
Trajectory Clustering for Motion Prediction

Cynthia Sung, Dan Feldman, Daniela Rus

Abstract— We investigate a data-driven approach to robotic
path planning and analyze its performance in the context of
interception tasks. Trajectories of moving objects often contain
repeated patterns of motion, and learning those patterns can
yield interception paths that succeed more often. We therefore
propose an original trajectory clustering algorithm for extract-
ing motion patterns from trajectory data and demonstrate
its effectiveness over the more common clustering approach
of using k-means. We use the results to build a Hidden
Markov Model of a target’s motion and predict movement.
Our simulations show that these predictions lead to more
effective interception. The results of this work have potential
applications in coordination of multi-robot systems, tracking
and surveillance tasks, and dynamic obstacle avoidance.

I. INTRODUCTION

In multi-robot systems, task execution often requires task
hand-off. This could occur because of exigent circumstances,
such as robots requiring maintenance or refueling, or because
of the task itself, as when tracking a moving object would
take a robot outside its acceptable range of motion. In all
these cases, a plan for sending a replacement to take over
the task is necessary. In this paper, we consider tracking
and surveillance tasks, where a robot must plan to intercept
another robot or moving vehicle for rendezvous.

Classical approaches to interception generally assume a
worst-case scenario: no information about the future is
known [1], [2]. Planning then requires short-term, flexible
paths, often based on assumptions such as constant velocity
or acceleration. This model, however, is restrictive in that it
ignores information about motion tendencies that can usually
be learned. In this paper, we propose a data-driven approach
to predicting motion. We argue that moving objects often
follow typical motion patterns and that historical data about
their movement can be used to predict their future locations.

This idea has been suggested before. Vasquez et al. [3]
used Growing Hidden Markov Models to analyze car be-
havior in a parking lot, identify common states, and predict
trajectories by estimating a car’s intention. Bennewitz et
al. [4] similarly analyzed the motion paths of people in an
office space. These approaches require discretization of the
target’s state space to fit a Hidden Markov Model (HMM).
Our key contribution is to represent state as short trajectories

Support for this project has been provided in part by the Future Ur-
ban Mobility project of the Singapore-MIT Alliance for Research and
Technology (SMART) Center, with funding from Singapore’s National
Research Science Foundation, by ONR MURI Grants, N00014-09-1-1051,
and N00014-09-1-1031, and by NSF award IIS-1117178. We are grateful.
We thank Oxford Mobile Robotics Group for sharing the Oxford data set.

C. Sung, D. Feldman, and D. Rus are with the Computer Science and
Artificial Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA, USA emails: {crsung, dannyf, rus}@csail.mit.edu

rather than static positions. This higher level of abstraction
provides greater flexibility to represent not only position,
but also velocity and intention. Since we are interested in
tracking or surveillance tasks, we also do not assume input
trajectories to have clearly identifiable stop points.

This paper presents our solution to extracting motion
patterns from historical data and using them to generate
interception paths. Section II describes previous efforts in
classifying trajectory data. Section III contains our main
contribution, a novel trajectory clustering algorithm for iden-
tifying motion patterns. Section IV demonstrates how this
clustering can be used to train a Hidden Markov Model
and predict motion for an interception task. Simulations and
discussion are given in sections V and VI.

II. RELATED WORK IN TRAJECTORY CLASSIFICATION

Advances in GPS and tracking technology have motivated
large efforts in classifying trajectories. The methods currently
in the literature follow two general trends.

One branch of trajectory analysis aims to find a measure of
similarity between trajectories.Unlike the distance between
two points or between a point and a line, what the distance
between two curves should be is unclear. The majority of
metrics proposed, such as Euclidean distance [5] or dynamic
time warping [6], are arbitrary, require tuning of multiple
parameters, and fail to capture a human’s intuition of simi-
larity. In addition, while this line of work is appropriate for
short trajectories, it cannot discover common subsequences
in longer trajectories, which can be dissimilar on the whole,
or accommodate data streams containing multiple instances
of the same subsequence, as would be the case in a long-term
tracking task.

