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Abstract

Statistical data frequently includes outliers; these can distort the results of estimation and
optimization problems. For this reason, loss functions which deemphasize the effect of outliers
are widely used by statisticians. However, there are relatively few algorithmic results about
clustering with outliers.

For instance, the k-median with outliers problem uses a loss function f¢, . ., (x) which is
equal to the minimum of a penalties h, and the least distance between the data point x and a
center ¢;. The loss-minimizing choice of {c1, ..., ¢} is an outlier-resistant clustering of the data.
This problem is also a natural special case of the k-median with penalties problem considered
by [Charikar, Khuller, Mount and Narasimhan SODA’01].

The essential challenge encountered here is data reduction for the weighted k-median prob-
lem. We solve this problem, which was previously solved only in one dimension ([Har-Peled
FSTTCS’06], [Feldman, Fiat and Sharir FOCS’06]). As a corollary, we also achieve improved
data reduction for the k-line-median problem.
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1 Introduction

1.1 Weighted optimization problems

We show how to perform data reduction for a variety of problems in optimization and statistical
estimation. The problems are of the following form: a metric space M and a family of functions
F are specified. Then, given a set P of n points in M, the optimization problem is to find an f
which is a (1 + ¢)-approximate minimizer of f(P) among all f € F, where f(P) = >_ cp f(p).
We focus particularly on families F' which are appropriate for minimization of a loss function (e.g.,
max likelihood estimation) in statistical inference. A key case we treat pertains to the problem of
clustering with outliers:

k-median with outliers in ¢g: (¢4 is R? with the Euclidean metric.) Here one is interested
in modeling data as being distributed about k centers, with points that are beyond a threshold
distance h being considered as outliers.

F, i%t . RIS Ry where R, = nonnegative reals

Foy {fentocre cl=kn>0
fen(p) = min{h, min ||p — [/}
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Note that, conditional on a point being treated as an outlier (assigned value h), it has no further
effect on the cost-minimizing choice of the centers C'. This way of formalizing the treatment of
outliers is a slightly simplified form of the Tukey biweight loss function used by statisticians to
perform outlier-resistant estimation. It is also a special case of the k-median with penalties problem
considered by Charikar, Khuller, Mount and Narasimhan [14] (the distinction being that they allow
each point p a custom penalty h(p) for being an outlier).

Data reduction means the replacement of the input P (implicitly, the uniform probability dis-
tribution on P) by a probability distribution v on a much smaller set A, such that for all f € F,

fw) = (1£e)f(P)/n, where f(v) = v(p)f(p)-

pEA

(A, v) is often called an e-approximation or core-set for the data P w.r.t. the family of functions
F'. In recent years a substantial body of work has gone into providing (or showing non-existence of)
data reduction for various problems, because one can then run a relatively inefficient optimization
algorithm (possibly even exhaustive search) on the core-set.

Results, in brief: We show for any constant k& how to efficiently construct core-sets of cardinal-
ity O(Alog?n) for certain types of k-clustering problems; here A is a Vapnik-Chervonenkis-type
measure of the combinatorial complexity of the clustering problem. (If P is in ¢4 then A € O(d);
if P is in a finite metric space then A € O(logn).) Our algorithm is randomized and runs in time
linear in the input size. These clustering problems include the well-known k-median, k-means, etc.,
but go beyond these to include treatment of outliers and also variations such as k-line-medians.
The key obstacle we overcome, which has not been overcome previously except in one dimension,
is that of handling “weights” on the clustering centers.

Using the map-reduce technique [29], our core-sets imply polylogarithmic space and polyloga-
rithmic update-time algorithms for clustering streaming data with outliers; this is apparently the
first result of this type. Similarly, the techniques can be adapted to parallelization[24, 5].

The ability to handle weights is what allows us to provide core-sets for the outliers family F*
defined above; the following is another example which explains what we mean by weights and is



also, from the mathematical point of view, perhaps the central example to keep in mind:

Weighted k-median in Eg: Here one is interested in modeling possible heterogeneity among
cluster centers. This is natural, for example, in the context of mixture models in which the com-
ponents of the mixture have varying standard deviations. Heterogeneity also arises naturally from
geometric considerations, in the reduction of the (unweighted) k-line-median problem to weighted
k-median [28, 22].
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Our approach is more general than is implied by these two examples, but is somewhat technical
and is deferred to Section 2; our main theorem is Theorem 4.3 and in Section 5 we discuss additional
examples covered by the approach. In brief, these include k-means and other finite exponents for
clustering; standard “M-estimators” in robust statistics such as the Huber and Tukey loss func-
tions; and (by the aforementioned reduction) the k-line-median problem.

