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A The structured optimal transport is
a semi-metric

We restate Lemma 3.1 and prove it.
Lemma A.1. Suppose the ground cost c(·, ·) is a met-

ric and that F is a submodular non-decreasing function

such that F (;) = 0 and F ({(i, j)}) > 0 iff c(xi, yj) > 0.
Then dF (µ, ⌫) = min�2M f(�) is a semi-metric.

Proof. Let C 2 Rn⇥m be the cost matrix associated
with c, i.e. Cij = c(xi, yj) for i 2 {1, . . . , n} and j 2
{1, . . . ,m}. In addition, define p and q to be the
vectors of probability weights of µ and ⌫, respectively,
i.e. µ =

Pn
i pi�xi and ⌫ =

Pm
j qj�yj .

Since c(·, ·) is a metric, every Cij is non-negative. Fur-
thermore, since we assume support points are not du-
plicated, C has at most n zero entries, and the rest
are strictly positive. This, combined with the fact
that F is non-decreasing, implies F (S) � 0 for every
S ✓ V , and therefore its Lovász extension must also
be non-negative. In particular,

dF (µ, ⌫) = min
�2M

f(�) � 0 8µ, ⌫ (18)

Now, suppose µ = ⌫, and without loss of generality,
assume the support points are indexed such that xi = yi
for every i. In addition, we must have p = q, so
� = diag(p) 2 M. On the other hand, since c is a
metric Cii = 0 for every i, which in turn implies that
for any  2 BF and every i, ii  F ({i, i}) = 0. By
(18) and the minimax equilibrium properties, we have

0  dF (µ, ⌫) = h�⇤,⇤i  h�,⇤i 8� 2M

In particular, for � = diag(p), we get

0  dF (µ, ⌫) 
X

i

pi
⇤
ii  0

So we conclude that dF (µ, ⌫) = 0. Conversely, let
dF (µ, ⌫) = 0, and suppose, for the sake of contradiction,
that µ 6= ⌫. Then, at least one of the following is true:
(i) p 6= q
(ii) the support points are different, i.e. there is no

reordering of indices such that xi = yi for every i.

If (i) is true, M cannot be a permutation matrix, so
in particular �⇤ has at least n+ 1 positive entries. We
can thus find a  2 BF which has positive weights in
all those entries. In that case, we have h�⇤, ̂i > 0, a
contradiction. Now, if on the other hand (ii) is true,
then C has strictly less than n zero entries. This, by
our assumptions on F , means that there exist  2 BF

with less than n non negative entries. Any such matrix
will have h�⇤,i > 0, a contradiction.

Finally, the symmetry of dF (µ, ⌫) is trivial.

B Topological constraints in
Structured Optimal Transport

Besides the settings presented in this work where struc-
ture arises from group labels, the framework proposed
here allows us to explicitly encourage certain topologi-
cal aspects of the distributions to be preserved. One
such possible constraint for discrete distributions that
lie on a low-dimensional manifold is to encourage neigh-
boring points to be matched together. Such type of
constraints can substantially alter the resulting trans-
port plans, as shown in Figure 5 for a simple two-moons
dataset. Here, the SOT solution favors neighborhood
preservation over element-wise cost, resulting in a block-
structured optimal coupling.

C The Sinkhorn-Knopp Matrix
Scaling Algorithm

Cuturi (2013) proposes to solve the entropy-regularized
optimal transport problem

argmin
�2M

h�, Ci � 1

�
H(�) (19)

with the Sinkhorn-Knopp matrix scaling algorithm.
Lemma 2 in (Cuturi, 2013), based on Sinkhorn’s Theo-
rem (Sinkhorn, 1967), shows that there exists a unique
solution to this problem, and that it has the form

�⇤
� = diag(u)Kdiag(v)

where K is the entry-wise exponential of � 1
�C and

u, v 2 Rd
+. Furthermore, u and v can be efficiently



Figure 5: Optimal transport plans and matchings for
the two moons example.

obtained by means of Sinkhorn’s fixed-point iteration,
which involves updates of the form:

u(n+1) = µ ./(Kv(n))

v(n+1) = ⌫ ./(KTu(n))

where, again, the division is entry-wise. The iterates
u(n) and v(n) converge linearly to the true u and v.

