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ABSTRACT
Given a setF of n positive functions over a ground setX,
we consider the problem of computingx∗ that minimizes the
expression

∑

f∈F f(x), overx ∈ X. A typical application
is shape fitting, where we wish to approximate a setP of n
elements (say, points) by a shapex from a (possibly infinite)
family X of shapes. Here, each pointp ∈ P corresponds to
a functionf such thatf(x) is the distance fromp to x, and
we seek a shapex that minimizes the sum of distances from
each point inP . In thek-clustering variant, eachx ∈ X is a
tuple ofk shapes, andf(x) is the distance fromp to its closest
shape inx.

Our main result is a unified framework for constructingcore-
setsandapproximate clusteringfor such general sets of func-
tions. To achieve our results, we forge a link between the clas-
sic and well defined notion ofε-approximations from the the-
ory of PAC Learning and VC dimension, to the relatively new
(and not so consistent) paradigm of coresets, which are some
kind of “compressed representation" of the input setF . Us-
ing traditional techniques, a coreset usually implies an LTAS
(linear time approximation scheme) for the corresponding op-
timization problem, which can be computed in parallel, via
one pass over the data, and using only polylogarithmic space
(i.e, in the streaming model). For several function familiesF
for which coresets are known not to exist, or the corresponding
(approximate) optimization problems are hard, our framework
yieldsbicriteria approximations, or coresets that are large, but
contained in a low-dimensional space.

We demonstrate our unified framework by applying it on
projective clustering problems. We obtain new coreset con-
structions and significantly smaller coresets, over the ones that
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appeared in the literature during the past years, for problems
such as:

• k-Median [Har-Peled and Mazumdar,STOC’04], [Chen,
SODA’06], [Langberg and Schulman, SODA’10];

• k-Line median [Feldman, Fiat and Sharir, FOCS’06],
[Deshpande and Varadarajan, STOC’07];

• Projective clustering [Deshpande et al., SODA’06] [Desh-
pande and Varadarajan, STOC’07];

• Linearℓp regression [Clarkson, Woodruff, STOC’09 ];

• Low-rank approximation [Sarlós, FOCS’06];

• Subspace approximation [Shyamalkumar and Varadara-
jan, SODA’07], [Feldman, Monemizadeh, Sohler and
Woodruff, SODA’10], [Deshpande, Tulsiani, and Vish-
noi, SODA’11].

The running times of the corresponding optimization problems
are also significantly improved. We show how to generalize
the results of our framework for squared distances (as ink-
mean), distances to theqth power, and deterministic construc-
tions.

1. INTRODUCTION
Over the last couple of decades, much effort has been put in

understanding the combinatorial and computational complex-
ity of a wide range of clustering and shape fitting problems.
Given a set ofn data elementsP , one of the powerful tech-
niques used in this context is that ofcoresets, i.e., a small set
D of representative data elements which approximately rep-
resentP , in terms of various objective measures. More pre-
cisely, for a set of candidate queriesX, and a measure func-
tion cost(P, x), the setD is anε-coreset forP if cost(D, x)
approximatescost(P, x) for everyx ∈ X, up to a multiplica-
tive factor of1 ± ε. See e.g. [2] for a nice (but not updated)
survey.

Succinct coresets that lead to efficient algorithms appear in
a variety of shape fitting and clustering problems. However,
their proof of existence and efficient construction is usually
tailor made to fit the properties of the problem at hand. More-
over, there are several natural clustering problems for which it
is proven that no coresets of sizeo(n) exist. These include,
for example, approximating points inR3 by a pair ofplanes
[25], the clustering of weighted points inR2 by a set of2 lines
[26], and approximating a point set byk-lines [26], where
k ≥ log n. These kind of clustering problems are usually
referred to as projective clustering.



1.1 This work
Let F be a set ofn functions fromX to [0,∞). Through-

out this work, each functionf ∈ F will correspond to a data
element, andx ∈ X will correspond to acenter(or a set of
centers). For a centerx ∈ X, the valuef(x) corresponds to
the cost of evaluatingf with the centerx. The cost of evaluat-
ingF with x ∈ X is defined ascost(F, x) =

∑

f∈F f(x).
Intuitively, the cost function should be interpreted in the

context of shape fitting, whereX represents a set of shapes,
andf(x) represents the cost of fitting an element represented
by f to the shapex. For a given query shapex ∈ X, the
valuecost(F, x) represents how wellx approximatesF . In
the context ofk-clustering, the “center”x represents a tuple
of k centers, andf(x) represents the distance from an ele-
ment f to its closest center inx. For example, in the well
known k-median problem inRd, the corresponding setX is
(Rd)k. For a data elementp ∈ R

d, and acenter tuplex =
(x1, . . . , xk) ∈ (Rd)k, the corresponding functionfp is de-
fined asfp(x) = mini dist(p, xi).

In this work, we present a unified framework for the effi-
cient construction of coresets for clustering problems corre-
sponding to a given function setF . Our coresets are obtained
via a new and natural reduction to the well studied notion of
ε-approximation from the theory of VC dimension [39]. The
reduction from coresets toε-approximations allows our frame-
work to rely only on thecombinatorial complexityof the in-
put family F of functions (i.e., the combinatorial complexity
of the clustering problem at hand), and to use the vast liter-
ature onε-approximation to obtain improved results (that are
at times deterministic). For several function familiesF for
which coresets are known not to exist, or the corresponding
(approximate) optimization problems are hard, our framework
yieldsbicriteria approximation, or coresets that are large, but
contained in a low-dimensional space.

In this extended abstract, we give an overview of the contri-
butions of our work. We start by presenting, in Section 2, sev-
eral concrete results that follow from our algorithmic paradigm,
including a detailed comparison with corresponding previous
work. We then present the main proof techniques and concep-
tual novelties in our approach in Section 3. Finally, in Sec-
tion 4, we present a detailed overview of our algorithms for
the construction of corestes and bicriteria approximation. The
above discussion will take up the body of this extended ab-
stract. All of the technical details of our results appear in the
full version of this work [22]. A first application of our frame-
work (for HD-image processing) already appread in [18].

2. CONCRETE CONTRIBUTIONS

2.1 Projective clustering
Our concrete results are taking from the broad family of pro-

jective clustering problems. In the task of projective clustering
we are given a setP ⊂ R

d of n ≥ d data elements, a positive
integerk ≤ n, and a non-negative integerj ≤ d. A centerx ∈
X is ak tuple(x1, . . . , xk) where eachxi is aj-dimensional
affine subspace (flat) inRd. The objective is to find a cen-
terx∗ that minimizes thecost(P, x) =

∑

p∈P dist(p, x) over
x ∈ X. Here,dist(p, x) denotes the Euclidean distance from
a pointp to its nearest subspacexi in x = (x1, . . . , xk). More
generally, for a givenz ≥ 1, we wish to minimize the sum of

distances to the power ofz, i.e,
∑

p∈P

(

dist(p, x)
)z

. In this
section we define three types of coresets for projective cluster-
ing:

Strong coresets: A weighted set of pointsD in R
d that ap-

proximate the distances toeverypossiblek-tuple ofj-flats in
R

d, up to a multiplicative factor of(1 + ε).

