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ABSTRACT

Given a setF’ of n positive functions over a ground sat,
we consider the problem of computing that minimizes the
expression) .. f(z), overz € X. A typical application
is shape fitting where we wish to approximate a setof n
elements (say, points) by a shapérom a (possibly infinite)
family X of shapes. Here, each pointc P corresponds to
a function f such thatf(z) is the distance fromp to =, and

we seek a shape that minimizes the sum of distances from

each point inP. In the k-clustering variant, each € X is a
tuple ofk shapes, and(x) is the distance from to its closest
shape inc.

Our main resultis a unified framework for constructouge-
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appeared in the literature during the past years, for problems
such as:

e k-Median [Har-Peled and Mazumdar,STOC’04], [Chen,
SODAO06], [Langberg and Schulman, SODA'10];

e k-Line median [Feldman, Fiat and Sharir, FOCS’06],
[Deshpande and Varadarajan, STOC'07];

e Projective clustering [Deshpande et al., SODA'06] [Desh-
pande and Varadarajan, STOC'07];

e Linear/, regression [Clarkson, Woodruff, STOC'09 |;
e Low-rank approximation [Sarlés, FOCS'06];
e Subspace approximation [Shyamalkumar and Varadara-

jan, SODAQ7], [Feldman, Monemizadeh, Sohler and
Woodruff, SODA'10], [Deshpande, Tulsiani, and Vish-
noi, SODA'11].
The running times of the corresponding optimization problems
are also significantly improved. We show how to generalize
the results of our framework for squared distances (as-in
s mean), distances to tlgh power, and deterministic construc-
tions.

setsandapproximate clusterindpr such general sets of func-
tions. To achieve our results, we forge a link between the clas-
sic and well defined notion af-approximations from the the-
ory of PAC Learning and VC dimension, to the relatively new
(and not so consistent) paradigm of coresets, which are some
kind of “compressed representation” of the input BetUs-
ing traditional techniques, a coreset usually implies an LTA
(linear time approximation scheme) for the corresponding op-
timization problem, which can be computed in parallel, via
one pass over the data, and using only polylogarithmic space 1. |INTRODUCTION
(i-e, in the streaming model). For several function familiés Over the last couple of decades, much effort has been put in
for which coresets are known not to exist, or the corresponding | jerstanding the combinatorial and computational complex-
(approximate) optimization problems are hard, our framework ity of a wide range of clustering and shape fitting problems.
yieldsbicriteria approximations, or coresets that are large, but <iven a set ofs data elements, one of the powerful tech-
contained in a low-dimensional space. o niques used in this context is thatadresetsi.e., a small set
We demonstrate our unified framework by applying it on 1, of representative data elements which approximately rep-
projective clustering problems. We obtain new coreset con- resentP, in terms of various objective measures. More pre-
structions and significantly smaller coresets, over the ones thatcisely, for a set of candidate querias and a measure func-
tion cost (P, z), the setD is ane-coreset forP if cost(D, x)
*Work done in part while at the Open University of Israel. approximatesost(P, z) for everyz € X, up to a multiplica-
fWork supported in part by The Open University of Israel’'s tive factor of1 + . See e.g. [2] for a nice (but not updated)
Research Fund (grant no. 46109), Cisco Collaborative Re- survey.
search Initiative (CCRI), and ISF grant 480/08. Succinct coresets that lead to efficient algorithms appear in
a variety of shape fitting and clustering problems. However,
their proof of existence and efficient construction is usually
tailor made to fit the properties of the problem at hand. More-
Permission to make digital or hard copies of all or part of thigkvfor OVer, there are several natural clustering problems for which it
personal or classroom use is granted without fee providatidbpies are is proven that no coresets of sizén) exist. These include,
not made or distributed for profit or commercial advantage aatidbpies for example, approximating points i® by a pair ofplanes
bear this notice and the full citation on the first page. Toyooiherwise, to [25]; the clustering of weighted points &7 by a set of2 lines
republish, to post on servers or to redistribute to listguiees prior specific [26], and approximating a point set bylines [26], where

permission and/or a fee. . .
STOC'11,June 6-8, 2011, San Jose, California, USA. k > logn. Thes_e k_lnd of cIu_sterlng problems are usually
referred to as projective clustering.
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1.1 Thiswork

Let F' be a set of: functions fromX to [0, co). Through-
out this work, each functioif € F' will correspond to a data
elementandx € X will correspond to aenter(or a set of
centers). For a centar € X, the valuef(x) corresponds to
the cost of evaluating with the center:. The cost of evaluat-
ing ' with z € X is defined asost(F, ) = >, f(z).

Intuitively, the cost function should be interpreted in the
context of shape fitting, wher& represents a set of shapes,

distances to the power of i.e, > _,, (dist(p,2))" . In this
section we define three types of coresets for projective cluster-

ing:
Strong coresets: A weighted set of points in R that ap-

proximate the distances &verypossiblek-tuple of j-flats in
R?, up to a multiplicative factor of1 + ).

Weak coresets: A weighted set of point® in R?, such that
a (1 + e)-approximation for the optimal solution @ yields

and f(z) represents the cost of fitting an element represented a (1 + ¢)-approximation for the optimal solution of the full

by f to the shapec. For a given query shape € X, the
value cost(F, z) represents how well approximatest. In
the context ofk-clustering, the “center’ represents a tuple
of k centers, andf(z) represents the distance from an ele-
ment f to its closest center in. For example, in the well
known k-median problem iR¢, the corresponding set is
(RY*. For a data element € R?, and acenter tupler =
(z1,...,71) € (RY)*, the corresponding functiofi, is de-
fined asf, (z) = min; dist(p, z;).

In this work, we present a unified framework for the effi-
cient construction of coresets for clustering problems corre-
sponding to a given function sét. Our coresets are obtained
via a new and natural reduction to the well studied notion of
e-approximation from the theory of VC dimension [39]. The
reduction from coresets teapproximations allows our frame-
work to rely only on thecombinatorial complexitpf the in-
put family F' of functions (i.e., the combinatorial complexity
of the clustering problem at hand), and to use the vast liter-
ature ons-approximation to obtain improved results (that are
at times deterministic). For several function famili&sfor
which coresets are known not to exist, or the corresponding
(approximate) optimization problems are hard, our framework
yields bicriteria approximation, or coresets that are large, but
contained in a low-dimensional space.