D Fast projections into submodular
function base polytopes

The problem of computing the point of minimal norm
on the base polytope of a submodular function is in-
timately related to that of minimizing the function
itself. The solutions to these two problems are related
through the parametric minimization problem

S⇤
� = argminF (S)� �|S|

Let y⇤ be the min-norm point in BF . We can re-
cover the solution to the original submodular function
minimization (SFM) problem, S⇤ := S⇤

�=0 from y⇤ as
S⇤ = {i | y⇤i  0}. Conversely, we can recover y⇤ from
the solutions of the parametric problem as

y⇤
j = max{� | j 2 S⇤

�}

Given a method for minimizing the function F� :=
F (S) � �|S|, one can obtain the min-norm-point by
repeated calls to this oracle and a divide-and-conquer

strategy as the one Jegelka, Bach, and Sra (2013) use,
which runs in O(n log n) time.

Now, in our case, we are dealing with cluster func-
tions of the form Fi(S) = g(

P
i2S wi), and in addi-

tion, we are interested in computing projections, rather
than the min-norm-point, i.e., we are interested in
̃ = argmin2BF

k�mk22 for some m 2 Rn⇥m. Equiv-
alently, we want to minimize Fw(S) := F (S)�M(S),
where M is the modular function implied by the vector
m. Thus, the parametric submodular function mini-
mization (SFM) problem we are dealing with is

F�
w = g(

X

i2S

wi) +
X

i2S

mi � �|S|

= g(
X

i2S

wi) +
X

i2S

(mi � �)

= min
↵2I

c↵ + (↵
X

i2S

wi) +
X

i2S

(mi � �)

= min
u2[0,

P
i2V wi]

g(u) +rg(u)
�X

i2S

wi � u
�
+

X

i2S

(mi � �)

where we used the fact that any concave function can
be written as the pointwise supremum of (potentially
infinite) linear functions, parametrized by ↵, and an
interval I where the valid gradients lie. Since the
minimization is jointly over S and ↵, we can rewrite
the problem as

min
↵

min
S

c↵ + ↵
X

i2S

wi +
X

i2S

(mi � �) (20)

As the slope ↵ = rg(u) shrinks, the constant c↵ =
g(u)� urg(u) grows. We make the following observa-
tions:

1. Equation (20) suggests the following strategy: (1)
for each ↵, find the minimizing set S↵. (2) Evalu-
ate the function above for each S↵, and pick the
one minimizing F (S).

2. For a fixed ↵, the optimal S↵ is easy to find:

S↵�{i|↵wi+mi+�  0} = {i|↵  �(mi+�)/wi

3. Observation 2 shows that the optimal sets as ↵
shrinks are nested: once an item enters the optimal
set, it never leaves.

These observations suggest a simple sorting-based al-
gorithm for finding the minimizer of F (S), shown here
as Algorithm 3. It runs in time O(n log n+nT ), where
T is the evaluation time of F and n is the size of the
ground set of F . We emphasize that this algorithm is
only valid for the concave-of-sum functions as defined
in Section 3.1.



