
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Supplementary Material

A Proof of Lemma 1

Lemma 1. Let z 2 Dn be a distribution over n unit vectors a1, · · · , an in Rd. For " 2 (0, 1), a
sparse weight vector w 2 Dn of sparsity s  1/"2 can be computed in O(nd/"2) time such that

�����

nX

i=1

zi · ai �
nX

i=2

wi ai

�����
2

 ". (9)

We note that the Caratheodory Theorem [4] proves Lemma 1 for the special case " = 0 using only
d + 1 points. Our approach and algorithm can thus be considered as an "-approximation for the
Caratheodory Theorem, to get coresets of size independent of d. Note that our Frank-Wolfe-style
algorithm might run more than d+ 1 or n iterations without getting zero error, since the same point
may be selected in several iterations. Computing in each iteration the closest point to the origin that
is spanned by all the points selected in the previous iterations, would guarantee coresets of size at
most d+1, and fewer iterations. Of course, the computation time of each iteration will also be much
slower. ’

Proof. We assume that
P

i ziai = 0, otherwise we subtract
P

j zjaj from each input vector ai. We
also assume " < 1, otherwise the claim is trivial for w = 0. Let w 2 Dn such that kwk0 = 1, and
denote the current mean approximation by c =

P
i wiai. Hence, kck2 = kaik = 1.

The following iterative algorithm updates c in the end of each iteration until kck2 < ". In the
beginning of the N th iteration the squared distance from c to the mean (origin) is

kck22 2 [",
1

N
]. (10)

The average distance to c is thus
X

i

zikai � ck22 =

X

i

zikaik22 + 2cT
X

i

ziai +
X

i

zikck22 = 1 + kck22 � 1 + " ,

where the sum here and in the rest of the proof are over [n]. Hence there must be a j 2 [n] such that

kqj � ck22 � 1 + ". (11)

Let r be the point on the segment between aj and c at a distance ⇢ := 1/kaj � ck2 from aj . Since
kaj � rk2 = ⇢ = ⇢kaj � 0k2, and kaj � 0k2 = 1 = ⇢kaj � ck2, and \(0, aj , c) = \(c, aj ,0), the
triangle whose vertices are aj , r and 0 is similar to the triangle whose vertices are aj , 0, and c with
a scaling factor of ⇢. Therefore,

kr � 0k2 = ⇢ · k0� ck2 =

kck2
kqj � ck2

. (12)

From (11) and (12), by letting c0 be the closest point to 0 on the segment between aj and c, we
obtain

kc0k22  krk22 =

kck22
kaj � ck22

 kck
2
2

1 + "
.

Combining this with (10) yields

kc0k22 
1
N

1 + "


1
N

1 +

1
N

=

1

N + 1

.

Since c0 is a convex combination of aj and c, there is ↵ 2 [0, 1], such that c0 = ↵aj + (1 � ↵)c.
Therefore,

c0 = ↵aj + (1� ↵)
X

i

wiai

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

and thus we have c0 =
P

i w
0
iai, where w0

= (1 � ↵)w + ↵ej , and ej 2 Dn is the jth standard
vector. Hence, kw0k0 = N + 1. If kc0k22 < " the algorithm returns c0. Otherwise

kc0k22 2 [",
1

N + 1

] (13)

We can repeat the procedure in (10) with c0 instead of c and N + 1 instead of N . By (29) N + 1 
1/" so the algorithm ends after N  1/" iterations. After the last iteration we return the center
c0 =

Pn
i=1 w

0
iai so �����

X

i

(zi � w0
i)ai

�����

2

2

= kc0k22 
1

N + 1

 ".