Robust Statistics. As described, our approach provides core-sets for (at least) two of the most
important outlier-resistant statistical estimator. Huber’s estimator is used very widely [26, 33];
Zhang [50] writes that “this estimator is so satisfactory that it has been recommended for almost
all situations”. Hardin et al. [30] write that “Tukey’s biweight has been well established as a
resistant measure of location and scale for multivariate data [44, 33, 32]”. Both of these estimators
are types of M-estimators; very little is known about the computational complexity of optimizing
M-estimators [42, 41, 44, 30, 26, 33] and our paper shows how to make considerable improvement
in this direction.

1.2 Literature

Sampling. Data reduction by uniform sampling goes back to the foundations of statistics; the
most relevant line of work for our purpose is that initiated by Vapnik and Chervonenkis [49, 43,
31, 13, 48, 40, 10, 34, 8, 9, 3, 7] (and see [45, 47]). However, for estimation of general nonnegative
(esp., unbounded) loss functions, and for the design of approximation algorithms for (related) opti-
mization problems, it is essential to design weighted sampling methods. This is a more recent line
of work, beginning at least with [11, 16, 35, 4, 46]. There are also methods for deterministic data
reduction [39, 19, 22] but the results are generally weaker and we shall not emphasize this aspect
of the problem in the paper.

Clustering. The k-median problem was shown to be NP-hard by a reduction from dominating
set [37]. This problem is a special case of k-clustering problems with various exponents r > 0,
with loss function fo(p) = min.ec dist(p, ¢)” for centers C' = {c1,...,cx}. The k-means problem
(exponent r = 2) is NP-hard even for &k = 2 [18] or in the Euclidean plane [38]. The case r = oo
refers to the k-center problem fo(P) = maxpep min.cc dist(p, ¢); it is NP-hard to approximate this
to within a factor of 1.822 even in the Euclidean plane [20].

The current best approximation guarantee for k-median in general metrics is (3+¢) [6]. When k
is fixed, [23] provided a weak core-set of size independent of d for k-means that yields an algorithm



that takes time O(nd) + (k/e2)?%*/2). (A weak core-set is sufficient for optimization but not for
evaluation of general queries.) Recently, this result was generalized and improved for any constant
r > 1, with weak core-sets of size only linear in k [22]. Strong core-sets of size (dk)°() for the
k-median problem for any constant r > 0 were provided in [36].

In the k-median with penalties problem [14], for each input point we may decide to either provide
service and pay the service cost to its nearest center, or to pay the penalty. Setting all penalties
to 1 gives the standard notion, which has has also been studied earlier in the context of TSP and
Steiner trees, see [25, 12] and references therein. As mentioned above, this is precisely our F Cﬁt
problem; it is also very close to clustering with Tukey loss, see Sec. 5.

An alternative approach to handling outliers is the robust k-median with m outliers problem due

o [14]. Here there is, besides the usual k-median formulation, an additional parameter m which
is the number of points we are allowed to “discard”. The problem is to place the k centers so as
to minimize the sum, over the best set of n — m data points, of the distance to the closest center.
This is a less “continuous” way of treating outliers and, correspondingly, m enters significantly into
the time complexities of algorithms. Our weighted-k-median algorithm can be used to address this
problem, see Sec. 5. [14] also considered relaxing the number of discarded points, and provided a
polynomial time algorithm that outputs a k-clustering serving (1—¢)(n—m) points with cost within
4(1+ 1/¢) times the optimum cost (for n — m points). Recently, [22] improved the running time
for this problem to linear in n by showing that an e-approximation of P for k balls (in particular,
a small uniform random sample) is a core-set for this problem.

The weighted k-median problem was introduced in Har-Peled [28]; that paper provided an
O((log n)¥)-size core-set for this problem in one dimension, and posed the construction of core-sets in
higher dimension as an open problem. The same paper proved a lower bound of Q(max { (k/) log(n/k), 2% })
for the size of a core-set for weighted k-medians, even in one dimension. We do not know a stronger
lower bound in higher dimension. Thus our results are optimal, as a function of n, up to a log
factor.

In the k-line-median problem, the “centers” are actually lines in R¢. This problem can be re-
duced to the weighted k-median problem in one dimension [28, 22]. Our core-set for this problem,
of size O((e~'logn)?), improves on the best previous O((¢ ' logn)?®*)). Our method also con-
siderably simplifies, even for the one-dimensional version of the problem, the construction in [28]
(which both these papers depend on).

2 Preliminaries

Let (M, dist) be the metric space in which our points (or data items) lie. Our framework depends
upon a distortion (or “loss”) function

D:MxM—R,.

