

Danny Feldman, Amos Fiat, Haim Kaplan, Kobbi Nissim

Tor Vergata June 2009

Maybe, $\frac{1}{2}$ hour from now you can insert the following in your small talk:

- Differential Privacy
- Coresets
- Private Coresets New
- Private Data New Structures (not only coresets) New
- Private & nets New
- Private Bi Criteria

Why Privacy?

• $r_i \in \{0, 1\}$: indicator variable = 1 if *i* Republican

Why Privacy?

Indicator variable:

 $r = r_1 + \cdots + r_n$

Problems

• If everyone has known political opinion but for voter n:

$$r_n = r - \sum_{i=1}^{n-1} r_i$$

Differential Privacy [DMNS06]

Algorithm A is a-differentially private if:

- for every two sets P and P' that differ by a single item:
- for every set **S** of possible outputs:

$$\frac{\Pr[A(\mathsf{P}) \in \mathsf{S}]}{\Pr[A(\mathsf{P'}) \in \mathsf{S}]} \le e^{\mathfrak{a}} \approx 1 + \mathfrak{a}$$

Private Counting

We publish $\tilde{r} = r + Noise$

$$\mathbf{Pr}[\tilde{r} \in r + \text{Noise} \pm \epsilon] \approx \epsilon \frac{\alpha}{2} \cdot e^{-\alpha|\text{Noise}|}$$

Example:
$$r = 18$$

We publish $\tilde{r} = 18 + Noise$

$$\mathbf{Pr} ig[\widetilde{r} \in 20 \pm \epsilon ig] pprox \epsilon rac{lpha}{2} \cdot e^{-2lpha}$$
 (Noise = 2)

Example:
$$r = 17$$

We publish $\tilde{r} = 17 + Noise$

$$\Pr[\tilde{r} \in 20 \pm \epsilon] \approx \epsilon \frac{\alpha}{2} \cdot e^{-3\alpha}$$
(Noise = 3)

Private Counting

 $\frac{\Pr\left[\tilde{r} \in 20 \pm \epsilon | r = 18\right]}{\Pr\left[\tilde{r} \in 20 \pm \epsilon | r = 17\right]} = \frac{e^{-2\alpha}}{e^{-3\alpha}} = e^{\alpha} \approx 1 + \alpha$ $\tilde{r} = r + \text{Noise is a-differentially private}$

Strong Notion of Privacy

The attacker learns little "useful" Prior Information does not help

Because of ϵ leakage: Cannot be used to answer many queries

Strong Notion of Privacy

Want to answer not one query privately But many queries privately

Leak ϵ only once, create Sanitized Data Set/Data Structure

k-Median Queries No privacy

• Input: $P \subseteq [0,1]^d$

k-Median Queries

- Input: $P \subseteq [0,1]^d$
- Query: A set Q of k points

No privacy

k-Median Queries

No privacy

- Input: $P \subseteq [0, 1]^d$
- Query: A set Q of k points
- Output: $\sum_{p \in P} dist(p, Q) = \sum_{p \in P} \min_{q \in Q} ||p q||$

Coresets

No privacy

Coresets: "Clever Sample"

- Answer approximate queries from reduced representation (Coreset)
- Often leads to PTAS, FPTAS
- Many, many, papers, surveys
- Many problems: median, mean, flats, projective clustering, regression
- Intuition: Coresets give privacy on average

(k, c)-Median Coreset No privacy

Answer k-median queries in sub-linear time

Key Idea: Replace many points by one weighted representative:

(k, c)-Median Coreset No privacy

Answer k-median queries in sub-linear time

Key Idea: Replace many points by one weighted representative:

(k, ɛ)-Median Coreset No privacy Key Idea: Replace many points by one weighted representative:

(k, ɛ)-Median Coreset No privacy Key Idea: Replace many points by one weighted representative:

Private (Republican) Coresets No privacy

Intuition: Coresets reveal little information

Coresets & Privacy

Good: Coresets reveal little information

Private Coreset Scheme

An algorithm that:

- is a-differentially private.
- for P ⊆ [0,1]^d, outputs a (k, ε)-coreset, w.h.p.

