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A. Proofs
Our main results in this section make the following assump-
tions.

(A1) the predictor f is unconstrained.

(A2) both the loss and deviation are squared errors.

(A3) |B(xi)| = m,∀xi ∈ Dx.

(A4) xj ∈ B(xi) =⇒ xi ∈ B(xj),∀xi, xj ∈ Dx.

(A5) ∪xi∈Dx
B(xi) = Dx.

We note that (A3) and (A4) are not technically necessary
but simplify the presentation. We denote the predictor in the
uniform criterion (Eq. (2)), the symmetric game (Eq. (3)),
and the asymmetric (Eq. (4)) game as fU , fS , and fA, re-
spectively. We use Xi ∈ Rm×d to denote the neighbor-
hood B(xi) = {x′1, . . . , x′m} (Xi = [x′1, . . . , x

′
m]>), and

f(Xi) ∈ Rm to denote the vector [f(x′1), . . . , f(x′m)]>.
X†j denotes the pseudo-inverse of Xj . Then we have

Theorem 2. If (A1-5) hold and the witness is in the linear
family, the optimal fS satisfies

f∗S(xi) =
1

1 + λ

[
yi +

λ

m

( ∑
xj∈B(xi)

X†j f
∗
S(Xj)

)>
xi

]
,

and the optimal fA, at every equilibrium, is the fixed point

f∗A(xi) =
1

1 + λ

[
yi + λ(X†i f

∗
A(Xi))

>xi

]
,∀xi ∈ Dx.

Proof. We first re-write the symmetric criterion explicitly
as a game:

min
f

∑
i

(f(xi)− yi)2 +
λ

m

∑
xj∈B(xi)

(f(xj)− ĝxi(xj))
2,

where ĝxi
is the best response strategy from the local wit-

ness.

Since f is unconstrained and the objective in convex in it,
we can treat each f(xi) as a distinct variable, and use the
derivative to find its optimum:

f∗S(xi) =
1

1 + λ

[
yi +

λ

m

∑
xj∈B−1(xi)

ĝxj
(xi)

]

=
1

1 + λ

[
yi +

λ

m

∑
xj∈B(xi)

ĝxj
(xi)

]
, (7)

where B−1(xi) = {xj ∈ Dx : xi ∈ B(xj)}. Note that we
only have to collect witnesses ĝxj

that are relevant to f(xi)
for the first equality, and the second equality is due to (A4).
On the other hand, the objective for f in the asymmetric
game is:

min
f

∑
i

(f(xi)− yi)2 + λ(f(xi)− ĝxi
(xi))

2,

The corresponding optimum is:

f∗A(xi) =
1

1 + λ

[
yi + λĝxi

(xi)

]
(8)

For both games, the objective for gxi
can be described as:

min
gxi

λ

m

∑
xj∈B(xi)

(f(xj)− gxi
(xj))

2

= min
θi

λ

m
‖f(Xi)−Xiθi‖22, (9)

Then Eq. (10) is an optimal witness g∗xi
at xi.

g∗xi
(xj) = θ>i xj = (X†i f(Xi))

>xj ,∀xj ∈ X , (10)

and we note that every optimal witness g∗xi
has the same

values on B(xi)

Since the optimal g∗xi
is functionally dependent to f . we put

Eq. (10) back to Eq. (7) to obtain the optimal condition for
f∗S (at equilibrium) as

f∗S(xi) =
1

1 + λ

[
yi +

λ

m
(
∑

xj∈B(xi)

X†j f
∗
S(Xj))

>xi

]
.

Again, putting Eq. (10) back to Eq. (8), we obtain the
optimal condition for f∗A at equilibrium as

f∗A(xi) =
1

1 + λ

[
yi + λ(X†i f

∗
A(Xi))

>xi

]
.

Note that the equilibrium for the linear class is not unique
when the solution of Eq. (9) is not unique: there may be
infinitely many optimal solution to the witness in a neigh-
borhood due to degeneracy. In this case, Theorem 2 adopts
the minimum norm solution as used in the pseudo-inverse in
Eq. (10). In this case, one may use Ridge regression instead
to establish a strongly convex objective for the witness to
ensure a unique solution, where the objective for the witness
is rewritten as

min
θi

λ

m
‖f(Xi)−Xiθi‖22 + α‖θi‖22, (11)

with a positive α.

