

Private Coresets

Danny Feldman, Amos Fiat, Haim Kaplan, Kobbi Nissim

Tor Vergata June 2009

Maybe, $\frac{1}{2}$ hour from now you can

 insert the following in your small talk:- Differential Privacy
- Coresets
- Private Coresets New
- Private Data New Structures (not only
 coresets) New
- Private ε nets New
- Private Bi Criteria

Why Privacy?

- $r_{i} \in\{0,1\}:$ indicator variable $=1$ if i Republican

Why Privacy?

Indicator variable:

$$
r_{i}=1
$$

$$
r=r_{1}+\cdots+r_{n}
$$

Problems

- If everyone has known political opinion but for voter n :

$$
r_{n}=r-\sum_{i=1}^{n-1} r_{i}
$$

Differential Privacy [DMNS06]

Algorithm A is a-differentially private if:

- for every two sets P and P^{\prime} that differ by a single item:
- for every set S of possible outputs:

$$
\frac{\operatorname{Pr}[A(P) \in S]}{\operatorname{Pr}\left[A\left(P^{\prime}\right) \in S\right]} \leq e^{a} \approx 1+a
$$

Private Counting

We publish $\tilde{r}=r+$ Noise

$\operatorname{Pr}[\tilde{r} \in r+$ Noise $\pm \epsilon] \approx \epsilon \frac{\alpha}{2} \cdot e^{-\alpha \mid \text { Noise } \mid}$

Example: $r=18$

We publish $\tilde{r}=18+$ Noise

$$
\operatorname{Pr}[\tilde{r} \in 20 \pm \epsilon] \approx \epsilon \frac{\alpha}{2} \cdot e^{-2 \alpha}
$$

(Noise = 2)

Example: $r=17$

We publish $\tilde{r}=17+$ Noise

$$
\mathbf{P r}[\tilde{r} \in 20 \pm \epsilon] \approx \epsilon \frac{\alpha}{2} \cdot e^{-3 \alpha}
$$

(Noise = 3)

Private Counting

$$
\begin{gathered}
\frac{\operatorname{Pr}[\tilde{r} \in 20 \pm \epsilon \mid r=18]}{\operatorname{Pr}[\tilde{r} \in 20 \pm \epsilon \mid r=17]}=\frac{e^{-2 \alpha}}{e^{-3 \alpha}}=e^{\alpha} \approx 1+\alpha \\
\tilde{r}=r+\text { Noise is a-differentially private }
\end{gathered}
$$

Strong Notion of Privacy

The attacker learns little "useful" Prior Information does not help

Because of ε leakage:
Cannot be used to answer many queries

Strong Notion of Privacy

Want to answer not one query privately But many queries privately

Leak ε only once, create Sanitized
Data Set/Data
Structure

k-Median Queries Noprivacy

- Input: $P \subseteq[0,1]^{d}$

K-Median Queries No privacy

- Input: $P \subseteq[0,1]^{d}$
- Query: A set Q of k points

k-Median Queries Noprivacy
- Input: $P \subseteq[0,1]^{d}$
- Query: A set Q of k points
- Output: $\sum_{p \in P} \operatorname{dist}(p, Q)=\sum_{p \in P} \min _{q \in Q}\|p-q\|$

Motivation

No privacy
Comparing alternatives:
How good is this placement?

Coresets

- Coresets: "Clever Sample"
- Answer approximate queries from reduced representation (Coreset)
- Often leads to PTAS, FPTAS
- Many, many, papers, surveys
- Many problems: median, mean, flats, projective clustering, regression
- Intuition: Coresets give privacy on average
(k, ε)-Median Coreset Noprivacy Answer k-median queries in sub-linear time

Key Idea: Replace many points by one weighted representative:

(k, ε)-Median Coreset Noprivacy Answer k-median queries in sub-linear time

Key Idea: Replace many points by one weighted representative:

(k, ε)-Median Coreset Noprivacy Key Idea: Replace many points by one weighted representative:

(k, ε)-Median Coreset Noprivacy Key Idea: Replace many points by one weighted representative:

(k, ε)-Median Coreset Noprivacy

$\sum_{p \in P} \operatorname{dist}(p, Q) \sim \sum_{c \in C} w(c) \cdot \operatorname{dist}(c, Q)$

Definition

C is a (k, ε)-coreset for P, if $\forall Q,|Q|=k$:
$\sum_{p \in P} \operatorname{dist}(p, Q) \sim \sum_{c \in C} w(c) \cdot \operatorname{dist}(c, Q)$
Multiplicative error $\leq 1+\varepsilon$
Additive error $\leq \frac{1}{\varepsilon}$

Locating Branch Offices

No privacy

Private (Republican) Coresets
Intuition: Coresets reveal little information

Coresets \& Privacy

Good: Coresets reveal little information

 on average

Bad: Coresets are not differential private

Private Coreset Scheme

An algorithm that:

- is a-differentially private.
- for $P \subseteq[0,1]^{d}$, outputs $a(k, \varepsilon)$-coreset, w.h.p.