Our Contributions

1. [Simple, non-constructive]:

k-median coreset \rightarrow Private k-median coreset k-mean coreset \rightarrow Private k-mean coreset

Using Exp. Mechanism of [MT07]

Our Contributions

- 2. [Constructive, linear time]:
 - Private k-median coreset
 - Private k-mean coreset

Our Contributions

- 2. [Constructive, linear time]:
 - Private k-median coreset
 - Private k-mean coreset
- 3. Lower bound tradeoffs on multiplicativeadditive approximation for private coresets

Applications

- Private k-median clustering
- Comparing alternatives privately
- Private streaming algorithms
- Approximately truthful mechanisms [MT07]

Related Work

- Sanitized Database [BLR08]
- (Non-private) coresets for k-median
 [HM04][HK05][FS05][Chen06][[FMS07]
- Private clustering
 [BDMN05][NRS07]

Overview

• Private coreset for 1-median, P on line .

Overview

• Private coreset for 1-median, P on line .

• Private coreset for 1-median, P in [0,1]^d

Overview

• Private coreset for 1-median, P on line .

• Private coreset for 1-median, P in [0,1]^d

• Private bi-criteria approximation for k-median

• Private coresets for k-median, $P \subseteq [0, 1]^d$

For each interval I:

• Choose an arbitrary representative $c \in P \cap I$

• w(c) \leftarrow $|P \cap I|$

Main Observation: $|I| \le \epsilon |J|$

Because the size of the intervals forms a geometric sequence of ratio $(1 + \varepsilon)$

$$error(q) = \left| \sum_{p \in P} dist(p,q) - \sum_{p \in P} dist(c_p,q) \right|$$
$$\leq \sum_{p \in P} dist(p,c_p)$$

$$error(q) = \left| \sum_{p \in P} dist(p,q) - \sum_{p \in P} dist(c_p,q) \right|$$
$$\leq \sum_{p \in P} dist(p,c_p) \leq \sum_{p \in P} \varepsilon \cdot dist(p,\bar{p})$$

ADS 2009 Bertinoro

$$\operatorname{error} = \left| \sum_{p \in P} \operatorname{dist}(p, q) - \sum_{p \in P} \operatorname{dist}(c_p, q) \right|$$
$$\leq \sum_{p \in P} \operatorname{dist}(p, c_p) \leq \sum_{p \in P} \varepsilon \cdot \operatorname{dist}(p, \overline{p})$$
$$\leq 2\varepsilon \cdot \operatorname{opt}$$
$$\leq 2\varepsilon \sum_{p \in P} \operatorname{dist}(p, q)$$

New: Private Coreset

Coreset for
$$P \subseteq [0,1]$$
, $k = 1$ [HMO4]
$$\sum_{p \in P} dist(p,q) - \sum_{c \in C} w(c) \cdot dist(c,q) \le \sum_{p \in P} dist(p,q)$$

New: Private Coreset

$$\left| \sum_{p \in P} dist(p,q) - \sum_{c \in C} w(c) \cdot dist(c,q) \right| \le \varepsilon \sum_{p \in P} dist(p,q) + O\left(\frac{1}{\varepsilon}\right)$$

Generalization for $P \subseteq [0,1]^d$

Generalization for $P \subseteq [0,1]^d$

Generalization for k > 1

Bi-Criteria Approximation

 $|\mathsf{B}| = O(k \log n),$

ADS 2009 Bertinoro

Generalization for k > 1

Compute Private Bi-Criteria Approx. Based on[FFSS07]

On Each Cluster: Apply construction for k = 1

ADS 2009 Bertinoro

For every interval I: $|I \cap P| \ge \epsilon n \implies |I \cap N| \ge 1$

Weak $\frac{1}{4}$ -Net N for P \subseteq [0,1]

For every interval I: $|I \cap P| \ge n/4 \implies |I \cap N| \ge 1$

Private ε -Net for $P \subseteq [0, 1]^d$

Add noise to each representative

Input

A set of *n* points $P \subset \mathbb{R}^d$, $k \geq 1$.

N : a small bicriteria approximation to the k median of P

The Bicriteria Algorithm 1) $t \leftarrow 1$ 2) $N \leftarrow \emptyset$ 3) Construct a weak $\left(\frac{1}{8k}\right)$ -net N_t for P 4) $N \leftarrow N \cup N_t$ 5) Discard P_t : P/2 pts closer to N_t 6) $t \leftarrow t+1$ 7) Repeat steps 3 to 6 until no more pts

8) Return N

A point $b \in P$ is bad for N_t , if:

A point $g \in P$ is good for N_t otherwise:

Main Technical Theorem We can map every bad point $b \in P_t$ to

a distinct good point $g \in P_{t+1}$.