B Proof of Theorem 3

Theorem 3 (Coreset for Low rank approximation). For every X 2 Rd⇥(d�k) such that XTX = I ,
����1�

kWAXk2

kAXk2

����  5

�����

nX

i=1

viv
T
i �Wi,iviv

T
i

����� . (14)

Proof of Theorem 3. Let " = k
Pn

i=1(1 �W 2
i,i)viv

T
i k. For every i 2 [n] let ti = 1 �W 2

i,i. Set
X 2 Rd⇥(d�k) such that XTX = I . Without loss of generality we assume V T

= I , i.e. A = U⌃,
otherwise we replace X by V TX . It thus suffices to prove that

�����
X

i

tikAi,:Xk2
�����  5" kAXk2. (15)

Using the triangle inequality, we get
�����
X

i

tikAi,:Xk2
����� 

�����
X

i

tikAi,:Xk2 �
X

i

tik(Ai,1:k,0)Xk2
����� (16)

+

�����
X

i

tik(Ai,1:k,0)Xk2
����� . (17)

We complete the proof by deriving bounds on (16) and (17).

Bound on (16): It was proven in [1] that for every pair of k-subspaces S1, S2 in Rd there is u � 0

and a (k � 1)-subspace T ✓ S1 such that the distance from every point p 2 S1 to S2 equals to its
distance to T multiplied by u. By letting S1 denote the k-subspace that is spanned by the first k
standard vectors of Rd, letting S2 denote the k-subspace that is orthogonal to each column of X ,
and y 2 Rk be a unit vector that is orthogonal to T , we obtain that for every row vector p 2 Rk,

k(p,0)Xk2 = u2
(py)2. (18)

After defining x = ⌃1:k,1:ky/k⌃1:k,1:kyk, (16) is bounded by
X

i

tik(Ai,1:k,0)Xk2 =

X

i

ti · u2kAi,1:kyk2

= u2
X

i

tikAi,1:kyk2

= u2
X

i

tikUi,1:k⌃1:k,1:kyk2

= u2k⌃1:k,1:kyk2
X

i

tik(Ui,1:k)xk2. (19)

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

The left side of (19) is bounded by substituting p = ⌃j,1:k in (18) for j 2 [k], as

u2k⌃1:k,1:kyk2 =

kX

j=1

u2
(⌃j,1:ky)

2
=

kX

j=1

k(⌃j,1:k,0)Xk2

=

kX

j=1

�2
j kXj,:k2 

dX

j=1

�2
dkXj,:k2

= k⌃Xk2 = kU⌃Xk2 = kAXk2. (20)

The right hand side of (19) is bounded by
�����
X

i

tik(Ui,1:k)xk2
����� =

�����
X

i

ti(Ui,1:k)
TUi,1:k · xxT

����� =

�����xx
T ·

X

i

ti(Ui,1:k)
TUi,1:k

�����

 kxxT k · k
X

i

ti(Ui,1:k)
TUi,1:kk (21)

 k
X

i

ti(vi,1:k)
T vi,1:kk  k

X

i

tiv
T
i vik = " (22)

where (21) is by the Cauchy-Schwartz inequality and the fact that kxxT k = kxk2 = 1, and in (22)
we used the assumption Ai,j = Ui,j�j = vi,j for every j 2 [k].

Plugging (20) and (22) in (19) bounds (16) as

|
X

i

tik(Ai,1:k,0)Xk2|  "kAXk2. (23)

Bound on (17): For every i 2 [n] we have

kAi,:Xk2 � k(Ai,1:k,0)Xk2

= 2(Ai,1:k,0)XXT
(0, Ai,k+1:d)

T
+ k(0, Ai,k+1:d)Xk2

= 2Ai,1:kX1:k,:(Xk+1:d,:)
T
(Ai,k+1:d)

T
+ k(0, Ai,k+1:d)Xk2

= 2

kX

j=1

Ai,jXj,:(Xk+1:d,:)
T
(Ai,k+1:d)

T
+ k(0, Ai,k+1:d)Xk2

=

kX

j=1

2�jXj,:(Xk+1:d,:)
T · k�k+1:dkvi,j(vi,k+1:d)

T
+

k�k+1:dk2k(0, vi,k+1:d)Xk2. (24)

Summing this over i 2 [n] with multiplicative weight ti and using the triangle inequality, will
bound (17) by

�����
X

i

tikAi,:Xk2 �
X

i

tik(Ai,1:k,0)Xk2
�����


���
X

i

ti

kX

j=1

2�jXj,:(Xk+1:d,:)
T (25)

· k�k+1:dkvi,j(vi,k+1:d)
T
���

+

�����
X

i

tik�k+1:dk2k(0, vi,k+1:d)Xk2
����� . (26)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

