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Supplementary Material

A Proof of Lemma 1

Lemma 1. Let z 2 Dn be a distribution over n unit vectors a1, · · · , an in Rd. For " 2 (0, 1), a
sparse weight vector w 2 Dn of sparsity s  1/"2 can be computed in O(nd/"2) time such that

�����

nX

i=1

zi · ai �
nX

i=2

wi ai

�����
2

 ". (9)

We note that the Caratheodory Theorem [4] proves Lemma 1 for the special case " = 0 using only
d + 1 points. Our approach and algorithm can thus be considered as an "-approximation for the
Caratheodory Theorem, to get coresets of size independent of d. Note that our Frank-Wolfe-style
algorithm might run more than d+ 1 or n iterations without getting zero error, since the same point
may be selected in several iterations. Computing in each iteration the closest point to the origin that
is spanned by all the points selected in the previous iterations, would guarantee coresets of size at
most d+1, and fewer iterations. Of course, the computation time of each iteration will also be much
slower. ’

Proof. We assume that
P

i ziai = 0, otherwise we subtract
P

j zjaj from each input vector ai. We
also assume " < 1, otherwise the claim is trivial for w = 0. Let w 2 Dn such that kwk0 = 1, and
denote the current mean approximation by c =

P
i wiai. Hence, kck2 = kaik = 1.

The following iterative algorithm updates c in the end of each iteration until kck2 < ". In the
beginning of the N th iteration the squared distance from c to the mean (origin) is

kck22 2 [",
1

N
]. (10)

The average distance to c is thus
X

i

zikai � ck22 =

X

i

zikaik22 + 2cT
X

i

ziai +
X

i

zikck22 = 1 + kck22 � 1 + " ,

where the sum here and in the rest of the proof are over [n]. Hence there must be a j 2 [n] such that

kqj � ck22 � 1 + ". (11)

Let r be the point on the segment between aj and c at a distance ⇢ := 1/kaj � ck2 from aj . Since
kaj � rk2 = ⇢ = ⇢kaj � 0k2, and kaj � 0k2 = 1 = ⇢kaj � ck2, and \(0, aj , c) = \(c, aj ,0), the
triangle whose vertices are aj , r and 0 is similar to the triangle whose vertices are aj , 0, and c with
a scaling factor of ⇢. Therefore,

kr � 0k2 = ⇢ · k0� ck2 =

kck2
kqj � ck2

. (12)

From (11) and (12), by letting c0 be the closest point to 0 on the segment between aj and c, we
obtain

kc0k22  krk22 =

kck22
kaj � ck22

 kck
2
2

1 + "
.

Combining this with (10) yields

kc0k22 
1
N

1 + "


1
N

1 +

1
N

=

1

N + 1

.

Since c0 is a convex combination of aj and c, there is ↵ 2 [0, 1], such that c0 = ↵aj + (1 � ↵)c.
Therefore,

c0 = ↵aj + (1� ↵)
X

i

wiai

10
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and thus we have c0 =
P

i w
0
iai, where w0

= (1 � ↵)w + ↵ej , and ej 2 Dn is the jth standard
vector. Hence, kw0k0 = N + 1. If kc0k22 < " the algorithm returns c0. Otherwise

kc0k22 2 [",
1

N + 1

] (13)

We can repeat the procedure in (10) with c0 instead of c and N + 1 instead of N . By (29) N + 1 
1/" so the algorithm ends after N  1/" iterations. After the last iteration we return the center
c0 =

Pn
i=1 w

0
iai so �����

X

i

(zi � w0
i)ai

�����

2

2

= kc0k22 
1

N + 1

 ".

