|Bi|) time, us-
ing a linear-time algorithm for order statistics, and then by continuing recursively
on the remaining points. The cost of each phase is linear in the size of the subset
of remaining points, and since these sizes form a geometric progression, the claim
follows. Since the elements of Z are pairwise disjoint, a simple induction on k,
concerning the recursive call at Line 26, shows that the overall running time of V-
CORESET, excluding the executions of Line 4 at the bottom of recursion (when
k = 1), is O(ndk). Each of these executions has as input a some subset B of
P , and takes O(|B| · d) time according to Corollary 4.3. Since these subsets are
disjoint, the overall running time for all the executions when k = 1 is therefore
O(nd). This establishes the asserted bound on the running time.

We next show that S is a (k, 3ε)-V-coreset. For the case k = 1 the weight of
the single facility is irrelevant for the property that we seek. Thus, the 3ε-coreset
that is returned in Line 4 is also a (1, 3ε)-V -coreset for P . It remains to prove
the case k > 1. Interestingly enough, the following proof of correctness for non-
squared distances remains true for squared distances, if we use everywhere the
cost function µ′ instead of ν ′, and replace ∥·∥ by ∥·∥2.

Let C ⊂ Rd be any weighted set of facilities, such that P falls into no more
than k adjacent Voronoi intervals of C. By Line 28, S = Sℓ ∪ Sr, where Sℓ is the
coreset for Pℓ and Sr is the coreset for Pr = P \ Pℓ. We have

|ν ′
C(P )− ν ′

C(S)| =∣∣(ν ′
C(Pℓ) + ν ′

C(Pr)
)
−
(
ν ′
C(Sℓ) + ν ′

C(Sr)
)∣∣

≤ |ν ′
C(Pℓ)− ν ′

C(Sℓ)|+ |ν ′
C(Pr)− ν ′

C(Sr)| .
(4.6)

We will prove that |ν ′
C(Pℓ)− ν ′

C(Sℓ)| ≤ (3/2)εν ′
C(P ). A symmetric proof will

then imply |ν ′
C(Pr)− ν ′

C(Sr)| ≤ (3/2)εν ′
C(P ). The coreset property of S then

follows from (4.6).
If it so happens that for every B ∈ Z , the interval I(B) intersects no more than

k− 1 Voronoi intervals, we are done, because then, by the recursive construction,

|ν ′
C(B)− ν ′

C(SB)| ≤ εν ′
C(B)

for each B ∈ Z , where SB is the coreset computed for B in Line 26. The coreset
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Sℓ is the union of the coresets SB, for all B ∈ Z , and thus

|ν ′
C(Pℓ)− ν ′

C(Sℓ)| =

∣∣∣∣∣∑
B∈Z

(
ν ′
C(B)− ν ′

C(SB)
)∣∣∣∣∣

≤
∑
B∈Z

|ν ′
C(B)− ν ′

C(SB)| ≤
∑
B∈Z

εν ′
C(B)

= εν ′
C(Pℓ) ≤ εν ′

C(P ) < (3/2)εν ′
C(P ).

We are left to handle the case where there is some set B ∈ Z such that I(B)
intersects all k Voronoi intervals (and thus contains k − 1 Voronoi boundaries
— see Fig. 4.4 (top)). In this case the sum of errors contributed by the rest of
the (k − 1, ε)-V-coresets is then (here each of the corresponding intervals I(x)
intersects a single Voronoi interval, so the induction hypothesis applies).∑

X∈Z\{B}

|ν ′
C(X)− ν ′

C(SX)| ≤
∑

X∈Z\{B}

εν ′
C(X)

≤
∑
X∈Z

εν ′
C(X) = εν ′

C(Pℓ) ≤ εν ′
C(P ).

We will show that in this case

|ν ′
C(B)− ν ′

C(SB)| ≤
ε

2
ν ′
C(P ), (4.7)

and thus

|ν ′
C(Pℓ)− ν ′

C(Sℓ)| ≤ εν ′
C(P ) +

ε

2
ν ′
C(P ) =

3ε

2
ν ′
C(P ).

To prove (4.7), let c be any facility in C. For simplicity, we abuse notation,
and write ν ′

c(P ) instead of ν ′
{c}(P ). By construction, SB is a (k− 1, ε)-V-coreset,

so, by definition, SB is also a (1, ε)-V-coreset. Hence, |ν ′
c(SB)− ν ′

c(B)| ≤
εν ′

c(B) ≤ ν ′
c(B), so, ν ′

c(SB) ≤ 2ν ′
c(B). Thus, for any facility c ∈ C, the

left-hand side of (4.7) can be bounded by

|ν ′
C(B)− ν ′

C(SB)| ≤ ν ′
C(B) + ν ′

C(SB) (4.8)

≤ ν ′
c(B) + 2ν ′

c(B) = 3ν ′
c(B).
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B

k 1 - Voronoi boundaries

Rightmost Voronoi 
interval

Leftmost Voronoi 
interval

I(Pℓ) I(Pr)

Fig. 4.4: (top) All the k Voronoi intervals intersect I(B) for some B ∈ Z . The
two ‘x’ facilities in this figure serve the leftmost and rightmost Voronoi intervals
(in general, they do not have to lie on the line). (bottom) B intersects k Voronoi
intervals, and is also contained in B1. The facility c ∈ C serves the leftmost
Voronoi interval, and c′ denotes its projection on the line. Since c′ can be anywhere
on the line, its nearest point in B1 can be any point of B1.



CHAPTER 4. CORESETS FOR WEIGHTED AND LINEAR FACILITIES 49

Let the facility c′ be the projection of c on the x-axis, with weight W (c′) =
W (c). See Fig. 4.4 (bottom). Using the triangle inequality, ν ′

c(B) can be bounded
by

ν ′
c(B) = W (c)

∑
p∈B

∥p− c∥ (4.9)

≤ W (c)
∑
p∈B

(∥c− c′∥+ ∥p− c′∥)

= W (c) |B| · ∥c− c′∥+ ν ′
c′(B).

We now argue that, with an appropriate choice of the facility c and the constant
parameter δ, each of the two terms in the right-hand side of (4.9) is at most
(ε/12)ν ′

C(P ), which, using (4.8), will prove (4.7) and conclude the proof of the
theorem. Let Bi be the set that contains B = Bij . We distinguish between the
following two cases.
(i) Bi = B1: Let c ∈ C be the facility that serves the leftmost Voronoi interval,
and denote by Pc the points of P that are served by c. Also, let BL denotes the set
of points of B1 that lie to the left of B, and note that BL ⊆ Pc (because the Voronoi
interval of c and ends “inside” Bj (see Fig. 4.4(bottom)). By Observation 4.8(ii)
we have, |B| ≤ (ε/12) |BL|, if we choose δ ≥ 24, and thus |B| ≤ (ε/12) |Pc|.
Clearly, c′ is the nearest point on the x-axis to c, and therefore ∥c− c′∥ ≤ ∥p− c∥
for any p ∈ P . Hence, |Pc| · ∥c− c′∥ ≤ νc(Pc). Altogether we have

W (c) |B| · ∥c− c′∥ ≤ W (c) · ε
12
|Pc| · ∥c− c′∥

≤ ε

12
ν ′
c(Pc) ≤

ε

12
ν ′
C(P ).