Our Contributions

1. [Simple, non-constructive]:
k-median corese $\dagger \rightarrow$ Private k-median coreset
k-mean coreset \rightarrow Private k-mean coreset

Using Exp. Mechanism of [MTO7]

Our Contributions

2. [Constructive, linear time]:

- Private k-median coreset
- Private k-mean coreset

Our Contributions

2. [Constructive, linear time]:

- Private k-median coreset
- Private k-mean coreset

3. Lower bound tradeoffs on multiplicativeadditive approximation for private coresets

Applications

- Private k-median clustering
- Comparing alternatives privately
- Private streaming algorithms
- Approximately truthful mechanisms [MT07]

Related Work

- Sanitized Database [BLR08]
- (Non-private) coresets for k-median [HMO4][HK05][FS05][Chen06][[FMS07]
- Private clustering
[BDMN05][NRS07]

Overview

- Private coreset for 1-median, P on line.

Overview

- Private coreset for 1-median, P on line .
- Private coreset for 1-median, P in $[0,1]^{d}$

Overview

- Private coreset for 1-median, P on line.

- Private coreset for 1-median, P in $[0,1]^{d}$
- Private bi-criteria approximation for k-median

Overview

- Private coreset for 1-median, P on line.

- Private coreset for 1-median, P in $[0,1]^{d}$

- Private bi-criteria approximation for k-median
- Private coresets for k-median, $P \subseteq[0,1]^{d}$

Coreset for $P \subseteq[0,1], k=1[H M O 4]$

Coreset for $P \subseteq[0,1], k=1[H M O 4]$

$$
2 \mathrm{opt}=2 \sum_{p \in P} \operatorname{dist}(p, \bar{p})
$$

Coreset for $P \subseteq[0,1], k=1[H M O 4]$

Corset for $P \subseteq[0,1], k=1[H M O 4]$

For each interval I:

- Choose an arbitrary representative $c \in P \cap I$
- $w(c) \leftarrow|P \cap I|$

$$
2 o p t=2 \sum_{p \in P} \operatorname{dist}(p, \bar{p})
$$

Main Observation: $|I| \leq \varepsilon|J|$

Because the size of the intervals forms a geometric sequence of ratio $(1+\varepsilon)$

$\operatorname{dist}\left(p, c_{p}\right)$

$$
\begin{aligned}
\operatorname{error}(q) & =\left|\sum_{p \in P} \operatorname{dist}(p, q)-\sum_{p \in P} \operatorname{dist}\left(c_{p}, q\right)\right| \\
& \leq \sum_{p \in P} \operatorname{dist}\left(p, c_{p}\right) \leq \sum_{p \in P} \varepsilon \cdot \operatorname{dist}(p, \bar{p})
\end{aligned}
$$

$$
\begin{aligned}
\text { error } & =\left|\sum_{p \in P} \operatorname{dist}(p, q)-\sum_{p \in P} \operatorname{dist}\left(c_{p}, q\right)\right| \\
& \leq \sum_{p \in P} \operatorname{dist}\left(p, c_{p}\right) \leq \sum_{p \in P} \varepsilon \cdot \operatorname{dist}(p, \bar{p}) \\
& \leq 2 \varepsilon \cdot \operatorname{opt} \\
& \leq 2 \varepsilon \sum_{p \in P} \operatorname{dist}(p, q)
\end{aligned}
$$

New: Private Coreset

For each interval I:

- Choose the rightmost point $c \in I$
- $\tilde{w}(c) \leftarrow|P \cap I|+$ Noise

Coreset for $P \subseteq[0,1], k=1[H M O 4]$

$\left|\sum_{p \in P} \operatorname{dist}(p, q)-\sum_{c \in C} w(c) \cdot \operatorname{dist}(c, q)\right| \leq \varepsilon \sum_{p \in P} \operatorname{dist}(p, q)$

New: Private Coreset

$$
\begin{aligned}
\left|\sum_{p \in P} \operatorname{dist}(p, q)-\sum_{c \in C} w(c) \cdot \operatorname{dist}(c, q)\right| & \leq \varepsilon \sum_{p \in P} \operatorname{dist}(p, q) \\
& +O\left(\frac{1}{\varepsilon}\right)
\end{aligned}
$$

Generalization for $P \subseteq[0,1]^{d}$

Generalization for $k>1$

The k-Median of P

$$
\text { opt }=\min _{|O P T|=k} \sum_{p \in P} \operatorname{dist}(p, O P T)
$$

The k-Median of P

$$
\text { opt }=\min _{|O P T|=k} \sum_{p \in P} \operatorname{dist}(p, O P T)
$$