In this extended abstract, we give an overview of the contri-
butions of our work. We start by presenting, in Section 2, sev-
eral concrete results that follow from our algorithmic paradigm,
including a detailed comparison with corresponding previous

work. We then present the main proof techniques and concep-

tual novelties in our approach in Section 3. Finally, in Sec-
tion 4, we present a detailed overview of our algorithms for
the construction of corestes and bicriteria approximation. The
above discussion will take up the body of this extended ab-
stract. All of the technical details of our results appear in the
full version of this work [22]. A first application of our frame-
work (for HD-image processing) already appread in [18].

2. CONCRETE CONTRIBUTIONS
2.1 Projectiveclustering

Our concrete results are taking from the broad family of pro-
jective clustering problems. In the task of projective clustering
we are given a seP C R? of n > d data elements, a positive
integerk < n, and a non-negative intege< d. A centerr €
X is ak tuple(z1,...,zr) where eachr; is aj-dimensional
affine subspace (flat) iR?. The objective is to find a cen-
terz™ that minimizes theost(P,z) = > . 5 dist(p, ) over
x € X. Here,dist(p, =) denotes the Euclidean distance from
a pointp to its nearest subspaggin = (z1, ..., xx). More
generally, for a giverr > 1, we wish to minimize the sum of

data setP. That is,anyblack box algorithm or heuristic that
computes &1 + ¢)-approximation for the coreset would yield

a (1 + )-approximation for the original set. Hence, a weak
coreset can be viewed aseluctionfrom the clustering prob-
lem with input P to the same problem with inpu®. We note
that in previous papers (e.g., [23, 24]) the only way to get a
PTAS for the original set is to run exhaustive search on the
coreset.

Streaming coresets: A weak coresetD that is updated on-
line during one pass over thepoints of P, while using only
O(d - |D|)-space in memory. Streaming coresets can thus be
used online to compute @ + ¢)-approximation for the opti-
mal solution of the points i viewed so far.

All the algorithms that are described in this section are ran-
domized, and succeed with probability at leag® (or any
other constant approaching.

Roughly speaking, the results given in this section are spe-
cific applications of our framework which, for general val-
ues ofj, yields a bicriteria approximatiod for the projec-
tive clustering problem followed by a so callgg-coreset:

D = proj(P,B) US. Here, a bicriteria approximation is a
set of possibly more thak centers, that approximates the cost
of the optimal solution:* up to some constant factor approxi-
mation. The seproj(P, B) denotes the projection of the data
set P onto the bicriteria center®, andS is a set oft points.
Our setsD have the qualitative properties of coresets. Namely,
for t = O(djk/<?) the setD we obtain is a strong coreset, for

t = O(kj?log(1/e)/e®) we obtain weak coresets, and for
t = O(kj*log(1/¢)log* n/e®) streaming coresets.

Our B-coresets are constructed by the union of the two
setsS andproj(P, B). While S is of small sizet, the set
proj(P, B) may be large in size. Nevertheless, our coresets
are of substantial interest as they implgienension reduction
from the setP to the setproj(P, B). Indeed, when our cen-
ters are points (i.ej = 0), we are able find a s&® of size
k, soproj(P, B) is also of sizek. When our centers are lines
(i.e.,j = 1), the setproj(P, B) is contained in a small set
of lines and we use [21] to reduce the sizepebj( P, B) to
(e logn)?® . We discuss these cases and others (derived
from our framework) in the subsections to come.

The construction time of the strong and weak coresets is
O(ndjk + tlogn). All our coresets and running times below
are generalized to sum of distances to the powersfl, after
replacing the terra in the corresponding results hys2.

2.2 k-Median and its generalizations

We start by discussing the setting in which the cenfgrs
arek-tuples of points irR? (i.e., j = 0).

Strong coresets: For the casg = 0 andz = 1, which is



the standard:-median problem, we presents&rong coreset
of sizet = O(dk/<?). This improves on previous results
in [27, 10, 31], where the construction efcoresets of size
O(k*e~4Y), O(k*de 2 logn), andO(d?k*c ~?), is respec-
tively presented. The terr®(z) hide factors that are poly-
logarithmic inz. For general metric spaces (e.dist(p, x)

is defined as the distance betweeandx in the given met-
ric), the dimensiord is to be replaced byogn, implying
strong coresets of size= O(klog(n)/e?). This improves
on the result of Ke Chen [10], which gives a coreset of size
O(k? log (n)/<?) for this problem. Both our results and those
of [31] are generalized to cost functions which use a power
of the distance, namehost(P, z) = > _ 5 (dist(p, z))*.

Weak coresets. For thek-median problem, our framework
yields a weak coresdD of sizeO(klog(1/¢)/e*). By com-
puting a(1 + ¢)-approximation to thé-median ofD, we are
able to compute a set df centers that gives &l + <) ap-
proximation to the optimal centers fd? in time O(ndk +
2Po(1/=:)) ~ Our results generalize to any integer> 1 by
replacinges with £2* in the corresponding time and space term.
For the case of = 1,2 (median and mean problems), Ke-
Chen [10] suggested afi(ndk) + poly(d, logn) - 2PO¥(k/)
PTAS. For thek-mean casez = 2), Feldman, Monemizadeh
and Sohler [23] improved this result using a weak coreset of
size O(klog? klog(1/¢)/<®), that yields a PTAS that takes

time O(ndk) + d - poly(k/e) + 90(k/e)

Streaming coresets. Our framework yields streaming core-
sets of size = O(klog(1/¢)log*(n)/e®) for k-median and

its generalizations for > 1. This improves on the result
of Ke Chen [10] which suggests a streaming coreset of size
O(dk?*c™?1og® n) for z = 1,2. We note that Feldman, Mon-

emizadeh and Sohler [23] present a streaming coreset of size

poly(klogn/e) for the special case df-mean ¢ = 2). To
the best of our knowledge, no streaming coresets of size inde-
pendent ofl were known for the case > 2.

2.3 k-Linemedian and its generalizations

In this case, we seek to cluster the pointsHrby & lines
in R (i.e., we takej = 1). Very little is known about this
problem in high dimensional space.

Strong coresets. Combining our results with techniques pre-
sented in [21], we obtain strong coresets for this problem of
size(log(n)/e)°™ 4 O(dk/<?). This improves on the pre-
vious work of [21] that forz = 1, 2 introduces coresets of size
logO(k) n/60(dlogd+k)_

Weak coresets. The best PTAS (prior to our work) for this
problem takes timén-poly(k/<)+n(log n)PY*/<); see [16].
We suggest a weak coreset for this problem of giag(n) /) ¥
which improves the running time of this result @(ndk) +
(log n)poly(k/S).