To bound the second term of (4.9), let PL denote the points of P to the left of
B, and note that PL ⊆ Pc; see Fig. 4.4(bottom). Clearly, ∥p− c′∥ ≤ ∥p− c∥
for every p on the x-axis, and we get νc′(PL) ≤ νc(PL) ≤ νc(Pc). Using
Lemma 4.10(i) that follows, we have νc′(B) ≤ (ε/12)νc′(PL) (note that |B| > 1,
since a single point cannot intersect k > 1 Voronoi intervals). After multiplying
by W (c), this yields ν ′

c′(B) ≤ (ε/12)ν ′
c(Pc) ≤ (ε/12)νC(P ).

(ii) B ⊆ Bi ̸= B1 : The proof is symmetric, taking c to be the facility that
serves the rightmost Voronoi interval. The sets BR, PR, defined symmetrically to
the definitions of BL, PL, and Lemma 4.10(ii), should then replace BL, PL and
Lemma 4.10(i), respectively.

To conclude the proof of Theorem 4.9, we still need to show that νc′(B) ≤
(ε/12)νc′(PL) (for B ⊆ B1) or νc′(B) ≤ (ε/12)νc′(PR) (for B ⊆ Bi ̸= B1),
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for a facility c′ on the x-axis, and that the analogous inequality hold for squared
distances too. All this is established in the following lemma. An additional feature
of the lemma is that it shows how to choose the constant δ used by the algorithm
and the preceding analysis.

Lemma 4.10. Let P ⊂ R be a finite set of points. Let Z = {Bij} be the partition
of P given in Lines 11–23 of the algorithm V-CORESET, for the specified 0 <
ε ≤ 1 and k. Consider a set B = Bij ∈ Z , where |B| > 1 (i.e., j > ⌊δ/ε⌋,
see Fig. 4.2(bottom)), and let PL, PR denotes the set of points of P that lie to the
left and to the right of B, respectively

(
see Fig. 4.4(bottom)

)
. Then, by choosing

δ ≥ 1152, for any facility c′ ∈ R we have
(i) for i = 1, νc′(B) ≤ (ε/12)νc′(PL), and µc′(B) ≤ (ε/12)µc′(PL);
(ii) for i > 1, νc′(B) ≤ (ε/12)νc′(PR), and µc′(B) ≤ (ε/12)µc′(PR).

Proof. (i) Let D = dist(c′, B1) denote the distance between c′ and the nearest
point in B1 (see Fig. 4.4(bottom)). Since B ⊆ B1, we have νc′(B) ≤ |B|

(
D +

|I(B1)|
)
. As above, let BL be the set of points of B1 that lie to the left of B. By

definition, |c′ − p| ≥ dist(c′, B1) = D for each p ∈ BL. By Observation 4.8(ii)
we have |B| ≤ (ε/72) |BL|, by choosing a sufficiently large constant δ (at least
144) in the construction. Hence, by the way B1 is constructed, in Lines 8-9 of the
algorithm,

νc′(B) ≤ ε

72
|BL| ·

(
D + |I(B1)|

)
≤ ε

72
|BL| ·D +

ε

72

|I(Pℓ)|
n

. (4.10)

To conclude the proof of (i), we now bound each term in the right-hand side
of (4.10) by (ε/72)νc′(PL), as follows. By definition, BL is contained in B1, so
|BL| · D ≤ νc′(BL). Since BL ⊆ PL, this yields |BL| · D ≤ νc′(PL), hence the
first term of (4.10) is at most (ε/72)νc′(PL). For the second term, we use the fact
that n ≥ 2 (otherwise we take P itself as the coreset), and thus

|I(Pℓ)|
n

≤ |I(Pℓ)| −
|I(Pℓ)|
n2

= |I(Pℓ)| − |I(B1)| . (4.11)

The points p1 and pℓ (the leftmost point of B1) are both in PL; see Fig. 4.4(bottom).
This means that |I(Pℓ)| − |I(B1)| = pℓ − p1 ≤ |pℓ − c′| + |p1 − c′| ≤ νc′(PL).
Substituting this in (4.11) yields the desired bound on the second term of (4.10).

For squared distances, (4.10) should be replaced by

µc′(B) ≤ ε

72
|BL| ·

(
D + |I(B1)|

)2
≤ ε

36
|BL| ·D2 +

ε

36

(
|I(Pℓ)|

n

)2

,
(4.12)
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for the same choice of δ. Using similar arguments to the non-squared case, we
have |BL| ·D2 ≤ µc′(PL) and(

|I(Pℓ)| /n
)2 ≤ (pℓ − p1)

2 ≤ (|pℓ − c′|+ |p1 − c′|)2

≤ 2|pℓ − c′|2 + 2|p1 − c′|2 ≤ 2µc′(PL),

which yields the desired bound also for the squared distances case.
(ii) Let D = dist(c′, Bi) and let BR denote the set of points in Bi to the right of
B; see Fig. 4.5. As in (i), we have νc′(B) ≤ |B| ·D + |B| · |I(Bi)|, and the first
term is bounded by (ε/72)νc′(PR) in the same way, using Observation 4.8(ii) and
choosing δ ≥ 144. We next bound the second term by (ε/18)νc′(PR). To do so,
let pr and p⌊n/2⌋ be the rightmost points of Bi and of Pℓ, respectively, and define
pmid = (p⌊n/2⌋ + pr)/2; see Fig. 4.5. By Observations 4.8(i) and (ii)

iB

/ 2np  1p rp
  
 

midp

RP

'c

ijB B====
D

RB

I(Pℓ) I(Pr)

iB

/ 2np  1p
rp

  
 

midp

RP

'c

ijB B====
D

RB

I(Pℓ) I(Pr)

Fig. 4.5: The two cases of Lemma 4.10(ii), where (top) pmid ≤ c′, and (bottom)
pmid > c′.

|B| · |I(Bi)| ≤
2ε

δ
|BR| · 2(p⌊n/2⌋ − pr). (4.13)

In case pmid ≤ c′ (see Fig. 4.5(top)), we have (p⌊n/2⌋ − pr)/2 = pmid − pr ≤
c′−p for every point p ∈ BR, and in case pmid > c′ (see Fig. 4.5(bottom)) we have
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(p⌊n/2⌋−pr)/2 = p⌊n/2⌋−pmid < p−c′, for every point p ∈ Pr (the ⌈n/2⌉ ≥ |BR|
rightmost points of P ). Since BR, Pr ⊆ PR, we conclude that, in any case, there
are at least |BR| points in PR that have a distance at least (p⌊n/2⌋ − pr)/2 to c′. In
other words, |BR| (p⌊n/2⌋ − pr) ≤ 2νc′(PR). Then, for δ ≥ 144, the right-hand
side of (4.13) is at most (ε/18) · νc′(PR). This concludes the proof of (ii) for the
non-squared distances.