We require that D satisfy the following conditions:

1. Symmetry condition
D(p,q) = D(q,p) (1)

2. D is a function of dist, and, as a univariate function, is monotone non-decreasing.
3. Log-Log Lipschitz Condition, parameterized by r € (0,00): For all z,6 > 0,

D(ze®) < e D(z). (2)



Optimization Problem Metric l, loss | Approx. | Time Ref.
k-Median with penalties Arbitrary | r =00 3 O(n?) [14]
k-Median with penalties Arbitrary | r=1 4 n3+0o) [14]
k-Median with penalties Arbitrary | r € O(1) 0(1) k9 nlog(n) + nk®® log?n | »x
k-Median with penalties R? re0(1) 1+e¢ ndkO®) 4 (ke? log(n))k Hok
M-Estimators Arbitrary | r € O(1) | Heuristics | ? e.g.[30]
M-Estimators R4 re0(1) 1+e¢ ndk©®) + (ke2 log(n))k Hok
M-Estimators Arbitrary | r € O(1) 0(1) k°®Inlog(n) + nk®®log?n | »x
Robust k-Median with m outliers | Arbitrary | r =1 O(1) O(K%(k +m)?n3logn) [15]
Robust 2-Median with m outliers R? r =00 1 O(nm™ log® n) [1]
Robust 4-Median with m outliers R? r =00 1 nmPW logn 1]
Robust 5-Median with m outliers R? r =00 1 nmPW log® n) 1]
Robust k-Median with m outliers | Arbitrary | r = oo 3 O(n?) [14]
Robust k-Median with m outliers R r € 0(1) 1+e nd(m + k)O0m+k) ok
+(e 'k logn)OM)
Robust k-Median with m outliers | Arbitrary | r € O(1) 0(1) nlog(n)(m + k)OUm+k)
+(klogn)?W *ok
k-Line Median R¢ r=12| 14e | nd(k/e)°D +d(logd)*/° | [17]
k-Line Median R? r=1 1+c [ ndkOW + (e=9logn)OH) [28]
k-Line Median R? r=2 l+e | ndkOD + (elogn)®UWF) | [21]
k-Line Median R? r=1,2 1+¢ ndkP® + (e~ 11ogn)O®) [22]
k-Line Median R? re0(1) 1+e¢ ndkP® 4 =2 log(n) - Ok) Hox
Table 1: Approximation Algorithms. The input is a set P of n points in R? or in an
arbitrary metric space. The results of this paper are marked with .
Core-set Metric /. loss Size Ref.
Weighted k-median R! r=1 (e~ Tlogn)9®) [28]
Weighted k-median R! r=2 (e~ 11og n)O*) [21]
Weighted k-median R! r =00 (k/e)OW®) 2]
Weighted k-median RY T =00 O(k! /%) [27]
Weighted k-median R?/Arbitrary | € O(1) | k9% (e~Tdlogn)? *ok
k-Line median R r=1,2 | dke 2 + (¢ logn)O*) [22]
k-Line median R? reO(1) | dke™2 + kOW (e~ T1ogn)? *ok
k-Median with penalties R /Arbitrary | € O(1) | k9P (e~1dlogn)? *ok
Robust k-median with m outliers | R?/Arbitrary | € O(1) | (k +m)PF+™) (e~ 1dlogn)? | **
M-Estimators R /Arbitrary | € O(1) | k9P (e~1dlogn)? *ok
k-Mean+median R?/Arbitrary | € O(1) | k9P (e~ 1dlogn)? *ok

Table 2: Core-sets. The input is a set P of npoints in R¢ or in an arbitrary metric space.
New results of this paper are marked with +x. We denote d = O(logn) for the case of

arbitrary metric space.




Lemma 2.1. The conditions above imply

(i) For ¢ = (4r)",

D(p.) - Dlg.) < 6D(p.q) + 20 Q

(ii) (Weak triangle inequality) For p = max{2" 1,1},
D(p,q) < p(D(p,c) + D(c,q)). (4)

Proof. ! (i) Let = dist(p,c),y = dist(q,c),z = dist(p,q). So we are to show D(z) — D(y) <
¢D(z) + D(x)/4. We suppose that = > y and D(x) > ¢D(z), otherwise the lemma is immediate.
So by Eqn 2, z > z¢'/".

An equivalent form of Eqn 2 is that for § > 0, D(ze™®) > e ™ D(z). So D(x) — D(y) <
D() - (1 - (y/z)).

Note that for u > 0, 1 — u” < r(1 — u); this follows because, viewing each side as a function
of u, the two functions are tangent at v = 1, and the LHS is convex-cap while the RHS is linear.
Applying this we have D(x) — D(y) < D(x)-r-(x—y)/z. Applying the triangle inequality z —y < 2z
we have that D(z) — D(y) < D(x)-r-z/x. By our earlier bound this is < D(x)-7-¢~Y/". Plugging
in ¢ = (4r)" implies Eqn 3.