Algorithm 3 Fast SFM for Concave-of-Sum
Input: Initial point z0 = (�0,0) and step size ⌘0
for i = 1, . . . , n do

ri  �(mi + �)/wi

end for

V̂  Sort(V ) {By value of ri}
for k = 1, . . . , n do

Sk  {1, . . . , V (k)}
end for

S⇤ = argminSi
F (Si)

return S⇤

E Edmond’s sorting algorithm

Let f be the Lovász extension of a submodular function
F : 2V ! R. Then f can be evaluated at w 2 Rn

as follows. Let � be a reordering of the elements of
V such that w�1 � w�2 � · · · � w�n , and define
Si = {�1, . . . ,�i}. Then

f(w) =
nX

i=1

w�i

⇥
F (Si)� F (Si�1)

⇤

The computational cost in this procedure is dominated
by the sorting. Now, recalling that equivalence f(x) =
maxy2BF hy, xi, we note that this same procedure yields
the maximizing y, setting y�i := F (Si)� F (Si�1). It
is trivial to verify that indeed y 2 BF .

F Derivation of Mirror Descent Steps

We derive here the steps for SP-MD. The derivation
for MDA (Algorithm 1) and SP-MP (Algorithm 2) is
analogous.

Let Z = M ⇥ BF , and denote by z 2 Z a pair z =
(�,). Suppose �cM ,�B are mirror maps on M and
BF , respectively. We define �Z(z = (�,)) := �M(�)+
�B(). The SP-MD algorithm computes at every step:

a) wt+1 2 D such that r�(wt+1) = r�(zt)� ⌘gt

b) zt+1 2 argminz2Z D�(z, wt+1)

Note that � = (�M,�B), so (a) amounts to finding
wt+1 = (w�

t+1, w

t+1) such that:

r�M(w�
t+1) = r�M(�t+1)� ⌘t (21)

r�B(w

t+1) = r�B(t+1) + ⌘�t (22)

At this point, the updates take different forms de-
pending on the mirror maps. For our choice of
�M(�) = H(�), we have r�M(�) = 1+ log � (where
the logarithm is to be understood element-wise), so
(21) becomes:

logw�
t+1 = log �t � ⌘t (23)

Algorithm 4 Saddle Point Mirror Descent for Struc-
tured Optimal Transport

Input: Initial point z0 = (�0,0) and step size ⌘0
while ✏SP < tol do

�t+1  Sinkhorn(�t � exp{�⌘tt})
t+1  BasePolyProject(t + ⌘t�t)
zt+1  [

Pt+1
s=1 ⌘s]

�1
Pt+1

s=1 ⌘s(�s,s)
✏SP  SaddleGap(zt)
t t+ 1

end while

Hence,
w�

t+1 = �t · e⌘t ,

where the product and exponential are, again, element-
wise. On the other hand, for the mirror map �B() =
1
2kk

2
2, (22) becomes

w
t+1 = t + ⌘�t (24)

The second step in SPMD (step (b) above) requires
projecting wt+1 and thus (w�

t+1, w

t+1) into (M,BF )

according to the Bregman divergences associated with
the mirror maps �M(�),�B(). For the entropy map,
this becomes an KL-divergence projection, so we have

�t+1 2 argmin
�

KL(� k �t · e⌘t) (25)

On the other hand, the divergence associated with the
`2 norm map is again an `2 distance, so

t+1 2 argmin

k� t + ⌘�tk22 (26)

The full SP-MD Algorithm is shown as Algorithm 4.

G Shortcomings of the Word Mover’s
Distance

There are obvious limitations the WMD’s purely se-
mantic bag-of-words approach to sentence similarity,
arising from ignoring the relations among words in a
sentence. For example, consider the following sentences:
a) The hotel does not appear in this book

b) I will book this hotel

c) I will reserve this hotel

The WMD between (a) and (b) will likely be less that
than between (b) and (c), even though the latter two
are paraphrases of each other. Although (a) and (b)
have strong single-word semantic overlap, the order in
which the words occur in these two sentences entails
different meanings. As contrived as this example might
be, it is a good reminder that syntax and word-meaning
go hand-in-hand for assessing semantic similarity at
the sentence level.



H Digit transportation

Figure 6: Examples from the mnist!usps domain adaptation task. The first column is the source image from
mnist, and the remaining columns are the result of transporting the source image into the target domain with
the barycentric mapping defined by the various optimal transport plans.