The right hand side of (25) is bounded by
������

kX

j=1

2�jXj,:(Xk+1:d)
T · k�k+1:dk

X

i

tivi,j(vi,k+1:d)
T

������


kX

j=1

2�jkXj,:Xk+1:dk · k�k+1:dkk
X

i

tivi,jvi,k+1:dk (27)


kX

j=1

("�2
j kXj,:k2 +

k�k+1:dk2

"
k
X

i

tivi,jvi,k+1:dk2) (28)

 2"kAXk2, (29)

where (27) is by the Cauchy-Schwartz inequality, (28) is by the inequality 2ab  a2 + b2. In (29)
we used the fact that

P
i ti(vi,1:k)

T vi,k+1:d is a block in the matrix
P

i tiviv
T
i , and

k�k+1:dk2  kAXk2 and
kX

j=1

�2
j kXj,:k2

= k⌃1:k,1:kX1:k,:k2  k⌃Xk2  kAXk2.

(30)

Next, we bound (26). Let Y 2 Rd⇥k such that Y TY = I and Y TX = 0. Hence, the columns
of Y span the k-subspace that is orthogonal to each of the (d � k) columns of X . By using the
Pythagorean Theorem and then the triangle inequality,

k�k+1:dk2|
X

i

tik(0, vi,k+1:d)Xk2| (31)

=k�k+1:dk2|
X

i

tik(0, vi,k+1:d)k2

�
X

i

tik(0, vi,k+1:d)Y k2|

 k�k+1:dk2|
X

i

tikvi,k+1:dk2| (32)

+ k�k+1:dk2|
X

i

tik(0, vi,k+1:d)Y k2|. (33)

For bounding (33), observe that Y corresponds to a (d� k) subspace, and (0, vi,k+1:d) is contained
in the (d�k) subspace that is spanned by the last (d�k) standard vectors. Using same observations
as above (18), there is a unit vector y 2 Rd�k such that for every i 2 [n] k(0, vi,k+1:d)Y k2 =

k(vi,k+1:d)yk2. Summing this over ti yields,

|
X

i

tik(0, vi,k+1:d)Y k2| = |
X

i

tikvi,k+1:dyk2|

= |
X

i

ti

dX

j=k+1

v2i,jy
2
j�k| = |

dX

j=k+1

y2j�k

X

i

tiv
2
i,j |.

Replacing (33) in (31) by the last inequality yields

k�k+1:dk2|
X

i

tik(0, vi,k+1:d)Xk2|

 k�k+1:dk2(|
X

i

tiv
2
i,d+1|+

dX

j=k+1

y2j�kk
X

i

tiviv
T
i k) (34)

 k�k+1:dk2("+ "

dX

j=k+1

y2j�k)  2"kAXk2, (35)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Algorithm 1 CORESET-SUMVECS(A, ")

1: Input: A: n input points a1, . . . , an in Rd

2: Input: " 2 (0, 1): the approximation error
3: Output: w 2 [0,1)

n: non-negative weights
4: A A�mean(A)

5: A cA where c is a constant s.t. var(A) = 1

6: w (1, 0, . . . , 0)
7: j 1, p Aj , J {j}
8: Mj =

�
y2 | y = A ·AT

j

9: for i = 1, . . . , n do
10: j argmin {wJ ·MJ}
11: G W 0 ·AJ where W 0

i,i =
p
wi

12: kck = kGTG)k2F
13: c · p =

P|J|
i=1 GpT

14: kc� pk =
p
1 + kck2 � c · p

15: compp(v) = 1/kc� pk � (c · p) /kc� pk
16: kc� c0k = kc� pk � compp(v)
17: ↵ = kc� c0k/kc� pk
18: w w(1� |↵|)
19: wj wj + ↵
20: w w/

Pn
i=1 wi

21: Mj
�
y2 | y = A ·AT

j

22: J J [{j}
23: if kck2  " then
24: break
25: end if
26: end for
27: return w

where (34) follows since
P

i tiv
2
i,j is an entry in the matrix

P
i tiviv

T
i , in (35) we used (30) and the

fact that kyk2 = 1. Plugging (29) in (25) and (35) in(20) gives the desired bound on (17) as

|
X

i

tikAi,:Xk2 �
X

i

tik(Ai,1:k,0)Xk2|  4"kAXk2.

