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Abstract

We explore two methods for the problem of computing the evidence or inte-
grated likelihood Z under a model; the Nested Sampling method and the Tootsie-
Pop algorithm. After presenting their main features, we discuss their similarities
and differences, along with their drawbacks and the key objections they have
received from other authors.

We provide explicit implementations of the two methods and test them on
two practical problems: a model gaussian problem and an example of statistical
mechanics using the Ising Model.
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1 Introduction

Evaluating complex multidimensional integrals is a common problem faced when per-
forming inference in Bayesian statistics and machine learning. Indeed, inference in most
realistic machine learning algorithms is not tractable [8]. A prototypical example of this
is the problem of computing the evidence under a model: !

Z:/LdX

where L(6) is the likelihood function, and X is a prior distribution. Often, the value of
Z is not needed directly, but only to find a posterior distribution of the form

p(0) = % / L(0)x(0)d0

and since computing it directly is usually complicated, many sampling methods cir-
cumvent the need to find Z, focusing directly on the posterior. Most MCMC methods,
such as Metropolis-Hastings, fall in this category.

In Bayesian statistics, however, Z has particular importance for several reasons. An
explicit value of Z is vital for model selection, for it allows the evidence under different
model assumptions to be compared. It also allows comparing a current model with
future models without the need to re-do the current computation. As Skilling [7]
points out, Z is one half of the output from a Bayesian computation, yet it is treated
as an optional by-product, even in Bayesian literature.

Recently, various methods have been developed to address this problem. One important
subgroup of these are iterative methods that rely on the construction of interpolating
sets to estimate the evidence. The first and arguably the best-known of these is the
Nested Sampling algorithm, devised by physicist John Skilling in [10]. Other similar
methods followed, one of which is the curiously-named Tootsie Pop Algorithm [5],
which provides different approach to the integration problem while continuing the idea
of interpolating sets.

Despite their innovative approach and the early academic controversy they generated,
Nested Sampling and alike methods have had limited adoption by the academic com-
munity. Possible reasons for this are their somewhat limited applicability (due to often
unrealistic requirements on how to sample from the likelihood), their lack of strong
theoretical guarantees and relative skepticism within the community about their cor-
rectness.

LAlso referred to as the normalizing constant, integrated likelihood, prior predictive or partition
function, depending on the context.
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Nevertheless, these methods have been tested in practice and have had considerable
success (see for example [7] or [4] for applications of Nested Sampling in astronomy).
And even if they are not pertinent to all problems, they do provide a useful approach to
many specific problems. Last but not least, they provide an interesting and educational
approach to the general problem of high-dimensional integration.

The purpose of this work is to compare the two methods mentioned above (namely
Nested Sampling and the Tootsie Pop algorithm), both in terms of theory and in prac-
tice. We provide a brief review of the main ideas behind each of them, as well as details
about a practical implementation. We present some guarantees on their performance.
In Section 4 we compare these methods vis-a-vis, commenting on their similarities and
differences. In Section 5 we present results for some experiments with which each
method was tested, and we conclude we a brief section summarizing the main findings.
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2 Nested Sampling

2.1 General Framework

The concept of Nested Sampling directly connects the prior mass associated with the
parameter space with the likelihood function for a given problem. By converting a
possibly high-dimensional problem to a single dimensional integral, Nested Sampling is
an appealing algorithm that makes the problem of computing the normalizing Bayes’
factor much more tractable.

While there are existing MCMC methods that allow for sampling from a distribution
without knowledge of the normalizing factor, for some problems this may not be so
straightforward; additionally, knowledge of the normalization factor may itself be of
specific importance as it is in model selection. Mathematically, we are trying to deter-
mine the Pr(Data) term in the formulation below:

Pr(Data|f)Pr(6) = Pr(Data)Pr(f|Data)
The factor of interest can be rewritten as:

Pr(Data) — / Pr(Datal0)Pr(0)d0

This evidence term as noted in [11] is often difficult to compute explicitly, especially
when the parameter 6 is a high-dimensional term. Why can the problem above not be
treated as a standard exercise in numerical integration? As noted in [1] the problem
is the location of the prior mass with respect to the location of where the likelihood
function takes on the most significant values. There are simple examples, as we see in
Figure 1, for example, where the likelihood function is essentially 0 in the most probable
areas for the prior parameters.

As illustrated in Figure 1 from [1], naively sampling the prior and summing the likeli-
hoods as these points would not be effective because the likelihood function only takes
significant values in a small area that is not at all concentrated where the prior mass
is. In this particular example the prior is given by an exponential distribution, however
the same problem could occur with a uniform prior and a highly centered likelihood
function i.e. Gaussian. The concept behind Nested Sampling is to tackle this prob-
lem directly by forcing our algorithm to sample parameters in the region where our
likelihood function takes the largest values.

