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1 Introduction

Continuous space models of words, objects, and signals have proven to be powerful tools for learning
expressive representations of data, and been adopted across areas, from natural language processing
to computer vision. Recently, there has been particular interest in word embeddings, largely due to
their intriguing semantic properties [12] and their successful use as features for downstream NLP
tasks [22, 19]. Embedding methods based on neural networks [3, 14, 12] have been at the fore-
front of this trend thanks to their simplicity, scalability and semantically-rich embeddings, but other
nonparametric embedding methods have proven to share similar properties [9].

Despite their empirical success, understanding of word embeddings has lagged behind. Recent work
has started to fill this gap, seeking better understanding of these representations, their properties, and
associated algorithms [9, 4, 10, 1]. Yet, some questions are not fully answered yet. For example,
it has been widely demonstrated that word embeddings can be used to solve analogy tasks. What
remains to be explained is why: how is it that analytical reasoning, a complex cognitive process,
can be replicated with simple operations on vector representations of words? We attempt to provide
an explanation for this, by drawing a connection between the cognitive perspective of analogical
reasoning, semantic similarities and the embedding of cooccurrence counts.

In this work we extend both the conceptual and theoretical understanding of word embeddings. First,
we motivate them by examining the psychometric and cognitive basis for embeddings. In particular,
we ground embeddings in semantic spaces, and revisit word vector representations derived from
word association tasks, which were shown to be have similar linear structure as those shown by
modern methods. Second, we propose a new theoretical framework for understanding word embed-
dings as a type of manifold learning. In contrast to prior work [1], we take metric recovery as the
key object of study, unifying existing algorithms as consistent metric recovery methods based on
co-occurrence counts from simple Markov random walks over graphs and manifolds, and propose a
new algorithm which directly recovers an underlying metric.

2 Word vectors and semantic spaces

The conceptual motivation of most current word embedding relies largely on the distributional hy-
pothesis [5]: words appearing in similar contexts tend to have similar meanings. Hence, word
co-occurrence counts lie at the heart of all these approaches. But besides linguistics, word co-
occurrences and their relationship with semantics also play a central role in psychometrics and cog-
nitive science, where semantic similarity has long been studied [18, 20], often by means of free word
association tasks and semantic spaces, i.e., vector spaces where semantically related words are close
to each other. Yet, this rich literature seems to have been largely overlooked by recent work on word
embeddings.
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Figure 1: Sternberg’s model for inductive reasoning in semantic space. A, B, C are given, I is the
ideal point and D are the choices. The correct answer is shaded green. Adapted from [20].

Semantic spaces such as those used in the psychometrics literature provide a natural conceptual
framework for continuous word representations. For one, the intriguing observation that word em-
beddings can be used to solve analogies has a natural explanation in this framework. In fact, this
was already shown by Rumelhart and Abrahamson [18] using continuous word representations de-
rived from semantic similarity surveys. The explanation provided there is that solving analogies
amounts to a similarity judgment between the relations among two pairs of words. If these words
are represented in a multidimensional euclidean space, then the most natural way of assessing this
similarity is to compare the vectors between the two pairs of words. The question is thus whether
a metric space is a valid representation of semantic concepts. There is significant empirical evi-
dence supporting this. For example, it was shown in [18] that synthetic terms assigned to points in
semantic space were used by subjects for solving analogies in the same way they used real words,
and that human mistake rates followed an exponential decay in embedded distance from the true
solution. Sternberg and Gardner provided further evidence supporting this hypothesis for analogical
reasoning, proposing that general inductive reasoning was based upon operations in metric embed-
dings [20]. Using analogy, series completion and classification1 tasks as testbeds, they proposed that
subjects solve these problems by finding the word closest in (semantic space) to an ideal point: the
vertex of a parallelogram for analogies, a displacement from the last word in series completion, and
the centroid in the case of classification (Figure 1).

In this work, we use these cognitive semantic spaces as motivation for the underlying spaces that
word embedding methods attempt to recover. Besides providing grounding from a cognitive per-
spective and offering an explanation for some of the properties of corpus based word embeddings,
the link with the psychometric literature provides yet another advantage. It reminds us that there are
other types of inductive reasoning besides analogical, which has recently dominated the evaluation
of word embeddings. Tasks such as the series completion and classification [20] require similar
operations on semantic entities, and thus a more robust evaluation scheme should also include those.
Based on this observation, we propose two new inductive reasoning tasks, and demonstrate that
word embeddings can be used to solve those too. For example, in the series completion task, given
“body, arm, hand” we find the answer predicted by vector operations on word embeddings to be
“fingers”. We make these new datasets available to be used as benchmarks in addition to current
popular analogy tasks.