(ii) By the triangle inequality and Eqn 2, for any 0 < p < 1, D(p, ¢) < pD(p, ¢) (W)T—I—
(1 —p)D(c,q) (%W)T = (dist(p, ¢) + dist(c,q))" (dstt((g,’cc))r + (1(;15}:)(3((5;[1)). Substituting
p = dist(p, ¢)"/(dist(p, ¢)" + dist(c, q)") we have D(p,q) < (D(p,c) + D(c,q)) gf;é:g?&ﬁf;g{fq))); . By
convexity considerations, for > 1 the factor is maximized with dist(p, ¢) = dist(c, ¢) and for r <1
it is maximized with dist(c, ¢) = 0, yielding Eqn 4. O

Definition 2.2 (Tractable (M, D) Problems). Let (M,dist) be a metric space. Let D be a function
from M x M to [0,00). We call the problem (M, D) tractable if (1),(4), and (3) hold for some
constants ¢, p € (0,00).

In Theorem 4.3 we show how to perform data reduction for tractable (M, D) problems, condi-
tional on a shatter function (essentially, VC dimension) bound.

Let P C M be a finite set of points. For B C M, we denote by closest(P, B,~) the set that
consists of the [v|P|| points p € P with the smallest values of min,ep D(p, q). For p € M and a
set C' C M x Ry define Dy (p,C) = min(.yecw - D(p,¢). Each (c,w) € C is called a weighted
center. For integer k > 1 write [k] :== {1,...,k}.

We show how to perform data reduction for a variety of statistical problems by considering
appropriate choices of M, and D and showing that the above properties are satisfied. The families
of functions we consider have the following description:

FM,D M — R+
Fup = {folccmxr, o=k
fp) = Dw(p,C)

In this notation, the weighted k-median problem is (M = R?, dist = Euclidean metric, and
D = dist); the weighted k-mean problem is (M = R%, dist = Euclidean metric, and D = dist?);

!Notation has been switched here to univariate D; fix the notation up for final version



and the k-median with outliers problem is (a special case of) the problem (M = R, dist =
Euclidean metric, and D = min{dist, 1}).

As established in [36, 22|, a sufficient condition for data reduction is that the total sensitivity
T = T(Fm,p) be small, and that we be able to effectively compute good upper bounds s(p) for
the sensitivities of the points of P?; the cardinality of the resulting set A is then approximately
T?2d/e?, where d is a Vapnik-Chervonenkis measure of the combinatorial complexity of the family
F M,D-

Before showing how to compute bounds on the sensitivities of points we need two more defini-
tions.

Definition 2.3. For a finite set Q C M and v € [0,1], define

D*(Q,~) := min D(p,c).
( ) ceM pEclosg(Q,c,'y) ( )

A point ¢ which achieves the above min is, in a sense, a median of a densest region of the data.
(One may also think of it as a good “median with outliers” for the data.) In what follows it would
be very useful to have a subroutine to compute such a point, but this is a nearly circular request
(though not quite as hard as the full goal of the paper). Instead we will be able to achieve our
results using a subroutine which produces a point with the following weaker property.

Definition 2.4 (Robust Median). For v € [0,1], 7 € (0,1) and o > 0, the point ¢ € M is a
(v, 7, «)-median of the finite set Q@ C M if

> D(p,q) < a-D*(Q,7). (5)

peclosest(Q,{q},(1—7)7)

3 Bounding point sensitivities

3.1 Sensitivity bound for weighted medians

The key technical advance in this paper lies in the following lemma, which shows how to translate
the new definitions of the previous section into good upper bounds on the sensitivities of data
points. This lemma is what enables us to handle weighted clustering problems.

In each application one needs only to ensure that the problem is “tractable” as in definition 2.2,
and that the appropriate shatter function (~ VC dimension) is bounded.

Lemma 3.1. Let (M, D) be tractable and let P C M be a finite set. Suppose that (qx, Q) is the out-
put of the algorithm Recursive-Robust-Median(P, k). Then for every set C = {(c1,w1), -, (ck, wi)} C
M % [0,00) and p € Qy such that Dw (p,C) > 0, we have

Dw(p.C) _ O()
ZqGPDW(Q7C) N ‘Qk‘
Proof of Lemma 3.1: Consider the variables Qq,...,Qr and ¢1,..., gy that are computed during

the execution of Recursive-Robust-Median(P, k). A point p € P is served by the weighted center
(c,w) € C if Dyw(p,C) = w- D(p,c). For every i € [k + 1], let (¢;,w;) € C denote a center

2For a family F and n data points P, the sensitivity of p € P is s(p) = supsep f()/((1/n) 22,cp f(@)); the total
sensitivity T (F') is supp > p s(p).