B Proof of Theorem 3

Theorem 3 (Coreset for Low rank approximation). For every X 2 Rd⇥(d�k) such that XTX = I ,
����1�

kWAXk2

kAXk2

����  5

�����

nX

i=1

viv
T
i �Wi,iviv

T
i

����� . (14)

Proof of Theorem 3. Let " = k
Pn

i=1(1 �W 2
i,i)viv

T
i k. For every i 2 [n] let ti = 1 �W 2

i,i. Set
X 2 Rd⇥(d�k) such that XTX = I . Without loss of generality we assume V T

= I , i.e. A = U⌃,
otherwise we replace X by V TX . It thus suffices to prove that

�����
X

i

tikAi,:Xk2
�����  5" kAXk2. (15)

Using the triangle inequality, we get
�����
X

i

tikAi,:Xk2
����� 

�����
X

i

tikAi,:Xk2 �
X

i

tik(Ai,1:k,0)Xk2
����� (16)

+

�����
X

i

tik(Ai,1:k,0)Xk2
����� . (17)

We complete the proof by deriving bounds on (16) and (17).

Bound on (16): It was proven in [1] that for every pair of k-subspaces S1, S2 in Rd there is u � 0

and a (k � 1)-subspace T ✓ S1 such that the distance from every point p 2 S1 to S2 equals to its
distance to T multiplied by u. By letting S1 denote the k-subspace that is spanned by the first k
standard vectors of Rd, letting S2 denote the k-subspace that is orthogonal to each column of X ,
and y 2 Rk be a unit vector that is orthogonal to T , we obtain that for every row vector p 2 Rk,

k(p,0)Xk2 = u2
(py)2. (18)

After defining x = ⌃1:k,1:ky/k⌃1:k,1:kyk, (16) is bounded by
X

i

tik(Ai,1:k,0)Xk2 =

X

i

ti · u2kAi,1:kyk2

= u2
X

i

tikAi,1:kyk2

= u2
X

i

tikUi,1:k⌃1:k,1:kyk2

= u2k⌃1:k,1:kyk2
X

i

tik(Ui,1:k)xk2. (19)

11
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The left side of (19) is bounded by substituting p = ⌃j,1:k in (18) for j 2 [k], as

u2k⌃1:k,1:kyk2 =

kX

j=1

u2
(⌃j,1:ky)

2
=

kX

j=1

k(⌃j,1:k,0)Xk2

=

kX

j=1

�2
j kXj,:k2 

dX

j=1

�2
dkXj,:k2

= k⌃Xk2 = kU⌃Xk2 = kAXk2. (20)

The right hand side of (19) is bounded by
�����
X

i

tik(Ui,1:k)xk2
����� =

�����
X

i

ti(Ui,1:k)
TUi,1:k · xxT

����� =

�����xx
T ·

X

i

ti(Ui,1:k)
TUi,1:k

�����

 kxxT k · k
X

i

ti(Ui,1:k)
TUi,1:kk (21)

 k
X

i

ti(vi,1:k)
T vi,1:kk  k

X

i

tiv
T
i vik = " (22)

where (21) is by the Cauchy-Schwartz inequality and the fact that kxxT k = kxk2 = 1, and in (22)
we used the assumption Ai,j = Ui,j�j = vi,j for every j 2 [k].

Plugging (20) and (22) in (19) bounds (16) as

|
X

i

tik(Ai,1:k,0)Xk2|  "kAXk2. (23)

Bound on (17): For every i 2 [n] we have

kAi,:Xk2 � k(Ai,1:k,0)Xk2

= 2(Ai,1:k,0)XXT
(0, Ai,k+1:d)

T
+ k(0, Ai,k+1:d)Xk2

= 2Ai,1:kX1:k,:(Xk+1:d,:)
T
(Ai,k+1:d)

T
+ k(0, Ai,k+1:d)Xk2

= 2

kX

j=1

Ai,jXj,:(Xk+1:d,:)
T
(Ai,k+1:d)

T
+ k(0, Ai,k+1:d)Xk2

=

kX

j=1

2�jXj,:(Xk+1:d,:)
T · k�k+1:dkvi,j(vi,k+1:d)

T
+

k�k+1:dk2k(0, vi,k+1:d)Xk2. (24)

Summing this over i 2 [n] with multiplicative weight ti and using the triangle inequality, will
bound (17) by

�����
X

i

tikAi,:Xk2 �
X

i

tik(Ai,1:k,0)Xk2
�����


���
X

i

ti

kX

j=1

2�jXj,:(Xk+1:d,:)
T (25)