The other branch of trajectory classification aims to gen-
erate a spatial map of typical motions in a trajectory. For
example, Lee et al. [7] approximate trajectories by line
segments and cluster these segments to find the object’s
typical motions. However, this approach also suffers from the
difficulty of defining a similarity metric for line segments,
is sensitive to input parameters, and does not translate well
to higher than two dimensions. Additionally, since only
the spatial information in the trajectories is analyzed and
preserved, all original temporal information is lost.

The lack of an effective distance metric motivates us to
find a new approach to trajectory clustering. In particular,
intervals in one-dimensional space suggest an intuitive sim-
ilarity measure: the amount of overlap between them [8].
We use interval comparison to perform a more intuitive and
robust clustering. We also present a technique for projecting
d-dimensional subtrajectories as one-dimensional intervals.

(a) Trajectory (b) Clustered Output

Fig. 1. The goal of trajectory clustering is to identify common motion
patterns in a trajectory. In this case, the trajectory (a) contains two motion
patterns, m1 and m2, that alternate.

III. LEARNING SUBTRAJECTORY PATTERNS

In this section, we explain our approach to detecting
common subsequences in a trajectory.

A. Definitions and Problem Statement

We define a timestamped point to be a pair (t,p)
consisting of a time t > 0 and a point p ∈ Rd.
A trajectory is a sequence T of n timestamped points
{(t1,p1), (t2,p2), ...(tn,pn)} ordered so ti < tj ∀i < j. A
subtrajectory of T is a subsequence S = iT j ⊆ T containing
the elements {(ti,pi), (ti+1,pi+1), ...(tj ,pj)}, 1 ≤ i, j ≤ n.

We define a motion pattern of T to be a structure,
consisting of a line segment and a duration, that represents
a typical pattern found in T .

The trajectory clustering problem is as follows: Given a
trajectory T , find the minimum setR of motion patterns such
that T can be approximated by a sequence of elements of
that set (see Fig. 1). Equivalently, we would like to partition
T and cluster the resulting subtrajectories such that clusters,
which we denote Ck, each contain only instances of a unique
motion pattern. We call k the cluster index of subtrajectory
S if S ∈ Ck. We call the motion pattern corresponding to
Ck its cluster representative.

B. Subtrajectory Pattern Detection

Our algorithm consists of the following four steps, illus-
trated in Fig. 2:

1) Line simplification
2) k lines projection
3) Interval clustering
4) Calculation of representatives
We choose motion patterns to be line segments because

they are the simplest structure that can contain both position
and velocity information. In that case, the first step is to
partition the trajectory into subsequences that can be well-
approximated by line segments. Due to small variations in
target motion, noise in the original data, or variable sampling
rate, outputted segments will not be exact replicas of motion
patterns, so we use clustering to detect segments that are
approximately the same. Since it is not clear what distance
metric is appropriate for line segments, our clustering is in
two stages. We reduce the situation to 1-D by projecting
the segments onto the trajectory’s k-lines center and then
cluster the resulting intervals on the k-lines. Finally, we can
extract the motion patterns from the clusters. In the following
sections, we expound on each of these steps.

Step 1: Line Simplification. The first step involves
partitioning the trajectory at its critical points, where its

t
y

x
t

y

x
y

x

y
x

t
y

x

(a) Original Points (b) Partition from
Line Simplification

(c) k-lines Projection

(d) Cluster Representatives
from Interval Clustering

(e) Final Approximation
of Trajectory

Fig. 2. Example run of the algorithm on a repeated triangular trajectory.
The input trajectory is partitioned (Step 1) into subtrajectories (shown in
different colors) that are then projected onto the trajectory’s k-lines center
(Step 2) for second-stage clustering (Step 3).

behavior changes, so that each of the resulting independent
subtrajectories S1 = 1Tc1, S2 = c1Tc2, ...Snc = cncTn can
be approximated by a line segment. This process, commonly
referred to as “line simplification,” is a well-studied com-
putational geometry problem for which multiple algorithms
(see [9] and references therein) exist. To produce subtrajec-
tories of approximately constant velocity, we perform line
simplification with time as an added dimension, that is,
on the sequence {[pi ti]} ∈ Rd+1. In our experiments, we
implemented a variation of the Douglas-Peucker algorithm
that minimizes regression distance.

