
Final Project for Numerical Optimization December 2012

Distance Metric Learning Through Convex

Optimization

David Alvarez-Melis da1142@cims.nyu.edu

Courant Institute

New York University

New York, NY 10012, USA

Abstract
We present a survey of recent work on the problem of learning a distance metric
in the framework of semidefinite programming (SDP). Along with a brief theoretical
background on convex optimization and distance metrics, we present various methods
developed in this context under different approaches and provide theoretical analysis
for a subset of them. A gradient ascent projection algorithm (Xing, 2002) and an
approximate Frank-Wolfe method (Ying, 2012) are implemented and tested on several
standard classification tasks from machine learning. We provide a comparison of the
results obtained by our implementations, along with the corresponding results for
some state-of-the-art algorithms.

1. Introduction

In several areas of machine learning the type of metric used has a central role on the
performance of algorithms [12]. This is particularly true for problems, both supervised
and unsupervised, where a certain measure of similarity between examples is required,
such as in classification, clustering and k-nearest neighbors (kNN). The canonical dis-
tance measure, the Euclidean, is practical if no particular information on the source or
target space is available. However, it fails to extract specific features of the inputs and
thus is in disadvantage in front other problem-specific distance metrics which adapt
to the nature of training examples. Indeed, extensive work on the subject has been
done recently, and several authors have demonstrated improvements in various tasks
by introducing non-euclidean metrics learnt from data (Shalev-Shwartz et al., 2004;
Goldberger et al., 2005; Ying and Li, 2012).

Most approaches to the problem of learning a metric fall into two categories; those
based on convex optimization and those that make use of eigenvector-style methods.
Among the latter, we find well-known procedures from statistics that date back to the
early 19th century, such as Pearson’s Principal Component Analysis (PCA) and Fisher’s
Linear Discriminant Analysis (LDA). There has also been, however, recent development
on this framework, for example with the introduction of Relevant Component Analysis
(Shental et al. 2002; Bar-Hillel et al. 2003). This method seeks to amplify relevant
variability in the data by applying an appropriate transformation, and does so by

David Alvarez-Melis.

Alvarez-Melis

making use of information shared among so-called “chunklets” (“small sets of data
points, in which the class label is constant, but unknow” [8]).

The other class of methods, those rooted in optimization, set up the problem as a
convex problem (usually an SDP) and then make use of various algorithms for these
type of setting. This new approach to the problem, first proposed in the seminal work
by Xing et al. (2002), set off a series of publications offering various frameworks to
tackle this problem (Shalev-Shwartz et al., 2004; Weinberger et al., 2006; Weinberger
and Saul, 2008). An overview of the various methods developed in this context is shown
in Figure 1.

In this work, we restrict out attention to this optimization-based approach to dis-
tant metric learning. After providing the reader with the basic concepts behind metric
learning and semidefinite programming, we review some of the theoretical settings and
algorithms proposed in the literature. We focus particularly on two of these methods:
one of the current state-of-the-art algorithms, Large Margin Nearest Neighbor Classi-
fication (Weinberger et al., 2006) and a novel formulation of the task as an eigenvalue
optimization problem (Ying and Li, 2012). In Section (ref) we show our implementa-
tion of two of these methods, and in Section (ref) we present their results when tesetd
on standard machine learning tasks, and compare their performance with state-of-the
art methods. The main purpose of this survey is to provide a general overview of recent
developments in the use of optimization for distance metric learning, and to point the
interested reader in the direction of literature to explore the topic further.

How to learn
a metric?

LDA

PCA

RCA

Probabilistic Global
Metric Learning (PGDM)
(Xing et al, ’02)

Pseudometric Online
Learning Algorithm (POLA)
(Shalev-Shwartz ’04)

Large Margin
Nearest Neighbor (LMNN)
(Weinberger et al, ’06)

Eigenvalue Optimization
Algorithms (DML/LMNN-eig)
(Ying and Li, ’12)

Eigenvector Methods

Convex Optimization

Figure 1: A general overview of the approaches to distance metric learning.

2

Distance Metric Learning Through Convex Optimization

2. Distance Metric Learning

A metric is a fundamental tool to associate elements in a vector space, for it provides
us with a notion of distance or “similarity” between those elements. Recall that if X
is a K - vector space, the mapping d : X ×X → R is a metric if it satisfies:1:

(i) d(x, y) = d(y, x) ∀x, y ∈ X

(ii) d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X

(iii) d(x, y) = 0⇔ x = y

(iv) d(x, y) ≥ 0

In the definition above, if the condition (iii) is dropped, then the mapping d is said to
be a pseudometric. Also, note that multiple metrics can be defined for the same space.