Weak coresets: A weighted set of pointsD in R
d, such that

a (1 + ε)-approximation for the optimal solution ofD yields
a (1 + ε)-approximation for the optimal solution of the full
data setP . That is,anyblack box algorithm or heuristic that
computes a(1+ ε)-approximation for the coreset would yield
a (1 + ε)-approximation for the original set. Hence, a weak
coreset can be viewed as areductionfrom the clustering prob-
lem with inputP to the same problem with inputD. We note
that in previous papers (e.g., [23, 24]) the only way to get a
PTAS for the original set is to run exhaustive search on the
coreset.

Streaming coresets: A weak coresetD that is updated on-
line during one pass over then points ofP , while using only
O(d · |D|)-space in memory. Streaming coresets can thus be
used online to compute a(1 + ε)-approximation for the opti-
mal solution of the points inP viewed so far.

All the algorithms that are described in this section are ran-
domized, and succeed with probability at least1/2 (or any
other constant approaching1).

Roughly speaking, the results given in this section are spe-
cific applications of our framework which, for general val-
ues ofj, yields a bicriteria approximationB for the projec-
tive clustering problem followed by a so calledB-coreset:
D = proj(P,B) ∪ S. Here, a bicriteria approximation is a
set of possibly more thank centers, that approximates the cost
of the optimal solutionx∗ up to some constant factor approxi-
mation. The setproj(P,B) denotes the projection of the data
setP onto the bicriteria centersB, andS is a set oft points.
Our setsD have the qualitative properties of coresets. Namely,
for t = O(djk/ε2) the setD we obtain is a strong coreset, for
t = O(kj2 log(1/ε)/ε3) we obtain weak coresets, and for
t = O(kj2 log(1/ε) log4 n/ε3) streaming coresets.

Our B-coresets are constructed by the union of the two
setsS andproj(P,B). While S is of small sizet, the set
proj(P,B) may be large in size. Nevertheless, our coresets
are of substantial interest as they imply adimension reduction
from the setP to the setproj(P,B). Indeed, when our cen-
ters are points (i.e.,j = 0), we are able find a setB of size
k, soproj(P,B) is also of sizek. When our centers are lines
(i.e., j = 1), the setproj(P,B) is contained in a small set
of lines and we use [21] to reduce the size ofproj(P,B) to
(ε−1 log n)O(k). We discuss these cases and others (derived
from our framework) in the subsections to come.

The construction time of the strong and weak coresets is
O(ndjk + t log n). All our coresets and running times below
are generalized to sum of distances to the power ofz > 1, after
replacing the termε in the corresponding results by1/ε2z.

2.2 k-Median and its generalizations
We start by discussing the setting in which the centersX

arek-tuples of points inRd (i.e.,j = 0).

Strong coresets: For the casej = 0 andz = 1, which is



the standardk-median problem, we present astrongcoreset
of size t = O(dk/ε2). This improves on previous results
in [27, 10, 31], where the construction ofε-coresets of size
O(k3ε−d−1), O(k2dε−2 log n), andÕ(d2k3ε−2), is respec-
tively presented. The term̃O(x) hide factors that are poly-
logarithmic inx. For general metric spaces (e.g.,dist(p, x)
is defined as the distance betweenp andx in the given met-
ric), the dimensiond is to be replaced bylog n, implying
strong coresets of sizet = O(k log(n)/ε2). This improves
on the result of Ke Chen [10], which gives a coreset of size
O(k2 log (n)/ε2) for this problem. Both our results and those
of [31] are generalized to cost functions which use a powerz
of the distance, namelycost(P, x) =

∑

p∈P (dist(p, x))
z.

Weak coresets. For thek-median problem, our framework
yields a weak coresetD of sizeO(k log(1/ε)/ε3). By com-
puting a(1 + ε)-approximation to thek-median ofD, we are
able to compute a set ofk centers that gives a(1 + ε) ap-
proximation to the optimal centers forP in time O(ndk +

2poly(1/ε,k)). Our results generalize to any integerz > 1 by
replacingε with ε2z in the corresponding time and space term.

For the case ofz = 1, 2 (median and mean problems), Ke-
Chen [10] suggested anO(ndk) + poly(d, log n) · 2poly(k/ε)

PTAS. For thek-mean case (z = 2), Feldman, Monemizadeh
and Sohler [23] improved this result using a weak coreset of
sizeO(k log2 k log(1/ε)/ε5), that yields a PTAS that takes

timeO(ndk) + d · poly(k/ε) + 2Õ(k/ε).

Streaming coresets. Our framework yields streaming core-
sets of sizet = O(k log(1/ε) log4(n)/ε3) for k-median and
its generalizations forz > 1. This improves on the result
of Ke Chen [10] which suggests a streaming coreset of size
O(dk2ε−2 log8 n) for z = 1, 2. We note that Feldman, Mon-
emizadeh and Sohler [23] present a streaming coreset of size
poly(k log n/ε) for the special case ofk-mean (z = 2). To
the best of our knowledge, no streaming coresets of size inde-
pendent ofd were known for the casez > 2.

2.3 k-Line median and its generalizations
In this case, we seek to cluster the points inP by k lines

in R
d (i.e., we takej = 1). Very little is known about this

problem in high dimensional space.

Strong coresets. Combining our results with techniques pre-
sented in [21], we obtain strong coresets for this problem of
size(log(n)/ε)O(k) + O(dk/ε2). This improves on the pre-
vious work of [21] that forz = 1, 2 introduces coresets of size
logO(k) n/εO(d log d+k).

Weak coresets. The best PTAS (prior to our work) for this
problem takes timedn·poly(k/ε)+n(log n)poly(k/ε); see [16].
We suggest a weak coreset for this problem of size(log(n)/ε)O(k)

which improves the running time of this result toO(ndk) +

(log n)poly(k/ε).

Streaming coresets. We construct the first streaming coreset
for this problem. Its size is(log(n)/ε)O(k).

2.4 Subspace approximation
In the problem of subspace approximation one seeks a sin-

glej-flat that approximates the data setP (i.e., in our notation
k = 1).

Strong coresets. We suggest a strong coreset of sizet =
O(dj/ε2) for any j ≥ 1. This is the first strong coreset of
size polynomial ind for approximating the sum of distances
to anyj-dimensional subspace. In [21] a strong coreset of size
(1/ε)poly(j,d) · logO(j2) n is constructed innd · jO(j) time.

