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ABSTRACT
A coreset of a point set P is a small weighted set of points that cap-
tures some geometric properties of P . Coresets have found use in
a vast host of geometric settings. We forge a link between coresets,
and differentially private sanitizations that can answer any number
of queries without compromising privacy. We define the notion of
private coresets, which are simultaneously both coresets and differ-
entially private, and show how they may be constructed.

We first show that the existence of a small coreset with low gen-
eralized sensitivity (i.e., replacing a single point in the original
point set slightly affects the quality of the coreset) implies (in an
inefficient manner) the existence of a private coreset for the same
queries. This greatly extends the works of Blum, Ligett, and Roth
[STOC 2008] and McSherry and Talwar [FOCS 2007].

We also give an efficient algorithm to compute private coresets
for k-median and k-mean queries in ℜd, immediately implying
efficient differentially private sanitizations for such queries. Fol-
lowing McSherry and Talwar, this construction also gives efficient
coalition proof (approximately dominant strategy) mechanisms for
location problems.

Unlike coresets which only have a multiplicative approximation
factor, we prove that private coresets must exhibit additive error.
We present a new technique for showing lower bounds on this er-
ror.
Categories and Subject Descriptors: F. [Theory of Computa-
tion]: F.2 [Analysis of Algorithms and Problem Complexity]: F.2.2
[Nonnumerical Algorithms and Problems]: Geometrical problems
and computations.
General Terms: Algorithms, Security, Theory.
Keywords: Coresets, differential privacy, privacy.

1. INTRODUCTION
The notion of Differential privacy [18] has emerged in a recent

line of work on private data analysis that seeks a rigorous treatment
of privacy and its consequences (see [15, 22, 20, 7, 18, 17, 16, 40,
19, 37, 5, 41, 8, 6, 21, 35]). It captures a very strong notion of
privacy: irrespective of what the attacker seeks to learn and of the
attacker’s prior knowledge, the attacker learns very little about any
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specific individual. This is formalized by requiring that for any two
databases that differ only on the details of one individual, the prob-
ability distribution on the outputs of a differentially private analysis
are very similar, i.e., the probability of any specific outcome differs
by a multiplicative factor very close to one.

Much of the work on differential privacy is in an interactive sce-
nario where a central authority (called a curator) answers a small
number of specific queries. In our scenario, one would like to
publish a “sanitized” version of the data, the publication of which
preserves differential privacy. Such a database could be queried
ad infinitum without impacting privacy. A query to the sanitized
database should return (approximately) the same answer as the same
query on the original database.

In general, it is impossible to produce differentially private san-
itized databases (see [15, 18, 19, 21] ). Therefore, the interesting
question is ‘‘For what query classes can we construct useful sani-
tized databases?”. We show that it is possible to construct differ-
entially private sanitized databases for a large class of important
problems in metric spaces.

In particular, we consider k-median queries in which the query
is a set Q of k points and the answer is the sum of the distances of
each point in the database to its closest point in Q. We give effi-
cient constructions of sanitized databases for k-median queries in
low dimensional spaces that we term private coresets. These have
direct applications in further analysis of the data (e.g., clustering),
geometric optimization problems (e.g., facility location), etc.

Private Coresets.
In computational geometry, a coreset for a point set P is a small

(possibly weighted) point set C that is useful in computing approx-
imate solutions for queries on P . Coresets have been the subject
of many recent papers [29, 34, 4, 3, 32, 30, 3, 10, 1, 31, 23, 11,
25] and several surveys [1, 14]. Coresets have been used to great
effect for a vast host of geometric and graph problems, including
k-median [11, 25, 31, 32], k-mean [25, 31, 32], k-center [33],
subspace approximation [23, 30, 34], shape fitting [2], k-line me-
dian [23], k-line center [33, 34], moving points [29], max TSP [27],
minimum spanning tree [26, 13], maximal margin learning, etc.
Coresets also imply streaming algorithms for many of these prob-
lems [1, 25, 32, 27, 36, 26, 9].

We define private coresets as coreset schemes that also preserve
differential privacy. As our main running example, we focus on k-
median queries (i.e., the sum distances from P to some k points).
Our techniques extend to k-mean queries (sum of squares of the
distances), and to other problems.

In the original context of computational geometry, privacy is not
a consideration, and the entire justification for the study of coresets
is because of their small size (small number of points). Small core-
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sets imply efficient approximation algorithms for some geometric
optimization problems. In contrast, a private coreset would be of
value even if it’s size exceeded that of the original set1. Moreover,
a private coreset can be reduced in size, without much compromise
in the quality of approximation, by applying a (traditional — non
private) coreset scheme to it. This has no privacy implications.

Another distinction between (traditional) coresets and private core-
sets is that (traditional) coresets typically give a multiplicative ap-
proximation (a 1 ± ǫ factor), we show that private coresets require
an additive error term (β). The additive error grows at least linearly
with the diameter of the metric space from which the points are
taken. Thus, we restrict our study to point sets taken from a metric
space of bounded diameter (e.g., the unit ball). The question of how
β grows a a function of other problem parameters (e.g., dimension)
is further discussed herein.

The existence of private coreset schemes for many problems of
interest greatly extends the set of problems for which differentially
private sanitized databases exist, and in particular, the recent gen-
eral release mechanism of [8] for low VC dimension range space
queries2.

1.1 Our Contributions

1. From (non-private) coresets to private coresets: It is in-
tuitively appealing to think that because a coreset is much
smaller than the point set it was computed for, it also pre-
serves privacy. However, many coreset schemes output points
that are contained in the original point set, and hence are not
differentially private. Our first result shows, however, that
this intuition is not completely flawed: the mere existence of
small coresets for a family of queries immediately implies
private coresets for these queries (the resulting schemes are
not necessarily efficient). This construction is similar to the
private PAC learner of [35] and the general release mecha-
nism of [8], and uses the exponential mechanism of [37].

2. Efficient private coresets: Our main technical contribution
is a framework for constructing private coresets efficiently.
Informally, we reduce the problem of constructing private
coresets for k-median queries to the construction of a particu-
lar type private coresets for 1-median (that we call z-centered
private 1-median coresets) and the construction of a private
ǫ-net.

3. A lower bound on the additive error of private coresets:
We present a new technique for proving lower-bounds on the
accuracy of differentially private schemes. In our context of
private coresets, this techniques yields a lower bound on the
additive error β of coresets for k-median queries in the d-
dimensional Euclidean space.

Potential Applications.