For squared distances, we have µc′(B) ≤ |B| · (D + |I(Bi)|)2 ≤ 2|B| ·D2 +
2|B| · |I(Bi)|)2. The first term of the right hand side is bounded by (ε/36)µc′(PR)
as in case (i). For the second term we replace (4.13) by

2 |B| · |I(Bi)|2 ≤
4ε

δ
|BR| · 4(p⌊n/2⌋ − pr)

2. (4.14)

As already explained, there are at least |BR| points in PR that have a distance of
at least (p⌊n/2⌋ − pr)/2 to c′. In other words, |BR| (p⌊n/2⌋ − pr)

2 ≤ 4µc′(PR).
Substituting this in (4.14) concludes the proof of (ii) for δ ≥ 1152. We note that
we made no real attempt to optimize the choice of δ. In fact, for case (i), δ ≥ 144
suffices.

Lemma 4.5 implies the following main result of this section, which is a trivial
modification of Theorem 4.9.

Theorem 4.11. Let P be a set of n points on a line in Rd, k ≥ 1 an integer, and
ε > 0. The algorithm V-CORESET(P, 2k − 1, ε/3) returns, in O(ndk) time, a
weighted-facilities (k, ε)-coreset for P , of size |S| = 2O(k)ε−2k+1 log4k−3 n.

4.4 Coresets for P ⊆ Rd

So far we have constructed (k, ε)-coresets for a set of points on a fixed line (and
for weighted point facilities). In this section we use these coresets to construct the
following kind of coreset for a set of points in Rd.

(k, j, ε)-Coreset. Let P be a set of n points in Rd, k ≥ 1 and 1 ≤ j ≤ d −
1 integers. A weighted set S ⊂ P is called a (k, j, ε)-coreset for P if all the
following properties hold.

(i) For any set L of any number 0 ≤ k′ ≤ k of lines and of at most k − k′

points, we have

(1− ε)νL(P ) ≤ νL(S) ≤ (1 + ε)νL(P ).
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(ii) For any flat h of dimension at most j, we have

(1− ε)ν{h}(P ) ≤ ν{h}(S) ≤ (1 + ε)ν{h}(P ).

(iii) Properties (i) and (ii) hold for squared distances, and for regression dis-
tances to a hyperplane (squared and non-squared).

Our construction of this coreset crucially relies on a randomized bi-criteria
constant-factor approximation algorithm APPROX-K-J-FLATS2(P, k, j, δ), which
is an enhancement of the algorithm presented in Chapter 3. The procedure APPROX-
K-J-FLATS2 receives as input a point set P ⊂ Rd, δ > 0, and integers k, j,
such that k ≥ 1 and 1 ≤ j ≤ d − 1. It outputs a set F = {f1, f2, . . . , fm} of
m = log(1/δ) log n · (jk log log n)O(j) j-dimensional flats and a partition Π =
{P1, P2, . . . , Pm} of P , such that, with probability at least 1− δ, for any set Y of
at most k flats, all of dimensions at most j,

m∑
i=1

νfi(Pi) ≤ 2j+2 · νY (P ) and
m∑
i=1

µfi(Pi) ≤ 22j+3 · µY (P ). (4.15)

In particular, F is a constant-factor approximation of the “k j-flat-median” and “k
j-flat-mean” problems (if we regard j as a constant); it is a bi-criteria approxima-
tion in that it produces m ≫ k j-flats which yield a median cost and a mean cost
which lie within constant factors of the optimal such costs involving k j-flats.

The algorithm APPROX-K-J-FLATS2(P, k, j, δ) makes ⌈log(1/δ)⌉ calls to the
procedure APPROX-K-J-FLATS(P, k, j) that is described in Chapter 3. It then
returns the union F of the two output sets of flats F ν = {f ν

1 , f
ν
2 , . . .} and F µ =

{fµ
1 , f

µ
2 , . . .} (among the ⌈log(1/δ)⌉ outputs) that minimize

∑m
i=1 νfν

i
(Pi), and∑m

i=1 µfµ
i
(Pi), respectively. The algorithm also returns the partition Π of P that

is defined as follows.
Consider the partition {R1, R2, . . . , Rtmax} of P that is computed during a call

to the procedure APPROX-K-J-FLATS(P, k, j); see Fig. 3.1. Let Πν = {Rν
1 , R

ν
2 , . . .}

and Πµ = {Rµ
1 , R

µ
2 , . . .} be such two partitions of P that correspond to the calls

that returned Fν and Fµ, respectively. Put s and t such that 1 ≤ s ≤ |Πν | and
1 ≤ t ≤ |Πµ|. For every p ∈ Rν

s , let pν = dist(p, f ν
s ). Similarly, for ev-

ery p ∈ Rµ
t , let pµ = dist(p, fµ

t ). We define P ν
s = {p ∈ Rν

s | pν ≤ pµ}, and
P µ
t = {p ∈ Rµ

t | pµ < pν}. Finally, we define the partition Π of P to be the union
of
{
P ν
1 , . . . , P

ν
|Πν |

}
with

{
P µ
1 , . . . , P

µ
|Πµ|

}
.
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The two equations in (4.15) hold for Π and F , since for every set Y of at most
k flats, all of dimension at most j, we have

|Πν |∑
i=1

νfν
i
(P ν

i ) +

|Πµ|∑
i=1

νfµ
i
(P µ

i ) ≤
|Πν |∑
i=1

νfν
i
(Rν

i ) ≤ 2j+2 · νY (P ),

where the last derivation is by applying Theorem 3.1 with v = 1. Similarly, by
applying Theorem 3.1 with v = 2, we have

|Πν |∑
i=1

µfν
i
(P ν

i ) +

|Πµ|∑
i=1

µfµ
i
(P µ

i ) ≤
|Πν |∑
i=1

µfν
i
(Rν

i ) ≤ 2j+3 · νY (P ).

In order to compute Π, we modify the procedure APPROX-K-J-FLATS(P, k, j)
in Fig. 3.1 so that in Line 6 the distance dist(p, F ′) is associated and stored in
memory for every point p ∈ Rt. These distances are then returned as output of
APPROX-K-J-FLATS together with F . By comparing the output distances for the
two calls that returned Fµ and Fν for every p ∈ P , we can compute Π in time
O(n). The algorithm APPROX-K-J-FLATS2(P, k, j, δ) thus takes nd · (2jk)O(j) ·
log(1/δ) time overall; see Chapter 3 for details.

Since the algorithm APPROX-K-J-FLATS(P, k, j) succeeds with probability at
least 1/2, the algorithm APPROX-K-J-FLATS2(P, k, j, δ) succeeds with probabil-
ity at least 1− 1/2⌈log(1/δ)⌉ ≥ 1− δ.
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Algorithm LINEAR-FACILITIES-CORESET(P, k, j, ε, δ)
Input: A set of points P ⊂ Rd, δ > 0, 0 < ε ≤ 1, and integers k, j,

where k ≥ 1 and 1 ≤ j ≤ d− 1.
Output: A set S ⊆ P with the properties stated in Theorem 4.13 below.