For the casez = 2 andj = d−1 (sum of squared distances
to a hyperplane) Baston, Speilman and Srivastava [4] recently
proved that there is a coreset of sizeO(d/ε2) which is a also a
weighted subset ofP . Many applications of this construction
were suggested in [36]. Such a coreset can be constructed di-
rectly from Theorem 4.1 below in timeO(nd2 + d/ε2), with
high probability, while [4] provide a deterministic construc-
tion in O(n4d/ε2) time. Unlike the above constructions, our
results can be generalized for anyz ≥ 1 andj ≤ d− 1 where
ε is replaced byε2z in the running time and coreset’s size.
Deterministic constructions of such coresets can can be com-
puted in timen · (1/ε)d using the de-randomization technique
of [34].

Weak coresets. We obtain a weak coreset of sizeO(j2 log(1/ε)/ε3)
for the subspace approximation problem that yields anO(dnj)+

2poly(j,1/ε2)) time PTAS. A result of Shyamalkumar and Varadara-
jan [38] and subsequent work by Deshpande and Varadara-
jan [16] gave a(1 + ε)-approximation algorithm for the case
z ≥ 1, with running timedn exp(j, 1/εz). For the casez = 1,
the running time was recently improved toO(dnpoly(j, 1/ε)+
O(d+n) exp(j, 1/ε) by Feldman, Monemizadeh, Sohler and
Woodruff [24].

Streaming coresets. Our streaming coresets for subspace ap-
proximation are of sizet = O(j2 log(1/ε) log4 n/ε3), and
thus useO(d · t) space. Sarlos [37] provides a streaming al-
gorithm that requires two passes over the data and uses space
O(n)(k/ε+ k log k)2.

For the case of non constantj, Deshpande, Tulsiani, and
Vishnoi recently showed that computing a PTAS for this prob-
lem is “hard" [1]. However, they suggested a constant fac-
tor approximation using a relaxation to convex programming,
which takes timed · poly(n). Applying this algorithm on the
output coresets of our framework would thus yield a constant
factor approximation inO(dn+d·poly(j)) time together with
a strong, and streaming coreset.

CUR Decomposition. Given j ≥ 1 and ann × d matrixA,
the CUR decompositioñA = CUR consists of ann × m
matrix C, m × j matrix U , andj × d matrix R, such that:
(i) The columns ofC are subset of columns fromA, and the
rows of R are a subset of rows fromA. (ii) Ã minimizes
∑n

i=1 ‖ai − ãi‖
z
2 over everyÃ of rankj, up to a multiplica-

tive factor of(1+ ε). Here,ai andãi are theith row ofA and
Ã, respectively.

For the casez = 2, Boutsidis et al. [5] provide randomized
and deterministic CUR decompositions usingm = O(j/ε)
columns. They also provide an updated reference for this long
line of research.

To the best of our knowledge, the CUR a decomposition is
not discussed forz 6= 2 or for the streaming model. Since all
the approximatedj-subspaces that are described in this paper
are spanned by poly(j/ε) input points, it can be shown that our
coresets generalize the CUR decomposition for these cases.

Linear regression. In theℓ1 regression problem, the input is
ann× (d− 1) matrixA and a vectorb ∈ R

n. The the goal is



to minimize||Ay − b||1 over ally ∈ R
d−1. By defining a set

P of n points inRd that correspond to the rows of the matrix
[A|b], and mapping any vectory ∈ R

d−1 to the hyperplanex
that is orthogonal to the vector[yT ,−1]T , it is easy to verify
that a strong coreset for the subspace approximation ofP with
j = d − 1 would yield a strong coreset for the corresponding
linear regression problem forA, b.

In particular, our strong coresets for subspace approxima-
tion with j = d−1 yield a strong coreset for the linear regres-
sion problem of sizet = O(d2/ε2). The construction time is
O(nd2 + d2ε−2 log n). Computing theℓ1 regression on the
strong coreset would thus takeO(nd2+poly(d/ε)) time (e.g.,
using [15]). Maintaining these strong coresets in the stream-
ing model will yield a streaming algorithm that takes space
t = O(d2 log2 n/ε2). As mentioned in the beginning of Sec-
tion 2, the results are generalized for anyz ≥ 1 whereε is
replaced byε2z in our running time and size of coresets.

Efficient approximation algorithms for the regression prob-
lem are given by Clarkson [12] forz = 1, Drineas, Mahoney,
and Muthukrishnan [17] forz = 2, and Dasgupta et al. [15] for
z ≥ 1 in timeO(nd5 log n+poly(d/ε)). All these results are
obtained by constructing weak coresets for the corresponding
problem. Some small space streaming algorithms are avail-
able in the turnstile model (where the points are constrained
to be on an integer grid of sizenO(1)) for lz regression where
1 ≤ z ≤ 2 by [24] and [13] forz = 2. However, we are not
aware of previous strong or streaming coresets for the original
(unconstrained) problem.

2.5 Projective clustering
We now discuss the broad setting in which bothj andk may

be arbitrary. Whenj ≥ 2 andk is taken to be general, there
are no strong coresets (of sizeo(n)) for these problems, even
for j = k = 2 andd = 3; this can be proven using a simple
generalization of the results of [25]. Also, fork > log n, the
optimization problem cannot be approximated in polynomial
time, for any approximation factor, unlessP=NP[35]. How-
ever, the problem does allow one of the following bicriteria
approximations (where one allows some leeway in both the
number or dimension of flats and the quality of the objective
function). In what follows, an(α, β) bicriteria solution is a
setB of β flats such that clustering the pointsP via B can be
done at a cost at mostα times the optimalk clustering. We
now present our results in this context.

Bicriteria Approximations. Giving a set of points inRd,
whose minimum enclosing ball is of radiusr∗, suppose we
want to compute a set ofO(log n) balls of radius at mostr∗

that coversP . There is a generic and simple greedy algorithm
that compute such a set inO(nd) time using the theory of VC-
dimension [6]. This algorithm works for any family of shapes
of small VC-dimension. In this paper we generalize this al-
gorithm for the case of non-covering problems. In general,
our bicriteria algorithm has many advantages over previous
work (e.g., [30, 14]), both in the fact that it is widely applica-
ble (for a general families of functions, not necessarily metric
spaces), more efficient (in terms of the approximation factors
and running time), and implies deterministic constructions.