Theorem 3. If (A1-5) hold and the witness is in the linear
family, the optimal fU satisfies

f∗U (xi) =


α(xi, f

∗
U ), if α(xi, f

∗
U ) > yi,

β(xi, f
∗
U ), if β(xi, f

∗
U ) < yi,

yi, otherwise,
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for xi ∈ Dx, where

α(xi, f
∗
U ) = max

xj∈B(xi)

[
(X†j f

∗
U (Xj))

>xi

−
√
δm−

∑
xk∈B(xj)\{xi}

(f∗U (xk)− (X†j f
∗
U (Xj))>xk)2

]
;

β(xi, f
∗
U ) = min

xj∈B(xi)

[
(X†j f

∗
U (Xj))

>xi

+

√
δm−

∑
xk∈B(xj)\{xi}

(f∗U (xk)− (X†j f
∗
U (Xj))>xk)2

]
.

Proof. The objective for the uniform criterion is:

min
f

N∑
i=1

(f(xi)− yi)2 (12)

s.t. min
g∈G

1

m

∑
xj∈B(xi)

(f(xj)− g(xj))
2 ≤ δ, ∀xi ∈ Dx.

Our strategy is to temporarily treat each g as a fixed function,
and then replace it with its best response strategy.

Since f is unconstrained (in capacity), we can treat each
f(xi) as a distinct variable for optimization. For each f(xi),
we first filter its relevant criteria:

min
f(xi)

(f(xi)− yi)2

s.t. (f(xi)− gxj (xi))
2,≤ δm

−
∑

xk∈B(xj)\{xi}

(f(xk)− gxj
(xk))2,∀xj ∈ B(xi).

For any feasible f , we can further rewrite the constraint of
f(xi) with respect to each xj as:

gxj
(xi)−

√
δm−

∑
xk∈B(xj)\{xi}

(f(xk)− gxj
(xk))2

≤ f(xi)

≤ gxj
(xi) +

√
δm−

∑
xk∈B(xj)\{xi}

(f(xk)− gxj
(xk))2.

Collectively, we can fold all the upper bounds of f(xi) as

f(xi) ≤ min
xj∈B(xi)

[
gxj

(xi)

+

√
δm−

∑
xk∈B(xj)\{xi}

(f(xk)− gxj
(xk))2

]
.

All the lower bounds can be folded similarly.

Finally, since the objective for f(xi) is simply a squared
error with an interval constraint, evidently if yi satisfies the
lower bounds and upper bounds, then f∗U (xi) = yi. If

yi > min
xj∈B(xi)

[
gxj (xi)

+

√
δm−

∑
xk∈B(xj)\{xi}

(f(xk)− gxj (xk))2
]
,

then we have

f∗U (xi) = min
xj∈B(xi)

[
gxj

(xi)

+

√
δm−

∑
xk∈B(xj)\{xi}

(f(xk)− gxj (xk))2
]
.

Otherwise, we have

f∗U (xi) = max
xj∈B(xi)

[
gxj (xi)

−
√
δm−

∑
xk∈B(xj)\{xi}

(f(xk)− gxj
(xk))2

]
.

For each gxi
is in the linear class, Eq. (13) is an optimal

solution.

g∗xj
(xi) = (X†j f(Xj))

>xi,∀xi ∈ X , (13)

and we note that every optimal witness g∗xj
has the same

values on B(xj).