While some form of analysis or MLE technique could assist in the search of the parame-
ter space [11], the Nested Sampling method does not rely on this kind of prior knowledge
and can handle uncommon and difficult to sample functions. It is this independence
from nice likelihood functions and priors that make the method so appealing.
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Figure 1: On left, the prior mass (red bars) and the likelihood function; on the right, the
likelihood represented as contours and the parameters represented in 2-D space

2.2 Sorting

Whereby a traditional numerical integration method would iterate through the dis-
cretized domain in some fashion, the insight of Nested Sampling is that iterating through
the entire parameter space is not the most effective way. Rather we can sample our
parameters in a shrinking space that is actually ordered by likelihood. The example be-
low is a simplified version of an example from [11] and explains the likelihood ordering
idea simply.

Consider a two dimensional parameter space (6,6,) where each parameter can take
two discrete values and a uniform prior is given to each pair associating a probability
mass of 411 to each combination. We can also compute the likelihoods associated with
each parameter vector from some function L(6), suppose these likelihoods are (35, 7,
13, 0). These four likelihoods can subsequently be ordered by value from greatest to
least: (35, 13, 7, 0). Now we can answer the question what is the likelihood threshold
A corresponding to X = % For X = 1 we know A = 0 because this is the threshold
beyond which we can still accumulate the entire prior mass (= 1). For X = % we have
A = 13 because this is the likelihood threshold beyond which we can accumulate the
required prior mass (= %) The importance of connecting prior mass with likelihood
values for evaluating our integral will be made more formal in the subsequent section,

however for now we simply try to visualize how our points are located in this new space.

The diagram on the right in Figure 2 from [11] visualizes this mapping between points
sorted by likelihood and their associated location in parameter space. The points when
considered from right to left increase in likelihood space and accordingly move into a
more confined, or nested, contour of the likelihood space.

The diagram on the left in Figure 2 from [11] shows that we can exchange points
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Figure 2: On top, the likelihoods represented as contours with the parameter space as dimen-
sions. On bottom, the corresponding points when sorted

further on the right by points to left if we wish to have more points confined to a higher
likelihood contour. Additionally, we can approximate the integral value by using the
likelihoods as the points to approximate the value of the function within that slice.

2.3 Mathematics Behind Nested Sampling

As stated in the introduction, we need a method that samples the parameter distribution
in areas where the likelihood function takes large values and samples more rarely in
areas where the likelihood function is negligible. This is what Nested Sampling is able
to achieve. The following is based off of analysis from [1]:

[ #)L6)a8 = E.io[20)

0

We also know that the likelihood function is everywhere non-negative and therefore can
rewrite the above expectation in terms of the cumulative distribution function of L(0):

EwolLO) = [ 1= F(L©)
0
To make use of this we need the cumulative distribution function of L(#):

FO\) = Pr(L(0) < A) = /L O
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The integral above essentially adds up the mass not in a geometric order but rather in
a way such that it accumulates all the prior mass with associated likelihood less than
A. Therefore:

EaolL®)] = [~ 1= F(L6)ix

/1_/ 7(0)d0dA
0 L(6)<\
_ / / (0)dBd)
0 L(#)>A\

Define the inner (df) integral as:

X(\) = /L O

Formalizing the fact that X maps likelihoods to probabilities we have:
X:LeRsy—[0,1]
Now define the inverse function:
X71:00,1] = Rxo

Returning to the expected value we were trying to estimate:

Prol®)] = [ X(ix

Flipping the bounds and the integrating variable we have a new integral across proba-
bilities:

&WMW=AX4@@

The above formalizes the equivalence of thinking between points in parameter space
and the probabilities associated with likelihood thresholds.

2.4 Nested Sampling Algorithm

Now that the concept behind Nested Sampling is clear, we detail the algorithm proposed
in [11] that computes the transformed integral. First we outline all the steps and then
explain in more depth the rationale and additional considerations for the individual
steps of the method.
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Algorithm 1 General Nested Sampling.

Initialize N points, 01, ..., 0y, from the prior distribution 7(6)
Initialize evidence term Z = 0 and Xy =1
while i < J,,,, do
a) Compute likelihood L(6x)V 0y € 64, ...,0n
b) Determine least likely point denoted L; = min L(6y)

it1 i1
N, Xi1=€e ¥

c) Approxnnate dX using X; ;1 = e~
)wz _ Xia— Xz+1

e) Z =7+ L W

f) Replace 6y~ = arg min L(6y) by a new 6y such that L(0y) > L(6x+)
end while
Z=7Z++>,. L0k *X;
Return Z

o,

The steps of most interest are (b)-(d), which implement the approximation of the
integral whereas the step of greatest difficulty is (f) which selects a new point to define
a new, nested set of points of greater likelihood.