1 (F,Π)← APPROX-K-J-FLATS2(P, k, j, δ/2)
2 S ← ∅
3 for i← 1 to |F |
4 do fi ← the ith j-dimensional flat in F
5 Pi ← the ith set of points in Π
6 f⊥

i ← an arbitrary (d− j)-dimensional flat orthogonal to fi
� See Fig. 4.6(top)

7 P ∗
i ← proj(Pi, f

⊥
i )

8 for each p∗ ∈ P ∗
i do w(p∗)← |P | / |Pi|

9 S∗
i ← SINGLE-FACILITY-CORESET(P ∗

i , ε/9)
10 F ← ∅
11 for each p′ ∈ S∗

i

12 do f ← the j-dimensional flat that passes through p′ and is parallel to fi
� See Fig. 4.6(bottom)

13 Pf ← the set of those p ∈ Pi, such that p′ is the representative of
p∗ = proj(p, f⊥

i ) in S∗
i � See Line 9 of SINGLE-FACILITY-CORESET

14 P̃f ← proj(Pf , f)
15 F ← F ∪ {f}
16 for each f ∈ F
17 do if j = 1
18 then S̃f ← V-CORESET(P̃f ,2k − 1, ε/3)
19 else S̃f ←LINEAR-FACILITIES-CORESET

(
P̃f , 1, j − 1, ε, δ/(2 |F|)

)
20 S ← S ∪ {p ∈ Pf | proj(p, f) ∈ S̃f}

� each point in S is assigned the weight of its corresponding point in S̃f

21 return S

Overview of the algorithm LINEAR-FACILITIES-CORESET. In this algorithm,
which is described in Fig. 4.6, proj(q,X) denotes the projection of a point q on a
set of points X (i.e., proj(q,X) is the point of X nearest to q). For a set Q, we
define proj(Q,X) = {proj(q,X) | q ∈ Q}.

In Line 1, the algorithm computes a set F = {f1, f2, . . .} of flats, and a corre-
sponding partition Π = {P1, P2, · · · } of P as described above. In Lines 3–20, the
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Fig. 4.6: (top) For j = 1 and P ⊂ R2, each fi ∈ F is a line, as its orthogonal f⊥
i .

(bottom) The various mappings used in the algorithm: p is a point of Pi (nearest
to fi); p∗ is its projection onto f⊥

i ; p′ is the representative of p∗ in the coreset S∗
i ;

f passes through p′ and is parallel to fi; p̃ is the projection of p onto f .
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algorithm then constructs a coreset for every set Pi independently, and outputs the
union S of these coresets in Line 21.

The coreset for Pi is computed as follows. In Lines 4–7 we compute P ∗
i which

is the projection of Pi on the (d − j)-flat f⊥
i that is orthogonal to fi. In Lines 8–

9, we then construct for P ∗
i an ε-coreset S∗

i for a single facility, as described in
Section 4.1. Each projected point p′ ∈ S∗

i corresponds to a j-flat f of Rd that
passes through p′ and is parallel to fi. This set F of j-flats is constructed in Lines
12–15. The set Pf ⊆ Pi denotes the set of points that are (roughly speaking)
closer to f than any other flat in F . The set P̃f denotes the projection of Pf on f .

For every f ∈ F we construct in Lines 16–19 a coreset S̃f of P̃f . If f is a
line (j = 1), S̃f is a coresets for weighted facilities, as described in Section 4.3.
Otherwise, S̃f is the output of a recursive call to LINEAR-FACILITIES-CORESET

with the set P̃f instead of P , and j − 1 instead of j. In both cases, the coreset
S̃f consists of weighted points from P̃f . That is, every weighted point in S̃f is
a projection of a corresponding weighted point p ∈ Pf . In Line 20, we add the
union of these weighted points of Pf to the output coreset S, .

Although the algorithm is formulated for arbitrary k and j, we apply (and
analyze) it only for the two special cases k = 1 (coreset for a single j-flat) or
j = 1 (coreset for k lines)1. Specifically we have:

Lemma 4.12. Let P be a set of n points in Rd, 0 < ε ≤ 1, δ > 0, and k, j integers
such that k ≥ 1 and 1 ≤ j ≤ d− 1. Then
(i) LINEAR-FACILITIES-CORESET(P, k, 1, ε, δ) takes nd log(1/δ)·kO(1) time and
returns a set S of size

log4k n · log (1/δ) · (
√
d
d
/εd+2k−1) · 2O(d+k).

(ii) LINEAR-FACILITIES-CORESET(P, 1, j, ε, δ) takes nd log(1/δ) · jO(j) time,
and returns a set S of size

(j log n)O(j2)

(
log

1

δ
+ d log

1

ε
+ d log d+ log log n

)j

(
√
d/ε)dj+1 · 2O(dj).

Proof. (i) The call to APPROX-K-J-FLATS2(P, k, 1, δ/2) in Line 1 returns a set
F of log(1/δ) log n · (k log log n)O(1) lines, as noted above. For each line in F ,
the construction of a single facility coreset in Line 9 returns a set S∗

i of 2O(d) ·
1The general case k, j > 1 is not treated in the thesis, and it is still an open problem to solve it

using similar techniques with comparable performance bounds. See Chapter 5.
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(
√
d/ε)d log n points (see Corollary 4.2). For each point in S∗

i , we construct in
Line 18 a V -coreset of size 2O(k)ε−2k+1 log4k−3 n (see Theorem 4.11). Hence, the
overall size of S is

log(1/δ) log n · (k log log n)O(1) · 2O(d) · (
√
d/ε)d log n · 2O(k)ε−2k+1 log4k−3 n

= log4k n · log (1/δ) · (
√
d
d
/εd+2k−1) · 2O(d+k), (4.16)

where we bound (log log n)O(1) by log n (for n sufficiently large). The call to
APPROX-K-J-FLATS2(P, k, 1, δ/2) takes nd log(1/δ) · kO(1) time. The execu-
tion of SINGLE-FACILITY-CORESET and V-CORESET can be performed in time
O(mdk) for a set of m points (see Corollary 4.3 and Theorem 4.9), i.e., in

O(dk)
∑
f∈F

|P̃f | = O(dk)
∑
f∈F

|Pf | = O(ndk)

time. Hence, the overall time bound is dominated by the cost of the call to
APPROX-K-J-FLATS2, and is therefore nd log(1/δ) · kO(1) time.

(ii) Let Sj(δ) denote the overall size of the output set S (where the other pa-
rameters n, ε are fixed). By (4.16) we have

S1(δ) = log4 n · log(1/δ) · (
√
d
d
/εd+1) · 2O(d).

The call to APPROX-K-J-FLATS2(P, 1, j, δ/2) in Line 1 returns a set F of
log(1/δ) · log n · (j log log n)O(j) j-flats. For each j-flat in F , the call to SINGLE-
FACILITY-CORESET in Line 9 returns a set S∗

i of 2O(d) · (
√
d/ε)d log n points (see

Corollary 4.2). For each point in S∗
i , the call in Line 19 to the algorithm

LINEAR-FACILITIES-CORESET
(
P̃f , k, j − 1, ε, δ/(2 |F|)

)
returns a set of size

Sj−1

(
δ

2|F|

)
= Sj−1

(
δ

2|S∗
i |

)
= Sj−1

(
δεd

2O(d) · (
√
d)d log n

)
.