Finally, using (23) in (16) and the last inequality in (17), proves the desired bound of (15).

C Analysis of Algorithm 1

Algorithm 1 contains the full listing of the construction algorithm for the coreset for sum of vectors.

Input: A: n input points a1, . . . , an in Rd; " > 0: the nominal approximation error.

Output: a non-negative vector w 2 [0,1)

n of only O(1/"2) non-zeros entries which are the non-
negative weights of the corresponding points selected for the coreset.

Analysis: The first step is to translate and scale the input points such that the mean is zero and the
variance is 1 (lines 4–5). After initialization (lines 6–8), we begin the main iterative steps of the
algorithm. First we find the index j of the farthest point from the initial point a1. The next point
added to the coreset is denoted by p = aj . Next we compute kc� pk, the distance from the current
point p to the previous center c. In order to do this we compute G = W 0 · AJ where J is the set of
all previously added indices j, starting with the first point, and W 0 is defined in line 11. Note that G
also gives us the error of the current iteration, " = trace(GGT

) (line 23). Next we find the point c0
on the line from c to p that is closest to the origin, and find the distance between the current center
c and the new center c0 (lines 12–16). Finally, the ratio of distances between the current center,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Algorithm 2 CORESET-LOWRANK(A, k, ")

1: Input: A: A sparse n⇥d matrix
2: Input: k 2 Z>0: the approximation rank
3: Input: " 2

�
0, 1

2

�
: the approximation error

4: Output: w 2 [0,1)

n: non-negative weights
5: Compute U⌃V T

= A, the SVD of A
6: R ⌃k+1:d,k+1:d

7: P matrix whose i-th row 8i 2 [n] is
8: Pi = (Ui,1:k, Ui,k+1:d · R

kRkF
)

9: X matrix whose i-th row 8i 2 [n] is
10: Xi = Pi/kPikF
11: w (1, 0, . . . , 0)
12: for i = 1, . . . ,

⌃
k2/"2

⌥
do

13: j argmini=1,...,n{wXXi}
14: a =

Pn
i=1 wi(X

T
i Xj)

2

15: b =
1� kPXjk2F +

Pn
i=1 wikPXik2F

kPk2F
16: c = kwXk2F
17: ↵ = (1� a+ b) / (1 + c� 2a)
18: w (1� ↵)Ij + ↵w
19: end for
20: return w

farthest point, and new center give us a value for ↵, the amount by which we update the coreset
weights (lines 17–20).

The algorithm then updates the recorded indices J , update the lookup table M of previously com-
puted row inner products for subsequent iterations, and repeat lines 10–26 until the loop terminates.
The terminating conditions depend on the system specification – we may wish to bound the error,
or the number of iterations. Moreover, if the update value ↵ is below a specified threshold, we may
also terminate the loop if such threshold is lower than a desired level of accuracy.

D Analysis of Algorithm 2

Algorithm 2 contains the full listing of the construction algorithm for the coreset for low rank ap-
proximation.

Input: A: n input points a1, . . . , an in Rd; k � 1: the approximation rank; " > 0: the nominal
approximation error.

Output: a non-negative vector w 2 [0,1)

n of only O(1/"2) non-zeros entries which are the non-
negative weights of the corresponding points selected for the coreset.

Analysis: Algorithm 2 starts by computing the k-SVD of input matrix A (line 5). This is possible
because we use the streaming model, so that the input arrives in small blocks. For each block we
perform the computation to create its coreset. By merging the resulting coresets we preserve sparsity
and can aggregate the coreset for A. Lines 7–8 use the k-SVD of this small input block to restructure
the input matrix A into a combination of the columns of A corresponding to its k largest eigenvalues
and the remaining columns of D, the singular values of A.