In step (b) when we first take L; = minL(6;) we are approximating the (N —1)® quantile
of the likelihood function by the value L;. The subsequent iterations approximate the
powers of this size quantile. Depending on how many points N we use in the algorithm
this may be a relatively crude approximation.

In step (c¢) we compute our dX term as such because this approximates the area occupied
by our current contour. The justification is as follows; because we are updating our
point X by taking the minimum of a set of N points according to this distribution we
are linearly decreasing our X in log(X) space. Therefore each contour shell has a term
approximately equal to dX = e~ (~D/N _ e=(+D/N " Tq verify this, consider the plot in
Figure 3 where we show our time series of discarded points along with a plot of e=*/~.
In this specific case we started with 10 points and iterated 100 times plotting the log
of the series as they become quite small.

Lastly, in step (f) we are at the heart of the nesting idea, where we sample our new
parameter point in a nested subset of the prior confined to only those parameters with a
larger likelihood function. While a seemingly straightforward step, in higher dimensions
it can be somewhat challenging to sample in this confined space. A simple rejection
algorithm can work in one dimension, however in higher dimensions an improved tech-
nique is required otherwise there will be an excessive waiting time until a point is
sampled that falls inside the desired likelihood contour. To overcome this, consider the
following routine proposed by [7] and slightly modified by [1] to sample efficiently from
the restricted prior.
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Figure 3: A time series of the logarithm of discarded points replaced by a new one of higher
likelihood vs. the iteration count. The red line is e*/" and the green lines are e~ +1/N and
e~ (=1/N lastly the blue line is the actual time series of discarded points during a sample
iteration

Algorithm 2 Restricted Prior Sampling .

a) Take all non-rejected points and draw an all-encompassing box around them
b) Determine the maximum value of the prior inside the box myax

¢) Sample a # uniformly from the box and a uniform random number U Unif[0,1]
d) Reject 6 if U > =&

Tmax

We keep doing this procedure, each time finding the new minimum likelihood amongst
the N points and iteratively sample more points 6 from the area of higher likelihood
and only spend the first few iterations sampling from an area of arbitrary likelihood.

2.5 Example Problem

We consider the method on a problem which has a known formula for the evidence,
7, that we can compare the results of the Nested Sampling method to the closed-form
answer. Additionally, this problem is continuous over the parameter space rather than
a very large sum over discrete outcomes.

-2

L(X|0) = L(0) = e 3

8
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7"2: E 9,‘2
1=1

For example, in one dimension this gives us:

_ 6%
L(f) = e 202
In two dimensions we have:
_(63+03)
L(f) =e 27

Additionally, our parameter takes a flat prior in the unit n — sphere which equates to:

(C/2)!

Pr(0) =n(0) = P

Because our prior is uniform and our likelihood function has a nice form we can compute
a formula for our evidence explicitly:

7= / L(0)x(6)d6
0
[ e (Cf2)!
Z = /06 20 * Wde

Because our prior is independent of # we take it out of the integral:

! R
7 = (C/2) /ee g
0

7C/2

(C€/2)!
Z = —on ¥ (20%)¢/2
The integral on the right is a known identity about Gaussians, if our likelihood were
something more arbitrary a nice form for our Z factor would be much more challenging
and we would be relegated to only a numerical routine.

We can implement a simple Nested Sampling procedure for this problem and compare
our output with the known result so we can see how the accuracy improves with the
number of initial points selected and also to see whether the same accuracy is found in
a higher dimensional version of the problem. The latter is of particular interest because
of criticisms raised by Chopin et al. that the error of this method scales linearly
with the dimension of the problem. This impact could be particularly severe since the
resampling of points from the restricted prior also becomes much more challenging in
higher dimensions.
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3 The Tootsie Pop Algorithm

3.1 General Framework

The Tootsie Pop algorithm (TPA), first presented by Huber and Schott in [5], and
then revisited in [6], is a method that combines ideas from self-reducibility and Nested
Sampling to come up with an estimate of the evidence Z of the form e*/", where X is
a Poisson random variable related to the number of steps required to reach the core of
a set, and r > 0. As Nested Sampling, it proceeds by successively exploring level sets,
creating a sequence of interpolating nested sets with bounded relative measures. The
TPA, however, is phrased somewhat differently, and has a different strategy for selecting
these sets. With this scheme - just as in self-reducible algorithms - the variance of the
output can be estimated a priori. This naturally allows for stronger guarantees.

The TPA requires four main ingredients for its formulation:

(a) A measure space (€2, F, u).

(b) Two finite measurable sets B and B’ satisfying B’ C B. The set B’ is the center
and B is the shell.

(c¢) A family of nested sets {A(S) : S € R} such that g < ' implies A(8) C A(S'),
where p(A(fS)) is a continuous function of 8, and limg_, u(A(B)) = 0.