Since the optimal g∗xi
is functionally dependent to f , to

obtain the optimal f∗U , we combine our previous result with
g∗xi

such that the optimality conditions for f and gxi
are

both satisfied. Finally, we have

f∗U (xi) =


α(xi, f

∗
U ), if α(xi, f

∗
U ) > yi,

β(xi, f
∗
U ), if β(xi, f

∗
U ) < yi,

yi, otherwise,

for xi ∈ Dx, where

α(xi, f
∗
U ) = max

xj∈B(xi)

[
(X†j f

∗
U (Xj))

>xi

−
√
δm−

∑
xk∈B(xj)\{xi}

(f∗U (xk)− (X†j f
∗
U (Xj))>xk)2

]
;

β(xi, f
∗
U ) = min

xj∈B(xi)

[
(X†j f

∗
U (Xj))

>xi

+

√
δm−

∑
xk∈B(xj)\{xi}

(f∗U (xk)− (X†j f
∗
U (Xj))>xk)2

]
.
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Lemma 4. If d(·, ·) is squared error, L(·, ·) is differentiable,
f is sub-differentiable, and A(4-5) hold, then∑
(xi,yi)∈D

L(f(xi), yi) +
λ

N̄i

[
N̄if(xi)−

∑
xt∈B(xi)

ĝxt
(xi)

|B(xt)|

]2
,

(14)
where N̄i :=

∑
xt∈B(xi)

1
|B(xt)| , induces the same equilib-

rium as the symmetric game.

Proof. Since the criteria for the witness gxi
are the same in

the symmetric game and the proposed asymmetric criterion
here, we only have to check for the optimality condition for
the predictor f . Here we use ∇θf(x) to denote the subgra-
dient of f at x with respect to the underlying parameter θ,
the optimality condition for Eq. (14) is

0 ∈
∑

(xi,yi)∈D

[
∂

∂f(xi)
L(f(xi), yi)

+ 2λ(
∑

xt∈B(xi)

f(xi)

|B(xt)|
−

∑
xt∈B(xi)

ĝxt
(xi)

|B(xt)|
)

]
∇θf(xi)

=
∑

(xi,yi)∈D

[
∂

∂f(xi)
L(f(xi), yi)∇θf(xi)

+
∑

xt∈B(xi)

2λ

|B(xt)|
(f(xi)− ĝxt

(xi))∇θf(xi)

]
For the symmetric game, the optimality condition is

0 ∈
∑

(xi,yi)∈D

[
∂

∂f(xi)
L(f(xi), yi)∇θf(xi)

+
∑

xt∈B(xi)

2λ

|B(xi)|
(f(xt)− ĝxi(xt))∇θf(xt)

]
It is evident that the two conditions coincide if Eq. (15) is
equal to Eq. (16).∑
(xi,yi)∈D

∑
xt∈B(xi)

1

|B(xi)|
(f(xt)− ĝxi(xt))∇θf(xt)

(15)

=
∑

xt∈∪xi∈DxB(xi)

∑
xi∈B−1(xt)

1

|B(xi)|
(f(xt)− ĝxi

(xt))∇θf(xt)

=
∑
xt∈Dx

∑
xi∈B(xt)

1

|B(xi)|
(f(xt)− ĝxi

(xt))∇θf(xt)

=
∑

(xi,yi)∈D

∑
xt∈B(xi)

1

|B(xt)|
(f(xi)− ĝxt

(xi))∇θf(xi),

(16)

where the first equality is simply re-ordering of the two sum-
mations, and the second equality is due to xt ∈ B(xi) ⇐⇒
xi ∈ B(xt) and ∪xi∈DxB(xi) = Dx.

Figure 5. The cumulative distribution function of the total variation
loss between the predictor f and the local witness g in each training
neighborhood.

B. Supplementary Materials for Molecule
Property Prediction

Implementation. To conduct training, we use GCNs as the
predictor with 6 layers of graph convolution with 1800 hid-
den dimension. We use a 80%/10%/10% split for training
/ validation / testing.

Evaluation Measures. We use the roc auc score in

scikit-learn (Pedregosa et al., 2011) to compute the
AUC score. Note that for each criterion, we evaluate the
model with respect to each label, and then report the average
score across the 12 labels. Here N denotes the number of
testing data.

• AUC(f, y): we compare f(Mi) with the labels yi
among the testing data {(Mi, yi)}Ni=1 in AUC.