In the context of projective clustering, in [20], an(α, β)-
bicriteria approximation algorithm was suggested, which pro-
duces, with high probability, at mostβ(k, j, n) = log n ·

(jk log log n)O(j) flats of dimensionj, which exceed the op-
timal objective value for anyk j-dimensional flats by a factor
of α(j) = 2O(j). The running time isdn log n · (2k)poly(j).
Our framework improves (the running time,α andβ) upon
this result and yields several bicriteria approximations algo-
rithms. For small values ofj andk, we present a bicriteria
algorithm that yields anα = 1 + ε approximation. It returns
β = k log n flats in timeO(dnjk) + d · poly(j, k, 1/ε) +
2poly(j,k,1/ε) log2 n. For large values ofk, we suggest a(1 +

ε, β)-approximation that returnsβ = log n·kpoly(j,1/ε) flats of
dimensionj, and the running time isO(dnβ)+d·poly(j, k, 1/ε)·
log2 n.

Low-Dimensional B-Coresets for large j. Deshpande and
Varadarajan [16] describe an algorithm that returns a subspace
V spanned by poly(jk/ε) points that is guaranteed, with prob-
ability at least1/2, to containk j-subspaces whose union is a
(1+ε)-approximation to the optimum solution. Using the vol-
ume sampling technique their algorithm runs indnj3k3(jk/ε)z

time for anyz ≥ 1.
Note that this result does not have the reduction property of

weak coresets as defined in the beginning of this section. That
is, even if we have an algorithm that computes the optimal set
x∗ of k j-subspaces for any given set of points, it is not clear
how to use it withV in order to have a more efficient solution
for the original problem. Similarly, it seems that this result can
not be generalized for the streaming model when the subspace
V needs to be computed for a stream ofn pointsP using less
thanO(nd) space.

For these problems (wherek, j > 1), we suggest strong,
weak, and streaming coresets contained in low-dimensional
subspaces, and therefore take sub-linear space. Our coresets,
referred to asB-coresets, were described in Section 2.1, and
are used as the first step for the construction of all the coresets
presented in this section (including whenj = 1 or k = 1).

3. NOVELTIES IN PROOF TECHNIQUES
As specified in Section 2, our unified framework yields a

number of improved results in the context of approximate clus-
tering and shape fitting. In what follows, we briefly touch on
the major new ideas used in our algorithms allowing theses
improved results.

Reduction to ε-approximation: The main reason that our
framework is able to address a spectrum of clustering and ap-
proximation problems lies in our reduction from the inconsis-
tent definition of coresets to the notion ofε-approximation.
Using this reduction we can:(i) use a common ground in
our analysis, thus removing the specialized (and sometimes
tedious) analysis of the required sampling sizes used in many
of the related works mentioned in Section 2.(ii) use smaller
sample sizes that improve on those obtained in previous works,
due to recent results taken from the context of Machine Learn-
ing [33]. (iii) apply numerous results from the field of Com-
putational Geometry, dated back to [29], regarding the study
of VC-dimension andε-approximations. For example: deter-
ministic constructions [34], for convex shapes (which have un-
bounded VC-dimension) [8], and in the streaming model [3].

Our reduction includes multiple stages and uses the new no-
tions ofrobust approximationandrobust corestsas intermedi-
ate points. We elaborate on our reduction toε-approximation



(including our new notions) in the upcoming Section 4 which
addresses a detailed overview of our framework.

Functional representation of data elements and coresets:
To study coresets over a wide range of objectives, we present
an abstract framework in which the data points are considered
as functions. Namely, for a centerx, the valuef(x) repre-
sents the cost of clustering the data element corresponding to
f with x. This representation is not superficial, and is in a
sense crucial, as in our setting the coresets we construct are
no longer “data elements” (as is common in the literature) but
rather functions as well. Indeed, in some cases, our coresets
will correspond to a subset of data elements, and thus their rep-
resentation by functions will have no special meaning. How-
ever, in several cases the coreset consists of a small set of func-
tions, that are closely related to the original data functions,
however differ in certain behaviors. For example, several of
our coresets use functionsg corresponding to the data func-
tionsf such thatg(x) = f(x) only if f(x) is smaller than a
certain threshold; otherwiseg(x) will be neglectedand equal
to zero. Another example includes the use of functionsg that
correspond fully to data elementsf , but appear in the coreset
as havingnegativeweight. We extend and generalize coresets
from [24] that had such properties.

One may argue that this skewed succinct representation of
the original data violates the traditional line of thought in which
a coreset consists of a subset of “real” data elements, and thus
in many cases we make an effort in finding such “standard”
coresets. However, when considering the computational ob-
jective in the construction of coresets, namely a tool to allow
the efficient approximation of clustering problems, our notion
of coresets plays a role equivalent to that of standard core-
sets. The flexibility in allowing our coresets to deviate from
standard conception is a key point in our ability to obtain im-
proved results.

Generalized range spaces: In the vast literature on clustering,
the notion of coresets is defined in several ways. Two common
definitions include strong and weak coresets, which roughly
speaking, address the combinatorial and computational aspects
of clustering respectively. Namely, strong coresets require a
similar behavior when compared to the data set foreveryset
of centers, while weak coresets require “just enough” so that
the coreset can be used in the design of efficient algorithms for
approximate clustering.

In this work we unify the study of weak coresets that was
used recently in [2, 23, 24] with older results related toε-
approximation [9], calledε-frames. As our work reduces the
study of coresets to that ofε-approximation in certain range
spaces, this unification is captured by the development of a
new notion: ageneralized range spaceand a corresponding
generalized dimension.

More specifically, in the standard study of range spaces, an
ε-approximation captures the propertied of the original space
with respect toany range in the space. This intuitively corre-
sponds to the study of strong coresets. For the (more delicate)
study of weak coresets, we enhance the standard definition of
a range space, to obtain a generalized definition and theory. In
our generalized view, anε-approximation captures the prop-
ertied of the original space with respect to asubsetof prede-
termined ranges in the space (and not necessarily all of the
ranges). Choosing the predefined subsets carefully, one may

capture the essence of weak coresets. The study of general-
ized range spaces enables us to use the same algorithms in our
constructions of coresets, whether weak or strong, where the
difference in the obtained results (in size and running time) is
now easily traced back to the notion of the generalized dimen-
sion of the range space at hand.

4. FRAMEWORK OVERVIEW
We now review the concept ofε-approximations andε-coresets

followed by a detailed overview of our general framework.

4.1 ε-Approximations and coresets
For a multi-setF of non-negative functions on a setX, we
say thatS ⊆ F is anε-approximation forF , if for every every
x ∈ X andr ≥ 0 we have

∣

∣

∣

∣

range(F, x, r)

|F |
−

range(S, x, r)

|S|

∣

∣

∣

∣

≤ ε.

whererange(S, x, r) = {f ∈ S | f(x) ≤ r}.