(d) Special values g and fBp: that satisfy A(Sg) = B and A(fp) = B'.

The main idea behind the TPA algorithm is to track the number of steps taken to move
from B to B’, which will be distributed as a Poisson variate with mean In(u(B)/u(B’)).
This naturally allows for the approximation of the quantity of interest, u(B)/u(B’). It
is from this idea that the Tootsie Pop algorithm takes its name: it references a campaign
by the famous candy with the same name, whose slogan read “How many lick does it
take to get to the center of a Tootsie Pop?”. For our context, this question could be
rephrased as, “How many sampling steps does it take to reach the core measurable
set?”.

In its most general form, the TPA, as presented in [6], proceeds in the following way:
1. Start with ¢ = 0 and §; = .

2. Draw a random sample Y from p conditioned to lie in A(f;).

3. Let B = inf{B:Y € A(B)}

10
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4. If Y € B’ stop and output i.

5. Else set i to be ¢ + 1 and go back to step 2.

The following result is the main tool behind the TPA algorithm.

Theorem 3.1. In the framework of the ingredients 1 — 5 above, let X ~ p(A(S)),

B =inf{b: X € A(b)}, and U = 580 then U ~ Un([0,1)).

It is easy to show that if U ~ U([0,1]), then —In(U) ~ Exp(1). Thus, at any point of
the TPA algorithm, the quantities

el /L(A(@'H))
b= (M(A(ﬁi)) ) .

are distributed uniformly on the unit interval. Now consider the points

P —n <M> — In((AB))) + In(u(AGB))

M(A(ﬁo))
A A d
o (AGD) ) (eAGD)) s g
M(A(Bk—l)) M(A(ﬁo)) i—0
Naturally, being a sum of unit exponential i.i.d random variables, {P;} forms a one-
dimensional Poisson process in with rate A = 1. Thus, if the process continues until the

X variate lands in the core set B, then the number of samples drawn up to this point
will have a Poisson distribution with parameter In(u(B)/u(B’)).

Furthermore, recall that the union of r independent Poisson processes with rate 1 is
a Poisson process with rate . Thus, if the algorithm is run r times, and we denote
by £k = ki + --- + k. the total number of samples required for all the runs, then
k ~ Po(rin(u(B)/u(B’)). Consequently, k/r is an unbiased estimate of In(u(B)/u(B")).
The TPA algorithm outputs p = /", an approximation to u(B)/u(B’).

An important feature of the estimate of k/r obtained from TPA is that its variance is
known a priori: it is trivially given by +In(u(B)/u(B')).

In looking to produce an (e, d) approximation® a two stage method, in which they first
obtain a rough estimate of the rate A = In(u(B)/u(B’)), and then use this approxima-
tion to obtain a finer bound on the number of runs needed to achieve € accuracy. Under
this scheme, and using a normal approximation to the Poisson distribution, in addition
to some technical bounds on the tails of the later, they prove the following theorem

2 An approximation proven to be within € > 0 of the true value with probability at least 1 — §, with
0 >0.

11
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Theorem 3.2. The output A of the two-stage TPA procedure is an (€,0) randomized
approzimation scheme for uw(B)/u(B'). The total running time is random, with an

expected value that is O((In(u(B)/u(B')))*e¢ 21In(671)).

The TPA algorithm provides yet another advantage. It allows for the construction of
an (€,9) omnithermal approximation of pu(A(B)/u(B’), namely, an approximation that
is valid for all values 8 € [Bp/, fg]. The thermal in the name comes from the fact that
in many applications stemming from physics, 3 is related to the (inverse) temperature,
such as in the well-known Ising model.

For this purpose, the authors define
Np(t)=|{be P:b> B —t}]

The reader will note that as t goes form 0 to Sz — Bp/, every time one of the §’s in
the point process P is reached, Np(t) increases by 1. By the way the increments were
defined above, these inter-arrival times are exponentially distributed with rate r, so
that Np(t) is a Poisson process with the same rate. With this process at hand, we

approximate 1(B)/u(A(8)) by exp(Np(By — 8)/r).

By noting that Np(t) — kt is a right continuous martingale, Huber and Schott are able
to bound the probability that it has drifted more than a certain € from 0. This directly
yields Theorem 3.3.

Theorem 3.3. Fore € (0,0.3), 0 € (0,1) and In(u(B)/u(B')) > 1, after

w(B)\ /3 1 2
Ek=2In|—=)(-+—=|In{=
D(MBU)(6+62 "5
runs of TPA, the points obtained can be used to build an (€,d) omnithermal approzima-

tion of u(A(B))/(B'), B € [Bp, Bp]-

In Section 5, when presenting experiments, we will provide such an omnithermal ap-
proximation for the Ising model.

