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Summary

We propose a novel neural network architecture specifically tailored to tree-
structured decoding, which:

• maintains separate depth and width recurrent states and
combines them to obtain hidden states for every node in the tree.

• has a mechanism to predict tree topology explicitly (as opposed to
implicitly by adding nodes with special tokens).

Our experiments show that this architecture
• is capable of recovering trees from encoded representations
• achieves state-of-the-art performance in a task consisting of mapping

sentences to simple functional programs
• exhibits desirable invariance properties over sequential architectures

Background and Motivation

Why tree-structured?
• RNNs are a natural model for sequential data
• But many types of data are non-sequential, e.g.

• natural language sentences or associated parse trees
• programs, executable queries, etc

• Even sentences, which can be modeled as if they were linear sequences,
have an underlying compositional process.

Previous work
Current neural architectures for non-sequential data usually assume:
a) the full tree structure is given (e.g. [5, 6]), or
b) at least the nodes are known (e.g. [1, 3])

In case (a), the network aggregates the node information in a manner that is
coherent with a given tree structure. In case (b), generation is reduced to an
attachment problem, i.e., sequentially deciding which pairs of nodes to join
with an edge until a tree is formed.

Full decoding with structure is much less explored. Models so far
remained relatively close to their sequential counterparts, e.g. using
alternating RNNs coupled with external classifiers to predict branching [7] and
introducing special tokens [2] to signal stopping.

Two downsides to using special tokens to control topology are:
(i) tree growth (up to O(n) padding nodes in an n-node tree)
(ii) single stopping token selected competitively with other tokens

Challenges of tree-structured decoding
As opposed to seq-to-seq, encoding and decoding are intrinsically
asymmetrical. Decoding requires multiple design choices:

• In which order should the tree be generated?
• What information should each node receive? Parent, sibling(s), etc.
• How to terminate generation?

Our approach
Grow tree root-to-leaves, encode parent-to-child and sibling-to-sibling
information in separate recurrent states and model topological (stopping)
decisions explicitly with a dedicated module

Doubly-Recurrent Neural Networks
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Figure 1: Left: A cell in the Drnn corresponding to node i with parent p and sibling s. Right: Structure-unrolled Drnn network in an encoder-decoder setting.
Solid (dashed) lines indicate ancestral (fraternal) connections. Crossed arrows indicate production halted by the topology modules.

Cell recurrent states
hai = ga(hap(i),xp(i)) (ancestral, depth state)
hfi = gf(hfs(i),xs(i)) (fraternal, width state)

These are combined to obtain a predictive hidden state:
h(pred)
i = tanh

Ufhfi + Uahai


Training DRNNs
• With (reverse) back-propagation through structure (BPTS)
• Forward pass: top-down, on the structure-unrolled network
• Backward pass: bottom-up, feeding into every node gradients from

children and sibling, computing internally gradients with respect to both
topology and label prediction.

• Two loss terms: label and topology prediction

Topological Prediction
Instead of using stopping tokens, our model makes topological decisions
explicitly, by computing:

pai = σ(ua · h(pred)
i )

where pai ∈ [0, 1] is interpreted as the probability that node i has children.
Analogously, the probability of stopping fraternal growth:

pfi = σ(uf · h
(pred)
i )

Topological decisions αi, ϕi ∈ {0, 1} are included for label prediction:

oi = softmax(Wh(pred)
i + αiva +ϕivf)

In practice, during training, we perform teacher forcing, replacing
topological predictions pai , pfi for true values (αi, ϕi) after computing loss
and before computing oi.

Experiments

Synthetic tree recovery
Task: Recovering tree structure from flattened (string) representations
Dataset: 5000 trees labeled with letters A-Z. We generate trees in a
top-down fashion, conditioning every node’s label and topology on the state
of its ancestors and siblings.
Model: A Drnn as decoder, paired with a (sequential) RNN as encoder.
Evaluation: To give partial credit to correct substructures, we use an IR
approach to evaluation, measuring F1-score of node and edge recovery.
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Figure 3: Left: Av. F1-Score vs. training data. Right: Node/edge precision
vs. tree size.
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Figure 4: Node/edge precision vs. tree depth (left figure) and width (right).

Experiments (contd.)

Mapping sentences to functional programs
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Figure 5: Example from the IFTTT dataset: description and program.

Dataset: IFTTT [4], consisting of simple programs (recipes) paired with
descriptions of their purpose. User-generated and extremely noisy.
Model: RNN encoder and a DRNN decoder.
Evaluation: Accuracy in channel & function + F1-score of pred. tree

Method Channel +Func F1

retrieval 36.8 25.4 49.0
classifier 64.8 47.2 56.5
posclass 67.2 50.4 57.7

Seq2Seq 68.8 50.5 60.3
Seq2Tree 69.6 51.4 60.4
Gru-Drnn 70.1 51.2 62.7
Lstm-Drnn 74.9 54.3 65.2

Method Channel +Func F1

retrieval 43.3 32.3 56.2
classifier 79.3 66.2 65.0
posclass 81.4 71.0 66.5

Seq2Seq 87.8 75.2 73.7
Seq2Tree 89.7 78.4 74.2
Gru-Drnn 89.9 77.6 74.1
Lstm-Drnn 90.1 78.2 77.4

Table 1: Results on the IFTTT task. Left: non-English/unintelligible removed,
Right: at least 3+ humans agree with gold (758 recipes).

Machine Translation
Can decoding with structure bring benefits to a task traditionally approached
as a sequence-to-sequence problem, such as MT?
Training data: 50K En↔Fr sentences from the WMT14 dataset.
Models:

• Drnn: L/R children distinction, paired w/ LSTM encoder
• Seq2Seq: LSTM units, roughly same # of params as Drnn

Evaluation:
i) Invariance to structural perturbations in output, measuring ∆ in LL
ii) Quality of translations at different resolutions (max target “size”)
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Figure 6: LLH change w/
target perturbation.

Source “ produit différentes réponses qui changent avec le temps
selon nos expériences et nos relations ”

Seq2Seq:
l = 1 a
l = 4 with the different actions
l = 8 with the different actions who change with

Drnn:
d = 1 answers
d = 2 different answers change
d = 3 product the different answers change .

Table 2: Translations at different resolutions.
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