Streaming coresets. We construct the first streaming coreset
for this problem. Its size iglog(n)/e)°*.

2.4 Subspace approximation
In the problem of subspace approximation one seeks a sin-

gle j-flat that approximates the data $&{i.e., in our notation
k=1).

Strong coresets. We suggest a strong coreset of size=
O(dj/€?) for any j > 1. This is the first strong coreset of
size polynomial ind for approximating the sum of distances
to anyj-dimensional subspace. In [21] a strong coreset of size
(1/)PG-4) . 169G 1y s constructed imd - 5°) time.

For the case = 2 andj = d — 1 (sum of squared distances
to a hyperplane) Baston, Speilman and Srivastava [4] recently
proved that there is a coreset of s@2éd/<*) which is a also a
weighted subset aP. Many applications of this construction
were suggested in [36]. Such a coreset can be constructed di-
rectly from Theorem 4.1 below in tim@(nd? + d/?), with
high probability, while [4] provide a deterministic construc-
tion in O(n*d/<?) time. Unlike the above constructions, our
results can be generalized for any> 1 andj < d — 1 where
e is replaced by?* in the running time and coreset’s size.
Deterministic constructions of such coresets can can be com-
puted in timen - (1/¢)? using the de-randomization technique
of [34].

Weak coresets. We obtain a weak coreset of i@ j2 log(1/¢) /%)
for the subspace approximation problem that yield®édin;j )+

2Po¥(5:1/2%)) time PTAS. A result of Shyamalkumar and Varadara-
jan [38] and subsequent work by Deshpande and Varadara-
jan [16] gave &1 + ¢)-approximation algorithm for the case

z > 1, with running timedn exp(j, 1/¢*). Forthe case = 1,

the running time was recently improved®@idnpoly(j, 1/¢)+
O(d+n) exp(j, 1/¢) by Feldman, Monemizadeh, Sohler and
Woodruff [24].

Streaming coresets. Our streaming coresets for subspace ap-
proximation are of sizé = O(j%log(1/¢)log* n/c*), and
thus useO(d - t) space. Sarlos [37] provides a streaming al-
gorithm that requires two passes over the data and uses space
O(n)(k/e + klogk)?.

For the case of non constajt Deshpande, Tulsiani, and
Vishnoi recently showed that computing a PTAS for this prob-
lem is “hard" [1]. However, they suggested a constant fac-
tor approximation using a relaxation to convex programming,
which takes timel - poly(n). Applying this algorithm on the
output coresets of our framework would thus yield a constant
factor approximation i (dn+d - poly(j)) time together with
a strong, and streaming coreset.

CUR Decomposition. Givenj > 1 and ann x d matrix A,
the CUR decompositiomd = CUR consists of am x m
matrix C', m x j matrix U, andj x d matrix R, such that:
(i) The columns ofC are subset of columns from, and the
rows of R are a subset of rows from. (i) A minimizes

1 llai — @5 over everyA of rankj, up to a multiplica-
tive factor of (1 + ¢). Here,a; anda, are theith row of A and
A, respectively.

For the case = 2, Boutsidis et al. [5] provide randomized
and deterministic CUR decompositions usimg= O(j/¢)
columns. They also provide an updated reference for this long
line of research.

To the best of our knowledge, the CUR a decomposition is
not discussed fot # 2 or for the streaming model. Since all
the approximated-subspaces that are described in this paper
are spanned by paly/¢) input points, it can be shown that our
coresets generalize the CUR decomposition for these cases.

Linear regression. In the/; regression problem, the input is
ann x (d — 1) matrix A and a vectob € R". The the goal is



to minimize||Ay — b||: over ally € R, By defining a set

P of n points inR? that correspond to the rows of the matrix
[A]b], and mapping any vectar € R%~! to the hyperplane
that is orthogonal to the vectgg”, —1]7, it is easy to verify
that a strong coreset for the subspace approximatiéghwith

j = d — 1 would yield a strong coreset for the corresponding
linear regression problem fot, b.

In particular, our strong coresets for subspace approxima-
tion with j = d — 1 yield a strong coreset for the linear regres-
sion problem of sizé = O(d?/£*). The construction time is
O(nd* + d*c~?logn). Computing the/; regression on the
strong coreset would thus takind? + poly(d/e)) time (e.g.,
using [15]). Maintaining these strong coresets in the stream-
ing model will yield a streaming algorithm that takes space
t = O(d*log® n/e?). As mentioned in the beginning of Sec-
tion 2, the results are generalized for any> 1 wheree is
replaced by:?* in our running time and size of coresets.

Efficient approximation algorithms for the regression prob-
lem are given by Clarkson [12] far = 1, Drineas, Mahoney,
and Muthukrishnan [17] for = 2, and Dasgupta et al. [15] for
z > 1intime O(nd® logn + poly(d/<)). All these results are

(jkloglog n)®Y) flats of dimensionj, which exceed the op-
timal objective value for any j-dimensional flats by a factor
of a(j) = 2°Y). The running time isinlogn - (2k)P°Y).
Our framework improves (the running time, and 3) upon
this result and yields several bicriteria approximations algo-
rithms. For small values of andk, we present a bicriteria
algorithm that yields ax = 1 + ¢ approximation. It returns
B = klogn flats in timeO(dnjk) + d - poly(j,k,1/¢) +
2POV(I:k:1/2) 1092 1, For large values of, we suggest &1 +
e, B)-approximation that returns = log n.-kP°Y:1/%) flats of
dirr12ensior]j, and the running time i® (dn3)+d-poly(j, k, 1/¢)-
log= n.

Low-Dimensional B-Coresets for large 5. Deshpande and
Varadarajan [16] describe an algorithm that returns a subspace
V spanned by polyjk /<) points that is guaranteed, with prob-
ability at leastl /2, to containk j-subspaces whose union is a
(14-¢)-approximation to the optimum solution. Using the vol-
ume sampling technique their algorithm rungin® k> (jk /e)?
time for anyz > 1.

Note that this result does not have the reduction property of

obtained by constructing weak coresets for the corresponding weak coresets as defined in the beginning of this section. That

problem. Some small space streaming algorithms are avail-
able in the turnstile model (where the points are constrained
to be on an integer grid of size®(!)) for [, regression where

1 < z < 2by[24] and [13] forz = 2. However, we are not
aware of previous strong or streaming coresets for the original
(unconstrained) problem.