1. Differentially private clustering: Our work suggests a very
effective approach to private clustering. After applying the
private coreset scheme on the input set P and obtaining a
coreset C, any clustering algorithm/heuristic for k-median
can be applied on C. In particular, it is possible to further
reduce the size of C by applying a (not necessarily private)

1This may actually be the case for our construction.
2The results of [8] can be viewed as private coresets for count
queries for range families that exhibit low VC dimension.

coreset scheme to obtain a coreset with a very small (typ-
ically a constant which depends on 1/ε and d) number of
points C′, and then compute the optimal clustering for C′.
As C′ is very small, the algorithm for computing the optimal
clustering may be allowed to run in super-polynomial time.
This approach is very different from previous work on the
construction of differentially private clustering algorithms [7,
40] which are more restricted. Namely, [7] present a pri-
vate implementation of a specific heuristic (Lloyd’s heuris-
tic) with limited guarantee on the outcome, and the construc-
tion does not readily adapt to accommodate other heuristics
or algorithms. The algorithm in [40] is based on the sam-
ple and aggregate framework, and a meaningful outcome is
obtained only if repeated applications of the underlying clus-
tering algorithm on samples taken at random from the input
point set result in consistent outcomes.

2. Comparing alternatives: Being a non-interactive sanitiza-
tion scheme, private coresets allow issuing many queries with-
out a further effect on privacy and hence enable comparing
alternatives. For instance, it is possible to use a private core-
set to experiment with possible hospital locations (say, try-
ing to minimize the sum of distances from individual to their
closest hospital). This problem is not the same as clustering,
as location may be subjected to restrictions (e.g., the hospi-
tal should not be built in a restricted access area such as a
military base).

3. Constructing approximately truthful mechanisms: Mc-
Sherry and Talwar [37] prove a connection between incentive
compatible mechanisms and differential privacy: if differen-
tial privacy is preserved then small coalitions of manipula-
tors reporting false information cannot significantly change
their utility. The constructions in [37] utilize the exponen-
tial mechanism, and hence the resulting mechanisms are not
computationally efficient.
Private coresets can be used to give coalition proof (approxi-
mately) incentive compatible mechanisms. In particular, our
constructions directly yield mechanisms without money for
location problems, that are efficiently computable.

4. Private Streaming Algorithms: Coresets have been used to
derive streaming algorithms (see, e.g., [32]) and the usage of
private coresets can similarly lead to private streaming algo-
rithms.

1.2 Related Work
Several papers give non-interactive differentially private saniti-

zations [20, 38, 5, 8]. Most closely related to our work are the
results of Blum, Ligett, and Roth [8] who prove the existence of dif-
ferentially private “sanitized” databases for range queries. Range
queries are of the form “what is the number of individuals within a
range?” where the range space from which the queries are taken is
of low VC dimension. As [8] make use of the exponential mecha-
nism of [37] this is not an efficient construction.

We use techniques introduced for constructing (non-private) core-
sets for k-median. Such coresets were introduced by Har-Peled and
Mazumdar [32], and successive improvements were given in [31,
11]. Our construction is strongly related to that of [32, 31].

Another tool we use is “bi-criteria” approximations. Specifically,
the bi-criteria construction of Feldman et al. [24]. We show how
private ǫ-nets can be used to construct a differentially private ver-
sion of the construction in [24].

362



2. DEFINITIONS
Throughout this paper we consider algorithms that take as input a

set P of n points in some metric space M, usually a subset of the d-
dimensional Euclidean space. We note that we will actually allow
several points to have the same coordinates, hence our input sets
may actually be multi-sets. We denote the distance between two
points p, p′ by dist(p, p′) and define the distance between a point
p and a set of points P to be dist(p, P ) = minp′∈P dist(p, p′).
The difference between two multi-sets of n points P and P ′ is the
number of points in P that need to be modified (i.e., moved) to
get the set P ′, i.e., SD(P, P ′) = |P \ P ′| = n − |P ∩ P ′|. If
SD(P, P ′) = 1 we say that P and P ′ are neighboring. As our
privacy criteria we use the following notion of differential privacy
put forward by [18]:

DEFINITION 2.1. An algorithm A preserves α-differential pri-
vacy, if for all neighboring P, P ′ and for all sets of possible out-
comes C,

Pr[A(P ) ∈ C] ≤ eα · Pr[A(P ′) ∈ C],

where the probability is taken over the randomness of A.

See Appendix A for basic properties of differential privacy.
For the problems that we consider a query Q is specified by a set

of k points. We denote by Q the collection of all possible queries,
and by Q(P ) the output of a query Q on a point set P . Concrete
examples are k-median, k-mean, and k-center queries, which re-
turn the sum of distances Q(P ) =

∑

p∈P dist(p, Q), the sum of
the squares of the distances Q(P ) =

∑

p∈P (dist(p, Q))2, and the
maximum distance Q(P ) = maxp∈P dist(p, Q), respectively.

Our definition of a coreset scheme deviates from the usual defi-
nition in the literature:

• We allow both additive and multiplicative approximation, with
parameters β, and ǫ, respectively (whereas, only multiplica-
tive approximation is usually considered); We later show that
this is unavoidable for private coresets.

• We specify a bound δ on the probability that the scheme
fails3to achieve the required approximation. This is required
for private coresets because standard techniques of reducing
failure probability (repeating the computation several times)
are not directly applicable when privacy is a concern (see
Lemma A.1 in Appendix A).

• Atypically (for coresets), the weight of a point in the coreset
may be negative.

DEFINITION 2.2. An (ǫ, β, δ) coreset scheme A for a class of
queries Q, is an algorithm that gets as input a set P of n points
and outputs a set A(P ) = C of weighted points such that with
probability at least 1− δ over the randomness of A, for every Q ∈
Q:

(1 − ǫ) · Q(P ) − β ≤ Q(A(P )) ≤ (1 + ǫ) · Q(P ) + β.

The set C is called a coreset.

Combining definitions 2.1 and 2.2, we can now define private
coresets:

DEFINITION 2.3. An (α, ǫ, β, δ)-private coreset scheme for a
class of queries Q is an algorithm A satisfying:
3See also traditional coresets in [11, 27, 26] that also define such
δ (for a different reason).

• Privacy: Algorithm A preserves α-differential privacy; and

• Utility: Algorithm A is an (ǫ, β, δ) coreset scheme for the
class of queries Q.

We note that while the main objective in (non-private) coresets is
minimizing the number of points in the coreset C = A(P ), this is
not necessarily the case with private coresets – we actually do not
mind large coresets as long as α-differential privacy is preserved.
We note however, that it is possible to construct a private coreset
scheme with number of points that is comparable to that of non-
private scheme by first applying a private coreset scheme on the
input, and then applying on its outcome a (regular, non-private)
coreset scheme where the number of points is small. By Part 1 of
Lemma A.1 the resulting algorithm is also a private coreset scheme.

We end this section with a simple consequence of Definition 2.3
– a lower bound demonstrating that every private coreset scheme
for k-median must exhibit additive approximation error which is
proportional to the diameter of the input domain (all omitted proofs
are deferred to the full version of this paper). A lower bound which
increases with the dimension is shown in Section 6, where we al-
ready bound the diameter of the metric space.