Algorithm 1: Recursive-Robust-Median(P, k)

Input: A set P C M, an integer k > 1.

Output: A pair (g, Qk) that satisfies Lemma 3.1.

Qo + P

fori=1 to k do
Compute a (1/k, 7, )-median ¢; € M of Q;—1 for some constants 7 € (0,1) and
a € (0,00)

4 | Qi+ closest(Q;—1,{q},(1—7)/(2k))

return (g, Q)

w N =

9]

that serves at least |Q;_1|/k points from Q;_;. Let P; denote the points of P that are served by
(¢i,w;). For every i € [k], let Q) := closest(Q;—1,{¢i},(1—7)/k), and D} = quQ; D(q, qi). Since
|P, N Qi—1| > |Qi—1|/k > |Q%], we have by Definition 2.3,

Z D(q,¢i) > D*(Qi-1,1/k). (6)

qEPNQi—1
We prove the lemma using the following case analysis. Case (i): There is an ¢ € [k] such that

16¢pa - D}
D(p,c;) < W (7)
k
Case (ii): Otherwise.
Proof of Case (i): By (7) we have

qup DW(qa C) Tow; zqepi DW(Qa C)
D(pci)  _ 16¢pa-Di/|Q4]
B quPi D(q,ci) ~ ZqGPina D(q,c;)

By Definition 2.4, we have D*(Q;—1,1/k) > D] /a. Using this with (6) yields }_ p o, , D(g,¢i) >
D7 /a. By the last inequality and (8) we obtain

Dw(p,C) _ 16¢pa-D}/|Qy| _ 166pa”
> gep Dw(C) — Dj /a T @kl

(8)

Proof of Case (ii): By the pigeonhole principle, ¢; = ¢; for some i,j € [k + 1], i < j. Put
q € P;NQj—1 and note that p € @ C Q;j—1. Using the Markov inequality,

2D%_,
Q1

D(q,qj-1), D(p,qj—1) <

By this, the symmetry of D(-,-) and (4),

D(p.q) < p(D(p,qj—1) + D(gj-1,9)) < AN
-1



Using the last inequality with (3) yields

Dip.e;) ~ Dlacy) < oD(p.q) + 22

4¢p - D* . . D* .
S pr / 7—1 + D(pa Cj) S 4¢pa/ Dz + D(p7 CJ)‘
(o= 4 Q% 4

Since Case (i) does not hold, we have 16¢pa - D} /|Q)| < D(p,¢;) = D(p,c;). Combining the
last two inequalities yields

Dp,C' Dp,C‘ Dp7C‘
D(p,cj) — D(q,¢;) < ( ])-1- (p.cj) _ Dlp,cj)
4 4 2
That is, D(q,c;j) > D(p,c;)/2. Hence,
Dw (@, C) D(p, ¢;)
qup Dw(C) ~ ZQEPjQijl D(q,¢;)
2D(p, cj) 2%k o

< < .
D(p,cj) - |PjN Q1] — 1Qj-1] ~ Qx|

3.2 Data reduction for robust medians

Theorem 3.2. Let (M, D) be tractable. Let Q@ C M be a finite set of points, k > 1 an integer,
and 0 € (0,1). Let g € M be the output of a call to Median(Q,k,?); See Algorithm 2. Then, with
probability at least 1 — ¢, the point q is a (1/1{:7 1/4, 2) -median for Q.

Algorithm 2: Median(Q, k, ¢)
Input: A finite set Q@ C M, an integer k£ > 1, and 0 € (0,1/10).
Output: A point ¢ € M that satisfies Theorem 3.2.
1 b < a universal constant that can be determined from the proof of Theorem 3.2
2 Pick a uniform i.i.d. sample S of bk?log(1/§) points from Q
3 ¢ < a point that minimizes ZpEclosest(S,{q},15/(16k)) D(p,q) over g € S
4 return ¢q

Proof. We consider the variables b, Q" and S as defined in Algorithm 2. Put 7 = 1/16 and v = 1/k.
Let ¢* € M be a ((1 — 7)v,0,1)-median of S. Let ¢ be the closest point to ¢* in S. By (4), for
every p € M we have

D(p,q) < p(D(p,q") + D(q",q)) < 2p- D(p, ).
Summing this over every p € closest(S, {¢*}, (1 — 7)7) yields
> D(p.q) < 2pD*(S, (1 —1)7).
p€Eclosest(S,{q},(1—7)7)