25 Projectiveclustering

We now discuss the broad setting in which bptmdk may
be arbitrary. Whery > 2 andk is taken to be general, there
are no strong coresets (of sizén)) for these problems, even
for j = k = 2 andd = 3; this can be proven using a simple
generalization of the results of [25]. Also, fér> logn, the
optimization problem cannot be approximated in polynomial
time, for any approximation factor, unle&s=NP[35]. How-
ever, the problem does allow one of the following bicriteria
approximations (where one allows some leeway in both the
number or dimension of flats and the quality of the objective
function). In what follows, ar(«, 8) bicriteria solution is a
setB of 3 flats such that clustering the poinfsvia B can be
done at a cost at most times the optimak clustering. We
now present our results in this context.

Bicriteria Approximations. Giving a set of points inR?,
whose minimum enclosing ball is of radiu$, suppose we
want to compute a set @ (logn) balls of radius at most*
that coversP. There is a generic and simple greedy algorithm
that compute such a set@(nd) time using the theory of VC-
dimension [6]. This algorithm works for any family of shapes
of small VC-dimension. In this paper we generalize this al-
gorithm for the case of non-covering problems. In general,
our bicriteria algorithm has many advantages over previous
work (e.g., [30, 14]), both in the fact that it is widely applica-
ble (for a general families of functions, not necessarily metric
spaces), more efficient (in terms of the approximation factors
and running time), and implies deterministic constructions.

In the context of projective clustering, in [20], dn, §)-
bicriteria approximation algorithm was suggested, which pro-
duces, with high probability, at most(k, j,n) logn -

is, even if we have an algorithm that computes the optimal set
x* of k j-subspaces for any given set of points, it is not clear
how to use it withV" in order to have a more efficient solution
for the original problem. Similarly, it seems that this result can
not be generalized for the streaming model when the subspace
V needs to be computed for a streammgfoints P using less
thanO(nd) space.

For these problems (whede ;7 > 1), we suggest strong,
weak, and streaming coresets contained in low-dimensional
subspaces, and therefore take sub-linear space. Our coresets,
referred to ag3-coresets, were described in Section 2.1, and
are used as the first step for the construction of all the coresets
presented in this section (including whegr= 1 or k = 1).

3. NOVELTIESIN PROOF TECHNIQUES

As specified in Section 2, our unified framework yields a
number of improved results in the context of approximate clus-
tering and shape fitting. In what follows, we briefly touch on
the major new ideas used in our algorithms allowing theses
improved results.

Reduction to e-approximation: The main reason that our
framework is able to address a spectrum of clustering and ap-
proximation problems lies in our reduction from the inconsis-
tent definition of coresets to the notion efapproximation.
Using this reduction we can(i) use a common ground in
our analysis, thus removing the specialized (and sometimes
tedious) analysis of the required sampling sizes used in many
of the related works mentioned in Section (&) use smaller
sample sizes that improve on those obtained in previous works,
due to recent results taken from the context of Machine Learn-
ing [33]. (iii) apply numerous results from the field of Com-
putational Geometry, dated back to [29], regarding the study
of VC-dimension and-approximations. For example: deter-
ministic constructions [34], for convex shapes (which have un-
bounded VC-dimension) [8], and in the streaming model [3].
Our reduction includes multiple stages and uses the new no-
tions ofrobust approximatiomndrobust corestas intermedi-
ate points. We elaborate on our reductiorztapproximation



(including our new notions) in the upcoming Section 4 which capture the essence of weak coresets. The study of general-
addresses a detailed overview of our framework. ized range spaces enables us to use the same algorithms in our
constructions of coresets, whether weak or strong, where the
difference in the obtained results (in size and running time) is
now easily traced back to the notion of the generalized dimen-
sion of the range space at hand.

Functional representation of data elements and coresets:
To study coresets over a wide range of objectives, we present
an abstract framework in which the data points are considered
as functions. Namely, for a center the valuef(z) repre-
sents the cost of clustering the data element corresponding to
f with z. This representation is not superficial, and is in a 4. FRAMEWORK OVERVIEW
sense crucial, as in our setting the coresets we construct are We now review the concept efapproximations ane-coresets
no longer “data elements” (as is common in the literature) but followed by a detailed overview of our general framework.
rather functions as well. Indeed, in some cases, our coresets . .
will correspond to a subset of data elements, and thus their rep-4'1 s-AppI’OXI mations and coresets
resentation by functions will have no special meaning. How- For a multi-setf” of non-negative functions on a sat, we
ever, in several cases the coreset consists of a small set of funcsay thatS C F'is ane-approximation fort, if for every every
tions, that are closely related to the original data functions, = € X andr > 0 we have
however differ in certai_n behaviors. F(_)r example, several of range(F,z,r) range(S,z,r)
our coresets use functiogscorresponding to the data func- 7] - 5] <e
tions f such thatg(x) = f(x) only if f(z) is smaller than a
certain threshold; otherwisgx) will be neglectecand equal whererange(S,z,r) = {f € S| f(z) <r}.
to zero. Another example includes the use of functigmisat
correspond fully to data elemenfs but appear in the coreset
as havingnegativeweight. We extend and generalize coresets
from [24] that had such properties. (1 —&)cost(F,x) < cost(D,z) < (14 &)cost(F, x),

One may argue that this skewed succinct representation of
the original data violates the traditional line of thought in which Wherecost(F,x) =3~ o f(x) andcost(D,z) = >_ ;. , f(2).
a coreset consists of a subset of “real” data elements, and thus'" this paper we forge a link betweerapproximations and-

in many cases we make an effort in finding such “standard” coresets for general families of queries. As a warm-up, we
coresets. However, when considering the computational ob- present the following theorem which is a special case of our
jective in the construction of coresets, namely a tool to allow majin theorem (Theorem 4.11). It relates to the notioseofsi-

the efficient approximation of clustering problems, our notion tivity that was introduced in [31] fdt-median type problems.
of coresets plays a role equivalent to that of standard core-

sets. The flexibility in allowing our coresets to deviate from THEOREM 4.1. Let [ be a set of functions frod¥ to [0, o)
standard conception is a key point in our ability to obtain im- and0 < e < 1/4. Letm : F' — N\ {0} be a function on*"
proved results. such that

For a setF’ of non-negative functions on a s&t, we say that
D is ane-coreset forF, if for everyz € X we have

Generalized range spaces. In the vast literature on clustering, m(f) > n - max ﬂ (1)
the notion of coresets is defined in several ways. Two common veX cost(F,z)

definitions include strong and weak coresets, which roughly  For eachf € F, let gr + X — [0,00) be defined as
speaking, address the combinatorial and computational aspecty;(z) = f(z)/m(f). LetG; consists ofn; copies ofg;,
of c_Iustering r_espectively. Namely, strong coresets require a and letS be an(e-n/ ZfeF m(f))-approximation of the set
similar behavior when compared to the (3I_ata setefmr),/’set G = Uep Gy. ThenD = {g; - |G|/|S| | g; € S} is an
of centers, while weak coresets require “just enough” so that __coreset forr. That is, for every: € X,

the coreset can be used in the design of efficient algorithms for

approximate clustering. |cost(F, z) — cost(D, z)| < ecost(F, z).