3 Recovering semantic distances with word embedding

We illustrate the metric recovery properties of word embedding methods using a simple model pro-
posed in the literature [2] and generalize the model in the next section. Our corpus consists of m
total words across s sentences over a n word vocabulary where each word is given a coordinate in
a latent word vector space {x1, . . . , xn} ∈ Rd. For each sentence s we consider a Markov random
walk, X1, . . . , Xms

, with the following transition function

P(Xt = xj |Xt−1 = xi) =
exp(−||xi − xj ||22/σ2)∑n
k=1 exp(−||xi − xk||22/σ2)

. (1)

1Choosing the word that fest fits a semantic category defined by a set of words.
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Suppose we observe the Gaussian random walk (Eq. 1) over a corpus with m total words and
define Cij as the number of times for which Xt = xj and Xt−1 = xi.2 By the Markov chain
law of large numbers, as m → ∞ where we take the limit as the number of sentences grows,
− log (Cij/

∑n
k=1 Cik)

p−→ ||xi − xj ||22/σ2 + log(Zi) where Zi =
∑n
k=1 exp(−‖|xi − xk||22/σ2).

We first show that for the case of Eq 1, word embeddings recover the true latent embeddings xi.

GloVe: The Global Vectors (GloVe) [16] method for word embedding optimizes the objective
function minx̂,ĉ,a,b

∑
i,j f(Cij)(2〈x̂i, ĉj〉 + ai + bj − log(Cij))

2 with f(Cij) = min(Cij , 10)
3/4.

If we rewrite the bias terms as ai = âi − ||x̂i||22 and bj = b̂j − ||ĉj ||22, we obtain the equivalent
representation:

min
x̂,ĉ,â,̂b

∑
i,j

f(Cij)(− log(Cij)− ||x̂i − ĉj ||22 + âi + b̂j)
2.

This is a weighted multidimensional scaling objective with weights f(Cij). Splitting the word
vector x̂i and context vector ĉi is helpful in practice to optimize this objective, but not necessary for
our model since the true embedding x̂i = ĉi = xi/σ and âi, b̂i = 0 is one of the global minima
whenever dim(x̂) = d.

word2vec: The embedding algorithm word2vec approximates a softmax objective
minx̂,ĉ

∑
i,j Cij log

(
exp(〈x̂i,ĉj〉)∑n

k=1 exp(〈x̂i,ĉk〉)

)
. If dim(x̂) = d + 1 we can set one of the dimen-

sions of x̂ = 1 as a bias term allowing us to rewrite the objective with a slack parameter bj
analogously to GloVe. After reparametrization we obtain that for b̂ = bj − ||ĉj ||22,

min
x̂,ĉ,̂b

∑
i,j

Cij log

(
exp(−||x̂i − ĉj ||22 + b̂j)∑n
k=1 exp(−||x̂i − ĉk||22 + b̂k)

)
.

Since Cij/
∑n
k=1 Cik →

exp(−‖|xi−xj ||22/σ
2)∑n

k=1 exp(−‖|xi−xk||22/σ2)
this is the stochastic neighbor embedding (SNE)

objective weighted by
∑n
k=1 Cik. Once again, the true embedding x̂ = ĉ = x/σ is one of the global

minima (Theorem S1.5).

SVD: The SVD approach [10] factorizes the pointwise mutual information matrix. This case has
analogous consistency results and is covered in [6].

3.1 Metric regression from log co-occurences

We have demonstrated that existing word embedding algorithms can be cast as metric recovery.
However, it is not clear if this connection is coincidental. We propose a new model which directly
models the log-linearity in equation 1 using generalized linear model, where the co-occurences Cij
follow a negative binomial distribution with mean exp(−||xi − xj ||22).

Cij ∼ NegBin
(
θ, θ(θ + exp(−||xi − xj ||22/2 + ai + bj))

−1) .
The parameter θ controls the contribution of large Cij and acts very similarly to GloVe’s f(Cij)
weight function. The advantage of this approach is that it combines the simplicity of optimization
of GloVe without the choice of arbitrary weight function f . In our results we show that metric
regression performs well at both word embedding and manifold learning.

4 Metric recovery from Markov processes on graphs and manifolds

We now substantially generalize the recovery conditions of the previous section by removing the
Gaussian link between the metric and Markov transitions. We take an extreme view here and show
that even a random walk over a sufficiently large unweighted directed graph holds enough infor-
mation for metric recovery provided that the graph itself is suitably constructed in relation to the

2In practice, word embedding methods use a symmetrized window rather than counting transitions. This
does not change any of the asymptotic analysis in the paper (Supplementary section S2 [6])
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Google (cos) Google (L2) SAT Classification Sequence