3.2 Proposed techinques for setting up TPA

The scheme of the TPA method provided in the previous section is very general, and
thus requires a great amount of customization before it can be used for any specific
problem. For example, we have so far not mentioned how the nested sets needed for
ingredient (c¢) should be chosen, which are naturally the critical feature of the algorithm.

12
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For this purpose, Huber and Schott propose in [5] two alternative methods to set up
the ingredients of TPA: parameter truncation and likelihood truncation.

For parameter truncation, the authors propose forming the family of nested sets by
restricting the parameter space through a norm constraint. An example of this would
defining the sets

AM) =QgNn{0: |0 —c|| < M}

where ¢ is fixed. Naturally, starting from the complete space (so that Sp = oo in this
case), decreasing the value of M further restricts the parameter space. The freedom of
the choice of norm for this restriction should be used to make the resulting nested sets
be easy to sample from. In addition, when M is very small, it will be possible to bound
the likelihood above and below, since it will be close to L(c|y). In this case, A(M) will
play the role of B’ in TPA and u(A(Bp)) = piprior(A(Br)) L(cly).

The other technique proposed in [5] is that of likelihood truncation. As its name
indicates, it involves truncating the likelihood function instead of the parameter space
as before. As the authors point out, this might be more convenient when sampling with
a slice sampler Markov chain.

The key observation for this technique is that

L(bly)
7 = / L(b|y)d/~tprior = / / 1dw d,uprior
beQy beQy JO

where dw is taken to be Lebesgue measure. With this, we can easily set up Z as the
(Lebesgue) measure of a set, namely

7 = M((t17t2> € )y X [0,00) 0<t, < L(t1|y>)

with gt = fiprior X m, Where m is also Lebesgue measure. Therefore, a family of nested
sets can be created with the help of an auxiliary variable M as follows

A(M) = {(tl,tg) € Qy x[0,00):0<1ty < min{L(tﬂy),M}}

With this, u(A(o0)) = Z and thus the shell B for TPA will be A(cc). However,
producing the core B’ to accompany this shell is more complicated, since using A(0)
(which has measure 0) is not possible, with u(B) appearing in the denominator of the
estimate p = pu(B’)/u(B). To tackle this difficulty, Huber and Schott suggest drawing
samples from the prior distribution and computing the sample median, M.y, which
is used as the center temperature. Then, they show that with enough samples an
(€, 9)-approximation of p(A(Meenser)) can be found. For the actual sampling from the
truncated likelihoods, they suggest using a slice sampler (see [9] for a description of this

method).

13
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3.3 TPA for the Ising Model

Recall the Ising model, as seen in class, consists of an n x n lattice with n? nodes.
A configuration X assigns a spin x;; € {0,1} to each of these sites. The energy of a
configuration of X is given by the Hamilitonian function

H(z) ==Y 1(a(i) = 2(j))
<ij>
where < 77 > denotes pairs of neighboring sites in the configuration. With this defini-
tion, the probability of the configuration X is given by

where kg is a constant and 7 is the temperature. The normalization constant Z (usually
referred to as partition function in this case), naturally depends on T'. If we let 5 = kBLT,
then this can be rewritten as

1) = 555

As seen in class, Z(f3) is usually unknown, and many sampling algorithms do not require
it. In some cases, however, the function fz itself is required, not only sampling from it.
In some other cases, one might need to know the partition function Z(f). Using the
TPA algorithms provides an approximation for these two tasks.

exp(—(H (z))

In order to adapt the Ising model to the framework of Section 3.1, we simply need
to provide appropriate descriptions of the ingredients of the TPA algorithm. For this
purpose, Huber and Schott propose the use of an auxiliary state space

Qo (8) = {(z,y) : 2 € {0,1}", y € [0, exp(—BH (z))]}
Let p be one-dimensional Lebesgue measure of the union of the line segments in ;.
Then, it is easy to see that p(Quu(8)) = Z(5). With this definition, the core is taken
to be Q4,,(0) and the outer shell is Q,,,(8). From our knowledge of the Ising model,
we know that highest energy configuration is given by a grid where all sites have the

same spin, and this configuration has energy H(z) = 0. Thus, for 8 =0, y € [0,1] for
all z € {0,1}. Thus Z(0) = 2IV1.

For ingredient (3), note that —H (x) > 0 implies that exp(—f'H(z)) < exp(—FH (x))
for 0 < " < B. Thus, Quuz(8) C Quuz(f) in that case. Also, note that Z(3) is
continuous (as a function of ) and limg_, o, Z(8) = 0.