For a setF of non-negative functions on a setX, we say that
D is anε-coreset forF , if for everyx ∈ X we have

(1− ε)cost(F, x) ≤ cost(D, x) ≤ (1 + ε)cost(F, x),

wherecost(F, x) =
∑

f∈F f(x) andcost(D, x) =
∑

f∈D f(x).
In this paper we forge a link betweenε-approximations andε-

coresets for general families of queries. As a warm-up, we
present the following theorem which is a special case of our
main theorem (Theorem 4.11). It relates to the notion ofsensi-
tivity that was introduced in [31] fork-median type problems.

THEOREM 4.1. LetF be a set of functions fromX to [0,∞)
and0 < ε < 1/4. Letm : F → N \ {0} be a function onF
such that

m(f) ≥ n ·max
x∈X

f(x)

cost(F, x)
. (1)

For eachf ∈ F , let gf : X → [0,∞) be defined as
gf (x) = f(x)/m(f). Let Gf consists ofmf copies ofgf ,
and letS be an(ε ·n/

∑

f∈F m(f))-approximation of the set
G =

⋃

f∈F Gf . ThenD = {gf · |G|/|S| | gf ∈ S} is an
ε-coreset forF . That is, for everyx ∈ X,

|cost(F, x)− cost(D, x)| ≤ εcost(F, x).

For example, suppose that we are given a setP of n points
in R

d, and we wish to compute a small set of functionsD
such that, for everyx ∈ R

d, we will have thatcost(D, x)
is a(1 + ε)-approximation to the sum of Euclidean distances
∑

p∈P ‖p− x‖2. For everyp ∈ P andx ∈ X = R
d, let

fp(x) = ‖p− x‖2 andF = {fp | p ∈ P}. Letx∗ denote the
point that minimizes the sum of distances toP , and define

m(fp) =

⌈

n · fp(x
∗)

cost(F, x∗)

⌉

+ 2.

It is not hard to verify that (1) holds for this definition ofm(fp)
and

∑

f∈F m(f) = O(n); see [31]. By the PAC-learning

theory, a random sampleS ⊆ G of sizeO(d/ε2) is an ε-
approximation of the setG that is defined in Theorem 4.1, with
high probability; see [32]. By Theorem 4.1 we conclude that
there exists a setD, |D| = O(d/ε2), such that|cost(F, x) −



Algorithm BICRITERIA(F, ε, α, β)

1 i← 1; F1 ← F
2 while |Fi| ≥ 10/ε
3 Yi ← A (3/4, ε, α, β)-median ofFi

4 Gi ← The set of the
⌈

(1− 5ε) · 3|Fi|/4
⌉

functions
f ∈ Fi with the smallest valuef(Yi).

5 Fi+1 ← Fi \Gi

6 i← i+ 1
7 Yi ← An (α, β) bicriteria toFi

8 return ∪Yi

Figure 1: The algorithm BICRITERIA.

cost(D, x)| ≤ εcost(F, x) as desired. In the next sections
we present tools that allow us to compute such a small coreset
D efficiently, deal with high dimensional spaces (say, when
d = n), and withk-clustering problems (for example, when
x = (x1, · · · , xk) andfp(x) = mini ‖p− xi‖).

4.2 Bicriteria approximation
As common in several studies of geometrical clustering, our

starting point is that of bicriteria approximation. Given the
function familyF , and a set of potential centersX, an(α, β)
bicriteria solution to the clustering problem(F,X) is a subset
B ofX of sizeβ such thatcost(F,B) ≤ αminx∈X cost(F, x).
Here, for a setB, the termcost(F,B) is equal to

∑

f∈F f(B),
wheref(B) is a slight abuse of notation which represents the
expressionminx∈B f(x). Efficient bicriteria approximation
algorithms for constant values ofα andβ have been exten-
sively studied over the last decade for a number of function
familiesF . For example, in [28, 10, 21, 23, 19, 24, 31] the
starting point for the efficient construction of smallε-coresets
for k-median is an efficient bicriteria algorithm fork-median.
Bicriteria approximation was also used as a starting point for
computing clustering in the setting of outliers and penalties;
see [7, 11].

The first part of our framework yields a general paradigm
for bicriteria approximations, that essentially reduces the task
at hand to that ofε-approximations from the theory of Ma-
chine/PAC Learning and VC dimension [39, 29]. Roughly
speaking our reduction includes three steps. In the first step,
we determine thecombinatorial complexityof the clustering
problem at hand by defining a correspondinggeneralized range
spaceand studying itsgeneralized VC-dimension(we elabo-
rate on these notions shortly). We then show that anε-approximation
to the corresponding range space, yields a relaxed notion of bi-
criteria clustering we refer to as arobust median. Finally, we
show how to use these robust medians in able to obtain a bi-
criteria solution. An outline of our framework follows.

Generalized VC dimension: Given the clustering problem
at hand (i.e., the function familyF ), one starts by defining a
corresponding range space and by studying its combinatorial
complexity (i.e.,dimension).

DEFINITION 4.2 (E.G., [33]). LetF be a finite set of func-
tions from a setX to [0,∞). Thedimensiondim(F ) of F
is the dimension of the range space

(

F, ranges(F )
)

, where

ranges(F ) is the range space ofF , that is defined as fol-
lows. For everyx ∈ X and r ≥ 0, let range(x, r) =
{f ∈ F | f(x) ≤ r}. Let the setranges(F ) be defined as
{range(x, r) | x ∈ X, r ≥ 0}. The dimension of(F, ranges)
is the minimumd such that

∀S ⊆ F : |S ∩ ranges(F )| ≤ |S|d

To allow the unified study of both strong and weak coresets,
we enhance the definition above to that of a generalized range
space. In a generalized range space corresponding toF , for
every subsetS of functions one defines a corresponding sub-
set of important rangesranges(S) ⊂ ranges(F ). In our
context of clustering, the setranges(S) will be defined by a
subsetX (S) of centersx ∈ X that are guaranteed to include a
goodcenter to be used in the clustering ofS. More precisely:

DEFINITION 4.3. LetF be a finite set of functions from a
setX to [0,∞). LetX be a function that maps every subset
S ⊆ F to a set of itemsX (S) ⊆ X. The pair (F,X ) is
called ageneralized function space, if for anyS ⊆ S′ it holds
thatX (S) ⊆ X (S′). The dimension of(F,X ) is the smallest
integerd, such that

∀S ⊆ F :
∣

∣

∣
{S ∩ range | range ∈ ranges(S)}

∣

∣

∣
≤ |S|d .

whereranges(S) = {range(x, r) | x ∈ X (S), r ≥ 0}.

For a generalized function space(F,X ), we now seek small
subsetsS ⊆ F that areε-approximations to the range space
(F, ranges(S)). Loosely speaking, such sets will approxi-
mate the function setF with respect to the centers inX (S)
that are (by definition) of “importance” to the approximation
of S. Combining this with a proof that centers that approxi-
mateS also approximateF , will yield the weak coresets we
desire. Notice that in the above definition we have required
the functionX to be monotone. This allows us to obtain the
following (immediate) connection between random sampling
andε-approximation (e.g., via [32]).