CLAIM 2.4. Let A be an (α, ǫ, β, δ)-private coreset scheme for
k-median queries where the points P reside in a Euclidean space
of diameter Λ. Then, β = Ω(Λ ln(1/δ)/α).

Similarly, we get β = Ω(Λ2 ln(1/δ)/α) for k-mean and β =
Ω(Λ) for k-center. We will hence restrict the input of all our con-
structions to reside in a subset of the metric space M of bounded
diameter (typically the unit ball). We emphasize, however, that we
do not restrict the query set Q.

Before we get to our constructions, we note that the lower bound
on β for k-center renders coresets for k-center to be of very limited
interest (if at all): if the point sets P are taken from a subspace
of diameter Λ then varying P can cause a change of at most Λ in
Qctr(P ), which is of the same magnitude as β. This is not the case
for k-median and k-mean, as varying P can cause a change of nΛ
and nΛ2 in Qmed(P ) and Qmean(P ) respectively.

3. AN INFORMATION THEORETIC
UPPER BOUND

We begin with a result that is similar in spirit to the private PAC
learner of [35] and the general release mechanism of [8]. It cap-
tures the intuition that the existence of small (traditional) coresets
implies private coresets (of related parameters). For this section,
point sets P and coresets C are located in the unit sphere on a d-
dimensional grid of granularity polynomial in n = |P |4.

CLAIM 3.1. If there exists a (ǫ, β, δ) coreset scheme A for k-
median that on a set P of n points in the d-dimensional unit sphere
outputs a coreset C consisting of m = m(n) points, then there
exists a (α, ǫ, β′, δ′) private coreset scheme A′ for k-median where
β′ = β + O ((md log n + log(1/δ′))/α).

The proof of Claim 3.1 employs the exponential mechanism of [37],
and hence produces a coreset scheme that may be inefficient to
compute.

THEOREM 3.2 ([11]). There exists a coreset scheme for k-
median in the d-dimensional Euclidean space that outputs coresets
of size O(( k

ǫ
)2 log n(d log(1/ǫ) + log k + log log n)).

4Moving the points to this grid introduces an additive error that is
significantly smaller than the additive error inherent in the scheme.
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Applying Claim 3.1 to the above coreset, we get:

COROLLARY 3.3. There exists a (α, ǫ, β, δ) private coreset scheme
for k-median in the d-dimensional Euclidean space where the ad-
ditive error β is

O

(

k2 log2 n

αǫ2
d (d log(1/ǫ) + log k + log log n) +

log(1/δ)

α

)

.

The scheme is not necessarily efficient.

Corollary 3.3 shows that (ignoring computation costs) it is pos-
sible to construct private coresets schemes for k-median with ad-
ditive error that grows polynomially with d. This matches quali-
tatively our lower bound on β (see Section 6), and sets a goal for
efficient constructions.

4. EFFICIENT PRIVATE CORESETS FOR
k-MEDIAN QUERIES

We describe an efficient algorithm for private coresets that ap-
proximate k-median queries for sets P of n points in ℜd, i.e., all
queries of the form

Q(P ) =
∑

p∈P

dist(p, Q), where Q ⊂ ℜd, |Q| ≤ k. (1)

The coresets we produce are weighted sets of points, C, where for
every point c ∈ C, we denote its weight by w∗(c) ∈ ℜ (the w∗(c)
notation is to indicate that the exact weight w(c) has been modified
for privacy). Analogously to Eq.(1), we define

Q(C) =
∑

c∈C

w∗(c) · dist(c, Q).

For a set of points P , integer k ≥ 1, we define opt(P, k) to
be the minimum of Q(P ) for sets Q of k points in ℜd (this is
often referred to as the value of an optimal solution of the k-median
problem, with an input P ). That is

opt(P, k) = min
Q ⊂ ℜd

|Q| = k

Q(P ) = min
Q ⊂ ℜd

|Q| = k

∑

p∈P

dist(p, Q). (2)

z-Centered Private Coresets.
Our basic building block is a z-centered (α, ǫ, β, δ)-private 1-

median coreset for a set of points P on a line in ℜd. This construct
preserves α-differential privacy and satisfies the following prop-
erty:

DEFINITION 4.1. A z-centered (α, ǫ, β, δ)-private 1-median core-
set scheme A is an α-differentially private algorithm that takes as
input a set P ⊂ ℜd of n points and outputs a set of weighted points
A(P ) such that with probability at least 1−δ over the randomness
of A, for every arbitrary (finite) set of points Q in ℜd,

|Q(P ) − Q(A(P ))| ≤ ǫ ·
∑

p∈P

dist(p, z) + β(ǫ, α, δ).

We remark that taking z to be the mean of the points of P (plus
some appropriate noise for diffential privacy) results in a 1-median
private coreset. We also remark that the query, Q, for a z-centered
private 1-median coreset, may be an arbitrary set of points in ℜd

and is not restricted to being a single point in ℜ.
We first construct a z centered 1-median private corset for points

P ⊂ ℜ (i.e., points on the real line), and then use this construction
to build a z-centered 1-median private coreset for P ⊂ ℜd, where

d > 1 is a constant (Section 4.2). This is done by projecting P
onto a small set of lines and taking the union of multiple z-centered
private 1-median coresets for these projections.

Private Bi-Criteria Approximation.
Our second tool is a private bi-criteria approximation. Infor-

mally, the outcome of a bi-criteria approximation is a small collec-
tion of points B ⊂ ℜd such that

∑

p∈P (p, B) is (roughly) bounded
by opt(P, k). More formally,

DEFINITION 4.2. A (α, c, β, δ)-private bi-criteria approxima-
tion scheme B of opt(P, k) is an α-differentially private algorithm
that takes as input a set P ⊂ ℜd of n points on the real line and
outputs a (small) set of points B(P ) such that with probability at
least 1 − δ over the randomness of B,

∑

p∈P

dist(p,B(P )) ≤ c · opt(P, k) + β.

Note that unlike in coresets (and z-centered 1-median coresets) the
requirement is only for the set B(P ), and furthermore, we do not
require that

∑

p∈P dist(p, B) be bounded from below. In fact it
could be much smaller than opt(P, k). We show how to construct
private bi-criteria approximations in Section 5.

Overview of the Construction.
Differentially private k-median coresets, for P ⊂ ℜd, are con-

structed in Section 4.3 as follows:

1. Let B = {bi} (called “bi-criteria centers”) where |B| ≈
kd log n be a private bi-criteria approximation on P .

2. Consider the Voronoi regions induced by the points in B.
They partition P into |B| subsets, P1, P2, . . . , P|B|, some of
which may be empty.

3. For every Pi (even if empty) we build a bi-centered private
1-median coreset. The final coreset is the union of these core-
sets.

NOTATION 4.3. Our constructions use the noisy version of many
calculations. To avoid confusion, we use the notation Y (v) to de-
note the random variable corresponding to the noise added to vari-
able v.