We thus have, for j ≥ 2,

Sj(δ) ≤ log(1/δ)·log2 n·(j log log n)O(j)·2O(d)·(
√
d/ε)d·Sj−1

(
δεd

2O(d) · (
√
d)d log n

)
.

Put β =
εd

2O(d) · (
√
d)d log n

. Unfolding the above recurrence, we have

Sj(δ) = logO(j2) n · (
√
d/ε)dj+1 · 2O(dj+j2 log j) ·

j−1∏
i=0

log

(
1

δβi

)
.
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We estimate the product by replacing 1/(δβi) by 1/(δβ)i, for i ≥ 1, to obtain an
upper bound of

j! logj
(

1

δβ

)
= 2O(j log j)

(
log

1

δ
+ log

(
2O(d)(

√
d)d log n

εd

))j

.

Hence, we have

Sj(δ) = (j log n)O(j2)

(
log

1

δ
+ d log

1

ε
+ d log d+ log log n

)j

(
√
d/ε)dj+1·2O(dj).

Using Corollary 4.3, the running time of a single iteration of the recursion is
dominated by the call to APPROX-K-J-FLATS2 with k = 1 in Line 1 , which is
nd log(1/δ) · (2j)O(j). Since the depth of the recursion is O(j), and the points of
P split among the recursive calls (in line 19), the total running time is

ndj log(1/δ) · (2j)O(j) = O(nd) · log(1/δ) · jO(j).

Theorem 4.13. Let P be a finite set of points in Rd. Let 0 < ε ≤ 1/2, δ > 0,
and let k, j be integers satisfying k ≥ 1 and 1 ≤ j ≤ d−1. Let bj = 2j

2+14j . Then
(i) LINEAR-FACILITIES-CORESET(P, k, 1, ε, δ) computes, with probability at least
1− δ, a (k, 1, ε)-coreset for P .
(ii) LINEAR-FACILITIES-CORESET(P, 1, j, ε/bj, δ) computes, with probability at
least 1− δ, a (1, j, ε)-coreset for P .

Proof. To simplify the calculations, we assume (in (ii)) that LINEAR-FACILITIES-
CORESET is called with parameters P , 1, j, ε, δ. At the end, we will replace ε by
ε/bj and obtain the asserted property. (Technically, we also have to do so in case
(i), but then we replace ε by ε/b0 and since b0 = 1, no change is needed.)

Let Y be either an arbitrary set of any number k′ ≤ k of lines and at most k−k′

points in Rd, or a single flat of dimension at most j. We follow the notation in the
procedure LINEAR-FACILITIES-CORESET. Let P̃ =

∪
f∈F P̃f and S̃ =

∪
f∈F S̃f .

We first bound
∣∣∣νY (P )− νY (P̃ )

∣∣∣ and
∣∣∣νY (S̃)− νY (S)

∣∣∣. Let 1 ≤ i ≤ |F |, and f ′
i

denote the j-flat that is parallel to fi and passes through the center of mass P ∗
i ,

given by P ∗
i =

∑
p∈P ∗

i
p/ |P ∗

i |. We define

R =

|F |∑
i=1

∑
p∈P ∗

i

∥∥p− P ∗
i

∥∥
|P |

=

|F |∑
i=1

νf ′
i
(Pi)

|P |
. (4.17)



CHAPTER 4. CORESETS FOR WEIGHTED AND LINEAR FACILITIES 60

As noted in Line 9 of SINGLE-FACILITY-CORESET (see Section 4.1), and since
w(Pi) = |P |, we have the following bound for every p ∈ Pi, where p∗ is its
projection on f⊥

i and p′ ∈ S∗
i is the representative of p∗ in the coreset S∗

i ,

∥p∗ − p′∥ ≤ ε ·max

{∑
p∈P ∗

i

∥∥p− P ∗
i

∥∥
w(Pi)

, dist(p∗, P ∗
i )

}
= ε ·max{R, dist(p∗, P ∗

i )}.
(4.18)

Let f be the j-dimensional flat that passes through p′ and is parallel to fi, and
p̃ = proj(p, f) ∈ P̃f (see Fig. 4.6 (bottom)). From (4.18) we get

∥p− p̃∥ ≤ ε ·max{R, dist(p, f ′
i)}. (4.19)

As noted in the proof of Corollary 4.2, for every q ∈ Rd we have νP ∗
i
(P ∗

i ) ≤
2νq(P

∗
i ). Substituting q = fi ∩ f⊥

i , and noting that ∥p∗ − q∥ = dist(p, fi) and∥∥p∗ − P ∗
i

∥∥ = dist(p, f ′
i), yield

νf ′
i
(Pi) =

∑
p∈P ∗

i

∥∥p− P ∗
i

∥∥ ≤ 2
∑
p∈P ∗

i

∥p− q∥ = 2νfi(Pi). (4.20)

Theorem 3.1, and the way APPROX-K-J-FLATS2 is implemented, imply that
the output of the call to APPROX-K-J-FLATS2 in Line 1 satisfies, with probability
at least 1− δ/2,

|F |∑
i=1

νfi(Pi) ≤ 2j+2 · νY (P ). (4.21)

For the rest of the proof we assume that this equation holds. Together with (4.20)
we get

|F |∑
i=1

νf ′
i
(Pi) ≤ 2

|F |∑
i=1

νfi(Pi) ≤ 2j+3 · νY (P ) = 2j+3 · νQ(P ), (4.22)

where Q =
∪

y∈Y y (note that replacing Y by its union Q does not affect the
quantities νY (P )). Substitute in Lemma 4.1 S = P̃ , Ci = f ′

i (for 1 ≤ i ≤ |F |),
α = 2j+3 and Q as just defined. Using (4.19) and (4.22), the lemma implies∣∣∣νY (P )− νY (P̃ )

∣∣∣ ≤ 2j+4ενY (P ). (4.23)
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We now bound
∣∣∣νY (S̃)− νY (S)

∣∣∣. Let P̃i denote the set of points p̃ ∈ P̃ such

that p ∈ Pi, and define S̃i = S̃ ∩ P̃i. For each f ∈ F (constructed at the ith
iteration), since f and f ′

i are parallel, we have, for every p ∈ f , dist(p, f ′
i) =∥∥p∗ − P ∗

i

∥∥, so νf ′
i
(Pi) = νP ∗

i
(P ∗

i ) and νP ∗
i
(S∗

i ) = νf ′
i
(S̃i). By Corollary 4.2, S∗

i

is an ε-coreset of P ∗
i , so we have νP ∗

i
(P ∗

i ) ≤ (1 + ε)νP ∗
i
(S∗

i ), and thus

νf ′
i
(Pi) = νP ∗

i
(P ∗

i ) ≤ (1 + ε)νP ∗
i
(S∗

i )

≤ 2νP ∗
i
(S∗

i ) = 2νf ′
i
(S̃i).

(4.24)

We define R′ =
∑|F |

i=1 νf ′
i
(S̃i)/ |P | and, using (4.17) and (4.24), get

R =

|F |∑
i=1

νf ′
i
(Pi)

|P |
≤

|F |∑
i=1

2νf ′
i
(S̃i)

|P |
= 2R′.