· k�k+1:dkvi,j(vi,k+1:d)
T
���

+

�����
X

i

tik�k+1:dk2k(0, vi,k+1:d)Xk2
����� . (26)

12
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The right hand side of (25) is bounded by
������

kX

j=1

2�jXj,:(Xk+1:d)
T · k�k+1:dk

X

i

tivi,j(vi,k+1:d)
T

������


kX

j=1

2�jkXj,:Xk+1:dk · k�k+1:dkk
X

i

tivi,jvi,k+1:dk (27)


kX

j=1

("�2
j kXj,:k2 +

k�k+1:dk2

"
k
X

i

tivi,jvi,k+1:dk2) (28)

 2"kAXk2, (29)

where (27) is by the Cauchy-Schwartz inequality, (28) is by the inequality 2ab  a2 + b2. In (29)
we used the fact that

P
i ti(vi,1:k)

T vi,k+1:d is a block in the matrix
P

i tiviv
T
i , and

k�k+1:dk2  kAXk2 and
kX

j=1

�2
j kXj,:k2

= k⌃1:k,1:kX1:k,:k2  k⌃Xk2  kAXk2.

(30)

Next, we bound (26). Let Y 2 Rd⇥k such that Y TY = I and Y TX = 0. Hence, the columns
of Y span the k-subspace that is orthogonal to each of the (d � k) columns of X . By using the
Pythagorean Theorem and then the triangle inequality,

k�k+1:dk2|
X

i

tik(0, vi,k+1:d)Xk2| (31)

=k�k+1:dk2|
X

i

tik(0, vi,k+1:d)k2

�
X

i

tik(0, vi,k+1:d)Y k2|

 k�k+1:dk2|
X

i

tikvi,k+1:dk2| (32)

+ k�k+1:dk2|
X

i

tik(0, vi,k+1:d)Y k2|. (33)

For bounding (33), observe that Y corresponds to a (d� k) subspace, and (0, vi,k+1:d) is contained
in the (d�k) subspace that is spanned by the last (d�k) standard vectors. Using same observations
as above (18), there is a unit vector y 2 Rd�k such that for every i 2 [n] k(0, vi,k+1:d)Y k2 =

k(vi,k+1:d)yk2. Summing this over ti yields,

|
X

i

tik(0, vi,k+1:d)Y k2| = |
X

i

tikvi,k+1:dyk2|

= |
X

i

ti

dX

j=k+1

v2i,jy
2
j�k| = |

dX

j=k+1

y2j�k

X

i

tiv
2
i,j |.

Replacing (33) in (31) by the last inequality yields

k�k+1:dk2|
X

i

tik(0, vi,k+1:d)Xk2|

 k�k+1:dk2(|
X

i

tiv
2
i,d+1|+

dX

j=k+1

y2j�kk
X

i

tiviv
T
i k) (34)

 k�k+1:dk2("+ "

dX

j=k+1

y2j�k)  2"kAXk2, (35)
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Algorithm 1 CORESET-SUMVECS(A, ")

1: Input: A: n input points a1, . . . , an in Rd

2: Input: " 2 (0, 1): the approximation error
3: Output: w 2 [0,1)

n: non-negative weights
4: A A�mean(A)

5: A cA where c is a constant s.t. var(A) = 1

6: w  (1, 0, . . . , 0)
7: j  1, p Aj , J  {j}
8: Mj =

�
y2 | y = A ·AT

j

 

9: for i = 1, . . . , n do
10: j  argmin {wJ ·MJ}
11: G W 0 ·AJ where W 0

i,i =
p
wi

12: kck = kGTG)k2F
13: c · p =

P|J|
i=1 GpT

14: kc� pk =
p
1 + kck2 � c · p

15: compp(v) = 1/kc� pk � (c · p) /kc� pk
16: kc� c0k = kc� pk � compp(v)
17: ↵ = kc� c0k/kc� pk
18: w  w(1� |↵|)
19: wj  wj + ↵
20: w  w/

Pn
i=1 wi

21: Mj  
�
y2 | y = A ·AT

j

 

22: J  J [ {j}
23: if kck2  " then
24: break
25: end if
26: end for
27: return w

where (34) follows since
P

i tiv
2
i,j is an entry in the matrix

P
i tiviv

T
i , in (35) we used (30) and the

fact that kyk2 = 1. Plugging (29) in (25) and (35) in(20) gives the desired bound on (17) as

|
X

i

tikAi,:Xk2 �
X

i

tik(Ai,1:k,0)Xk2|  4"kAXk2.