Input Parameter. For this step, a single input parameter
εLS dictates the maximum allowable synchronized Euclidean
distance between a point and the line simplification, and can
be used to influence the resolution of the output.

Step 2: k-Lines Projection. The output of Step 1 is sets
of consecutive points in time that are approximately linear.
We translate the problem of determining similarity between
these subtrajectories into 1-D by projecting them onto the k
lines that best represent the trajectory’s spatial data.

Let the error between a set of points S and a line ` be

err(S, `) =
1

|S|
∑
p∈S

dist(p, `)

where dist(p, `) is the Euclidean distance between point p
and line `. The problem of k-lines projection is: Given n sets
of points in Rd, find the set L of k lines ` that minimizes

max
S

min
`∈L

[err(S, `)]

This problem is similar to k-lines center, which is NP-
hard [10]. While multiple approximation algorithms for
traditional k-lines center exist, to our knowledge, this specific
variant has not been treated. We thus developed a heuristic
for approximating the solution (see section III-C).

Input Parameter. Although the problem description is in
terms of k, it is possible to specify instead the maximum
per-set cost and perform binary search over k until the
error reaches the desired value. We suggest the use of a

single input parameter εkL, the maximum allowable average
distance between a set of points and its assigned line. In
general, choosing εkL ∼ εLS ensures that the errors in
the two steps are approximately the same and that little
computation effort is wasted. Note that this step uses position
information only, without considering time as Step 1 does.

Step 3: Interval Clustering. Once the subtrajectories
from Step 1 have been projected onto the lines generated in
Step 2, the situation is reduced to clustering intervals in 1-D.
Similarly to [8], we define an interval dissimilarity metric

ds1([a, b], [c, d]) =
|a− c|+ |b− d|

D

where D > 0 is the total length of the shortest connected
interval containing both [a, b] and [c, d]. This expression
measures the proportion of two intervals that do not overlap.
Since we are also concerned with the direction of travel, we
use the modified dissimilarity metric

ds2([a, b], [c, d]) =

{
+∞ (b− a)(d− c) < 0

ds1([a, b], [c, d]) else

For each line and corresponding set of projections, we use
an expectation-maximization (EM) clustering algorithm to
find the minimum number of intervals that represent the pro-
jections. The algorithm alternates between finding the best
representative for the intervals in a cluster and redistributing
intervals to the closest representative. As an EM algorithm,
it is guaranteed to converge to a local minimum of cost.

Input Parameter. The input parameter for this step is
the per-interval cost εIC , which represents the fraction of
two intervals that must overlap in order to be considered
the same. Unlike the previous two parameters, εIC is not
dependent on the scale of the input.

Step 4: Calculation of Representatives. The result of
the previous three steps is a clustering of subtrajectories.
To find the representative line segment for a cluster, we
take the mean of the endpoints of the original segments
in the cluster. Representatives are also assigned durations,
the mean duration of the participating segments. This last
compression of duration information is justified through our
experiments, which showed that the distribution of durations
for line segments in a cluster were approximately normal.

Iteration. It is possible to refine via iteration. Using the
motion patterns outputted at Step 4, the process can repeat
from Step 1 by partitioning the trajectory into subtrajectories
such that each is well represented by one of the (now
known) motion patterns. In this way, the algorithm as a
whole becomes an EM algorithm, alternately partitioning the
trajectory and clustering the resulting subtrajectories.