By the construction of S∗
i we then have for every p ∈ S, similarly to (4.19),

∥p̃− p∥ ≤ ε ·max{R, dist(p̃, f ′
i)}

≤ 2ε ·max{R′, dist(p̃, f ′
i)}.

(4.25)

Similarly to (4.24), we have νf ′
i
(S̃i) ≤ 2νf ′

i
(Pi). Using (4.22), this yields

|F |∑
i=1

νf ′
i
(S̃i) ≤

|F |∑
i=1

2νf ′
i
(Pi) ≤ 2j+4 · νY (P ).

Using (4.25) and the last equation, we substitute in Lemma 4.1 P = S̃, Ci = f ′
i

(for 1 ≤ i ≤ |F |), Q = Y , and replace ε by 2ε, to obtain∣∣∣νY (S̃)− νY (S)
∣∣∣ ≤ 2j+5ενY (S̃). (4.26)

We will show below that for each j-flat f ∈ F we have∣∣∣νY (P̃f )− νY (S̃f )
∣∣∣ ≤ bj−1ενY (P̃f ) (4.27)

with probability at least 1− δ

2 |F|
. For the rest of the proof we assume that (4.27)

holds simultaneously for all f ∈ F , which happens with probability at least 1 −
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δ/2. We then have∣∣∣νY (P̃ )− νY (S̃)
∣∣∣ = ∣∣∣∣∣∑

f∈F

νY (P̃f )−
∑
f∈F

νY (S̃f )

∣∣∣∣∣
≤
∑
f∈F

∣∣∣νY (P̃f )− νY (S̃f )
∣∣∣

≤
∑
f∈F

bj−1ενY (P̃f ) = bj−1ενY (P̃ ).

(4.28)

By (4.23) we have

νY (P̃ ) ≤ (1 + 2j+4ε)νY (P ) ≤ 2j+5νY (P ).

Using this with (4.28) yields∣∣∣νY (P̃ )− νY (S̃)
∣∣∣ ≤ bj−1ενY (P̃ ) ≤ bj−12

j+5ενY (P ). (4.29)

Combining this with (4.23) we thus have∣∣∣νY (P )− νY (S̃)
∣∣∣ ≤ ∣∣∣νY (P )− νY (P̃ )

∣∣∣+ ∣∣∣νY (P̃ )− νY (S̃)
∣∣∣

≤ bj−12
j+6ενY (P ),

(4.30)

which implies

νY (S̃) ≤ νY (P ) + bj−12
j+6ενY (P ) ≤ bj−12

j+7νY (P ). (4.31)

By (4.26) together with the last equation we have,∣∣∣νY (S̃)− νY (S)
∣∣∣ ≤ 2j+5ενY (S̃) ≤ bj−12

2j+12ενY (P ).

Combining this and (4.30), we get

|νY (P )− νY (S)| ≤
∣∣∣νY (P )− νY (S̃)

∣∣∣+ ∣∣∣νY (S̃)− νY (S)
∣∣∣

≤ bj−12
j+6ενY (P ) + bj−12

2j+12ενY (P )

≤ bj−12
2j+13ενY (P ) = bjενY (P ),

(4.32)

by definition of bi, and under the two assumptions that (4.27) holds for every
f ∈ F , and also that (4.21) holds. Since each of these assumptions holds with
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probability at least 1−δ/2, S is a (k, j, bjε)-coreset for P with probability at least
1 − δ. By rescaling ε as in the statement of the theorem, the asserted property
follows.

It is left to prove that (4.27) holds with probability at least 1 − δ/(2 |F|). We
argue differently in case (i) and in case (ii).

Case (i): Here j = 1. Hence, the set S̃f in Line 18 is a weighted facilities (k, ε)-
coreset for P̃f (by Theorem 4.11). Let Y be an arbitrary set of k′ ≤ k lines and at
most k − k′ points in Rd. We then have (recall that b0 = 1)∣∣∣νY (P̃f )− νY (S̃f )

∣∣∣ ≤ ενY (P̃f ) = b0ενY (P̃f ),

with probability 1, which proves (4.27) for case (i).
Case (ii): Let M be a finite set of points that is contained in a (j+1)-flat in Rd. We
prove by induction on j that LINEAR-FACILITIES-CORESET(M, 1, j, ε, δ) returns
a (1, j, bjε)-coreset S for M , with probability at least 1 − δ. By substituting
M = P̃f , and replacing j by j − 1, and δ by δ/(2|F|), and by noting that in
this case S = S̃f , we obtain (4.27). Note that this claim is a restricted version
of the theorem itself, where in this version we only consider sets M that lie in a
(j + 1)-flat.

The base case j = 1 is an instance of case (i), whose proof (in general) has
just been completed. For j ≥ 2, inductively assume that LINEAR-FACILITIES-
CORESET(M, 1, j − 1, ε, δ/(2|F|)) returns a (1, j − 1, bj−1ε)-coreset S for M ,
with probability at least 1 − δ/(2F). By substituting M = P̃f and noting that in
this case S = S̃f , this proves (4.27) for the case where the dimension of Y is at
most (j − 1).

We need to argue, though, that (4.27) holds for every fixed j-flat Y , with
the same asserted probability. For this we make use of Lemma 4.16, given in
Section 4.5 below, which replaces Y by a lower-dimensional flat which preserves
distances to points in the flat containing M , up to a fixed multiplicative weight.

Let Y be a j-flat, and apply Lemma 4.15 with f and with g = Y . If Y
contains a translation of f then Y is a translation of f and (4.27) holds trivially
(all distances of points on f to Y are the same). We may thus assume that Y is not
a translation of f , so Lemma 4.15 applies, and yields a j′-flat Y ′ with j′ ≤ j − 1
and a weight w, such that, for each p ∈ f , dist(p, Y ) = w · dist(p, Y ′). Hence
νY (P̃f ) = w · νY ′(P̃f ) and νY (S̃f ) = w · νY ′(S̃f ).

Since (4.27) holds for Y ′, it also holds for Y , as claimed. Moreover, if the
success probability for f to satisfy (4.27) for all flats Y of dimension ≤ j − 1 is
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at least 1 − δ/2|F|, then this is also the probability for this to hold for all flats Y
of dimension ≤ j.

Now, since (4.27) holds for every j-flat Y , we can complete the proof of the
whole theorem for M and conclude that LINEAR-FACILITIES-CORESET(M, 1, j, ε, δ)
does indeed return a (1, j, bjε)-coreset for M with probability at least 1− δ. This
establishes the induction step and thus completes the proof of the claim. Conse-
quently, as already noted, (4.27) is established in general, and this in turn com-
pletes the proof of Theorem 4.13 (in the general non-restricted case).

For squared distances the proof is similar, if we use everywhere the cost func-
tion µ instead of ν, and use Lemma 4.1(ii) instead of Lemma 4.1(i).

4.5 Distances to j-Flats Can be Measured From (j − 1)-
Flats

In Chapter 2 we showed that the distance between a point p on a line to another
line is equal to the distance from p to a weighted point c, where the location of c
and its weight depend on the two lines, but not on p; see Fig. 2.3. We used this
observation to show that, given a set of points P on a line, a line query can be
replaced by a weighted point query.