Hence, g is a ((1 —7)7,0, 2)-median of S, which is also a ((1 —7)7, 7, 2)-median of S. The theorem
now follows from Theorem 3.3. O



The following is a special case of Lemma 9.6 that is proven in [22]:

Theorem 3.3 ([22]). Let (M, D) be tractable. Let Q C M be a finite set of points. Let v € (0,1),
and 7,9 € (0,1/10). Pick uniformly, i.i.d., a (multi)-set S of

b 1
SZTT’)Q'IOg g

points from Q, where b is a sufficiently large universal constant. With probability at least 1 — 6, any
((1 = 1), 71,2)-median for S is a (v, 4T, 2)-median for Q.

Proof. For every p € P and ¢ € M let f(¢) = D(p,c). Let D(S) = S for every S C P. Using the
(weak) triangle inequality, we have that one of the points of S is a constant factor approximation
for the median of S. The theorem now follows from [22, Lemma 9.6]. O

4 Data reduction for tractable (M, D) problems

Definition 4.1 (dim(M, D, k) [49]). Let (M, D) be tractable. For everyr >0 and C C M x [0, 00)
of size |C| =k, let ball(C,r) ={p € P | Dw(p,C) <r}. Let

balls = {ball(C,r) | C C M x [0,00),|C| = k,r > 0}.
The dimension dim(M, D, k) is the smallest integer d such that for every finite S C M we have

{S Nball | ball € balls} | < |S|¢ .

The following is a corollary of [22, Theorem 13.1].

Corollary 4.2. Let (M, D) be tractable, and P C M be a finite set of points. Let e € (0,1/4). Let
s: P —[0,00) be a function on P such that

S(P) > max DW(p7 C) :
CeMx[0,00),|C1=k Y e p Dw (g, C)

LetT =3 cps(p), and b be a sufficiently large constant. Pick a (multi)-set A of b T2(dim(M, D, k)+
log(1/6))/e? points from P by repeatedly, i.i.d., selecting p € P with probability s(p)/ T. Forp € A
let v(p) =T /(|A] - s(p)). Then, with probability at least 1 —9:

For all C € M x [0,00) and |C| =k : Z Dy (p,c) — Z v(p)Dw(p,c)| <e Z Dy (p,c).
peP pEA peP

Proof. Let X = (M x [0,00))¥. For every p € P and C € X, let f,(C) = Dw(p,C), sf, = fp = Ips
m(fp) = n-s(p)/ T, and g1,(C) = f,(C)/m(fp). Let Gy, consists of m(f,) copies of gy and let
G= UpeP Gy, Hence, S = {gfp |pe A} is a uniform random sampling from G. By [22, Theorem
6.9], for a sufficiently large b, S is an (¢/(27))-approximation of G, with probability at least 1 — .
Assume that this event indeed occurs. Let U = {g - |G|/|S| | g € S}. By Theorem 13.1 of [22], we
obtain that

VO e X1 £(0) = Y F(O)] < = max 1 (C) S mlfy). (9)

peP feu T per m(fp) peP



We have

and, for every C' € X

max = —max ——— <
peP m(fp) n peP  s(p

For every f = gy, - |G|/|S| € U we have

f(C) — gfp(C) ) ‘G’ _ fp(C) L _ DW(pa C) L _ DW(pa C) T
S| m(fp)lAl - m(fp)A] s(p) - |4

= v(p)Dw (p, C).

Substituting the last three inequalities in (9) yields

VC € X oY £,(C) = > w(p)Dw(p, C)]

peP peEA

-
S%'EZDW(q,C)w

qeP

=e> Dw(pC).

peEP

Algorithm 3: CoreSet(P, k,¢,d)

© 00 N O ok W N =

10
11

12

13

Input: A set P C M, an integer k > 1, and 7,6 € (0,1/10) where (M, D) is tractable.
Output: A set A and a probability measure v on A that satisfy Theorem 4.3.
b < a constant that can be determined from the proof of Theorem 4.3
Qo +— P
while [Qo| > b do
for i + 1 to k do
¢; < Median(Q;_1,k,6/(k% logn))
Q; < closest(Q;—1,{q},1/(bk))
for each p € Q do s(p) + %
Qo + Qo \ Qx
for each p € Qy do s(p) + 1
T < 2 pep s(p)
Pick a (multi)-set A of b7 2(dim(M, D, k) 4+ log(1/6))/e? points from P by repeatedly, i.i.d.,
/

selecting p € P with probability s(p)
T

Al - s(p)

for each pec Ado v(p) «+

return (A,v)

Theorem 4.3. Let (M, D) be tractable. Let P C M be a set of n points, and (¢,6) € (0,1/10).
Let A be the output of the procedure CoreSet(P, k,e,0); see Algorithm 3. Then the following hold:

10



(i)
EO%) (log n)?