 $dist(b, N) \leq dist(b, N_t)$, because $N \supseteq N_t$.

Since $b \in P_t$ and $g \in P_{t+1}$:

 $dist(b, N_t) \leq dist(g, N_t)$

Since g is good for N_t : dist $(g, N_t) \le 2 \operatorname{dist}(g, N^*)$

$$|\operatorname{dist}(b,N)| \leq \operatorname{dist}(b,N_t)$$
, because $N \supseteq N_t$.

Since $b \in P_t$ and $g \in P_{t+1}$:

 $dist(b, N_t) \leq dist(g, N_t)$

Bi-Criteria for k-Median

$$\sum_{p \in P} \operatorname{dist}(p, N) = \sum_{g} \operatorname{dist}(g, N) + \sum_{b} \operatorname{dist}(b, N)$$
$$\leq \sum_{g} 2 \operatorname{dist}(g, N^{*}) + \sum_{g} 2 \operatorname{dist}(g, N^{*})$$
$$\leq 4 \sum_{p \in P} \operatorname{dist}(p, N^{*})$$

Open Questions

- Private coresets for k-median in high dimensional spaces
- Private coresets for **k** subspaces of \mathbb{R}^d
- Private coresets for other shapes.
- Private dynamic Coresets

Bi-Criteria Approximation Algorithm [FFS07]

Initialization

1) $t \leftarrow 1$

▷ Counter for iterations

2) $F \leftarrow \emptyset$ \triangleright The output set of *j*-flats

$|\mathbf{4}) N \leftarrow N \cup N_t$

(t = 1)

5) $\forall p$: Compute dist (p, N_t)

(t = 1)

(t = 1)

7) $t \leftarrow t + 1$ 8) Repeat steps 3 to 6:

3) Construct a weak (1/k)-net N_t for P

$|\mathbf{4}) N \leftarrow N \cup N_t$

(t = 2)

5) $\forall p$: Compute dist (p, N_t)

(t = 2)

7) $t \leftarrow t + 1$

8) Repeat steps 3 to 6

till there are no more input points. 9) Return N:

Let N^* be any set of k points in \mathbb{R}^d .

A point $b \in P$ is bad for N_t , if:

A point $g \in P$ is good for N_t otherwise:

Main Technical Theorem We can map every bad point $b \in P_t$ to

a distinct good point $g \in P_{t+1}$.

 $dist(b, N) \leq dist(b, N_t)$, because $N \supseteq N_t$.

Since $b \in P_t$ and $g \in P_{t+1}$:

 $dist(b, N_t) \leq dist(g, N_t)$

Since g is good for N_t : dist $(g, N_t) \le 2 \operatorname{dist}(g, N^*)$

$$\operatorname{dist}(b,N) \leq \operatorname{dist}(b,N_t)$$
, because $N \supseteq N_t$.

Since $b \in P_t$ and $g \in P_{t+1}$:

 $dist(b, N_t) \leq dist(g, N_t)$

Bi-Criteria for k-Median

$$\sum_{p \in P} \operatorname{dist}(p, N) = \sum_{g} \operatorname{dist}(g, N) + \sum_{b} \operatorname{dist}(b, N)$$
$$\leq \sum_{g} 2 \operatorname{dist}(g, N^{*}) + \sum_{g} 2 \operatorname{dist}(g, N^{*})$$
$$\leq 4 \sum_{p \in P} \operatorname{dist}(p, N^{*})$$

Proof of the Technical Theorem

• The number of bad points is at most

 $|B| = \frac{|P_t|}{8}$

The number of good points in P_{t+1} is at least

 $\left|P_{t+1}\right| = \frac{\left|P_t\right|}{2}$

$$\left|P_{t+1}\right| - |B| \ge \frac{|P_t|}{2} - \frac{|P_t|}{8} \ge |B|$$

B_0 : the $\frac{|P_t|}{8k}$ closest points to q^*

B_0 : the $\frac{|P_t|}{8k}$ closest points to q^*

All the yellow points are good for N_t

 $dist(p,q) \leq 2dist(p,q^*)$