4.1 An Efficient z-Centered Private 1-Median
Coreset for Points on the Line

Given a set of points P ⊂ [0, 1] and a point z ∈ ℜ, we con-
struct a z-centered private 1-median coreset for P . We note that
for this construction the parameter z is a public, i.e., the privacy
requirement applies to the point set P but not to z.

Denote by n the number of points in P and let n0 ≥ n. Consider
the following sequence of exponentially growing intervals around
z. Define

r0 =
ln(1/δ)

αn0
and t =

⌈

log1+ǫ

(

1

r0

)⌉

, (3)

where 0 < ǫ ≤ 1 is our multiplicative error parameter. Consider
the exponentially growing sequence ri = (1 + ǫ)i · r0 where 1 ≤
i ≤ t and define the points c+

0 = c−0 = z, c+
i = z + ri−1,

and c−i = z − ri−1 where 1 ≤ i ≤ t. Define the intervals I+
i =

(c+
i−1, c

+
i ] and I−

i = [c−i , c−i−1). Note that the intervals are disjoint
and r0 · (1+ ǫ)t = 1, hence, every point of P lies in exactly one of
these intervals. We take the coreset C, to be the point z, the right
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endpoints of the I+
i intervals, C+ = {c+

i } and the left endpoints
of the I−

i intervals, C− = {c−i }.
We now define the weights for the points in C. We use the no-

tation w(c) for the “exact” weight of point c ∈ C and w∗(c) for
its “noisy” weight. Let w(c+

0 ) = w(c−0 ) = w(z) = 0 and, for
1 ≤ i ≤ t, let w(c+

i ) = |P ∩ I+
i | and w(c−i ) = |P ∩ I−

i |. As-
sign the noisy weights w∗(c+

i ) = w(c+
i ) + Y (c+

i ) and w∗(c−i ) =
w(c−i ) + Y (c−i ) for 1 ≤ i ≤ t where the random noise variables
Y (·) are chosen i.i.d. from Lap( 1

α
) (See definition A.3). Finally,

define Y (c+
0 ) = −∑t

i=1 Y (c+
i ), Y (c−0 ) = −∑t

i=1 Y (c−i ), and
assign the noisy weight for the point z as w∗(z) = Y (c+

0 )+Y (c−0 ).
The private z-centered coreset consists of the set C and the weights

w∗(c). We emphasize that w∗(z) is published as part of the the pri-
vate coreset but Y (c+

0 ), Y (c−0 ) are not, as we refer to Y (c+
0 ) and

Y (c−0 ) only in the analysis. The properties of this construction are
summaized in Claim 4.4 (follows from Corollary A.7) and Theo-
rem 4.5.

CLAIM 4.4. The algorithm above preserves 2α-differential pri-
vacy.

THEOREM 4.5. For any set P = {p1, p2, . . . , pn} ⊂ [0, 1],
with probability at least 1 − O(δ) for every query Q ⊂ ℜd,

|Q(P ) − Q(C)| = ǫ ·
∑

p∈P

dist(p, z) + O(1) · ln(1/δ)

αǫ
.

PROOF. Our analysis5 bounds the difference between the esti-
mated cost of a query and its real cost. We begin by splitting this
difference into two sums and will then bound each sum separately.
Informally, the first of these sums (Eq. (4)) is similar to a ‘stan-
dard’ error term that appears in the analysis of many coresets, and
the second (Eq. (5)) is an error term resulting from the noisy count
of the number of points that fall within each interval.

|Q(P ) − Q(C)|

=

∣

∣

∣

∣

∣

∑

p∈P

dist(p, Q) −
∑

c∈C

w∗(c) · dist(c, Q)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

p∈P

dist(p, Q) −
∑

c∈C

w(c) · dist(c, Q)

−
∑

c∈C

Y (c) · dist(c, Q)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∑

p∈P

dist(p, Q) −
∑

c∈C

w(c) · dist(c, Q)

∣

∣

∣

∣

∣

(4)

+

∣

∣

∣

∣

∣

∑

c∈C

Y (c) · dist(c, Q)

∣

∣

∣

∣

∣

. (5)

Deriving an upper bound on Eq. (4).
For p ∈ P , let c(p) be the right (resp. left) endpoint of the inter-

val I+
i (resp. I−

i ) that contains p. We can now express
∑

c∈C w(c)·

5A better bound can be proved for a single specific query. Details
are deferred to the full version.

dist(c, Q) as a sum over points in P :6

∣

∣

∣

∣

∣

∑

p∈P

dist(p, Q) −
∑

c∈C

w(c) · dist(c, Q)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

p∈P

dist(p, Q) −
∑

p∈P

dist(c(p), Q)

∣

∣

∣

∣

∣

≤
∑

p∈P

|dist(p, Q) − dist(c(p), Q)| .

By the triangle inequality we have that

dist(p, Q) − dist(c(p), Q) ≤ dist(c(p), p), and (6)
dist(c(p), Q) − dist(p, Q) ≤ dist(c(p), p). (7)

By equations (6) and (7) we get that |dist(p, Q) − dist(c(p), Q)| ≤
dist(c(p), p). Also, by construction, for p /∈ I+

1 ∪I−
1 , dist(c(p), p) ≤

ǫ · dist(p, z). Hence,
∣

∣

∣

∣

∣

∑

p∈P

dist(p, Q) −
∑

c∈C

w(c) · dist(c, Q)

∣

∣

∣

∣

∣

≤
∑

p∈P

dist(c(p), p)

≤
(

w(c+
1 ) + w(c−1 )

)

· r0 +
∑

p∈P\I+
1

\I−

1

dist(c(p), p)

≤ n · ln(1/δ)

αn0
+

∑

p∈P

ǫ · dist(p, z)

≤ ln(1/δ)

α
+

∑

p∈P

ǫ · dist(p, z). (8)

Deriving an upper bound on Eq. (5).
We begin by splitting the sum into sums over positive and nega-

tive intervals. We analyze the sum over positive intervals, the neg-
ative intervals are analogous.
∣

∣

∣

∣

∣

∑

c∈C

Y (c) · dist(c, Q)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

t
∑

i=0

Y (c+
i ) · dist(c+

i , Q)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

t
∑

i=0

Y (c−i ) · dist(c−i , Q)

∣

∣

∣

∣

∣

.

Noting that
∑t

i=0 Y (c+
i ) = 0 (by our choice of Y (c+

0 )) we get
∣

∣

∣

∣

∣

t
∑

i=0

Y (c+
i ) · dist(c+

i , Q)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

t
∑

i=0

Y (c+
i ) · dist(c+

i , Q) −
t

∑

i=0

Y (c+
i ) · dist(z, Q)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

t
∑

i=1

Y (c+
i ) · (dist(c+

i , Q) − dist(z, Q))

∣

∣

∣

∣

∣

≤
t

∑

i=1

∣

∣Y (c+
i )

∣

∣ ·
∣

∣dist(c+
i , Q) − dist(z, Q)

∣

∣

≤
t

∑

i=1

∣

∣Y (c+
i )

∣

∣ dist(c+
i , z) =

t
∑

i=1

∣

∣Y (c+
i )

∣

∣ (1 + ǫ)ir0,

6Note that since w(z) = 0 it does not affect the sum.
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where we omitted the case of i = 0 from the last sum as c+
0 = z.