In this work we unify the study of weak coresets that was
used recently in [2, 23, 24] with older results relatedsto
approximation [9], called-frames As our work reduces the
study of coresets to that afapproximation in certain range
spaces, this unification is captured by the development of a
new notion: ageneralized range spaand a corresponding
generalized dimension

More specifically, in the standard study of range spaces, an
e-approximation captures the propertied of the original space n- fp(z®)
with respect taanyrange in the space. This intuitively corre- m(fp) = [W—‘ + 2.
sponds to the study of strong coresets. For the (more delicate) ’
study of weak coresets, we enhance the standard definition of Itis not hard to verify that (1) holds for this definitionof( f, )

a range space, to obtain a generalized definition and theory. Inand>_ ;. - m(f) = O(n); see [31]. By the PAC-learning
our generalized view, as-approximation captures the prop- theory, a random samplé C G of size O(d/e?) is ane-
ertied of the original space with respect tsabsetf prede- approximation of the se¥ that is defined in Theorem 4.1, with
termined ranges in the space (and not necessarily all of the high probability; see [32]. By Theorem 4.1 we conclude that
ranges). Choosing the predefined subsets carefully, one maythere exists a sdb, |D| = O(d/<?), such thatcost(F, z) —

For example, suppose that we are given arsef n points
in R¢, and we wish to compute a small set of functiabs
such that, for every: € R¢, we will have thatcost(D, )
is a(1 + e)-approximation to the sum of Euclidean distances
> pepllp—zll,. Foreveryp € Pandz € X = R let
fo(z) =|lp—z|,andF = {f, | p € P}. Letz™ denote the
point that minimizes the sum of distancesitpand define



ranges(F') is therange space of’, that is defined as fol-

Algorithm BICRITERIA(F ¢, o, B) lows. For everyz € X andr > 0, let range(z,r) =
{f € F| f(z) <r}. Letthe setranges(F) be defined as

1l iL R «F {range(z,r) | z € X,r > 0}. The dimension dfF,, ranges)

2 while|F;| > 10/e is the minimum such that

3 Y; < A (3/4,¢, a, B)-median ofF; 4

4 G; + The set of thd (1 — 5¢) - 3| F;| /4] functions VS C F: |SNranges(F)| <|S]|

f € F. with the smallest valug(Y;). To allow the unified study of both strong and weak coresets,

g filz: fl \ G we enhance the definition above to that of a generalized range
7 Y, « An (a, 8) bicriteria toF, space. In a ge?(ferallz_ed range sp;_ace correspondnﬁg for
8 return UY; every subsef of functions one defines a corresponding sub-

set ofimportantrangesranges(S) C ranges(F'). In our
context of clustering, the setnges(.S) will be defined by a
subsetY'(S) of centerse € X that are guaranteed to include a
goodcenter to be used in the clustering$fMore precisely:

Figure 1: Thealgorithm BICRITERIA.

DEFINITION 4.3. Let I be a finite set of functions from a

cost(D, z)| < ecost(F,x) as desired. In the next sections ¢t x 10 [0,000). LetX be a function that maps every subset
we present tools that allow us to compute such a small coresetg « 19 a set of itemsY'(S) C X. The pair (F, X) is
= = . )

D efficiently, deal with high dimensional spaces (say, when gjieqd ageneralized function spagéfor any s C S’ it holds

d = n), and withk-clustering prpblems (for example, when that X (S) C X(S’). The dimension ofF, X) is the smallest
x = (z1,- ,zx) and fp(z) = min, [|[p — z4|]). integerd, such that

4.2 Bicriteria approximation VS C F : | {S Nrange | range € ranges(S)} | < |5]¢ .
As common in several studies of geometrical clustering, our

starting point is that of bicriteria approximation. Given the whereranges(S) = {range(z,r) | » € X(S),r > 0}.

function family F', and a set of potential centels, an(«, )

bicriteria solution to the clustering problef#, X) is a subset For a generalized function spac, '), we now seek small
B of X of sizeB such thatost(F, B) < amingcx cost(F, z). subsets5' C F' that ares-approximations to the range space
Here, for a seB, the termcost (F, B) is equal toy ;. £(B), (F,ranges(S)). Loosely speaking, such sets will approxi-

mate the function sef” with respect to the centers it/ (S)

that are (by definition) of “importance” to the approximation
of S. Combining this with a proof that centers that approxi-
mate S also approximatd”, will yield the weak coresets we
desire. Notice that in the above definition we have required
the functionX to be monotone. This allows us to obtain the
following (immediate) connection between random sampling
ande-approximation (e.g., via [32]).