Finally, using (23) in (16) and the last inequality in (17), proves the desired bound of (15).

C Analysis of Algorithm 1

Algorithm 1 contains the full listing of the construction algorithm for the coreset for sum of vectors.

Input: A: n input points a1, . . . , an in Rd; " > 0: the nominal approximation error.

Output: a non-negative vector w 2 [0,1)

n of only O(1/"2) non-zeros entries which are the non-
negative weights of the corresponding points selected for the coreset.

Analysis: The first step is to translate and scale the input points such that the mean is zero and the
variance is 1 (lines 4–5). After initialization (lines 6–8), we begin the main iterative steps of the
algorithm. First we find the index j of the farthest point from the initial point a1. The next point
added to the coreset is denoted by p = aj . Next we compute kc� pk, the distance from the current
point p to the previous center c. In order to do this we compute G = W 0 · AJ where J is the set of
all previously added indices j, starting with the first point, and W 0 is defined in line 11. Note that G
also gives us the error of the current iteration, " = trace(GGT

) (line 23). Next we find the point c0
on the line from c to p that is closest to the origin, and find the distance between the current center
c and the new center c0 (lines 12–16). Finally, the ratio of distances between the current center,

14
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Algorithm 2 CORESET-LOWRANK(A, k, ")

1: Input: A: A sparse n⇥d matrix
2: Input: k 2 Z>0: the approximation rank
3: Input: " 2

�
0, 1

2

�
: the approximation error

4: Output: w 2 [0,1)

n: non-negative weights
5: Compute U⌃V T

= A, the SVD of A
6: R ⌃k+1:d,k+1:d

7: P  matrix whose i-th row 8i 2 [n] is
8: Pi = (Ui,1:k, Ui,k+1:d · R

kRkF
)

9: X  matrix whose i-th row 8i 2 [n] is
10: Xi = Pi/kPikF
11: w  (1, 0, . . . , 0)
12: for i = 1, . . . ,

⌃
k2/"2

⌥
do

13: j  argmini=1,...,n{wXXi}
14: a =

Pn
i=1 wi(X

T
i Xj)

2

15: b =
1� kPXjk2F +

Pn
i=1 wikPXik2F

kPk2F
16: c = kwXk2F
17: ↵ = (1� a+ b) / (1 + c� 2a)
18: w  (1� ↵)Ij + ↵w
19: end for
20: return w

farthest point, and new center give us a value for ↵, the amount by which we update the coreset
weights (lines 17–20).

The algorithm then updates the recorded indices J , update the lookup table M of previously com-
puted row inner products for subsequent iterations, and repeat lines 10–26 until the loop terminates.
The terminating conditions depend on the system specification – we may wish to bound the error,
or the number of iterations. Moreover, if the update value ↵ is below a specified threshold, we may
also terminate the loop if such threshold is lower than a desired level of accuracy.

D Analysis of Algorithm 2

Algorithm 2 contains the full listing of the construction algorithm for the coreset for low rank ap-
proximation.

Input: A: n input points a1, . . . , an in Rd; k � 1: the approximation rank; " > 0: the nominal
approximation error.

Output: a non-negative vector w 2 [0,1)

n of only O(1/"2) non-zeros entries which are the non-
negative weights of the corresponding points selected for the coreset.