We use the following lemma:

LEMMA 4.6. Let S =
∑t

i=1 Yi ·(1+ǫ)i be the weighted sum of
t random variables Yi distributed i.i.d. according to the exponential
distribution with mean 1/α. Then

Pr

[

|S| ≥ 8 ln(
1

δ
) · (1 + ǫ)t

αǫ

]

≤ 2δ.

We get that
∣

∣

∣

∣

∣

t
∑

i=0

Y (c+
i ) · dist(c+

i , Q)

∣

∣

∣

∣

∣

≤ 8 ln(
1

δ
) · (1 + ǫ)t

αǫ
· r0 =

8 ln( 1
δ
)

αǫ
,

where the last equality is by substituting (1 + ǫ)t = 1/r0 per
Eq. (3). Combining this bound and Eq. (8) we get that with proba-
bility 1 − O(δ)

∣

∣

∣

∣

∣

∑

p∈P

dist(p, Q) −
∑

c∈C

w∗(c) · dist(c, Q)

∣

∣

∣

∣

∣

= O(1) · ln(1/δ)

αǫ
+ ǫ · cost(P, z)

as required.

4.2 An Efficient z-Centered Private 1-median
Coreset for points in ℜd

Using our construction from the previous section it is possible to
construct z-centered private 1-median coresets for point sets taken
from the d-dimensional unit ball. We sketch the scheme for d = 2,
that can be easily generalized to any constant d.

We draw t = O(1/ǫ) lines L1, . . . , Lt through z, that divide the
plane into into O(1/ǫ) equal-sized sections, centered at z. Given
the set P of points taken from the unit circle, we first construct a
set P ′ that for every p ∈ P contains the projection ℓ(p) of p on
its nearest line (ties broken arbitrarily). Note that for every p ∈ P ,
this projection incurs a movement dist(p, ℓ(p)) = O(ǫ) · dist(p, z).

For each line Li, we apply the algorithm presented in the previ-
ous section to construct a z-centered private 1-median coreset for
the points in P ′

i = P ′ ∩ Li, taking the privacy parameter to be
α, the upper bound on the number of points n0 to be |P |, and the
failure probability to be δ/t = O(ǫδ). Denote the coreset output
for line Li by Ci. Our z-centered coreset is the union C1, . . . , Ct.

With probability at least 1 − δ, all the underlying constructions
succeed. We analyze the approximation quality of the resulting
coreset if this is the case. For every query Q ⊂ ℜd we have
∣

∣

∣

∣

∣

∑

p∈P

dist(p, Q) −
∑

c∈C

w∗(c) · dist(c, Q)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∑

p∈P

dist(p, ℓ(p))

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∑

p′∈P ′

dist(p′, Q) −
∑

c∈C

w∗(c) · dist(c, Q)

∣

∣

∣

∣

∣

∣

.

The first term is bounded by noting that the total displacement from
P to P ′ is low:

∑

p∈P

|dist(p, ℓ(p))| ≤
∑

p∈P

O(ǫ) · dist(p, z) .

For the second term, we use our guarantees on z-centered coresets:
∣

∣

∣

∣

∣

∣

∑

p′∈P ′

dist(p′, Q) −
∑

c∈C

w∗(c) · dist(c, Q)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

t
∑

i=1





∑

p′∈P ′

i

dist(p′, Q) −
∑

c∈Ci

w∗(c) · dist(c, Q)





∣

∣

∣

∣

∣

∣

≤
t

∑

i=1

∣

∣

∣

∣

∣

∣

∑

p′∈P ′

i

dist(p′, Q) −
∑

c∈Ci

w∗(c) · dist(c, Q)

∣

∣

∣

∣

∣

∣

≤
t

∑

i=1



ǫ
∑

p∈P ′

i

dist(p, z) + O(1) · ln(1/δǫ)

αǫ





≤ O(1) ·
(

ǫ
∑

p∈P

dist(p, z) +
ln(1/δǫ)

αǫ2

)

.

The last inequality follows since
∑

p∈P ′ dist(p, z) is bounded by
(1 + ǫ)

∑

p∈P dist(p, z).
For the case where P lies in the d-dimensional unit ball, we get

the bound O(1) ·
(

∑

p∈P ǫ · cost(p, z) + ln(1/δǫd)

αǫ2d

)

.

4.3 Private Coresets for k-median Queries
For this section, we assume that a differentially private bi-criteria

approximation for the point set P was computed (with privacy pa-
rameter αB), and we have a set B = {b1, . . . , b|B|} of points such
that

∑

p∈P

dist(p, B) ≤ O(1) · opt(P, k) + βB . (9)

We defer the construction of a private bi-criteria approximation to
Section 5 and show now how the set B can be used to construct a
k-median coreset for P .

We consider the Voronoi regions V1, V2, . . . , V|B| induced by B,
where Vi is the Voronoi cell of point bi ∈ B. Let Pi be the subset of
P contained in Vi (Pi may be empty). For every Pi (even if empty)
we build an (α, ǫ, β, δ) bi-centered private 1-median coreset Ci as
shown in Section 4.2 above. The final coreset C is simply the union
of the coresets Ci.

As the sets Pi are disjoint, we get by part (2) of Lemma A.1
that this construction is (αB + 2α)-differentially private. We now
analyze its approximation guarantee.

Let Q be a query set of centers, |Q| = k. We have that

|Q(P ) − Q(C)|

= |
|B|
∑

i=1

Q(Pi) − Q(Ci)| ≤
|B|
∑

i=1

|Q(Pi) − Q(Ci)|

≤
|B|
∑

i=1

(ε
∑

p∈Pi

dist(p, bi) + β) (10)

= ε

|B|
∑

i=1

∑

p∈Pi

dist(p, bi) + β|B|

= ε

|B|
∑

i=1

∑

p∈Pi

dist(p, B) + β|B| (11)

= ε
∑

p∈P

dist(p, B) + β|B|

≤ ǫ · O(1)opt(P, k) + ǫ · βB + β · |B| . (12)
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Inequality (10) follows since Ci is a private bi-centered 1-median
coreset for Pi. Eq. (11) follows since by our construction, point
bi ∈ B is the closest to all points in Pi, and hence dist(Pi, B) =
dist(Pi, bi). Inequality (12) follows from the guarantee of Eq. (9)
satisfied by the Bi-criteria approximation algorithm.