THEOREM 4.4. Let (F,X ) be a function space of dimen-
siond fromX to [0,∞). Let ε, δ > 0. LetS be a sample of
|S| = c

ε2

(

d+ log 1
δ

)

i.i.d functions fromF , wherec is a suf-
ficiently large constant. Then, with probability at least1 − δ,
S is anε-approximation of the range space(F, ranges(S)).

To illustrate our definitions, consider the standard problem
of k-median inRd. Here, the range space corresponding toF
in Definition 4.2 has dimensionO(dk). Thus, using this range
space in our work would imply weak coresets and algorithms
with running time that depends in an undesired fashion ond.
As all our algorithms at their core are based on the notion of
ε-approximation, to avoid this dependence ond, it suffices to
define a generalized function space of dimension that is inde-
pendent ofd.

Indeed, using the results of [38] it can be shown that every
subsetS of F has alow dimensionalcorresponding set of cen-
ters (set ofk-tuples)X (S) such thatminx∈X (S) cost(S, x) ≤
(1 + ε)minx∈(Rd)k cost(S, x). Specifically,X (S) will con-
sist of allk-tuplesx in the subspaces spanned byε−1 log(ε−1)
points inS. It is not hard to verify that the dimension of(F,X )
is nowO(kε−1 log(ε−1)), and thus independent ofd. Which
finally yields a succinctε-approximationS via Theorem 4.4



that approximatesF on all centers inX (S).

From ε-approximation to robust medians: In what follows
we define therobust medianproblem, which is a relaxed ver-
sion of bicriteria clustering which strongly resembles the prob-
lem of clustering with outliers. In a nutshell, a robust median
for a set of data elements (functions)S, is a set of centers
Y ⊂ X that cluster all but a small fraction of the elements
in S very efficiently. In the below definition, the parameterα
represents to the quality of clustering, the parameterβ refers to
the size ofY , the parameterγ refers to the amount of outliers,
andε is a slackness parameter.

DEFINITION 4.5. LetF be a set ofn functions from a set
X to [0,∞). Let0 < ε, γ < 1, andα > 0. For everyx ∈ X,
let Fx denote the

⌈

γn
⌉

functionsf ∈ F with the smallest
valuef(x). LetY ⊆ X, and letG be the set of the⌈(1−ε)γn⌉
functionsf ∈ F with smallest valuef(Y ) = miny∈Y f(y).
The setY is called a(γ, ε, α, β)-medianofF , if |Y | = β and

∑

f∈G

min
y∈Y

f(y) ≤ αmin
x∈X

cost(Fx, x) .

Notice that a set of centersY which are a(1, 0, α, β)-median
are (by definition) an(α, β) bicriteria approximation. Thus,
one is interested in finding good robust medians forF . We
show that this is possible viaε-approximationsS to the func-
tion space(F,X ). In the lemma below we useβ = 1. We
note that a similar lemma, for generalβ, also holds, although
due to space limitations is not stated in this extended abstract.

LEMMA 4.6. Let (F,X ) be a function space of dimension
d. Letγ ∈ (0, 1], ε ∈ (0, 1/10), δ ∈ (0, 1/10), α > 0. LetS
be a random sample ofs = c

ε4γ2

(

d+ log 1
δ

)

, i.i.d functions
fromF , wherec is a sufficiently large constant. Suppose that
x ∈ X (S) is a((1−ε)γ, ε, α, 1)-median ofS, and that|F | ≥
s. Then, with probability at least1 − δ, x is a (γ, 4ε, α, 1)-
median ofF .

Once the connection betweenε-approximation and robust me-
dians is established, one can find robust medians forF via
an exhaustive (or sometimes more efficient) algorithm that ad-
dresses theε-approximationS.

From robust medians to bicriteria. We are now ready to
present our algorithm for bicriteria approximation. Before
presenting our algorithm, we note that although an(α, β)-
bicriteria approximation is precisely a(1, 0, α, β)-median, we
cannot use Lemma 4.6 above to obtain a bicriteria solution (as
in Lemma 4.6,ε > 0 and there is a slackness in the reduction
w.r.t. γ).

Our algorithm BICRITERIA(F, ε, α, β) for bicriteria approx-
imation appears in Figure 1. The algorithm receives the func-
tion family F and parametersα, β, ε and outputs a subset of
centers of size logarithmic (in|F |) that act as a bicriteria ap-
proximation to the median problem onF . The main recursive
call for “(3/4, ε, α, β)-median” in BICRITERIA is to the com-
putation of a(3/4, ε, α, β)-median forF which is essentially
done via the connection toε-approximation specified above.
Namely, to compute a(3/4, ε, α, β)-median for the function
setFi (defined in the algorithm), we take a random sampleS
of Fi, find a corresponding robust median forS, and return it
as a robust median forFi. Our main theorem in the context of
bicriteria approximation follows.

THEOREM 4.7. LetF be a set ofn functions from a setX
to [0,∞), and letα, β ≥ 0, ε ∈ [0, 1]. LetB be the set that is
returned by the algorithmBICRITERIA(F, ε/100, α, β); see
Fig. 1. ThenB is a ((1 + ε)α, β log n)-approximation forF .
That is,|B| ≤ β log2 n and

∑

f∈F minx∈B f(x) ≤ (1+ε)α·

minx∈X cost(F, x). This takes timeBicriteria = O(nt +
log2 n · RobustMedian + ExhaustiveBicriteria), where:

• t is an upper bound on the time it takes to computef(Y )
for a pair f ∈ F andY ⊆ X such that|Y | ≤ β.

• O(RobustMedian) is the time it takes to compute a
(3/4, ε, α, β)-median for a setF ′ ⊆ F .

• O(ExahstiveBicriteria) is the time it takes to compute
an (α, β) bicriteria for a setF ′ ⊆ F of size|F ′| =
O(1/ε).

The size and running time are specified in Theorem 4.7 in
an abstract manner as a function ofα, β, ε, RobustMedian,
ExhaustiveBicriteria, and implicitly d - the generalized VC
dimension of the function space(F,X ). In Section 2, we pre-
sented some concrete examples in which the size and running
time specified in Theorem 4.7 are computed for specific well
studied clustering problems. More examples appear in the full
version of this work [22]. As we show, our framework im-
proves upon previously best known results.

4.3 From bicriteria to coresets
Once one has established an(α, β) bicriteria approximation

for the clustering problem at hand, we present a paradigm for
obtaining coresets (both strong and weak as defined in Sec-
tion 2).