C. EM Algorithm for k-lines Variant

Our approximation algorithm for the k-lines variant pro-
posed in Step 2 (see Alg. 1 and Fig. 3) is an application of
the standard EM procedure to the modified k-lines center. At
each iteration, lines are updated to best represent the sets of
points assigned to them using orthogonal regression. The line

Algorithm 1: k-Lines Approximation
Data: nc sets of points S1 = {p1,p2, ...pc1},

S2 = {pc1 ,pc1+1, ...pc2}, ...
Result: k lines L = {`1, `2, ..., `k},

line assignment for Si, idx
// random initial line assigments

1 oldidx = 0; idx = randint(k, nc);
2 while oldidx 6= idx do
3 oldidx← idx;

// Update lines using orthogonal
regression

4 forall the `j ∈ L do
5 Pj =

⋃
i|idx(i)=j Si;

6 `j = mean(Pj) + OrthogonalRegression(Pj);
7 end

// Update line assignments
8 forall the Si do
9 idx(i) = argmax

j

(∑
p∈Si

dist(p, `j)
)

;

10 end
11 end

(a) Input (b) Initial Assignment
(line 2)

(c) Regression Fit
(lines 5-8, iteration 1)

(d) Update Assignment
(lines 9-11, iteration 1)

(e) Regression Fit
(lines 5-8, iteration 2)

(f) Update Assignment
(lines 9-11, iteration 2)

Fig. 3. Example run of Alg. 1 on 5 point sets for k = 2. Each set is
shown in a different shape. Assignments to the 2 lines are shown in colors.

assignments are then recalculated to minimize the average
distance for a set of points to its assigned line. This EM
algorithm will converge to a local minimum in cost over L.

D. Evaluation

We tested the algorithm on two sets of GPS data: (Oxford)
a 1000km data set containing 346,797 GPS points sampled at
5Hz, provided to us by the Mobile Robotics Group at Oxford
University [11]; and (Rice) a Rice Community trace data
set containing 7,277 GPS points, sampled about once every
30 seconds, of bus routes in Seattle, WA [12]. Following
line simplification, the data sets were clustered manually and
using the proposed clustering algorithm. We also compared
the results to that of k-means using the distance metric
proposed by Lee et al. [7], which is a function of the distance
between segment endpoints and the angular difference.

(a) Original trajectory (b) Manual clustering (c) Our algorithm

0

1

2

3

4

(d) k-means

Fig. 4. Sample of results for the Oxford data. Frequency plots show the motion patterns colored by the number of times they were traversed, as indicated
by the scale on the right. (a) original trajectory data; (b) frequency plot for the trajectories as determined by a manual clustering; (c) frequency plot resulting
from our algorithm; (d) frequency plot from using k-means.

(a) Original trajectory (b) Manual clustering (c) Our algorithm

0

2

4

6

8

10

12

14

16

18

20

(d) k-means

Fig. 5. Sample of results for the Rice Community data. Frequency plots show the motion patterns colored by the number of times they were traversed, as
indicated by the scale on the right. Overlays show magnifications of the rectangular area. (a) original trajectory data; (b) frequency plot for the trajectories
as determined by a manual clustering; (c) frequency plot resulting from our algorithm; (d) frequency plot from using k-means.

Fig. 4 and 5 show frequency plots for the Oxford and
Rice data respectively. The bold line segments are the cluster
representatives, and the colors indicate the number of times
each representative was traversed (i.e., the number of line
segments in the cluster). Our clustering algorithm produces
a structure very similar to that of the manual clustering,
while k-means often misses sections of trajectory that were
traversed infrequently, such as the bottom right of the Oxford
trajectory and the top of the Rice trajectory. The magnified
overlays in Fig. 5 compare performance in high-density
areas. Our algorithm splits some clusters in the loop on
the bottom right because the segments there are short and
exhibit large angular variation. However, this is preferable
to the tendency of k-means to merge clusters that should be
distinct and even in opposite directions.

As a quantitative measure of the quality of clustering, we
computed the purity measure, as defined in [13],

P =

∑
ci

segments assigned to ci that belong to ci
segments

which gives the fraction of segments that were clustered
correctly. In all cases, matchings between true and produced
clusterings were assigned to maximize the purity score. Input
parameters for both clustering schemes were also adjusted
to achieve maximum purity. The results for 10 runs are
in Table I. Our clustering outperforms k-means, correctly

TABLE I
PURITY VALUES (%)

Clustering Scheme Oxford Rice

Our algorithm 84.9 (0.71) 75.9 (1.81)
k-means 68.6 (3.48) 54.5 (2.09)

mean (standard deviation) values for 10 runs each of our algorithm and
k-means on the Oxford and Rice Community data.

classifying 16.3% more of the line segments in the case of
the Oxford data, and 21.4% in the case of the Rice data.