Constant Approximation

Bi-Criteria Approximation

$$
|B|=O(k \log n),
$$

ADS 2009 Bertinoro

Generalization for $\mathrm{k}>1$

Compute Private Bi-Criteria Approx. Based on[FFSS07]

On Each Cluster:

Apply construction for $k=1$

Weak ε-Net N for $P \subseteq[0,1]$

Weak ε-Net N for $P \subseteq[0,1]$

For every interval I:
$|I \cap P| \geq \varepsilon n \Rightarrow|I \cap N| \geq 1$

Weak $\frac{1}{4}-$ Net N for $P \subseteq[0,1]$

For every interval I:

$$
|I \cap P| \geq n / 4 \Rightarrow|I \cap N| \geq 1
$$

Weak ε-Net for $P \subseteq[0,1]^{d}$

Weak $\varepsilon-$ Net for $P \subseteq[0,1]^{d}$

$|B \cap P| \geq \varepsilon n$
$|B \cap N| \geq 1$

Weak ε-Net for $P \subseteq[0,1]^{\text {d }}$

Weak ε-Net for $P \subseteq[0,1]^{\text {d }}$

Weak ε-Net for $P \subseteq[0,1]^{d}$

Private ε-Net for $P \subseteq[0,1]^{d}$

Add noise to each representative

Input

A set of n points $P \subset \mathbb{R}^{d}, k \geq 1$.

Output

N : a small bicriteria approximation to the k median of P

The Bicriteria Algorithm

1) $t \leftarrow 1$
2) $N \leftarrow \emptyset$
3) Construct a weak $\left(\frac{1}{8 k}\right)$-net N_{t} for P
4) $N \leftarrow N \cup N_{t}$
5) Discard $P_{t}: P / 2$ pts closer to N_{t}
6) $t \leftarrow t+1$
7) Repeat steps 3 to 6 until no more pts
8) Return N

Thank you!

A point $b \in P$ is bad for N_{t}, if:

$\operatorname{dist}\left(b, N_{t}\right)>2 \operatorname{dist}\left(b, N^{*}\right)$

A point $g \in P$ is good for N_{t} otherwise:

$\operatorname{dist}\left(g, N_{t}\right) \leq 2 \operatorname{dist}\left(g, N^{*}\right)$

Main Technical Theorem We can map every bad point $b \in P_{t}$ to a distinct good point $g \in P_{t+1}$.

$\operatorname{dist}(b, N) \leq \operatorname{dist}\left(b, N_{t}\right)$, because $N \supseteq N_{t}$.
Since $b \in P_{t}$ and $g \in P_{t+1}$:

$$
\operatorname{dist}\left(b, N_{t}\right) \leq \operatorname{dist}\left(g, N_{t}\right)
$$

Since g is good for N_{t} :

$$
\operatorname{dist}\left(g, N_{t}\right) \leq 2 \operatorname{dist}\left(g, N^{*}\right)
$$

$\operatorname{dist}(b, N) \leq \operatorname{dist}\left(b, N_{t}\right)$, because $N \supseteq N_{t}$.
Since $b \in P_{t}$ and $g \in P_{t+1}$:

$$
\operatorname{dist}\left(b, N_{t}\right) \leq \operatorname{dist}\left(g, N_{t}\right)
$$

Since g is good for N_{t} :

$$
\operatorname{dist}\left(g, N_{t}\right)=2 \operatorname{dist}\left(g, N^{*}\right)
$$

Bi-Criteria for k-Median

$$
\begin{aligned}
\sum_{p \in P} \operatorname{dist}(p, N) & =\sum_{g} \operatorname{dist}(g, N) \quad+\sum_{b} \operatorname{dist}(b, N) \\
& \leq \sum_{g} 2 \operatorname{dist}\left(g, N^{*}\right)+\sum_{g} 2 \operatorname{dist}\left(g, N^{*}\right) \\
& \leq 4 \sum_{p \in P} \operatorname{dist}\left(p, N^{*}\right)
\end{aligned}
$$

Open Questions

- Private coresets for k-median in high dimensional spaces
- Private coresets for k subspaces of \mathbb{R}^{d}
- Private coresets for other shapes.
- Private dynamic Coresets

Bi-Criteria
 Approximation Algorithm [FFS07]

Initialization

1) $t \leftarrow 1$

\triangleright Counter for iterations
2) $F \leftarrow \emptyset$
\triangleright The output set of j-flats
3) Construct a weak $\left(\frac{1}{8 k}\right)$-net N_{t} for P

4) $N \leftarrow N \cup N_{t}$

$$
(t=1) \quad \text { ADS } 2009 \text { Bertinoro }
$$

5) $\forall p$: $\operatorname{Compute} \operatorname{dist}\left(p, N_{t}\right)$