Method Sem. Synt. Total Sem. Synt. Total L2 Cosine L2 Cosine L2 Cosine
Regression 78.4 70.8 73.7 75.5 70.9 72.6 39.2 37.8 87.6 84.6 58.3 59.0
GloVE 72.6 71.2 71.7 65.6 66.6 67.2 36.9 33.6 73.1 80.1 48.8 59.0
SVD 57.4 50.8 53.4 53.7 48.2 50.3 27.1 25.8 65.2 74.6 52.4 53.0
Word2vec 73.4 73.3 73.3 71.4 70.9 71.1 42.0 42.0 76.4 84.6 54.4 56.2

Table 1: Accuracies on Google, SAT analogies and on two new verbal inductive tasks.

underlying metric.3 To this end, we use a limiting argument (large vocabulary limit) with an in-
creasing number of points Xn = {x1, . . . , xn}, where xi are sampled i.i.d. from a density p(x) on
a manifold with geodesic ρ.
Definition 1 (Spatial graph). Let σn : Xn → R>0 be a local scale function and h : R≥0 → [0, 1]
a piecewise continuous function with sub-Gaussian tails. A spatial graph Gn corresponding to σn
and h is a random graph with vertex set Xn and a directed edge from xi to xj with probability
pij = h(ρ(xi, xj)

2/σn(xi)
2).

Simple examples of spatial graphs where the connectivity is not random (pij = 0, 1) include the ε
ball graph (σn(x) = ε) and the k-nearest neighbor graph (σn(x) =distance to k-th neighbor).

Our main result (whose full details we defer to [6]) shows that co-occurence of random walks over
graphs follows the same limit as the simple Gaussian random walk as above.

Theorem 2 (Varadhan’s formula on graphs). For any δ,γ,n0 there exists some t̂, n > n0, and
sequence bnj such that the following holds for the simple random walk Xn

t :

P
(

sup
xi,xj∈Xn0

∣∣∣t̂ log(P(Xn
t̂g−2

n
= xj | Xn

0 = xi))− t̂bnj − ρσ(x)(xi, xj)2
∣∣∣ > δ

)
< γ

Where ρσ(x) is the geodesic defined as ρσ(x)(xi, xj) = minf∈C1:f(0)=xi,f(1)=xj

∫ 1

0
σ(f(t))dt

Theorem 2 proves the unversality of the log-linear limit log(Cij/
∑
k Cik)→ −||xi − xj ||22, which

extends the metric recovery properties of word embedding algorithms to any type of semantic ran-
dom walk and justifies the ad-hoc methods which apply word embeddings to graphs [17].

5 Empirical validation

We experimentally validate our word embedding theory by training embeddings on 5.8B tokens
combining Wikipedia with Gigaword5 emulating GloVe’s corpus. For results on other corpora, as
well as implementation details for all methods, refer to the full version of this paper [6].

Solving analogies using survey data: We demonstrate that analogies can be solved sim-
ply by using human-generated semantic similarity scores. We take a free-association survey
dataset [15], construct a graph with edge weights corresponding to log association frequency
(− log(wij/maxkl(wkl))) and embed this weighted graph using stochastic neighbor embedding
(SNE) [7] and Isomap [21]. We then use these embeddings to solve questions from the Google anal-
ogy dataset [11]. Directly embedding semantic similarity with Isomap performed well (82.3% ac-
curacy) and even outperformed corpus-based word embeddings obtained using word2vec (70.7%).
Unsurprisingly, survey embeddings perform badly on the syntactic questions, as the survey was
purely semantic.

Analogies: We then test our proposed method against other popular embedding schemes in the
Google and SAT [23] analogy tasks. The results in Table 1 demonstrate that our proposed framework
of metric regression and naive vector addition (L2) is competitive with state-on-the-art embedding
methods on this task. The performance gap across methods is small and fluctuates, but metric
regression consistently outperforms all methods on semantic analogies and GloVe on most tasks.

Sequence and classification tasks: We propose two new difficult inductive reasoning tasks based
upon the semantic field hypothesis [20]: series completion and classification. The questions were

3The weighted graph case follows identical arguments, see [6].
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Figure 2: MNIST digit embedding using word embedding methods (left three) and metric embed-
ding on the same graph (right). Performance is quantified by percentage of 5-nearest neighbors
sharing the same cluster label.

generated using WordNet semantic relations [13]. Word embeddings solve both tasks effectively,
with metric embedding consistently performing well on these multiple choice tasks (Table 1).

Manifold embedding the MNIST digits: Theorem 2 demonstrates that word embeddings can per-
form nonlinear dimensionality reduction. We test this by embedding the MNIST digits dataset [8].
Using a four-thousand point subset, we generated a k-nearest neighbor graph (k = 20) and gener-
ated 10 simple random walks of length 200 from each point. Treating these trajectories as sentences
result in 40,000 sentences each of length 200. We compared the four word embedding methods
against stochastic neighborhood embedding (SNE) on the percentage of 5-nearest neighbors sharing
the same cluster label. Fig. 2 demonstrate that metric regression is highly effective at this task,
outperforming metric SNE.
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