IV. PREDICTION AND PLANNING FOR INTERCEPTION

In this section, we present a simple example of how
trajectory clustering can be used to predict future motion
and perform interception. We fit a Hidden Markov Model
(HMM) to the sequence of cluster representatives traversed
by the moving target and, using this model, project the
movement of the target forward in time to determine the
optimal interception point. We assume a point robot whose
velocity can be directly controlled, subject to a velocity limit.

Step 1: Fitting a Hidden Markov Model. The output of
trajectory clustering is a set of representatives R and their
sequence in time. We assume that patterns in this sequence
are time-independent and that the Markov assumption is
valid. We also assume that the true state of the target is
also a member of R but that it may not be exactly the same

as the observation due to errors in the clustering stage. We
can therefore fit an HMM to the observation sequence, the
representatives in the order in which they were traversed, to
find patterns in the target trajectory. In our experiments, we
used the standard Baum-Welch algorithm [14].

Step 2: Motion Prediction. Using the HMM, it becomes
possible to predict where the target will be in the future.
The first step is to determine which motion pattern the target
currently is on given its position pt and velocity ṗt. This is a
well-studied problem in itself and is commonly known in the
GIS community as “map matching” (see [15] and references
therein). For demonstration, in our experiments, we used the
naı̈ve approach of projecting pt onto the closest state in R
and setting that state as the current prior. We then used the
HMM to find the most likely sequence of future states.

Step 3: Interception Planning. In order to plan an
interception, we translate the predicted sequence of state
transitions into an actual trajectory for the target. Since
duration and velocity for all line segments belonging to
a particular representative are approximately the same, we
assign each state in the sequence a duration equal to the
mean duration for the cluster and use linear interpolation to
predict the target’s future location ppred. To find the optimal
interception point, we calculate the first time t such that
1
t dist(pr(t),ppred(t)) ≤ umax. This is the earliest time
when the target will be reachable to the robot. If no such t
exists, the robot moves towards the location that minimizes
dist(pr(t),ppred(t)).

V. RESULTS

We simulated this setup for 3 situations. For each data set,
we used the first half to detect motion patterns and train an
HMM. We then tested interception with the target following
a subtrajectory in the second half. The maximum speed of
the robot was set purposefully lower than that of the target
so that we could analyze situations where interception is not
necessarily guaranteed for the naı̈ve tracking controller.

The first situation we tested (Fig. 6) was a synthetic ex-
ample showing the potential benefits of using historical data.
The target (blue) moves back and forth with constant velocity
along a horizontal line, and the robot (red) beginning at the
bottom of the workspace, moves upwards to intercept the
target. Our trajectory clustering algorithm correctly extracted
the two states of the target (moving left and moving right)
and the fitted HMM also yielded that the states alternate
deterministically. The resulting trajectory taken by robot
is shown in Fig. 6(a). The robot that knows the target’s
motion pattern moves towards the target’s future position
and intercepts it after only two back-and-forth motions. On
the other hand, the robot who assumes constant velocity for
the target (Fig. 6(b)) must always move towards the target,
yielding multiple oscillations in the robot’s own trajectory
and a large increase in the amount of time until interception.

We next simulated the system using real data from the
Rice Community traces. A comparison of the results with
and without the motion model for two initial conditions are

(a) Motion Model (b) Naı̈ve Approach

Fig. 6. Trajectories taken by the robot (red) to intercept the target (blue),
where the target moves back-and-forth along the blue line. Starting locations
are filled circles; ending locations are Xs. (a) results using the HMM-based
prediction; (b) results for a constant-velocity assumption.