From this, the steps of the algorithm are easy to derive. In each iteration, the variable
Y is drawn uniformly from the interval [0, exp(—fxH (X))], and the new § is given by
Y)
(X)

In

Brr1 = inf{ﬁ Y € A(ﬂ)} = inf{ﬁ Y < exp(—ﬂH(x))} = _H§

14
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Note that X in the equation above has to be drawn from the stationary distribution
7 (fs in this case) of the process. For the Ising model, this can be done by means of
Metropolis-Hastings combined with Coupling From the Past (CFTP). The former is
a standard MCMC sampling method which, in the case of the Ising model, proceeds
by choosing a random node on the grid and flipping its spin (changes its value from 0
to 1 or vice-versa). If the swap results in a decrease in energy AH < 0, it is rejected,
otherwise it is accepted with probability 1 —exp(—SAH). On the other hand, CFTP is a
method which lets us know when stability has been reached, and thus allows for perfect
sampling. Since for the Ising model the update function from Metropolis-Hastings is
monotonous, CFTP can be simply implemented with two parallel chains as follows.

Algorithm 3 CFTP for the Ising Model.

while X .« # X, do
Xmax < argmax y H (X))
Xomin < argminy H (X)
T+ 2T
draw U_r,...,U_(7/2-1 ~ Un([0, 1]7/2)
for t=-T:-1 do
Xiax < MHSamp (X oy, Ur)
Xnin <~MHSamp (X yin, U)
end for
end while
return X,

Here, MHSamp performs a step of Metropolis-Hastings sampling with the random vari-
able U as an input. It is important to stress that in CFTP both chains are always
updated with the same U’s. The algorithm finishes when the low and high energy
configuration process have coalesced, and it can be shown that after this coupling time
the method returns stationary state.

Having Algorithm 3 available to obtain samples from the stable distribution, we are
ready to present the definitive version of TPA for the Ising Model.
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Algorithm 4 TPA for the Ising Model.
Require:
Initialize:
k<+0
Br <0
P« By
while £, > 0 do
k+—k+1
draw X < 74, (from CFTP)
draw U <+ Un(0, 1)
Y+ exp(=SpH(X)) - U
B = n(Y)/(—H (X))
P+ PU {ﬁk}
end while
return M
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4 Comparison between TPA and Nested Sampling

Based on the analysis presented in the two previous sections, it must be clear to the
reader that Nested Sampling and the Tootsie Pop algorithm share various conspicuous
similarities. The key idea behind both of them is the approximation of an integral by
means of ratios of measures of interpolating sets. Proceeding iteratively, they obtain
estimations for this family of nested sets, and from there to obtain an estimate for Z,
albeit with different probabilistic tools.

Nevertheless, there are also some important differences between these two algorithms,
most of which are concisely explained by Huber and Schott in their original presentation
of the TPA algorithm [5]. There, they point out that while nested sets in NS are formed
by considering L(w|y) > k, in TPA they are built by considering {w : L(w|y) < T}
for some constant 7. Thus, in case of a multimodal likelihood, by moving downward
the extra modes are removed, making the problem easier as TPA progresses. They
also claim that in NS the accuracy of the final result depends on being able to sample
near the maximum of the likelihood, which is usually difficult. This critique is unfair,
however, because the error term arising from this unknown maximum can be eliminated
by using a similar technique as the one proposed by them to find the core set for TPA
(Section 3.2). Finally, they make a valid objection to Nested Sampling - shared by many
detractors of this method - from a theoretical point of view. Being a hybrid technique
of numerical integration and MCMC, the error in NS is difficult to analyze theoretically,
even though it is reduced in practice. For TPA, it is possible to completely determine
the distribution of the output, even for small problems.

Based on this, it would seem as if the differences between NS and TPA outnumber the
similarities. This, however, is not the end of the story. In the remaining of this section,
we present the main similarities between NS and TPA, along with various objections to
the latter or to both, raised in a series of extracts discussing the original presentation
of the TPA [5], which were published alongside it in the same journal.

In the first extract discussing the original presentation of the TPA algorithm, Chopin
and Robert [?] show that indeed this algorithm can be interpreted as a specific case
of NS. Along the same lines, Murray shows specifically how to recover TPA from NS
using the target distribution as its prior and the likelihood

1 e B
L<e>:{ e
1+eB(0)

where 8 = inf{f’ : 6A(f')}. Furthermore, he points out that the dismissal of NS by
Huber is unfounded, since the latter criticizes NS for having to find typical samples
from the posterior, but TPA hast to actually start by sampling from it. He ends
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by expressing concerns that both truncation strategies proposed by Huber and Schott
might suffer from the same limitations as previously available similar methods.

Chopin and Robert also claim that the strategy used by Huber and Schott to compute
the marginal likelihood with parameter truncation bares strong resemblance with the
nested ellipsoid strategy proposed earlier by themselves, but with less applicability,
since it requires a first draw from the posterior. They also raise questions on Huber’s
claim that moving down the likelihood is more efficient that going upwards. Their
final objection is arguably the strongest one: they claim that for any realistic problem,
simulating from the dominating measure p within a level set A(() is a difficult, almost
impossible, task.