wheref(B) is a slight abuse of notation which represents the
expressionmingep f(x). Efficient bicriteria approximation
algorithms for constant values of and 5 have been exten-
sively studied over the last decade for a number of function
families F'. For example, in [28, 10, 21, 23, 19, 24, 31] the
starting point for the efficient construction of smaltoresets

for k-median is an efficient bicriteria algorithm férmedian.
Bicriteria approximation was also used as a starting point for
computing clustering in the setting of outliers and penalties; THEOREM 4.4. Let (F, X) be a function space of dimen-
Se‘?’kEZ’filri]t. part of our framework yields a general paradigm siond from X to [01’ o). Lete,d > 0. Lets be a sample of
for bicriteria approximations, that essentially reduces the task Lif:ie_ntliflzg(rjg_e'— é%gngt)a:l'lt:d-;ﬁgﬁtlsv?tshfgmb\?ﬁt‘; ;etcllesa;s%f

at hand to that ot-approximations from the theory of Ma-  ¢c ane-approximation of the range spacé’ ranges(S)).’
chine/PAC Learning and VC dimension [39, 29]. Roughly '
speaking our reduction includes three steps. In the first step, To illustrate our definitions, consider the standard problem
we determine theombinatorial COf’ﬂp'eXitpf the clustering of k-median inR<. Here, the range space Corresponding—‘to
problem at hand by defining a correspondyegeralized range  in Definition 4.2 has dimensiof(dk). Thus, using this range
spaceand studying itgeneralized VC-dimensidfe elabo- space in our work would imply weak coresets and algorithms
rate on these notions shortly). We then show thatapproximationwith running time that depends in an undesired fashiom.on

to the corresponding range space, yields a relaxed notion of bi- As all our algorithms at their core are based on the notion of

criteria clustering we refer to asrabust median Finally, we e-approximation, to avoid this dependencediit suffices to
show how to use these robust medians in able to obtain a bi- define a generalized function space of dimension that is inde-
criteria solution. An outline of our framework follows. pendent ofi.

Generalized VC dimension: Given the clustering problem Indeed, using the res_ults Of_ [38] it can be s,_hown that every
at hand (i.e., the function family’), one starts by defining a subsetS of I has dow dlmen5|onabqrrespond|ng setof cen-
corresponding range space and by studying its combinatorial €S (Set Of-tuples)X'(:S) such thaminge.(s) cost(S, z) <
sist of allk-tuplesz in the subspaces spanneddy log(e 1)
DEFINITION 4.2 (E.G., [33]). LetF be afinite setoffunc- pointsinsS. Itis not hard to verify that the dimension @F, )
tions from a setX to [0, c0). Thedimensiondim(F') of F is nowO (ke ' log(¢™")), and thus independent df Which
is the dimension of the range spa(:E, ranges(F)), where finally yields a succinct-approximationS via Theorem 4.4



that approximate$’ on all centers in¥'(.S).

From e-approximation to robust medians: In what follows

we define theobust mediarproblem, which is a relaxed ver-
sion of bicriteria clustering which strongly resembles the prob-
lem of clustering with outliers. In a nutshell, a robust median
for a set of data elements (functionS) is a set of centers
Y C X that cluster all but a small fraction of the elements
in S very efficiently. In the below definition, the parameter
represents to the quality of clustering, the parametefers to

the size ofY’, the parametey refers to the amount of outliers,
ande is a slackness parameter.

DEFINITION 4.5. Let F' be a set of: functions from a set
X to[0,00). Let0 < e,y < 1, anda > 0. For everyz € X,
let >, denote the[yn| functionsf € F with the smallest
valuef(z). LetY C X, and letG be the set of th§(1—e)yn]
functionsf € F with smallest valug(Y) = minycy f(y).
The sefy” is called a(v, ¢, «, 8)-medianof F, if |Y| = 8 and

J;Ggg} fly) < aar:%i)r(l cost(Fy,z) .

Notice that a set of cente¥swhich are g1, 0, o, 8)-median
are (by definition) ar{«, 8) bicriteria approximation. Thus,
one is interested in finding good robust medians for We
show that this is possible viaapproximationsS to the func-
tion space(F, X). In the lemma below we usgé = 1. We
note that a similar lemma, for general also holds, although
due to space limitations is not stated in this extended abstract.

LEMMA 4.6. Let(F, X) be a function space of dimension
d. Lety € (0,1], e € (0,1/10), € (0,1/10), & > 0. LetS
be a random sample 6f= 25 (d + log 5) , i.i.d functions
from F', wherec is a sufficiently large constant. Suppose that
z e X(S)isa((l—e)y,e,a, 1)-median ofS, and that| F'| >
s. Then, with probability at least — §, z is a (v, 4e, o, 1)-
median ofF".

Once the connection betweerapproximation and robust me-
dians is established, one can find robust mediansFfaria

an exhaustive (or sometimes more efficient) algorithm that ad-
dresses the-approximations.

From robust medians to bicriteria. We are now ready to
present our algorithm for bicriteria approximation. Before
presenting our algorithm, we note that although (ang3)-
bicriteria approximation is precisely(@, 0, «, 5)-median, we
cannot use Lemma 4.6 above to obtain a bicriteria solution (as
in Lemma 4.6¢ > 0 and there is a slackness in the reduction
W.r.t. 7).

Our algorithm BCRITERIA(F, ¢, «, 8) for bicriteria approx-
imation appears in Figure 1. The algorithm receives the func-
tion family F' and parameters, 3, ¢ and outputs a subset of
centers of size logarithmic (if¥'|) that act as a bicriteria ap-
proximation to the median problem dn The main recursive
call for “(3/4, ¢, a, 8)-median” in BCRITERIA is to the com-
putation of a(3/4, ¢, a, 8)-median forF" which is essentially
done via the connection te-approximation specified above.
Namely, to compute &3/4, ¢, «, §)-median for the function
setF; (defined in the algorithm), we take a random sanple
of F;, find a corresponding robust median forand return it
as a robust median fdr;. Our main theorem in the context of
bicriteria approximation follows.

THEOREM 4.7. Let F' be a set of: functions from a seX
to [0, 00), and leta, 8 > 0, € € [0, 1]. Let B be the set that is
returned by the algorithnBICRITERIA(F, /100, o, 3); see
Fig. 1. ThenB is a((1 + €)a, B log n)-approximation forF'.
Thatis,|B| < Blog,nand}’ ;. mingep f(z) < (1+¢)a
mingex cost(F, ). This takes timdBicriteria = O(nt +
log® n - RobustMedian + ExhaustiveBicriteria), where:

e tisan upper bound on the time it takes to comp{(¥)
forapair f € FandY C X such thafY| < g.

e O(RobustMedian) is the time it takes to compute a
(3/4,¢, a, B)-median for a sef” C F.

e O(ExahstiveBicriteria) is the time it takes to compute
an («, 8) bicriteria for a setF’ C F of size|F'| =
O(1/e).

The size and running time are specified in Theorem 4.7 in
an abstract manner as a functionagf3, ¢, RobustM edian,
ExhaustiveBicriteria, and implicitly d - the generalized VC
dimension of the function spa¢é’, X'). In Section 2, we pre-
sented some concrete examples in which the size and running
time specified in Theorem 4.7 are computed for specific well
studied clustering problems. More examples appear in the full
version of this work [22]. As we show, our framework im-
proves upon previously best known results.