Al=—5

- (dim(M, D, k) + log(1/9)).
(i) With probability at least 1 — 9,

VC C M x [0,00),|C| =k :

> Dw(p,C) =Y v(p)- Dw(p,C)| <& Dwl(p,C)

peEP peEA peEP

(iit) The construction of A takes time

kO K) (logn)?

ntkO®) 4 ¢1O0k) log(1/9)log(n) + 22

- (dim(M, D, k) + log(1/9)),

where t is the time it takes to compute D(p,q) for some p,q € M.

The structure of the algorithm is this: The equivalent of Algorithm 1 is run repeatedly to
identify a “dense” cluster in the data. (Lines 4-7.) Due to Lemma 3.1 we the sensitivity of each
point in this cluster is bounded by some constant divided by the current number of points. The
cluster is then removed, and we repeat.

Proof. (i) For every i € [k], let QZ(-j ) denote the value of Q; at Line 7 of Algorithm 3 during the jth
“while” iteration. Let J denote the total number of “while” iterations. By Line 6 of Algorithm 3,

we have that \Ql(»j)] > |Q£i)1]/(bk) Hence,

QY 1QY
QY| > o = 100"

By the last equation and Line 8, for every j € [J — 1] we have

. . Q (4)
o -t - o < |- 4
1) Ly 1y 1o
— 1 —_ f— —
B ‘QO ‘ (1 kO(k)) - (1 kO(k)) '
Since ‘Qé‘])‘ > 1, substituting j = J — 1 in the previous inequality we conclude that
J < kEO® logn. (11)

By Line 3, the size of Qp during the execution of Line 9 is O(1). By the definition of s(p) in
Lines 7 and 9 we have

T=> sp)=> > slp)+0(1)

peEP je[J]pGQk
=> > = J-bk+O(1).
JE[J] PEQk ‘Q ‘

11



Together with (11) we obtain 7 < k() logn. By this and Line 11 we thus have

Al = bT? (dim(M, 122, k) + log(l/é)) _ kO(’c)(gl;)g n)? . (dim(M,D,k) + log(1/5)).

(i) Put i € [k], j € [J], C = {(c1,w1),...,(ck,wr)} C M x [0,00) and p € Q,(vj) such that
Dy (p,C) > 0. Let qZ(j ) denote the value of q; after the execution of Line 5 of the jth “while” itera-
tion. By Theorem 3.2, with probability at least 1 —¢&/(k** logn) we have that q§j) isa (1/k,1/4,2)-
median for Qz@1 Assume that this event occurs for every i € [k], and j € [J]. This assumption
holds with probability at least 1 — Jk&/kP* > 1 — 6 for a sufficiently large b.

By substituting P = Q((]j), 7 = 1/4 and a = 2 in Algorithm 1, we thus have that the pair
(q,(gj), Q,(Cj)) satisfies Lemma 3.1 for every j € [J]. That is,

2 g Pwla.C) = Q¥

Hence, for the value s(p) that is defined in Line 7 of Algorithm 3, and an appropriate b,

S(p) = |Ql(€])‘ - ZqEQéj) Dw(q, C) - qup DW((:L C)

By Corollary (4.2), with probability at least 1 — § we have

VC € M x[0,00),|C| =k : |>_ Dw(p,c) = > _ v(p)Dw(p,c)| <&y Dwl(p,c).
peP pEA peP

(iii) The running time of Algorithm 3 is dominated by Lines 5, 6 and 11 as follows. For a set
@ C M, the running time of Median(Q, k, d) (see Algorithm 2) is dominated by Line 3 which can be
implemented in d|S|? = dbk?log(1/J) time by computing the distance between every pair of points
in S. Using (11), the overall time of Line 5 of Algorithm 3 is

J k- (d|S]?) = k9® logn - dbk? log(1/6) = dkO®) log(1/6) log(n).

Line 6 of Algorithm 3 takes d - ‘QE]JJ <d- ]Q(()j ) time for the jth “while” iteration using order
statistics. Using (10), the overall execution time of Line 6 is

) ) L\ _ o
d Y QM <dk > Qg !Snde(l—kO(k)> < ndkO®.

JElT] i€[k] jel] jelJ]
Line 11 can be implemented using a binary tree in time

kO®*) (log n)?

log(n) - |A] = 5

. - (dim(M, D, k) + log(1/5)).
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5 Applications
5.1 FyE" and Fgpt

The following theorem includes both F;V ,fht and F9U* as special cases by taking, respectively, h = oo
or all weights equal.