(a) Motion Model (b) Naı̈ve Approach

(c) Motion Model (d) Naı̈ve Approach

Fig. 7. Trajectories taken by the robot (red) to intercept the target (blue),
where the target is a bus from the Rice Community trace data. Starting
locations are filled circles; ending locations are Xs. The bus trajectory is
shown in gray. (a,c) results using the HMM-based prediction; (b,d) results
for a constant-velocity assumption. The simulations in (b) and (d) were
halted before interception when it became clear the target had escaped.

0

10

20

30

40

50

60

70

x
y

z

(a) Frequency Plot (b) Interception Path

Fig. 8. Results of (a) trajectory clustering and (b) interception planning for
a trajectory in 3D. The target (blue) chooses randomly between 3 triangular
trajectories with nonuniform probability. The robot (red) chooses a path that
intercepts the most common loop. This time, it succeeds.

shown in Fig. 7. In both cases, we can see that interception
planning benefits from motion prediction. Using the motion
model (Fig. 7(a,c)), the robot is able to predict that the target,
upon reaching the end of a road, will turn around and is
thus able to intercept it. The robot using the naı̈ve approach
(Fig. 7(b,d)) is unable to predict this U-turn, moves upwards
too far in pursuit, and allows the target to escape.

Finally, we demonstrate how the trajectory clustering
algorithm performs at higher dimensions using a synthetic
trajectory for a target moving in 3-D space. In this example,
the target chooses randomly between one of three triangular

loops with nonuniform probability. The frequency plot and
an example interception path are shown in Fig. 8. Our k-
lines center EM algorithm is agnostic to the number of
dimensions and the interval clustering always occurs in 1-D,
so using the algorithm on a trajectory of any dimensionality
is straightforward and the quality of the results therefore do
not differ significantly from any of the 2-D examples.

VI. DISCUSSION

We contributed a novel trajectory clustering algorithm
that yields higher quality results than basic k-means using
arbitrary distance functions. It is among the first to identify
and extract frequently traversed subtrajectories from long
trajectory data without clear stopping points. Furthermore,
to our knowledge, no other trajectory classification scheme
takes time or directional information into account. One of our
requirements for a cluster was that segments that occupy the
same location in space but that are traversed in opposite di-
rections be placed in different clusters. This allows segments
to inherently encode some notion of intention, as compared
to other point-based prediction schemes where velocity must
be included as an additional state variable.

Our algorithm still requires some hand-tuning of parame-
ters, but we believe the input parameters are more intuitive
than Lee et al.’s [7] since they represent physically significant
values rather than weights for combinations of distance
functions. In addition, our algorithm was robust against
parameter variation; input parameters could be changed by
up to 50% without significantly affecting purity values. In
the event that εkL cannot be determined, we also found that
reasonable output could be produced for a range of small k
between 5 and 30.

Our results show that motion prediction can be an effective
tool in interception planning or tracking using velocity-
limited vehicles, but many improvements remain to be made.
The most common cause of failure in the trajectory clustering
is short segments at odd angles, produced when large time
gaps between observations cause trajectories to cut corners,
as in the Rice data (see Fig. 5(a)). We would like to identify
these segments separately so they are not considered motion
patterns and potentially not included in the clustering at all.

Our goal is to use this system to coordinate task hand-
off in a multi-robot system. The model for predicting target
movement in this example is oversimplified for this goal.
Identifying the current state of the target consisted simply
of choosing the closest motion pattern. In experiments, this
approach was correct about 80% of the time. However, as dis-
cussed in Step 2 of section IV, more sophisticated techinques
exist that would provide more accurate estimations of the
target’s state. Similarly, interception planning was performed
by choosing the most likely path to be taken by the target.
However, the Hidden Markov Model gives us access to an
entire probability distribution over potential trajectories the
target will take. Motion planning algorithms such as those
proposed in [16], [17] can be used instead to maximize the
probability of interception, to minimize the expected time

until interception, or to accomodate motion pattern durations
that are not normally distributed.

VII. CONCLUSIONS

In this paper, we presented a data-driven approach to
motion prediction and robotic interception. We proposed a
novel trajectory clustering algorithm for identifying motion
patterns in trajectory data and showed how the results could
be used to build a simple model of a target’s movement
patterns. Our experiments showed that our approach pro-
vides advantages, for both trajectory clustering and motion
prediction, over traditional methods. In addition, we suggest
directions of further development that will improve the model
for future applications in planning task hand-off.