5. PRIVATE BI-CRITERIA
APPROXIMATIONS

5.1 Private approximate weak ǫ-nets
Let P ⊂ ℜd be a point set of n points, and k > 0. We first de-

scribe a deterministic algorithm (hence, not differentially private)
to compute a set E of f(k, d) points, within the unit cube, such that
every cube which contains at least n/(8k) points must contains a
point from E.

For d = 1 (i.e., P ⊂ ℜ), we partition the interval [0, 1] into
f(k, 1) = 16k segments, I1, I2, . . . , I16k each of which contains
n/16k points from P . Let mj be the mean of the points in Ij ∩ P ,
and take E = {mj | j = 1, . . . , 16k}. Any line segment that
contains at least n/(8k) points of P must contain a whole segment
Ij , and therefore also mj and hence it has a non-empty intersection
with E.

For d ≥ 1 we partition the unit cube of ℜd into c “slabs” (a ≤
x1 ≤ b), each containing n/c points of P . We continue to partition
such slabs along successive dimensions, the i’th partition is into
“slabs”, each of which contains n/ci points of P . This construction
yields a partition of the unit cube into cd rectilinear basic boxes,
Rj , each containing n/cd points of P . We can prove the following
lemma.

LEMMA 5.1. A rectilinear box which does not contain one of
the basic boxes contains at most 2dn

c
points of P .

PROOF. Let e(d, n) be the maximum number of points con-
tained in a rectilinear box which does not contain a basic box. For
d = 1, the c basic boxes are intervals, each containing n/c points.
An interval that does not contain a basic box is contained in the
union of two basic boxes, and hence e(1, n) ≤ 2n/c. For d > 1,
we have that

e(d, n) ≤ 2
n

c
+ c · e(d − 1,

n

c
) . (13)

To see this observe that a box which does not contain a basic box
contains at most n/c points in the leftmost and rightmost slab which
it intersects in the x1 direction, and at most e(d − 1, n

c
) in every

other slab. One can easily verify by induction that Eq. (13) implies
that e(d, n) ≤ 2dn

c
.

The set E consists of cd mean values, of the points in each such
basic box. If we take c = 16kd then by Lemma 5.1 any box with
at least n/8k points of P contains a basic box and therefore a point
from E. This gives f(k, d) = (16kd)d.

To get an α-differentially private version of the above, we make
the following modifications:

1. We construct E∗ – a noisy version of E – by replacing every
point e ∈ E by e∗ = e + Y (e) where Y (e) ∈ ℜd is chosen
according to Lapd(df(k, d)/(nα′)) (i.e., each coordinate of
Y (e) is chosen i.i.d. according to Lap(df(k, d)/(nα′))).
The mean e has global sensitivity df(k, d)/n (by replacing
a point in P each coordinate of e changes by ±f(k, d)/n,
hence the L1 norm of the change is at most df(k, d)/n).
Therefore, for every e ∈ E, e∗ preserves α′-differential pri-
vacy by Theorem A.4. Setting α′ = α/f(k, d) we get that
outputting e∗ for all e ∈ E preserves α-differential privacy.

2. By Fact A.5, the magnitude of each coordinate of Y (e) is at
most ln(1/δ′)f(k, d)/(nα′) with probability 1− δ′. Setting
δ′ = δ/(d · f(k, d)) we get that with probability 1 − δ, for
all e ∈ E,

dist∞(e∗, e) ≤ ln (d · f(k, d)/δ) f(k, d)2/(nα),

and

dist(e∗, e) ≤
√

d ln (d · f(k, d)/δ) f(k, d)2/(nα).

To simplify notation we denote ln(d · f(k, d)/δ)f(k, d)2/(nα)
by γ(k, d, δ, α). In summary, with confidence 1−δ, there exists an
α-differentially private weak approximate 1/(8k)-net with respect
to boxes, where the distance between e∗ ∈ E∗, and the associated
e ∈ E, is bounded by γ(k, d, δ, α)/n.

5.2 Private Bi-criteria
Define OPT(P, k) be a set of k points in ℜd attaining minimum

cost (i.e.,
∑

p∈P dist(p, OPT(P, k)) = opt(P, k), where opt(P, k)
is defined in Eq. (2)).

We give a variant of the bi-criteria approximation of [23] that
makes use of the weak approximate 1/(8k) nets above. The pro-
cess is iterative, with iterations indexed i = 1, 2, . . . , log(n). Let
Pi be the set of points at the beginning of iteration i (P1 = P ), and
let ni = |Pi|.

In iteration i, we build an α-private weak approximate 1/(8k)
net E∗

i for Pi. We discard the ni/2 points in Pi closest to E∗
i , and

set Pi+1to be the set of the remaining points. The final bi-criteria
points, E∗, are the union of all sets E∗

i , thus |E∗| = f(k, d) log n.

5.3 Analysis
Consider iteration i. We say that the point x ∈ Pi is good if

dist∞(x, Ei) ≤ 2 ·dist∞(x, OPT(P, k)) otherwise we say that x is
bad. (Note that the definition of good and bad depends on Ei, and
not E∗

i ). We claim the following.

THEOREM 5.2. For P ⊂ ℜd, |P | = n, the set E∗ is an α log n-
private bi-criteria approximation to opt(P, k). More specifically,
with probability 1 − δ log n,
∑

p∈P

dist(p, E∗) ≤ 4
√

d
∑

p∈P

dist(p, OPT(P, k)) +
√

d · log n · γ,

where γ = γ(k, d, δ, α) = ln(d · f(k, d)/δ)f(k, d)2/α.

PROOF. Fix some iteration i, with probability at least 1 − δ the
following holds: Let Bi be the set of bad points of iteration i dis-
carded at iteration i, and let Gi be the set of good points of iteration
i discarded at iteration i + 1. Let b ∈ Bi and g ∈ Gi. Since b is
discarded and g is not discarded at iteration i then,

dist(b, E∗
i ) ≤ dist(g, E∗

i ) . (14)

Since g is good we also have that

dist(g, E∗
i ) ≤ dist(g, Ei) +

√
dγ(k, d, δ, α)/ni

≤ 2
√

d · dist(g, OPT(P, k)) +
√

dγ(k, d, δ, α)/ni, (15)

and since E∗
i ⊆ E∗

dist(g, E∗) ≤ dist(g, E∗
i ) and dist(b, E∗) ≤ dist(b, E∗

i ). (16)

Combining (14), (15), and (16) we obtain that

dist(b, E∗) ≤ dist(g, E∗
i )

≤ 2
√

d · dist(g, OPT(P, k)) +
√

dγ(k, d, δ, α)/ni. (17)

367



For a point b ∈ Bi we do not know the relation between dist(b, E∗)
and dist(b, P ) and the former may be much larger. It follows from
Eq. (17) that we can "charge" the distance dist(b, E∗) to the dis-
tance dist(g, OPT(P, k)) for some point g ∈ Gi.