Analysis: Algorithm 2 starts by computing the k-SVD of input matrix A (line 5). This is possible
because we use the streaming model, so that the input arrives in small blocks. For each block we
perform the computation to create its coreset. By merging the resulting coresets we preserve sparsity
and can aggregate the coreset for A. Lines 7–8 use the k-SVD of this small input block to restructure
the input matrix A into a combination of the columns of A corresponding to its k largest eigenvalues
and the remaining columns of D, the singular values of A.

After initialization, we begin the main iterative steps of the algorithm. Note that lines 12–19 of
Algorithm 2 are heavily optimized but functionally equivalent to lines 9–27 of Algorithm 1 – the
end result in both cases is a computation of ↵ at each iteration of the for loop, and an update to the
vector of weights w. First we find the index j of the farthest point from the initial point a1 (Line 13).
The next point is implicitly added to the coreset is by updating w, and in turn affects the next farthest
point as the computation wXXi is performed iteratively. The variables a, b, c implicitly compute
the distance from the current point p to the previous center q, the error of the current iteration ", the
point on the line from the p to q that is closest to the origin, and the distance between the current
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Algorithm 3 MATRIXPRODUCTAPPROX(A, k, ")
Algorithm 1: SVD-Coreset(A, ", k)

Input: A matrix A 2 Rn⇥d
, and an error parameter " > 0.

Output: A vector w 2 [0,1)

n
of O(k/"2) non-zeros entries.

1 Xu  kI
2 Xl  �kI
3 �u  "+ 2"2

4 �l  "� 2"2

5 Set w  (0, · · · , 0)
6 Set Z to be the d⇥ d zero matrix.

7 for m 1, 2, . . . to k/"2 do
8 Set

Mu  ((Xu + �uA
TA)� Z)

�1.

9 Set

Ml  (Z � (Xl + �lA
TA))

�1.

10 for i = 1, 2, . . . to n do
11 Set ai  a d⇥ 1 column vector which is the ith row of A
12 Set

�l(i) 
aTi MlA

TAMlai
�ltr(AMlATAMlAT

)

� aTi Mlai

13 Set

�u(i) 
aTi MuA

TAMuai
�utr(AMuATAMuAT

)

+ aTi Muai

14 Compute j 2 [n] that maximizes �l(j)� �u(j)

15 Set wj  1
�u(j)

16 Set Z  Z + w2
jaja

T
j

17 return w = (w1, · · · , wn)

1

Figure 2: Matrix product approximation algorithm [7]

center q and the new center q0. Finally, line 17 updates ↵ and line 18 updates w using the new value
of ↵.

The algorithm terminates after k2/"2 iterations, and we omit the explicit computation of " since it
is implied in the guarantees proven in the following section. As in Algorithm 1, the terminating
conditions depend on the system specifications. We may wish to bound the error, or the number of
iterations, or the update value ↵.

E Experimental Results – Synthetic Data

Synthetic data provides us with a ground-truth to objectively evaluate the quality, efficiency, and
scalability of our system.

Approximation error. We carried out experiments on a moderate size sparse input of (5000⇥1000)
to evaluate the relationship between the error " and the number of iterations of the algorithm N . for a
hyperplane coreset (i.e. k=d�1). Fig. 1d shows how the characteristic function of the approximation
error f(N) behaves with respect to increasing number of iterations N (normalized to N = n). Note
that three of the plotted functions f(N) converge as N increases, while the last one ramps up and
then increases linearly. From this we conclude that " decreases at a true rate somewhere between the
rates of increase of f(N) = N logN and f(N) = N2. The true characteristic f⇤

(N)+C indicates
the theoretical breakpoint between increasing and decreasing error.

We then compare our coreset against uniform sampling and weighted random sampling, using the
squared norms of U (A = U⌃V T ) as the weights. Tests were carried out on a small subset of
Wikipedia (n= 1000, d= 257K) to ensure representative data structure. Figure 1a–1c shows the
results. As expected, approximation error decreases with coreset size, as well as the subspace rank.
(Note that since our algorithm is deterministic, there is zero variance in the approximation error.)
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Figure 3: Fig. 3a shows the runtimes of our coreset compared against MATLAB svds. Fig. 3b shows the
runtimes of our coreset compared against the algorithm in [7].