We start the description of our results in the special case
that the function setF corresponds to the classicalk-median
problem inRd. We then turn to present our framework when
the function setF corresponds to the problem of clustering
points ontok lines inRd (i.e., projective clustering). Finally
we present our framework in its most abstract form, addressing
general function familiesF . The algorithms presented in the
case study above (presented in Figures 2 and 3) are all derived
from the general algorithm presented in Figure 4.

The k-median problem in R
d: Let P be a set of data ele-

ments inRd. Let the centersX consist of allk-tuples ofRd.
(In this context, there is a functionfp ∈ F corresponding to
each pointp ∈ P defined asfp(x) = dist(p, x).) Our coreset
construction in this case is very simple in nature and consist of
two major steps. In the first step, using a bicriteria approxima-
tion B, we assign aweightmp to each data elementp ∈ P .
We then iteratively sample the point setP according to the
distribution implied by the weights{mp}, to obtain asmall
sampleS ⊂ P . Our algorithmk-MEDIAN-CORESETis pre-
sented in Figure 2.

This general algorithmic paradigm in itself is the basis of
several coreset constructions that have been recently suggested,
e.g., [10, 24, 23, 31]. However, the main novelty in our algo-
rithm is in its second step, which essentially adds the bicriteria
centers as additional elements in the coreset. Adding the bicri-
teria centers to the coreset, combined with a delicate weight-
ing mechanism (that may assign negative weights), enables the
proof of the following theorem. In what follows, we assume
B is an(O(1), O(k)) bicriteria approximation. This can be
obtained from previous works (e.g., [10]) or by the use of our



Algorithm k-MEDIAN-CORESET(P,B, t, ε)

1 for eachb ∈ B
2 Pb ← the set of points inP whose closest point in

B is b. Ties are broken arbitrarily.
3 for eachb ∈ B andp ∈ Pb

mp ←

⌈

|P |dist(p,B)

cost(P,B)

⌉

+ 1.

4 Pick a non-uniform random sampleS of t points fromP ,
where for everyq ∈ S andp ∈ P , we haveq = p with
probabilitymp/

∑

q∈P mq.
5 for eachp ∈ S

w(p)←

∑

q mq

|S| ·mp
.

6 for eachb ∈ B

7 w(b)← (1 + 10ε)|Pb| −
∑

p∈S∩Pb

w(p).

8 D ← S ∪B
9 return (D,S, w)

Figure 2: The algorithm k-MEDIAN-CORESET.

framework in an enhanced version of Theorem 4.7 (details ap-
pear in full version [22]).

THEOREM 4.8. LetP be a set ofn points inRd. Letk ≥ 1
be an integer,0 < ε, δ < 1/2, andt = c

ε2
·
(

dk + log(1/δ)
)

,
wherec is a sufficiently large constant. Then, with probabil-
ity at least1 − δ, k-MEDIAN-CORESET(P,B, t, ε) returns a
weightedε-coresetD ⊆ P of sizet. The running time needed
to computeD is O(ndk + log2(1/δ) log2 n+ k2 + t log n).

ReplacingRd by any metric space(M, dist) we obtain an
analogous theorem in which the dimensiond of the corre-
sponding function space (which effects the sample sizet in
the theorem) is nowlog(n).

THEOREM 4.9. Let(P, dist) be a metric space ofn points.
Let0 < ε, δ < 1/2, andt = c

ε2
·
(

k log n+log(1/δ)
)

, where
c is a sufficiently large constant. Then, with probability at least
1−δ, k-MEDIAN-CORESET(P,B, t, ε) returns a weightedε-
coresetD ⊆ P of sizet. The running time needed to compute
D isO(nk + log2(1/δ) log2 n+ k2 + t log n).

The main idea governing the proofs of Theorems 4.8 and
4.9 lies in the fact the the random sampleS of algorithmk-
MEDIAN-CORESETis anε-approximation to (a slightly mod-
ified version of) the function familyF corresponding tok-
median clustering ofP . To obtain our succinct setting fort,
we perform a delicate analysis which determines the weights
{mp}, {w(p)} and{w(b)} specified ink-MEDIAN-CORESET.
In the case ofk-median clustering, our coresets consist of
points in the data setP (as common in the study of coresets
for approximate clustering). In the coresets to come, this will
no longer be the case, and the functional representation of our
data will be central.

Clustering onto k-lines: We now turn to address the more
complicated case of clustering ontok lines. Namely, letP

be a set of data elements inRd. Let the centersX consist of
all k-tuplesx of lines in R

d. As in thek-median problem, our
starting point is a bicriteria approximationB. However, in this
case, our algorithm will have three steps instated of two. The
first two steps are similar in nature to those of algorithmk-
MEDIAN-CORESET, however instead of returning astandard
coreset, they will yield a so-calledB-coreset (forBicriteria) —
to be discussed in detail shortly. Once aB-coreset is obtained,
we take advantage of its structure to obtain a standard coreset.

We start by discussing the first two steps outlined in algo-
rithm METRIC-B-CORESETof Figure 3. As before, our core-
setD is the union of two groups of points inRd: the subsetS
which is obtained by a (non-uniform) random sampling; and
a second subset which is obtained via the bicriteria solution
B. However, in this case, the second group cannot consist of
the(α, β) bicriteriaB itself as it is no longer a succinct set of
points — but rather a set of lines! Thus, to proceed weproject
the pointsP onto the bicriteria solution to obtain a new subset
of pointsP ′ of size identical to|P |. Namely, for each point
p ∈ P we define a new pointp′ on the closest line inB to p
such thatdist(p,B) = ‖p− p′‖.

OurB-coresetD is now in essencethe union of the sample
S and the setP ′ denoted byproj(P,B) and acts as a core-
set toP . To be more precise, the coresetD is a function
family which is a weighted and “threshold” defined version
of dist(p, x) for pointsp in S ∪ P ′. For a pointp ∈ S and
a centerx ∈ X, the corresponding function inD is propor-
tional to dist(p, x) whenp′ = proj(p,B) is closeto x and
zero otherwise (via the weight functionw(p, x)). In a comple-
mentary manner, for a pointp′ ∈ P ′ and a centerx ∈ X, the
corresponding function inD equalsdist(p′, x) whenp′ is far
from x and zero otherwise (via the weight functionw(p′, x)).
Roughly speaking, the combination of functions correspond-
ing to S andP ′ in our coreset allows to prove the quality
of D using a case analysis that depends on the query point
x ∈ X. Namely, for some centersx we will assign the cost
of dist(p, x) to the function inD corresponding top′ and for
others to the functions corresponding toS. This freedom will
allow us to prove that indeed the cost of clusteringD is a good
approximation to that of clusteringP .