In this section we generalize this observation, and prove that if p lies on a
∆-flat, any j-flat query can be replaced by a weighted (∆ − 1)-flat query. As in
the above case for lines, the weight and the location of the flat are independent
of the point p, but only depends on the two input flats; see Lemma 4.15 below.
This lemma is used in the proof of Lemma 4.13 for constructing coresets that
approximate the distances from points in Rd to a single j-flat. Lemma 4.15 was
recently used in [FMSW10], in order to construct smaller coresets (of size linear
or independent of d) for approximating a point set in a high-dimensional space by
a single j-flat.

In this section, a ∆-flat f is represented by a matrix F of size d × ∆, whose
columns are mutually orthogonal unit vectors, and by a column vector f0 ∈
Rd that represents the translation of f from the origin. Formally, we define
flat(F, f0) = f =

{
F · p+ f0 | p ∈ R∆

}
. The dimension of a ∆-flat f is de-

noted by dim(f) = ∆.

Theorem 4.14 (Singular Value Decomposition [Pea01]). Let A be any matrix of
size d ×∆, for some d ≥ ∆ ≥ 1. Then there are two unitary matrices Ud×d, and
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V∆×∆, and a matrix Dd×∆, such that the following properties hold.

(i) A = UDV T .

(ii) D is a diagonal matrix. That is, Di,j = 0 for every i ̸= j, 1 ≤ i ≤ d,
1 ≤ j ≤ ∆.

(iii) D1,1 ≥ · · · ≥ D∆,∆ ≥ 0.

Lemma 4.15 ([FL08]). Let f be a ∆-flat in Rd for some 1 ≤ ∆ ≤ d − 1. Let g
be a flat in Rd of any dimension such that g does not contain a translation of f .
Let (h,w) denote the flat h and the constant w > 0 which are the output of the
algorithm WEIGHTED-FLAT(f, g); see Fig 4.7. Then h is a flat of dimension at
most ∆− 1, and for each p ∈ f we have

dist(p, g) = w · dist(p, h).

Proof. We define all the variables in this proof in the same way as in Fig. 4.7. If
dim(g) ≤ ∆ − 1 then Lemma 4.15 trivially holds; see Line 1–2 in Fig. 4.7. We
therefore assume that dim(g) ≥ ∆ for the rest of this proof. By the assumption in
the lemma, g does not contain a translation of f , thus F ̸= GGTF , i.e, D1,1 > 0.
Therefore, h and hi, for 1 ≤ i ≤ ∆, are well defined; see Lines 12, 17, and 18 in
Fig. 4.7.

Since V is a unitary matrix, v1, . . . , v∆ are mutually orthogonal unit vectors.
Also, by construction, F TF is the ∆×∆ identity matrix. It follows that

fT
i fj = (Fvi)

T (Fvj) = vTi F
TFvj = vTi vj = 0, for 1 ≤ i < j ≤ ∆. (4.33)

We also have, for every 1 ≤ i ≤ ∆, ∥fi∥ = ∥Fvi∥ = ∥vi∥ = 1. By (4.33) and the
last equation, we conclude that f1, . . . , f∆ are mutually orthogonal unit vectors
that span flat(F, 0⃗). Put f ′ = flat(F, 0⃗), g′ = flat(G, 0⃗). Let p be any point on
f , and p′ = p − f0. Since p′ ∈ f ′, there is a vector α = (α1, . . . , α∆)

T ∈ R∆

such that p′ =
∑∆

i=1 αifi =
∑∆

i=1 αiFvi = FV α. For evert x ∈ Rd we have
proj(x, g′) = GGTx. Using Theorem 4.14, it follows that

dist(p′, g′) = ∥p′ − proj(p, g′)∥ =
∥∥p′ −GGTp′

∥∥
=
∥∥FV α−GGTFV α

∥∥ =
∥∥(F −GGTF )V α

∥∥
=
∥∥UDV TV α

∥∥ = ∥Dα∥ =

√√√√ δ∑
i=1

(Di,iαi)2.

(4.34)
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Algorithm WEIGHTED-FLAT(f, g)
Input. A ∆-flat f = flat(F, f0), for some 1 ≤ ∆ ≤ d− 1, and a flat g = flat(G, g0) of any dimension,

such that g does not contain a translation of f .
Output. A pair (h,w), where h is a flat of dimension at most ∆− 1, and w ≥ 0 is a constant,

such that for each p ∈ f we have dist(p, g) = w · dist(p, h).
1 if dim(g) ≤ ∆− 1
2 then return (g, 1)
3 (U,D, V )← A tuple of three matrices that satisfy Theorem 4.14,

with the d×∆ matrix A = F −GGTF

4 δ ←
∣∣∣{1 ≤ i ≤ ∆ | Di,i > 0

}∣∣∣
5 for i← 1 to ∆+ δ
6 if i ≤ ∆
7 then vi ← the ith column of V .
8 fi ← F · vi
9 else fi ← an arbitrary unit vector in Rd that is orthogonal to fj for all 1 ≤ j < i.

� There exists such a vector fi, as explained in the proof of Lemma 4.15.
10 for i← 2 to ∆
11 if i ≤ δ

12 then hi−1 ← fi ·

√
1−

(
Di,i

D1,1

)2

+ fi+∆−1 ·
Di,i

D1,1

13 else hi−1 ← fi
14 H ← A matrix of size d× (∆− 1) whose ith column is hi, for every 1 ≤ i ≤ ∆− 1.
15 for each i← 1 to d
16 if i ≤ δ

17 then yi ←
[
UT (f0 −GGTf0 − g0 +GGTg0)

]
i

Di,i

� For a vector x, we denote by [x]i the ith entry of x.

18 else yi ←
[
UT (f0 −GGTf0 − g0 +GGTg0)

]
i

D1,1

19 h0 = f0 −HHTf0 −
∆∑
i=1

yi(fi −HHTfi)− f∆+δ

√√√√ d∑
i=δ+1

y2i

20 h← flat(H, h0)
21 return (h,D1,1)

Fig. 4.7: The algorithm WEIGHTED-FLAT
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It follows that p′ ∈ f ′ ∩ g′ if and only if αi = 0 for every 1 ≤ i ≤ δ. Since
p′ =

∑∆
i=1 αifi, this implies dim(f ′ ∩ g′) = ∆ − δ. We assumed dim(g′) =

dim(g) ≥ ∆, thus

d ≥ dim(f ′) + dim(g′)− dim(f ′ ∩ g′) ≥ 2∆− (∆− δ) = ∆ + δ. (4.35)

Combining (4.33) and (4.34), we conclude that there are δ vectors
f∆+1, . . . , f∆+δ, such that f1, . . . , f∆+δ are mutually orthogonal unit vectors. This
proves the claim in the comment for Line 9 of the algorithm WEIGHTED-FLAT;
see Fig. 4.7.