This, however, is a common feature of both NS and TPA: they rely on being able to
simulate exactly from a continuum of restricted sets interpolating the shell to the core,
an assumption that might be unrealistic for most interesting problems, save for some
canonical examples. The alternative, using approximations, might create intolerable
errors and biased estimates. Herein lies the main obstacle of both methods. Every-
thing is not lost, however. In another paper discussing TPA, Roberts proposes several
alternatives for robust exact simulation from constrained distributions.

In a final - but equally interesting - discussion piece, Skilling himself offers his opinion
on the TPA algorithm. As the other discussants, he draws attention to the fact that this
method can be analyzed as a particular case of NS, but with added complications from
the reversal of the strategy from prior-to-posterior to posterior-to-prior. He finishes by
recognizing that NS, and both versions of TPA are all theoretically valid algorithms, but
that in practice TPA will likely require more computational power to be able to sample
perfectly from the posterior and allow for a dangerous failure mode. He recognizes,

however, that practical tests might shed light on potential compensating advantages of
TPA.
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5 Experiments

5.1 Nested Sampling for Gaussian Problem

First we try the 1-dimensional case of this problem with a few values for o to see how
well the results compare with the known solutions. Next we increase the number of
Monte Carlo simulations to ensure the expected impact on the error bars and lastly we
scale to a higher dimensional version of the problem.

Nested Sampling 250 Runs N =10 N =50 Theoretical Z
oc=0.15 0.1843 +£0.023  0.1888 £ 0.021 0.1880
o =0.07 0.0861 +0.012  0.08773 + 0.012 0.08773
o =0.01 0.0135 +0.0051  0.01277 £ 0.0035 0.01253

Table 1: Results for various o values representing the concentration of the Gaussian. The
algorithm was run 250 times and the results presented are the average over these runs along
with the sample error +oy\ic

The first observation is that the algorithm performs quite well in the one-dimensional
case when we initialize with 50 points. However for only 10 points, the performance
does not seem nearly as good as the relative error of our estimate to the true value for
o = 0.01 is nearly 10%.

We now perform the same test with a quadrupled number of Monte Carlo runs to
see how our estimates improve and to ensure that the error bars do decrease by the
expected amount. In both of these single dimensional problems we sample the new 6
from the prior and reject accordingly; we only use the method detailed in Algorithm 2
when we expand our problem to 10 dimensions.

Nested Sampling 1000 Runs N =50 Theoretical Z
o=0.15 0.1883 £0.011 0.1880
o =0.07 0.08772 + 0.007 0.08773
o =0.01 0.01264 4+ 0.002 0.01253

Table 2: Results for various o values except this time with 1000 runs. The error bars shrink
by approximately half as expected since we quadrupled our count of Monte Carlo runs

Now that we see our algorthm is working successfully in the one-dimensional case we
extend our parameter vector to 10 dimensions. This problem would generally be very
difficult to solve with a standard numerical integration technique because the likelihood
function is a highly concentrated Gaussian compared to the vastly distributed prior. In
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Figure 4: Computed evidence value averaged over 1000 Monte Carlo simulations in one di-
mension Gaussian problem with o = 0.07

Nested Sampling 10 — d; 250 Runs N =50 Theoretical Z
o=0.15 3.66244 x 107° £7.1 x 107> 2.21433 x 107°
o =0.07 3.74597 x 1078 £5.3 x 1077 1.08468 x 1078
oc=0.01 2.54203 x 1071 £9.2 x 1075  3.83990 x 10717

this set we implemented Algorithm 2 to make sampling a new # more practical in high
dimensions.

The reason we only performed 250 iterations to average over was that each routine
took much longer to run because the algorithm to search for a more likely parameter
was computationally much more expensive in the higher dimensional space. While in
absolute terms the computed results are close to the predicted values, the error is close
to being on the order of the true value making the results somewhat obsolete. There are
several potential explanations but the most likely is that as the nested set got smaller
and smaller the algorithm to generate new samples from the restricted prior became
less successful at this task and the additions to the integral sum became unreliable.

5.2 TPA for the Ising Model

For our first experiment with the TPA algorithm, we implemented it for the case of
the Ising Model, as explained in Algorithm 4 of Section 3.2. The code for IsingTPA
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is provided in the Annex. We additionally programmed a subroutine MH_CFTP which
samples from the stable distribution of the model by making use of Coupling From the
Past with Metropolis-Hastings steps.

According to the theoretical analysis of Section 3, the accuracy of the TPA predictions
increases as more repetitions of the algorithm are performed, thus obtaining more points
in the Poisson process P. Consequently, we tried our TPA method on a lattice of the
same size as Huber and Schott, varying the number of repetitions and the value of the
inverse temperature 3. The first results are shown in Table 3.