However, as the reader may have noticed, the size of our
coreset islarger than the set we started with, so where is the
gain? The gain is in the structure of the coresetD compared to
the data setP : it is (essentially) the union of a small setS with
a setP ′ that lies in a low dimensional space. Specifically,P ′

can be partitioned to sets, each consisting of points on a single
line (from B). Thus, ifB is small (and using Theorem 4.7
it is logarithmic), we have conceptually reduced the problem
of finding a coreset forP to that of finding a coreset forD,
which can now be done via its specialized structure (e.g., via
[21]). The following theorem summarizes the quality of the
resulting algorithm, which (a) first runs METRIC-B-CORESET

to obtainD corresponding toS andP ′, (b) then uses [21] and
a few additional ideas to find a small set of pointsS ′ that are a
good approximation toP ′ (including a corresponding weight
function), and (c) returns a succinct function set corresponding
to S andS ′.

THEOREM 4.10. Let P ⊆ R
d, k ≥ 1, 0 < ε, δ ≤ 1/2,

r = k + log(1/δ) andt ≥ c
ε2

(

dk + log 1
δ

)

, for a sufficiently

large constantc. A setD of O(t) + ((1/ε) log n)O(k) points



Algorithm METRIC-B-CORESET(P,B, t, ε)

1 for eachp ∈ P

mp ←

⌈

|P |dist(p,B)

cost(P,B)

⌉

+ 1.

2 Pick a non-uniform random sampleS of t points fromP ,
where for everyq ∈ S andp ∈ P , we haveq = p with
probabilitymp/

∑

z∈P mz.
3 Forp ∈ P , let p′ = proj(p,B).
4 for everyp ∈ S and setx of points, define

w(p, x) =

{
∑

z∈P mz

mp·|S|
dist(p′, x) ≤ dist(p,B)

ε

0 otherwise.
5 for everyp ∈ P and a setx of points, define

w(p′, x) =

{

0 dist(p′, x) ≤ dist(p,B)
ε

1 otherwise.
6 D ← S ∪ proj(P,B)
7 return (D,S, w)

Figure 3: The algorithm METRIC-B-CORESET.

and a weight functionw : D × X → [0,∞) can be com-
puted inO(ndk + dt2) + tO(k) log2 n time, such that, with
probability at least1− δ, for every setx of k lines inRd,
∣

∣

∣

∣

∣

∑

p∈P

dist(p, x)−
∑

p∈D

w(p, x)dist(p, x)

∣

∣

∣

∣

∣

≤ ε
∑

p∈P

dist(p, x).

The general setting: We now address the general setting in
which we are given a general function familyF . As in the
previous case, our algorithm first finds aB-coreset, and only
then may try to utilize the nature of theB-coreset to obtain
a standard coreset. Our algorithm B-CORESETfor finding the
B-coreset is presented in Figure 4 and is phrased in an abstract
manner that captures the previously defined coreset algorithms
METRIC-B-CORESETandk-MEDIAN-CORESET.

Roughly speaking, as before, ourB-coreset will consist of
two subsets of functions, the subsetT which is defined by the
“projection” of F onto a given bicriteriaB; and the function
setU which is a weighted random sample of the function set
F . However, for a general function setF , there is no natural
notion of projection. To address this difficulty, wedefinethe
projection ofF onto a bicriteria solutionB, as an additional
function setF ′ given as input to B-CORESET. In our analysis,
we will rely on certain properties ofF ′ that intuitively corre-
spond to the standard notion of projection that arises in various
applications. Additional inputs to algorithm B-CORESETin-
clude a threshold functionsf : X → [0,∞) for everyf ∈ F ,
and a weight functionm : F → N \ {0}. These will play
the role of the threshold and weight functions defined in the
previous algorithm METRIC-B-CORESET.

We now turn to discuss the setU returned as output by B-
CORESET. Notice, that there is no use of random sampling
in algorithm B-CORESET. Instead, to construct the setU we
use the more general notion ofε-approximation, again on a
weighted and threshold defined variant ofF . To be precise,
we could have used the notion ofε-approximation in the pre-

Algorithm B-CORESET(F,F ′, s,m, ε)

1 For eachf ∈ F , let tf : X → [0,∞) be defined as:

tf (x) =

{

f ′(x) f ′(x) > sf (x)

0 otherwise
2 LetT = {tf | f ∈ F}.
3 For eachf ∈ F let gf : X → [0,∞) be defined as:

gf (x) =

{

0 f ′(x) > sf (x)
f(x)
mf

otherwise

4 LetGf consist of themf copies ofgf .
5 G←

⋃

f∈F Gf .
6 S ← An ε-approximation ofG.

7 U ←
{

gf ·
|G|
|S|

∣

∣

∣
gf ∈ S

}

.

8 return D ← T ∪ U .

Figure 4: The algorithm B-CORESET.

viously defined coreset algorithms as well, but instead repre-
sented them in terms of random sampling for ease of presen-
tation.

All in all, algorithm B-CORESETreturns two sets, the func-
tion setT that corresponds to a threshold version ofF ′ (which
intuitively corresponds to a projected version ofF onto a given
bicriteria solution), and the function setU which corresponds
to a small sizedε-approximation to (a threshold and weighted
version) of the familyF . Our main theorem in the this general
setting is now:

THEOREM 4.11. Let F be a set of functions fromX to
[0,∞], and 0 < ε < 1/4. Let s : (F,X) → [0,∞),
and m : F → N \ {0}. For everyx ∈ X, let M(x) =
{f ∈ F : f ′(x) ≤ sf (x)}. For eachf ∈ F let f ′ be a cor-
responding function associated withf , and letF ′ = {f ′|f ∈
F}. Then forD = B-CORESET(F, F ′, s,m, ε) it holds that

∀x ∈ X :|cost(F, x)− cost(D,x)| ≤

∑

f∈F\M(x)

∣

∣f(x)− f ′(x)
∣

∣+ ε max
f∈M(x)

sf (x)

mf

∑

f∈F

mf .

Some remarks are in place. Primarily, our presentation of
Theorem 4.11 is very general and involves several parameters
and function sets. From this presentation, both the the size and
quality of our coresetD is hard to decipher. The abstract na-
ture of Theorem 4.11 allows us to apply it on several function
familiesF . In Section 2 we have presented a number of con-
crete algorithmic applications. These applications are proven
in detail in the full version of this work [22].

Secondly, as discussed in Section 3, the output of algorithm
B-CORESET is a new set of functionsD that may not be a
subset ofF . Indeed, this is the case, however we stress that
the setU is essentially a subset ofF which differs only by our
weightsmf and threshold cut-offsf . Moreover, the function
setF ′ and thus the setT will be a set of functions that are
typically easy to compute from a bicriteria of(F,X). As we
have shown, in certain cases, such as thek-median problem
discussed previously, we are able to slightly modify our algo-
rithm so that it returns a set of pointsD ⊂ F as the desired
coreset and not a function set that may have cut-off thresholds.
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