• AUC(ĝM, y): we compare ĝMi
(x(Mi)) with the la-

bels yi among the testing data {(Mi, yi)}Ni=1 in AUC.

• AUCB(ĝM, f): for each testing data (M, y), we eval-
uate the following score among the neighborhood
B(M) = {M1, . . . ,MNM}, where NM := |B(M)|,
aroundM:∑NM

i=1

∑NM
j=1 I(f(Mi) > f(Mj))I(ĝM(Mi) > ĝM(Mj))∑NM

i=1

∑NM
j=1 I(f(Mi) > f(Mj))

.

The average score across all the testing neighborhood is then
reported.

• AUCD(ĝM, f): we evaluate the following score among the
testing data {(Mi, yi)}Ni=1:∑N

i=1

∑N
j=1 I(f(Mi) > f(Mj))I(ĝMi(Mi) > ĝMj (Mj))∑N

i=1

∑N
j=1 I(f(Mi) > f(Mj))

.
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Figure 6. Visualization of the witnesses with the their parameters (middle and right plots) for teacher-forced predictions on the first
channel (left plot) along each timestamp (x-axis) on the bearing dataset. The y-axis of the parameters from 0 to 8 denotes the bias (θ0)1
and weights (θ1)1,1:4, (θ2)1,1:4.

Visualization. To investigate the behavior of the models,
we plot their total variation loss from the local witness
among the training neighborhoods in Figure 5. The uni-
form criterion imposes a strict functional constraint, while
the symmetric game allows a more flexible model, exhibit-
ing a tiny fraction of high deviation among the training
neighborhoods.

C. Supplementary Materials for Physical
Component Modeling

Implementation. We randomly sample 85%, 5%, and
10% of the data for training, validation, and testing.
We set the learning rate as 10−5 with the Adam opti-
mizer (Kingma & Ba, 2015). The batch size is set to
128. All the hidden dimensions are set to 128. We use
the MultivariateNormalTriL function in Tensor-
flow (Abadi et al., 2016) to parametrize the multivariate
Gaussian distribution. Specifically, we let the network out-
put a N + (N+1)(N)

2 dimensional vector. The first N dimen-
sions are treated as the mean. The second part is transformed
to a lower triangular matrix, where the diagonal is further
processed with a softplus nonlinearity. Such representation
satisfies the Cholesky decomposition for covariance matrix.

For fitting the linear witness, we use Ridge regression in
scikit-learn (Pedregosa et al., 2011) with the default
hyperparameter. The usage of Ridge regression instead of
vanilla linear regression is justified by our analysis of the
equilibrium for linear witnesses.

Visualization. The visualization for the teacher-forced gen-
erative trajectory is in Figure 6.

Neighborhood size analysis

Here we investigate the effect of neighborhood radius ε.
The results are shown in Figure 7. The impact of the neigh-
borhood size is quite monotonic to deviation and TV, but
in a reverse way. As ε increases, the weight of the wit-
ness on fitting the current point xi among the neighborhood

Figure 7. Parameter analysis of ε on the GAME model with λ = 1.

B(xi) decreases, so the deviation of the witness ĝxi(xi)
from f(xi) increases. In contrast, as more points are over-
lapped between the neighborhoods of consecutive points, the
resulting witnesses are more similar and thus yield smaller
TV. In terms of prediction error, as the neighborhood radius
ε determines the region to impose coherency, a larger re-
gion leads to greater restriction on the predictive model. All
the arguments are well supported by the empirical results.
We suggest users to trade off faithfulness (deviation) and
smooth transition of functional properties (TV) based on the
application at hand. We note that, however, smooth transi-
tion of functional properties is not equivalent to smoothness
of f .

Finally, we remark that our sample complexity analysis
for the linear class suggests that the neighborhood size is
guaranteed to be effective for 2ε + 1 > d = 2c + 1 = 9.
However, since the result is an sufficient condition, the
regularization may still happens for ε < 5 if the matrix rank
of each neighborhood Xi = [xi−ε, . . . , xi+ε]

> is less than
min{d,m} = min{2c+ 1, 2ε+ 1}.