We argue that |Bi| ≤ |Gi|, which means that we have enough
points in Gi to avoid duplicate charges. Let g(b) ∈ Gi be the point
charged for b ∈ Bi. Along with (17) this gives that

∑

b∈Bi

dist(b, E∗) ≤ 2
√

d
∑

g(b)∈Gi

dist(g(b), OPT(P, k))

+
√

d(γ(k, d, δ, α)/ni)|Bi|.
In addition to throwing away the bad elements in Bi, we also

throw away good elements (with respect to Ei) in the i’th iteration,
call this set Fi (|Fi| = ni/2 − |Bi|). Using Eq. (16) and the
fact that g ∈ Fi is good we obtain that for every point g ∈ Fi,
dist(g, E∗) ≤ 2

√
d · dist(g, OPT(P, k)) +

√
d(γ(k, d, δ, α)/ni).

Thus, in total, for the points discarded during iteration i, (Bi ∪Fi),
∑

b∈Bi

dist(b, E∗) +
∑

g∈Fi

dist(g, E∗)

≤ 2
√

d
∑

g(b)∈Gi

dist(g(b), OPT(P, k))

+2
√

d
∑

g∈Fi

dist(g, OPT(P, k)) +
√

dγ(k, d, δ, α).

All points are eventually discarded, and discarded only once.
Taking this sum over all iterations gives us that

∑

p∈P

dist(p, E∗) ≤ 4
√

d
∑

p∈P

dist(p, OPT(P, k))+
√

d log nγ(k, d, δ, α).

We still have to argue why |Bi| ≤ |Gi|. Let z be a point which is
not amongst the n/8k closest points in L∞ to a point of OPT(P, k).
For every point v ∈ OPT(P, k) there exists a point e ∈ Ei such
that dist∞(e, v) ≤ dist∞(z, v). By the triangle inequality,

dist∞(z, e) ≤ dist∞(z, v) + dist∞(v, e) ≤ 2dist∞(z, v),

and so z must be good. It follows that |Bi| ≤ ni/8. At iteration
i + 1 we discard ni+1/2 = ni/4 points so at least ni/8 of those
discarded in iteration i+1 must be good for iteration i, i.e., |Gi| ≥
ni/8.

6. A GENERIC LOWER BOUND ON THE
ADDITIVE ERROR OF PRIVATE CORE-
SET SCHEMES

We now prove a stronger bound than given in Claim 2.4 on the
additive error β in private coreset schemes for k-median (an analo-
gous bound holds for k-mean). We will consider points that reside
in a subset of constant diameter of a metric space M, and will
assume the existence of sufficiently many points, the distance be-
tween every two of which is at least 1. We will show that if such a
collection of points exists, then β should be large. More formally:

THEOREM 6.1. Let A be an (α, ǫ, β, δ)-private coreset scheme
for k-median for sets of points P residing in the unit ball of a metric
space. Assume that there exist D + 1 points D = {0, p1, . . . , pD}
in this unit ball, such that the distance between every two points in
D is at least 1. If D > 2k then, β = Ω((ln D + ln 1/δ)/α).

PROOF. We will construct a collection of point sets and show
that unless β is large A fails to produce a good coreset, on at least
one of the point sets, with probability greater than δ.

We call a subset σ containing exatly k − 1 distinct points in
{p1, . . . , pD} admissible. For an admissible σ, define the set Pσ to
include n points as follows: n− (k − 1) · ℓ points are located at 0,
and ℓ points are located at each of the k − 1 locations p ∈ σ (the
value of ℓ will be set below, and we assume n ≥ kℓ). Observe that
cost(Pσ, {0} ∪ σ) = 0 and SD(Pσ, Pσ′) = ℓ · SD(σ, σ′).

If a set C satisfies (1 − ǫ) · cost(Pσ, ·) − β ≤ cost(C, ·) ≤
(1 + ǫ) · cost(Pσ, ·) + β, then we say that C ∈ good(σ). We
begin by showing that if σ and σ′ differ on too many points then
good(σ) ∩ good(σ′) = ∅. In the following we set T = ⌈ 9β

(1−ǫ)ℓ
⌉.

CLAIM 6.2. Let σ and σ′ be admissible such that SD(σ, σ′) ≥
2T , and let C ∈ good(σ) be a set of weighted points. Then, C 6∈
good(σ′).

PROOF. Let O be a set of k points minimizing cost(C, ·). We
first show that

∣

∣{p ∈ σ : dist(p, O) ≥ 1
3
}
∣

∣ < T .
Since C ∈ good(σ) we have that (1 − ǫ) · cost(Pσ, O) − β ≤

cost(C, O) ≤ cost(C, {0}∪σ) ≤ (1+ǫ)·cost(Pσ, {0}∪σ)+β =
β, and hence, cost(Pσ, O) ≤ 2β/(1 − ǫ). On the other hand, if
dist(p, O) ≥ 1

3
for some p ∈ σ then every one of the ℓ points at

location p contributes at least 1
3

to cost(Pσ, O). If that happens
for at least T points p ∈ σ we get that cost(Pσ, O) ≥ 1

3
Tℓ ≥

3β/(1− ǫ), contradicting our bound on cost(Pσ, O). We hence get
that |{p ∈ σ : dist(p, O) ≥ 1

3
}| < T .

Since every pair of points in D (and therefore every pair of points
in σ) are of distance at least one from each other then each point of
O is within distance less than 1

3
from at most a single point of σ.

Since |σ| = k−1 and |{p ∈ σ : dist(p, O) ≥ 1
3
}| < T we get that

more than k − 1 − T of the points of O have a point of σ within
distance less than 1

3
. Hence, for less than |O| − (k − 1 − T ) =

k − (k − 1 − T ) = T + 1 points of O there may be a point in
σ′ \ σ that is within distance less than 1

3
. Hence, |{p ∈ σ′ \ σ :

dist(p, O) < 1
3
}| ≤ T .

To prove the claim, we need to show that C 6∈ good(σ′). Note
that SD(σ, σ′) ≥ 2T hence, |σ ∩ σ′| ≤ |σ′| − 2T (recall that
SD(σ, σ′) = |σ′|−|σ∩σ′|). We get that

∣

∣

{

p ∈ σ′ : dist(p, O) < 1
3

}
∣

∣ ≤
∣

∣

{

p ∈ σ′ \ σ : dist(p, O) < 1
3

}
∣

∣ + |σ ∩ σ′| ≤ T + |σ′| − 2T =

|σ′| − T . Equivalently, |{p ∈ σ′ : dist(p, O) ≥ 1
3
}| ≥ |σ′| −

(|σ′| − T ) = T and hence C 6∈ good(σ′).

Let S be a collection of admissible sets such that 2T ≤ SD(σ, σ′) ≤
24T for all σ, σ′ ∈ S. Pick σ ∈ S. It follows from Claim 6.2 that
good(σ) ∩ good(σ′) = ∅ for all σ′ ∈ S \ {σ}.