REFERENCES

[1] Z. Lin, V. Zeman, and R. Patel, “On-line robot trajectory planning for
catching a moving object,” in Proc of the 1989 IEEE Intl Conf on
Robotics and Automation, 1989, pp. 1726–1731.

[2] F. Belkhouche and B. Belkhouche, “On the tracking and interception
of a moving object by a wheeled mobile robot,” in Proc of the 2004
IEEE Conf on Robotics, Automation and Mechatronics.

[3] D. Vasquez, T. Fraichard, and C. Laugier, “Growing Hidden Markov
Models: An incremental tool for learning and predicting human and
vehicle motion,” Intl J of Robotics Research, vol. 28, no. 11-12, pp.
1486–1506, 2009.

[4] M. Bennewitz, W. Burgard, G. Cielniak, and S. Thrun, “Learning
motion patterns of people for compliant robot motion,” Intl J of
Robotics Research, vol. 24, no. 1, pp. 31–48, 2005.

[5] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search
in sequence databases,” Foundations of Data Organization and Algo-
rithms, pp. 69–84, 1993.

[6] E. J. Keogh and M. J. Pazzani, “Scaling up dynamic time warping for
datamining applications,” in Proc of the 6th ACM SIGKDD Intl Conf
on Knowledge Discovery and Data Mining, 2000, pp. 285–289.

[7] J. G. Lee, J. Han, and K. Y. Whang, “Trajectory clustering: a partition-
and-group framework,” in Proc of the 2007 ACM SIGMOD Intl Conf
on Management of Data, 2007, pp. 593–604.

[8] D. Lymberopoulos, A. Bamis, and A. Savvides, “A methodology for
extracting temporal properties from sensor network data streams,”
in Proc of the 7th Intl Conf on Mobile Systems, Applications, and
Services, 2009, pp. 193–206.

[9] N. Hönle, M. Grossmann, S. Reimann, and B. Mitschang, “Usability
analysis of compression algorithms for position data streams,” in Proc
of the 18th ACM SIGSPATIAL Intl Conf on Advances in Geographic
Information Systems, 2010, pp. 240–249.

[10] N. Megiddo and A. Tamir, “On the complexity of locating linear
facilities in the plane,” Operations Research Letters, vol. 1, no. 5,
pp. 194–197, 1982.

[11] M. Cummins and P. Newman, “Highly scalable appearance-only
SLAM - FAB-MAP 2.0,” in Proc of Robotics: Science and Systems,
2009.

[12] J. G. Jetcheva, Y.-C. Hu, S. PalChaudhuri, A. K. Saha, and D. B.
Johnson, “CRAWDAD data set rice/ad hoc city (v. 2003-09-11),”
Downloaded from http://crawdad.cs.dartmouth.edu/rice/ad hoc city.

[13] M. Nanni and D. Pedreschi, “Time-focused clustering of trajectories
of moving objects,” J of Intelligent Information Systems, vol. 27, no. 3,
pp. 267–289, 2006.

[14] L. E. Baum, T. Petrie, G. Soules, and N. Weiss, “A maximization
technique occurring in the statistical analysis of probabilistic functions
of Markov chains,” Annals of Mathematical Statistics, vol. 41, no. 1,
pp. 164–171, 1970.

[15] S. Funke and S. Storandt, “Path shapes: an alternative method for map
matching and fully autonomous self-localization,” in Proc of the 19th
ACM SIGSPATIAL Intl Conf on Advances in Geographic Information
Systems, 2011, pp. 319–328.

[16] D. Bertsekas and J. Tsitsiklis, “An analysis of stochastic shortest path
problems,” Mathematics of Operations Research, pp. 580–595, 1991.

[17] S. Lim, H. Balakrishnan, D. Gifford, S. Madden, and D. Rus, “Stochas-
tic motion planning and applications to traffic,” Intl J of Robotics
Research, vol. 30, no. 6, pp. 699–712, 2011.