Theorem 5.1. Let P be a set of points in a metric space (M,dist), r > 0 be a constant and
h € (0,00). Let k > 1 be an integer, and € € (0,1/10). A set A of size

kO®) (log n)?

’A‘ = 22

- (dim(M, D, k) + log(1/4))
and a weight function v : A — R can be computed in time

kO®) (log n)?

ntkO®) 1 4 Ok) log(1/9)log(n) + 5

. - (dim(M, D, k) + log(1/6)),

such that, with probability at least 1 — 9,

VC C M x [0,00),|C| = k: > folp) =D vp)felp)| <) folp),

peP pEA pEP

where fo(p) := min( ,)ec (wmin {h,dist"(p,c)} ), and t is the time it takes to compute D(p,q) for
some p,q € M.

Proof. Define D : M x M — R4 as D(p,q) = min {h, dist"(p, q)}. Using Theorem 4.3 it suffices to
prove that (M, D) is tractable; see Definition 2.2. Condition (1) is merely that D is symmetric. It
remains to show (4) and (3).

Proof of (4): If max{D(p,c), D(c,q)} = h then

D(p,q) < h =max{D(p,c), D(c,q)} < p(D(p,c) + D(c,q)).

Otherwise, D(p, c) = dist"(p, c¢) and D(c,q) = dist" (¢, q). It is straightforward to show (and well-
known) that for p = max {1, 27"_1}, dist"(p, q) < p(distr(q,c) + dist" (p, c))
Proof of (3): If D(q,c) > D(p,c) then (3) holds trivially.

Otherwise, D(p,c) > D(q,c) = dist" (g, c). So

D(p,c) — D(q,c) = min{h,dist" (p,c)} — dist" (g, ¢)

= min {h — dist" (g, ¢), dist"(p, ¢) — dist" (¢, ¢) }

dist”(q, ¢)
4

D(p,c)
4

< min {h, odist” (p, q) + } using Lemma 5.2

< min {h, ¢dist" (p, q)} +

D(p, c)
TR

< ¢D(p,q) +

13



Lemma 5.2. Let (M,dist) be a metric space and r > 1. Then for every p,q,c € M,

dist” (p, ¢)

dist”(p, ¢) — dist"(q, ¢) < ¢dist” (p, q) + 1

(12)

with ¢ = (4r)"

Proof. We suppose dist(p, ¢) > dist(q, ¢), otherwise the lemma is trivial. If dist(p, ¢)" < ¢dist” (p, q)
then the lemma is immediate, so we suppose that

dist(p, c) > qﬁl/rdist(p, q). (13)

Note that for z > 0, 1 — 2" < r(1 — z); this follows because, viewing each side as a function
of z, the two functions are tangent at x = 1, and the LHS is convex-cap while the RHS is linear.
Applying this we have

dlst(q,c)> ) < dist"(p.c) - 7 - dist(p, ¢) — dist(q, ¢)

dist” — dist” = dist” 1-
ist"(p, ¢) — dist" (¢, c) = dist"(p, ¢) ( <dist(p, 0) dist(p, ¢)

The proof is now completed by applying (13) and the triangle inequality dist(p,c) — dist(g,c) <
dist(p, ¢) to obtain:

dist(p, ¢) — dist(q, ¢) <, dist(p, q)
dist(p, c) —  dist(p,c)

<r/eYT =1/4

5.2 Classic M-estimators

The following loss (or distortion) functions, known as M-estimators, are popular with statisticians
performing robust (i.e., outlier-resistant) estimation [33, 50]. (In these expressions, with slight
abuse of notation, x is shorthand for dist(p, ¢). The parameter r is effectively a distance threshold
for outliers):

D?uber(dist(p’ Q)) — D;Iuber(l,) — min{$2/2,7'(35 — ’r‘/2)} (14)
4,2 2,.4 6
DI dist(p. ) = DI (a) = min{r?/6, 20— P (15)

It is straightforward to show that the families (M, DI"er) and (M, D{"™*%) are tractable, with a
proof very similar to that in the preceding subsection. The shatter function is again that of balls
in the metric space. Consequently, Theorem 5.1 shows that we can perform data reduction for
k-clustering (with weights) for these loss functions.

Other applications. As discussed in the introduction, our method provides the smallest core-set
for the k-line-median problem.

Our method also enables an approach to the Robust k-median with m outliers problem: dis-
carded outliers can be treated simply as infinite-weight centers, so our method can handle a constant
number of discarded outliers. This causes an exponential dependence of the run-time on m, but is
still the only known near-linear-time (in n) (1 4 ¢)-approximation for the problem, even for k = 1,
d=2.
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