$(t=1)$
ADS 2009 Bertinoro

6) Remove P_{t} : the half of P that is

closer to N_{t}

$(t=1)$
ADS 2009 Bertinoro

6) Remove P_{t} : the half of P that is

 closer to $N_{t}$$(t=1)$
7) $t \leftarrow t+1$
8) Repeat steps 3 to 6:
3) Construct a weak $(1 / k)$-net N_{t} for P
$(t=2)$

4) $N \leftarrow N \cup N_{t}$

5) $\forall p$: $\operatorname{Compute} \operatorname{dist}\left(p, N_{t}\right)$

$(t=2)$
6) Remove P_{t} : the half of P that is closer to N_{t}

$(t=2)$
ADS 2009 Bertinoro
6) Remove P_{t} : the half of P that is closer to N_{t}

$(t=2)$
ADS 2009 Bertinoro
6) Remove P_{t} : the half of P that is closer to N_{t}
$(t=2)$
7) $t \leftarrow t+1$
8) Repeat steps 3 to 6
till there are no more input points.
9) Return N :

Let N^{*} be any set of k points in \mathbb{R}^{d}.

Let N^{*} be any set of k points in \mathbb{R}^{d}.

Let N^{*} be any set of k points in \mathbb{R}^{d}.

Consider N_{t} that is constructed during the $t^{\text {th }}$ iteration.

A point $b \in P$ is bad for N_{t}, if:

$\operatorname{dist}\left(b, N_{t}\right)>2 \operatorname{dist}\left(b, N^{*}\right)$

A point $g \in P$ is good for N_{t} otherwise:

$\operatorname{dist}\left(g, N_{t}\right) \leq 2 \operatorname{dist}\left(g, N^{*}\right)$

Main Technical Theorem We can map every bad point $b \in P_{t}$ to a distinct good point $g \in P_{t+1}$.

$\operatorname{dist}(b, N) \leq \operatorname{dist}\left(b, N_{t}\right)$, because $N \supseteq N_{t}$.

Since $b \in P_{t}$ and $g \in P_{t+1}$:

$$
\operatorname{dist}\left(b, N_{t}\right) \leq \operatorname{dist}\left(g, N_{t}\right)
$$

Since g is good for N_{t} :

$$
\operatorname{dist}\left(g, N_{t}\right) \leq 2 \operatorname{dist}\left(g, N^{*}\right)
$$

$\operatorname{dist}(b, N) \leq \operatorname{dist}\left(b, N_{t}\right)$, because $N \supseteq N_{t}$.

Since $b \in P_{t}$ and $g \in P_{t+1}$:

$$
\operatorname{dist}\left(b, N_{t}\right) \leq \operatorname{dist}\left(g, N_{t}\right)
$$

Since g is good for N_{t} :

$$
\operatorname{dist}\left(g, N_{t}\right)=2 \operatorname{dist}\left(g, N^{*}\right)
$$

$$
\operatorname{dist}(b, N) \underset{\text { Abs }}{2009} \underset{\text { 20e Berinioro }}{2} \operatorname{dist}\left(g, N^{*}\right)
$$

Bi-Criteria for k-Median

$$
\begin{aligned}
\sum_{p \in P} \operatorname{dist}(p, N) & =\sum_{g} \operatorname{dist}(g, N) \quad+\sum_{b} \operatorname{dist}(b, N) \\
& \leq \sum_{g} 2 \operatorname{dist}\left(g, N^{*}\right)+\sum_{g} 2 \operatorname{dist}\left(g, N^{*}\right) \\
& \leq 4 \sum_{p \in P} \operatorname{dist}\left(p, N^{*}\right)
\end{aligned}
$$

Proof of the Technical Theorem

- The number of bad points is at most

$$
\begin{gathered}
|B|=\frac{\left|P_{t}\right|}{8} \\
\left|P_{t+1}\right|=\frac{\left|P_{t}\right|}{2} \\
\end{gathered}
$$

The number of good points in P_{t+1} is at least

$$
\left|P_{t+1}\right|-|B| \geq \frac{\left|P_{t}\right|}{2}-\frac{\left|P_{t}\right|}{8} \geq|B|
$$

Claim: Only $B_{0}=\frac{\left|P_{t}\right|}{8 k}$ points are bad for $q \in N_{t}$

B_{0} : the $\frac{\left|P_{t}\right|}{8 k}$ closest points to q^{*}

ADS 2009 Bertinoro

B_{0} : the $\frac{\left|P_{t}\right|}{8 k}$ closest points to q^{*}

B_{0} contains $q \in N_{t}\left(\frac{1}{8 k}-\right.$ net $)$

For every yellow point $p \in P \backslash B_{0}$:

All the yellow points are good for N_{t}

Only the black points B_{0} are bad for

 N_{t}