It is left to prove that dist(p, g) = w · dist(p, h). Similarly to (4.34), we have

dist(p, g) = dist
(
p− g0, g

′) = ∥∥p− g0 −GGT (p− g0)
∥∥

=
∥∥p−GGTp− g0 +GGTg0

∥∥
=
∥∥f0 + p′ −GGT (f0 + p′)− g0 +GGTg0

∥∥
=
∥∥f0 + FV α−GGT (f0 + FV α)− g0 +GGTg0

∥∥
=
∥∥(F −GGTF )V α + f0 −GGTf0 − g0 +GGTg0

∥∥
=
∥∥UDV TV α + f0 −GGTf0 − g0 +GGTg0

∥∥
=
∥∥Dα + UT (f0 −GGTf0 − g0 +GGTg0)

∥∥ .

(4.36)

For every 0 ≤ i ≤ ∆, the vector fi−HHTfi = fi−proj(fi, H) is orthogonal
to H . Moreover, since f1 is “used” in the construction of H (see Lines 10–13 of
Fig. 4.7), f1 is orthogonal to H . Since f∆+δ is also orthogonal to H (for the same
reason), we have HHTh0 = proj(h0, H) = 0. It follows that

dist(p, h) = dist
(
p− h0, flat(H, 0⃗)

)
=
∥∥p− h0 −HHT (p− h0

∥∥
=

∥∥p− h0 −HHTp
∥∥ =

∥∥(f0 + p′)− h0 −HHT (p′ + f0)
∥∥

=

∥∥∥∥∥∥p′ −HHTp′ +
∆∑
i=1

yi(fi −HHTfi) + f∆+δ

√√√√ d∑
i=δ+1

y2i

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∆∑
i=1

αifi −HHT

∆∑
i=1

αifi +
∆∑
i=1

yi
(
fi −HHTfi

)
+ f∆+δ

√√√√ d∑
i=δ+1

y2i

∥∥∥∥∥∥
=

∥∥∥∥∥∥
∆∑
i=1

(αi + yi)
(
fi −HHTfi

)
+ f∆+δ

√√√√ d∑
i=δ+1

y2i

∥∥∥∥∥∥ . (4.37)
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By Lines 12–13, for every 1 ≤ i ≤ ∆ there is γi ∈ R such that HHTfi = γifi.
Also, HHTf1 = 0. Using (4.33), we thus have that f2 − HHTf2, . . . , f∆ −
HHTf∆, f1, f∆+δ are mutually orthogonal vectors. Equation (4.37) can thus be
rewritten as

dist(p, h) =

∥∥∥∥∥∥(α1 + y1)f1 +
∆∑
i=2

(αi + yi)(fi −HHTfi) + f∆+δ

√√√√ d∑
i=δ+1

y2i

∥∥∥∥∥∥
=

√√√√(α1 + y1)2 ∥f1∥2 +
∆∑
i=2

(αi + yi)2
∥∥fi − hi−1hT

i−1fi
∥∥2 + ∥f∆+δ∥2

d∑
i=δ+1

y2i

=

√√√√(α1 + y1)2 +
∆∑
i=2

(αi + yi)2
∥∥fi − hi−1hT

i−1fi
∥∥2 + d∑

i=δ+1

y2i . (4.38)

Fix i for some 2 ≤ i ≤ ∆, and define x = Di,i/D1,1. Hence, hi−1 = fi ·√
1− x2 + fi+∆−1 · x. It follows that∥∥fi − hi−1h

T
i−1fi

∥∥ =
∥∥∥fi − hi−1[(

√
1− x2fi + xfi+∆−1) · fi]

∥∥∥
=
∥∥∥fi −√1− x2 · hi−1

∥∥∥
=
∥∥∥fi −√1− x2 · (fi

√
1− x2 + fi+∆−1 · x)

∥∥∥
=
∥∥∥fi − (1− x2) · fi − fi+∆−1 · x

√
1− x2

∥∥∥
=
∥∥∥fi · x2 − fi+∆−1 · x

√
1− x2

∥∥∥
=
√
x4 + x2(1− x2) = x =

Di,i

D1,1

.

Substituting the last equation in (4.38) for every 2 ≤ i ≤ ∆, and using the values
yi as in Lines 17–18 of Fig 4.7, we get

D1,1 · dist(p, h) = D1,1

√√√√(α1 + y1)2 +
∆∑
i=2

(αi + yi)
2

(
Di,i

D1,1

)2

+
d∑

i=δ+1

y2i

=

√√√√ ∆∑
i=1

(Di,iαi +Di,iyi)
2 +

d∑
i=δ+1

(D1,1yi)2

=
∥∥Dα + UT (f0 −GGTf0 − g0 +GGTg0)

∥∥ .
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Combining this with (4.36) yields dist(p, g) = D1,1 · dist(p, h). Since w = D1,1

by Line 21 of WEIGHTED-FLAT, this concludes the proof of the lemma.



Chapter 5

Conclusion and Open Problems

In this thesis we described approximation algorithms and the construction of core-
sets for projective clustering. The main open problem in this field is to compute
a (1 + ε)-approximation to this problem (with exactly k j-flats) in linear or near-
linear time in n where k, j, d > 1 are constants. This is unknown for either the
sum, sum of squares, or maximum of the distances from the input points to the
output flats, and this is the case even for d = 3. The only exception is the result
of Har-Peled [HP04b] for d = 3, j = k = 2, where the cost is the distance of the
farthest point from the two output planes.

In Theorem 3.1 we suggested a (bicriteria) 2O(j)-approximation for this prob-
lem using poly(log n) j-flats. A step towards an efficient PTAS for the projec-
tive clustering problem would be to reduce these two criteria. Our algorithm
uses random sampling and its properties that relate to ε-approximation and ε-nets
(see [HW87]). A natural question would be to de-randomize the algorithm using
deterministic ε-approximations for the corresponding problems, and to generalize
the algorithm to other approximation problems.

In practical applications, one usually assume that there are outliers in the data.
That is, for a given m ≥ 1, we want to minimize the sum of distances (or the
other cost functions) from the input points to the output flats, while ignoring the
m farthest points from the flats. Currently, results in this direction are known only
for the case of points (j = 0); see [CKMN01, Che08].

Although it is not clear whether a (1 + ε)-approximation for the projective
clustering problem with k, j > 1 can be computed in near-linear time, it was
proved that there is no coreset for this problem. Here, “coreset” means a small
(sub-linear) set of points that approximates the sum of distances (or the other
cost functions) to any query set of k flats. However, it is still an open problem

70
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whether there is a way to represent the set of n input points using O(n) bits so
that such a query can be answered in sub-linear time, or to construct a coreset
that approximates a restricted class of k j-flats. Lower bounds for this kind of
questions are usually obtained using tools from communication and information
theory (where no assumptions are made on the “type” of the ouput coreset, but
only on its representation length).

In this work we constructed coresets for a static set of n points. Open prob-
lems are whether such a coresets can be constructed for a dynamic (under inser-
tion/deletions) or kinetic (moving) set of points. For the case k = 1, recent results
provide construction of coresets of size only linear in d [FMSW10, DDH+08]. It
is still an open problem to compute a coreset for a set of k lines (j = 1) in high
dimensional space, or to solve the corresponding optimization problems.
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