Running time. We evaluate the efficiency of our algorithm by comparing the running time (coreset
construction) against the built-in MATLAB svds function and against the most recent state of the
art dimensionality reduction algorithm [7].

Algorithm 2 contains the pseudocode for our implementation of the algorithm presented in [7].
Fig. 3a shows the runtimes of our coreset compared against MATLAB svds. Fig. 3b shows the
running time of our algorithm compared against Algorithm 3 run on synthetic data for the same
set of input parameters. We used a fixed dimensionality d = 1000, approximation rank k = 100,
sparsity 10

�6 and evaluated construction time for increasing input size N . The results are plotted as
a function of the log of the input size to show the order of magnitute difference in performance.

Besides the fact that our algorithm minimizes the Frobenius norm and support PCA, an important
advantage of our technique compared to existing coreset constructions is that it is much numerically
stable and faster in practice. For example, the result of [8] is based on the technique of [3]. This tech-
nique needs to compute many inverse of matrices during the computation, which makes it not only
less stable but also very inefficient. Indeed, we implemented the coreset construction of [8] and the
running time comparison to our algorithm for the same coreset size can be found in Fig. 3b. In con-
clusion, our algorithm is faster, numerically stable, and can be computed on practically unbounded
size input data.

F Experimental Results – Latent Semantic Analysis of Wikipedia

For these experiments we used three types of machines:

1. Regular desktop computer with quad-core Intel Xeon E5640 CPU @2.67GHz, 6GB RAM
(low spec).

2. Modern laptop with quad-core Intel i7-4500U CPU @1.8GHz, 16GB RAM (medium spec).
3. High-performance computing clusters on Amazon Web Services (AWS) as well as lo-

cal clusters, e.g. an EC2 c3.8xlarge machine with 32-core Intel Xeon E5-2680v2 vCPU
@2.8Ghz, 60GB RAM (high spec).

We compute the coreset using a buffer stream of size N/2, parallelized across 64 nodes on Ama-
zon Web Services (AWS) clusters. The 64 individual coresets are then unified into a single coreset.
Figure 1e shows the running time of our algorithm compared against svds for increasing dimen-
sionality d and a fixed input size n=3.69M (number of documents). Note that this is a log-scale plot
of dimensionality against running time, so the differences in performance represent orders of mag-
nitude. The desktop computer with 6GB RAM crashed for d=2000 and was omitted from the plot.
The same algorithm running on the cluster (blue plot) outperformed the laptop (red plot), which also
quickly ran out of memory. Comparing svds computation on AWS against our coreset (green plot)
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highlights the difference in performance for identical computer architectures. As the dimensionality
d increases, any algorithm dependent on d will eventually crash, given a large enough input.

We show that our coreset can be used to create a topic model of k=100 topics for the entire English
Wikipedia, with a fixed memory requirement and coreset size of just N=1000 words. We compute
the projection of the coresets on a subspace of rank k to generate the topics. Table 1 shows a
selection of 10 of the most highly weighted words from 4 of the computed topics. The total running
time, including coreset construction, merging and topic extraction was 140.66 min.

A cursory glance at the words suggests that the “themes” of these topics are (1) urban planning,
(2) economy and finance, (3) road safety, (4) entertainment. This serves as a qualitative proof of
concept that our system can produce meaningful results topics on very large datasets. We view this
result optimistically, as proof of concept that our system can be used to compute a topic model of the
English language. A more objective analysis would involve using a corpus of tagged documents as a
ground truth, projecting the corresponding vectors onto our topics, and comparing the classification
error against topics computed by other systems. This is the subject of our ongoing work.

Topic 1 Topic 2 Topic 3 Topic 4
US credit drivers comedy
highway risk distracted nominated
bridge plan phone actress
road union driver awards
river interest text television
traffic rating car episode
downtown earnings brain musical
bus capital accidents writing
harbor liquidity visual tv
street asset crash directing
· · · · · · · · · · · ·

Table 1: Example of the highest-weighted words from 4 topics of the k = 100 topic model of
Wikipedia computed by our algorithm
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