After initialization, we begin the main iterative steps of the algorithm. Note that lines 12–19 of
Algorithm 2 are heavily optimized but functionally equivalent to lines 9–27 of Algorithm 1 – the
end result in both cases is a computation of ↵ at each iteration of the for loop, and an update to the
vector of weights w. First we find the index j of the farthest point from the initial point a1 (Line 13).
The next point is implicitly added to the coreset is by updating w, and in turn affects the next farthest
point as the computation wXXi is performed iteratively. The variables a, b, c implicitly compute
the distance from the current point p to the previous center q, the error of the current iteration ", the
point on the line from the p to q that is closest to the origin, and the distance between the current

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Algorithm 3 MATRIXPRODUCTAPPROX(A, k, ")
Algorithm 1: SVD-Coreset(A, ", k)

Input: A matrix A 2 Rn⇥d
, and an error parameter " > 0.

Output: A vector w 2 [0,1)

n
of O(k/"2) non-zeros entries.

1 Xu kI
2 Xl �kI
3 �u "+ 2"2

4 �l "� 2"2

5 Set w (0, · · · , 0)
6 Set Z to be the d⇥ d zero matrix.

7 for m 1, 2, . . . to k/"2 do
8 Set

Mu ((Xu + �uA
TA)� Z)

�1.

9 Set

Ml (Z � (Xl + �lA
TA))

�1.

10 for i = 1, 2, . . . to n do
11 Set ai a d⇥ 1 column vector which is the ith row of A
12 Set

�l(i)
aTi MlA

TAMlai
�ltr(AMlATAMlAT

)

� aTi Mlai

13 Set

�u(i)
aTi MuA

TAMuai
�utr(AMuATAMuAT

)

+ aTi Muai

14 Compute j 2 [n] that maximizes �l(j)� �u(j)

15 Set wj 1
�u(j)

16 Set Z Z + w2
jaja

T
j

17 return w = (w1, · · · , wn)

1

Figure 2: Matrix product approximation algorithm [7]

center q and the new center q0. Finally, line 17 updates ↵ and line 18 updates w using the new value
of ↵.

The algorithm terminates after k2/"2 iterations, and we omit the explicit computation of " since it
is implied in the guarantees proven in the following section. As in Algorithm 1, the terminating
conditions depend on the system specifications. We may wish to bound the error, or the number of
iterations, or the update value ↵.

E Experimental Results – Synthetic Data

Synthetic data provides us with a ground-truth to objectively evaluate the quality, efficiency, and
scalability of our system.

Approximation error. We carried out experiments on a moderate size sparse input of (5000⇥1000)
to evaluate the relationship between the error " and the number of iterations of the algorithm N . for a
hyperplane coreset (i.e. k=d�1). Fig. 1d shows how the characteristic function of the approximation
error f(N) behaves with respect to increasing number of iterations N (normalized to N = n). Note
that three of the plotted functions f(N) converge as N increases, while the last one ramps up and
then increases linearly. From this we conclude that " decreases at a true rate somewhere between the
rates of increase of f(N) = N logN and f(N) = N2. The true characteristic f⇤

(N)+C indicates
the theoretical breakpoint between increasing and decreasing error.

We then compare our coreset against uniform sampling and weighted random sampling, using the
squared norms of U (A = U⌃V T) as the weights. Tests were carried out on a small subset of
Wikipedia (n= 1000, d= 257K) to ensure representative data structure. Figure 1a–1c shows the
results. As expected, approximation error decreases with coreset size, as well as the subspace rank.
(Note that since our algorithm is deterministic, there is zero variance in the approximation error.)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Approximation rank k
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

R
un

ni
ng

 ti
m

e
(m

in
)

0

100

200

300

400

500

600

700

800

A[10000x100000], sparsity=0.033

MATLAB svds
SVD Coreset

MATLAB
crashed

 SVD Coreset

 scales up arbitrarily

(a) Relative error (k = 10)

log number of input points (log N)
1 1.5 2 2.5 3 3.5 4 4.5 5

R
un

ni
ng

 ti
m

e
(m

in
s)

0

1

2

3

4

5

6

7

8
Synthetic data running times

SVD Coreset
Matrix Product Approximation

(b) Relative error (k = 20)

Figure 3: Fig. 3a shows the runtimes of our coreset compared against MATLAB svds. Fig. 3b shows the
runtimes of our coreset compared against the algorithm in [7].