Repetitions of TPA | r=1 r=10 r =100
=2 33.2711 43.2524 61.1079
g=1 88.7228 69.8692 59.1116
B =0.5 55.4518 44.3614 50.5721

Table 3: Estimations of In(Z(53)) for the Ising model using TPA, for a 4 x 4 lattice for different
temperature values and repetitions of the algorithm.

To verify the claims on the accuracy of the approximation as a function of k, the number
of times the TPA is run, we tried the method with that value ranging from k£ = 1 to
k = 200, all for the 4 x 4 grid and 8 = 2. The obtained estimations of log(Z(2)) are
shown in Figure 5. As predicted by the theoretical guarantees presented in Section 3,
the variance of the approximation reduces as the number of repetitions of the algorithm
increases, and stabilizes around log(Z(2)) ~ 58.

Our second experiment consisted of obtaining omnithermal approximations for the par-
tition function Z(5). Our interval of interest was chosen to be Z = [0, 2], meaning that
the approximations of Z(/3) obtained by TPA should hold for all values in Z. For this,
we modified our original method following the ideas of Section 3, namely defining the
Poisson process Np(t), and using the approximation

In(Z(8)) ~ n(2(0)) - log(e ") = |V]| 1n(2)w

where Np(2 — f3) corresponds to the number of elements in P which are larger than
Bmax — B = 2 — [B. Naturally, for 8 = [Bunax, We recover the original unique-value
estimation of before. The alternative method OmniTherTPA is also provided in the
Annex.

For this method, we produced several omnithermal approximations of the partition
function Z(3), for different number of repetitions of the Tootsie Pop algorithm. The
results are shown in Figure 6. In the first of those plots, corresponding to only 10 repe-
titions, we can clearly see the step-function nature of the omnithermal approximation,
a consequence to the finite size of the Poisson point process P used to construct it.
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liging Model - Improvement of accuracy of log(Z(beta)), 4x4-lattice
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Figure 5: Estimated value of the partition function log(Z(3)) for the Ising Model on a 4 x 4
grid, varying the number of repetitions of the Tootsie Pop algorithm.

Nevertheless, when a larger number of repetitions are used, the approximation shows a
smoother behavior, which naturally accounts for higher precision. Note that the value
in the right boundary of the interval of interest (namely, § = 2) coincides with the
pointwise approximation obtained earlier in this section.
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Ising Model - Omnithermal approximation to Z(beta), r=10 Ising Model - Omnithermal approximation to Z(beta), r=50
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Figure 6: Omnithermal approximations to the partition function Z(3) of the Ising Model
with 4 x 4 grid, and a maximum inverse temperature parameter § = 2. The plots correspond
to the approximations using 10 (Top Left), 50 (TR), 100 (BL) and 1000 (BR) repetitions of
the TPA algorithm.
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6 Conclusion

In this paper we have surveyed two methods that make the problem of computing
model evidence much more tractable. We applied the methods to two problems which
are challenging in their own way; the continuous Gaussian problem had a high dimen-
sion parameter vector that made standard integration techniques impractical whereas
the Ising model is also challenging because of the exponential number of discrete con-
figurations. While the two methods have different implementations that are problem
specific, the general methodology is similar because both algorithms reorder the inte-
gration domain in terms of nested sets to successfully approximate the desired integral.

Because both methods were relatively successful in giving accurate results in the prob-
lems we approached we are both optimistic about the potential applications to other
intractable problems while also aware of the improvements that can be made. For
Nested Sampling, there is the issue of effectively sampling the prior in high dimensional
spaces. While the algorithm proposed by [1] was successful in even making this possi-
ble in high dimensions, there are still advances to be made in sampling the innermost
parameter sets. This issue became apparent when we extended our Gaussian problem
to 10 dimensions because the computational time to generate points in the innermost
likelihood contour had a severe impact on the number of Monte Carlo runs we could
average our results over.

Additionally, Chopin et al. have shown that the error scales linearly with the dimension
of the problem thereby requiring significantly more computational effort to achieve the
same tolerable level of accuracy. It would be interesting to see whether the error
and computational effort scale with dimension across different problems in the same
way or if certain priors for certain problems work better than others. For example,
certain problem-specific knowledge may be of assistance in developing a better scheme
for sampling the restricted prior, such as an intelligently selected point to initiate the
search from.

One potential reason that these methods have not been received by a wider audience
is the lack of a rigorous foundation on top of which the methods are based. There are
minimal theoretical guarantees regarding both convergence and error bounds, especially
for Nested Sampling, that could lead some to worry about unexpected or undesirable
outcomes of the methods when applied to new problems. A promising result refuting
this concern is that of Mackay et al. who successfully applied Nested Sampling to a
more challenging lattice model; the Potts model.
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