4.3 From bicriteriato coresets

Once one has established(@an 3) bicriteria approximation
for the clustering problem at hand, we present a paradigm for
obtaining coresets (both strong and weak as defined in Sec-
tion 2).

We start the description of our results in the special case
that the function seF’ corresponds to the classidaimedian
problem inR¢. We then turn to present our framework when
the function setF" corresponds to the problem of clustering
points ontok lines inRR? (i.e., projective clusteriny Finally
we present our framework in its most abstract form, addressing
general function familieg’. The algorithms presented in the
case study above (presented in Figures 2 and 3) are all derived
from the general algorithm presented in Figure 4.

The k-median problem in R¢: Let P be a set of data ele-
ments inR?. Let the centers( consist of allk-tuples ofR.

(In this context, there is a functiofy, € F' corresponding to
each poinp € P defined asf,, () = dist(p, z).) Our coreset
construction in this case is very simple in nature and consist of
two major steps. In the first step, using a bicriteria approxima-
tion B, we assign aveightm,, to each data elemepte P.

We then iteratively sample the point sBtaccording to the
distribution implied by the weight$m,}, to obtain asmall
sampleS C P. Our algorithmk-MEDIAN-CORESETIS pre-
sented in Figure 2.

This general algorithmic paradigm in itself is the basis of
several coreset constructions that have been recently suggested,
e.g., [10, 24, 23, 31]. However, the main novelty in our algo-
rithm is in its second step, which essentially adds the bicriteria
centers as additional elements in the coreset. Adding the bicri-
teria centers to the coreset, combined with a delicate weight-
ing mechanism (that may assign negative weights), enables the
proof of the following theorem. In what follows, we assume
B is an(O(1), O(k)) bicriteria approximation. This can be
obtained from previous works (e.g., [10]) or by the use of our



Algorithm k-MEDIAN-CORESET P, B, t, )
1 for eachb € B
2 P, + the set of points ifP whose closest point in
B isb. Ties are broken arbitrarily.
3 for eachb € Bandp € P,
| P|dist(p, B)
e [ cost(P, B) 1
4 Pick a non-uniform random sampfeof ¢ points fromP,
where for every; € S andp € P, we havey = p with
probabilitym,/ > p mq.
5 foreachp € S
Zq My
w(p) < .
®) 15T m,
6 for eachb € B
7 w(b)  (1+108)|P| = > w(p).
pESNP,
8 D+ SUB
9 return (D,S,w)

Figure2: Thealgorithm k-MEDIAN-CORESET.

framework in an enhanced version of Theorem 4.7 (details ap-
pear in full version [22]).

THEOREM 4.8. Let P be a set of points inR%. Letk > 1
be aninteger) < ¢,6 < 1/2, andt = 5 - (dk +log(1/4)),
wherec is a sufficiently large constant. Then, with probabil-
ity at leastl — §, k-MEDIAN-CORESET P, B, t,¢) returns a
weighted:s-coresetD C P of sizet. The running time needed
to computeD is O(ndk 4 log®(1/6) log® n + k* + tlogn).

ReplacingR? by any metric spacéM, dist) we obtain an
analogous theorem in which the dimensidrof the corre-
sponding function space (which effects the sample sire
the theorem) is nodog(n).

THEOREM 4.9. Let (P, dist) be a metric space of points.
Let0 <e,0 < 1/2,andt = 5 - (klogn+log(1/6)), where
cis a sufficiently large constant. Then, with probability at least
1—0, k-MEDIAN-CORESET P, B, t, ) returns a weighted-
coresetD C P of sizet. The running time needed to compute
Dis O(nk +log?(1/6) log® n 4 k* + tlogn).

The main idea governing the proofs of Theorems 4.8 and
4.9 lies in the fact the the random samgleof algorithm k-
MEDIAN-CORESETIS ane-approximation to (a slightly mod-
ified version of) the function family" corresponding td:-
median clustering oP. To obtain our succinct setting for
we perform a delicate analysis which determines the weights
{my}, {w(p)} and{w(b)} specified ink-MEDIAN-CORESET.

In the case ofk-median clustering, our coresets consist of
points in the data seP (as common in the study of coresets
for approximate clustering). In the coresets to come, this will

no longer be the case, and the functional representation of our

data will be central.

Clustering onto k-lines: We now turn to address the more
complicated case of clustering ontolines. Namely, letP

be a set of data elementskf. Let the centers\ consist of

all k-tuplesz of linesin R?. As in thek-median problem, our
starting point is a bicriteria approximatid®. However, in this
case, our algorithm will have three steps instated of two. The
first two steps are similar in nature to those of algorithm
MEDIAN-CORESET, however instead of returningstandard
coreset, they will yield a so-calle-coreset (foBicriteria) —

to be discussed in detail shortly. Onc&ecoreset is obtained,

we take advantage of its structure to obtain a standard coreset.

We start by discussing the first two steps outlined in algo-
rithm MEeTRIC-B-CoRESETOf Figure 3. As before, our core-
setD is the union of two groups of points iR%: the subses
which is obtained by a (non-uniform) random sampling; and
a second subset which is obtained via the bicriteria solution
B. However, in this case, the second group cannot consist of
the (a, B) bicriteria B itself as it is no longer a succinct set of
points — but rather a set of lines! Thus, to proceedpraect
the pointsP onto the bicriteria solution to obtain a new subset
of points P’ of size identical to P|. Namely, for each point
p € P we define a new point’ on the closest line iB to p
such thadist(p, B) = ||p — p||.

Our B-coresetD is nowin essencéhe union of the sample
S and the set”’ denoted byproj(P, B) and acts as a core-
set to P. To be more precise, the coresbtis a function
family which is a weighted and “threshold” defined version
of dist(p, x) for pointsp in S U P’. For a pointp € S and
a centerr € X, the corresponding function iP is propor-
tional to dist(p, ) whenp’ = proj(p, B) is closeto z and
zero otherwise (via the weight functian(p, z)). In a comple-
mentary manner, for a poipt € P’ and a centex € X, the
corresponding function i equalsdist(p’, ) whenyp' is far
from z and zero otherwise (via the weight functiefp’, z)).
Roughly speaking, the combination of functions correspond-
ing to S and P’ in our coreset allows to prove the quality
of D using a case analysis that depends on the query point
x € X. Namely, for some centers we will assign the cost
of dist(p, z) to the function inD corresponding t@" and for
others to the functions correspondingdo This freedom will
allow us to prove that indeed the cost of clusterings a good
approximation to that of clustering.