Running time. We evaluate the efficiency of our algorithm by comparing the running time (coreset
construction) against the built-in MATLAB svds function and against the most recent state of the
art dimensionality reduction algorithm [7].

Algorithm 2 contains the pseudocode for our implementation of the algorithm presented in [7].
Fig. 3a shows the runtimes of our coreset compared against MATLAB svds. Fig. 3b shows the
running time of our algorithm compared against Algorithm 3 run on synthetic data for the same
set of input parameters. We used a fixed dimensionality d = 1000, approximation rank k = 100,
sparsity 10

�6 and evaluated construction time for increasing input size N . The results are plotted as
a function of the log of the input size to show the order of magnitute difference in performance.

Besides the fact that our algorithm minimizes the Frobenius norm and support PCA, an important
advantage of our technique compared to existing coreset constructions is that it is much numerically
stable and faster in practice. For example, the result of [8] is based on the technique of [3]. This tech-
nique needs to compute many inverse of matrices during the computation, which makes it not only
less stable but also very inefficient. Indeed, we implemented the coreset construction of [8] and the
running time comparison to our algorithm for the same coreset size can be found in Fig. 3b. In con-
clusion, our algorithm is faster, numerically stable, and can be computed on practically unbounded
size input data.

F Experimental Results – Latent Semantic Analysis of Wikipedia

For these experiments we used three types of machines:

1. Regular desktop computer with quad-core Intel Xeon E5640 CPU @2.67GHz, 6GB RAM
(low spec).

2. Modern laptop with quad-core Intel i7-4500U CPU @1.8GHz, 16GB RAM (medium spec).
3. High-performance computing clusters on Amazon Web Services (AWS) as well as lo-

cal clusters, e.g. an EC2 c3.8xlarge machine with 32-core Intel Xeon E5-2680v2 vCPU
@2.8Ghz, 60GB RAM (high spec).

We compute the coreset using a buffer stream of size N/2, parallelized across 64 nodes on Ama-
zon Web Services (AWS) clusters. The 64 individual coresets are then unified into a single coreset.
Figure 1e shows the running time of our algorithm compared against svds for increasing dimen-
sionality d and a fixed input size n=3.69M (number of documents). Note that this is a log-scale plot
of dimensionality against running time, so the differences in performance represent orders of mag-
nitude. The desktop computer with 6GB RAM crashed for d=2000 and was omitted from the plot.
The same algorithm running on the cluster (blue plot) outperformed the laptop (red plot), which also
quickly ran out of memory. Comparing svds computation on AWS against our coreset (green plot)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

highlights the difference in performance for identical computer architectures. As the dimensionality
d increases, any algorithm dependent on d will eventually crash, given a large enough input.

We show that our coreset can be used to create a topic model of k=100 topics for the entire English
Wikipedia, with a fixed memory requirement and coreset size of just N=1000 words. We compute
the projection of the coresets on a subspace of rank k to generate the topics. Table 1 shows a
selection of 10 of the most highly weighted words from 4 of the computed topics. The total running
time, including coreset construction, merging and topic extraction was 140.66 min.

A cursory glance at the words suggests that the “themes” of these topics are (1) urban planning,
(2) economy and finance, (3) road safety, (4) entertainment. This serves as a qualitative proof of
concept that our system can produce meaningful results topics on very large datasets. We view this
result optimistically, as proof of concept that our system can be used to compute a topic model of the
English language. A more objective analysis would involve using a corpus of tagged documents as a
ground truth, projecting the corresponding vectors onto our topics, and comparing the classification
error against topics computed by other systems. This is the subject of our ongoing work.

Topic 1 Topic 2 Topic 3 Topic 4
US credit drivers comedy
highway risk distracted nominated
bridge plan phone actress
road union driver awards
river interest text television
traffic rating car episode
downtown earnings brain musical
bus capital accidents writing
harbor liquidity visual tv
street asset crash directing
· · · · · · · · · · · ·

Table 1: Example of the highest-weighted words from 4 topics of the k = 100 topic model of
Wikipedia computed by our algorithm

18