Consider σ′ ∈ S\{σ}. We have that Pr[A(Pσ′) ∈ good(σ′)] ≥
1−δ and, since A is α-differentially private, the ratio Pr[A(Pσ) ∈
good(σ′)]/ Pr[A(Pσ′) ∈ good(σ′)] is at least e−α·SD(Pσ,Pσ′ )

and hence Pr[A(Pσ) ∈ good(σ′)] ≥ e−α24Tℓ · (1 − δ). We get
that

Pr [A(Pσ) 6∈ good(σ)]

≥ e−α24Tℓ · Pr



A(Pσ) ∈
⋃

σ′∈S\{σ}

good(σ′)





= e−α24Tℓ ·
∑

σ′∈S\{σ}

Pr
[

A(Pσ) ∈ good(σ′)
]

(18)

≥ (|S| − 1) · e−α·24T ·ℓ(1 − δ),

where the equality in (18) holds since the sets good(σ′) are dis-
joint. On the other hand, Pr[A(Pσ) 6∈ Cσ] ≤ δ and hence we
get

(|S| − 1) · e−α·24T ·ℓ ≤ δ

1 − δ
. (19)
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CLAIM 6.3. There exists a set S of size |S| ≥ k8T (D−k)6T /218T

such that 2T ≤ SD(σ, σ′) ≤ 24T for all σ, σ′ ∈ S.

PROOF. We will use the following theorem on constant weight
codes:

THEOREM 6.4. [28] Let A(n, 2δ, w) denote the maximum num-
ber of codewords in any binary code of length n, constant weight
w, and Hamming distance 2δ. Let q be a prime power such that
q ≥ n, then A(n, 2δ, w) ≥

(

n
w

)

/qδ−1.

For an admissible σ we will use the notation [σ] for the D-bit indi-
cator vector of σ wrt {p1, . . . , pD}. Note that distH([σ], [σ′]) = 2 ·
SD(σ, σ′). Hence, to construct S it suffices to construct a collection
of D-bit vectors of weight k − 1 satisfying 4T ≤ distH(v, v′) ≤
48T .

Each vector in our collection is a concatenation of a (k − 1)-bit
vector of weight k − 1 − 16T with a vector taken from a binary
code of length D − k + 1, constant weight 16T and distance 4T .
The resulting vectors are all of length D and of weight k − 1, and
the Hamming distance between any two vectors is at most 32T +
16T = 48T and at least 4T . The corresponding sets are all of size
k − 1 (and hence admissible), and the difference between any two
sets is between 2T and 24T . We get that exists a set S as required
with

|S| ≥
(

k − 1

16T

)

· A(D − k + 1, 4T, 16T )

≥
(

k − 1

16T

)

·
(

D−k+1
16T

)

(2(D − k + 1))2T

≥ (k/2)8T · ((D − k)/2)8T

(2(D − k))2T
=

k8T (D − k)6T

218T
.

As we assume D > 2k, we get that |S| ≥ k8T (D/2)6T

218T ≥ D6T

224T .
Plugging this bound for |S| in Eq. (19) (and neglecting the "-1") we
get e6T ln D−24 ln 2−24αTℓ ≤ e− ln 1−δ

δ , or, equivalently, 24αTℓ >
6T ln D−24 ln 2+ln 1−δ

δ
. Setting ℓ = β/2 we get that T = O(1)

(assuming ǫ < 1/2), and hence we get that β = Ω((ln 1/δ +
ln D)/α) as required.

For private coresets in the Euclidean space we get:

COROLLARY 6.5. Let A be an (α, ǫ, β, δ)-private coreset scheme
for k-median where the points P reside in the d-dimensional unit
ball. Then, β = Ω((ln 1/δ +

√
d)/α).

PROOF. Applying Theorem 6.1 the set D of 2d vertices of the
unit cube we get a lowerbound of Ω(ln 2d/α) = Ω(d/α) for the
case where the points P are taken from a ball of radius

√
d. Deflat-

ing this bound by a factor of
√

d we get that β = Ω(
√

d/α), and
as by Claim 2.4 β = Ω(ln(1/δ)/α) we get that β = Ω((ln 1/δ +√

d)/α).
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APPENDIX
A. TOOLS FOR DIFFERENTIAL PRIVACY

We review some of the basic tools for constructing differentially
private algorithms. For more detail, the reader is referred to [7, 18,
40, 37, 39].

Composition.
The following lemma allows us to combine the outcome of sev-

eral differentially private analyses in creating a differentially pri-
vate algorithm:

LEMMA A.1. Let A(·) be any randomized computation, let A0(·)
be α0-differentially private, and let A1(·, ·) be a (parameterized)
computation such that A1(C0, ·) is α1-differentially private for all
C0. Then,

1. Algorithm B that on input P computes C0 ← A0(P ), then
C ← A(C0) and outputs C is α0-differentially private.

2. Algorithm B′ that on input P computes C0 ← A0(P ), then
C1 ← A1(C0, P ) and outputs (C0, C1) is (α0+α1)-differentially
private.

The Framework of Global Sensitivity.

DEFINITION A.2 ([18]). Let f be a deterministic function that
given a set P of n points returns a value in ℜd. The global sensi-
tivity of f is the maximal change that can occur by a change in a
single point, i.e.,

GSf (n) = max ‖f(P ) − f(P ′)‖1,

where the maximum is taken over all neighboring point sets P, P ′.

DEFINITION A.3. The Laplace distribution, denoted Lap(λ) has
the probability density function h(x) = 1

2λ
exp(− |x|

λ
).

The following theorem from [18] gives a simple recipe for con-
structing differentially private analyses:

THEOREM A.4 ([18]). Let f be a function with global sen-
sitivity GSf (n). The algorithm that given a point set P outputs
f(P ) + Y where Y ∼ Lapd(

GSf (n)

α
) preserves α-differential pri-

vacy.

We use the following simple fact about the Laplace distribution
and simple corollaries of Lemma A.4:

FACT A.5. Let Y ∼ Lap( 1
α
) for α > 0. Then, E[Y ] = 0 and

Pr[|Y | ≥ z] = exp(−αz) for z > 0. In particular, Pr[|Y | ≥
ln(1/δ)

α
] = δ.

COROLLARY A.6. The algorithm that given a set P of n points
in the interval [0, 1] outputs Z = 1

n

∑

p∈P p + Y where Y ∼
Lap( 1

αn
) preserves α-differential privacy.

COROLLARY A.7. Let I1, . . . , It be disjoint sub-intervals of
[0, 1]. The algorithm that given a set P of n points in the inter-
val [0, 1] outputs (Z1, . . . , Zt) where Zi = |Ii ∩ P | + Yi and
Yi ∼ Lap( 2

α
) preserves α-differential privacy.

COROLLARY A.8. Let q ∈ ℜ. The algorithm that given a set P
of n points in the interval [0, 1] outputs Z =

∑

p∈P dist(p, q) + Y

where Y ∼ Lap( 1
α
) preserves α-differential privacy.
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