However, as the reader may have noticed, the size of our
coreset idarger than the set we started with, so where is the
gain? The gain is in the structure of the core3etompared to
the data seP: it is (essentially) the union of a small swith
a setP”’ that lies in a low dimensional space. Specifical¥,
can be partitioned to sets, each consisting of points on a single
line (from B). Thus, if B is small (and using Theorem 4.7
it is logarithmic), we have conceptually reduced the problem
of finding a coreset folP to that of finding a coreset fab,
which can now be done via its specialized structure (e.g., via
[21]). The following theorem summarizes the quality of the
resulting algorithm, which (a) first runs ¥ rRiC-B-CORESET
to obtainD corresponding t& and P’ (b) then uses [21] and
a few additional ideas to find a small set of poiStsthat are a
good approximation td@’ (including a corresponding weight
function), and (c) returns a succinct function set corresponding
to S andS’.

THEOREM 4.10. LetP C R%* k > 1,0 < &,6 < 1/2,
r =k +log(1/6) andt > 5 (dk + log ), for a sufficiently
large constant. A setD of O(t) 4 ((1/¢) logn)°™ points



Algorithm METRIC-B-CORESET P, B, t, ¢)
1 for eachp € P
| P|dist(p, B)

— 1.
v [ cost(P, B) -‘Jr

Pick a non-uniform random sampfeof ¢ points fromP,
where for every; € S andp € P, we havey = p with
probabilitym,,/ >~ _ . p m..
Forp € P, letp’ = proj(p, B).
for everyp € S and setr of points, define
my . ist(s
w(p,z) = Zzer s dlSt(p/’_x) < B
otherwise

for everyp € P and a set: of points, define
w(ef,a) = {0 U 0) S SR

1 otherwise
D + SUproj(P, B)
return (D, S, w)

»

Figure3: Thealgorithm METRIC-B-CORESET.

and a weight functionv : D x X — [0,00) can be com-
puted inO(ndk + dt?) + t°* log? n time, such that, with
probability at leastl — 4, for every set: of k lines inRY,

Z dist(p, x) — Z (p, <e Z dist(p, «

peP pED pEP

x)dist(p, x

The general setting: We now address the general setting in
which we are given a general function famify. As in the
previous case, our algorithm first findszcoreset, and only
then may try to utilize the nature of thB-coreset to obtain
a standard coreset. Our algorithm B3ReseTfor finding the

B-coreset is presented in Figure 4 and is phrased in an abstract

Algorithm B-CoRESETF, F’, s, m, ¢)

1 Foreachf € F,letty : X — [0, 00) be defined as:

fl(x) f'(z)>sp(x
by = (T @ 7@ > 8@

0 otherwise

LetT = {ts | f € F}.

For eachf € Fletg; : X — [0, 00) be defined as:

0 flz)>ss(x)

L&) otherwise

LetG consist of then; copies ofgy.

G+ UfeF Gf.

S+ Ane- approximation of.

U%{gf \Sl ‘ngS}

return D <~ T UU.

w N

gr(z) =

o N o ohs

Figure4: Thealgorithm B-CORESET.

viously defined coreset algorithms as well, but instead repre-
sented them in terms of random sampling for ease of presen-
tation.

All'in all, algorithm B-CoRESETreturns two sets, the func-
tion setT" that corresponds to a threshold versiod6f{which
intuitively corresponds to a projected versionfobnto a given
bicriteria solution), and the function setwhich corresponds
to a small sized-approximation to (a threshold and weighted
version) of the familyF'. Our main theorem in the this general
setting is now:

THEOREM 4.11. Let F' be a set of functions fronX' to
[0,00], and 0 < e < 1/4. Lets : (F,X) — [0,00),
andm : F — N\ {0}. Foreveryz € X, let M(z) =
{f€F:f'(z) <s¢(x)}. Foreachf € F letf’ be a cor-
responding function associated withand letF’ = {f'|f €
F}. Then forD = B-CoRESETF, F’, s, m, ) it holds that

manner that captures the previously defined coreset algorithms vz € X :|cost(F, x) — cost(D, z)| <

METRIC-B-CORESETandk-MEDIAN-CORESET.

Roughly speaking, as before, oBrcoreset will consist of
two subsets of functions, the subgétwhich is defined by the
“projection” of F' onto a given bicriteriaB; and the function
setU which is a weighted random sample of the function set
F. However, for a general function sét, there is no natural
notion of projection. To address this difficulty, vdefinethe
projection of F' onto a bicriteria solutiorB, as an additional
function setf”’ given as input to B-©RESET In our analysis,
we will rely on certain properties of” that intuitively corre-
spond to the standard notion of projection that arises in various
applications. Additional inputs to algorithm BERESETIn-
clude a threshold functios; : X — [0, c0) for every f € F,
and a weight functionn : ' — N\ {0}. These will play
the role of the threshold and weight functions defined in the
previous algorithm MtTRIC-B-CORESET

We now turn to discuss the sBtreturned as output by B-
CORESET Notice, that there is no use of random sampling
in algorithm B-GORESET Instead, to construct the sEtwe
use the more general notion efapproximation, again on a
weighted and threshold defined variantfof To be precise,
we could have used the notion ofapproximation in the pre-

f'(z)] +& max s1(@)
fEM(z) my

>

FEF\M(z)

|f(x) -

> my

fer

Some remarks are in place. Primarily, our presentation of
Theorem 4.11 is very general and involves several parameters
and function sets. From this presentation, both the the size and
quality of our coreseD is hard to decipher. The abstract na-
ture of Theorem 4.11 allows us to apply it on several function
families . In Section 2 we have presented a number of con-
crete algorithmic applications. These applications are proven
in detail in the full version of this work [22].

Secondly, as discussed in Section 3, the output of algorithm
B-CORESETIs a new set of function® that may not be a
subset ofF". Indeed, this is the case, however we stress that
the setU is essentially a subset &f which differs only by our
weightsm and threshold cut-off ;. Moreover, the function
set F’ and thus the sef’ will be a set of functions that are
typically easy to compute from a bicriteria 0F, X'). As we
have shown, in certain cases, such asfhmedian problem
discussed previously, we are able to slightly modify our algo-
rithm so that it returns a set of poinf3 C F as the desired
coreset and not a function set that may have cut-off thresholds.
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