In inner product spaces, a natural way to define a metric is through the the inner
product, and thus d can be defined by d(x, y)2 = ‖x− y‖2 = 〈x− y, x− y〉. For general
inner products, we can thus define a distance metric as

dM(x, y)2 = (x− y)TM(x− y) (1)

It is easy so see that me must require that M be strict and positive definite (or semidef-
inite) if dM is to be a metric (pseudometric, respectively). Pseudometrics defined in
this way are called Mahalanobis distances, and they will be the central part of our
discussion. We will follow the convention of denoting Sd the space of symmetric d× d
matrices, and Sd+ its subset of positive semidefinite (PSD) elements. Two observations
are due at this point. First, note that by setting M = I we can recover the Euclidean
distance. Also, note that the fact that M is symmetric positive semidefinite means
that it can be decomposed into its Cholesky factors as M = LLT , and thus we can
alternatively compute distances with it as dL(x, y) = ‖L(x − y)‖2

2, where in this case
‖ · ‖ is the usual 2-norm. As pointed out by Weinberger and Saul (2009), this suggests
two approaches for learning a distance metric: through the matrix M or L. Although
the optimization problem in the latter case would be unconstrained (since there are no
restrictions on L, as opposed to M required to be positive semidefinite), using M as
our variable of interest allows for the setting of the problem as an SDP, which will offer
various advantages.

Now, suppose that we have a set of training points {xi : i ∈ N} and we are given a
some notion of similarity between them. This information can be in the form of labels
{yi : i ∈ N} (in the case of supervised learning), or, more generally, as a similarity
set S, where (i, j) ∈ S if xi and xj are “similar”. The dissimilarity set D is defined
analogously. Information given in this form, without having explicit labels, is referred
to as side-information. What criterion should be imposed on the M -distance so that

1. Formally, the non-negativity property is redundant in this definition, since the conditions (i), (ii)
and (iii) imply that 0 = d(x, x) ≤ d(x, y) + d(y, x) = 2d(x, y) for any pair (x, y).

3

Alvarez-Melis

this similarity information is captured? Naturally, this can be enforced by requiring
that the distance between similar pairs is minimized, or equivalently, as in Xing et al.
(2002), that the distance between dissimilar pairs is maximized, while similar pairs are
kept close “enough”. A further constraint is naturally to require that M be PSD. Thus,
an appropriate distance metric can be learnt by solving the problem

max
M

∑
(i,j)∈D

d(xi, xj)M

s.t.
∑

(i,j)∈S

d(xi, xj)
2
M ≤ 1,

M � 0

(2)

It is easy to see that with this setting, the problem is convex. Therefore, efficient
local-free-minima algorithms can be used to solve it.

3. Semidefinite Programming

Problem (2) belongs to a particular subfamily of convex optimization problems, namely
that of Semidefinite Programms (SDP). These are concerned with the optimization
of linear objective functions over the intersection of the cone of positive semidefinite
matrices and a spectrahedron (the equivalent of a simplex in Rn×n). A general SDP
has the form

min
X

C •X

s.t. Ai •X i = 1, . . . ,m,

X � 0

(3)

where X � 0 means X is PSD and U • V = tr(UTV) is the inner product between
matrices. However, the are many equivalent formulations of an SDP, and the type used
frequently depends on the particular characteristics of the problem. One of the other
widely used standard representations of SDP is through the an eigenvalue optimization
problem

min
x

t

s.t. tI − A(x) ≥ 0
(4)

where A(X) = A0 +
∑
xiAi. In fact, eigenvalue optimization problems make a large

part of the contexts where SDP arise, and have been researched extensively. One
particular problem, that of minimizing the maximal eigenvalue of symmetric matrices
(Lewis and Overton 1996) will pay particular importance in the formulation of section
4.3. Semidefinite programs also play a very useful role in combinatorial optimization,
such as in the MAX−CUT, SPARSEST−CUT and MIN−UNCUT problems [1].

Most algorithms for solving SDP are based on primal-dual interior-point methods,
and, although they have worst case complexities that grow as O(n

1
2 , they tend to per-

form much better than that in practice [9]. Many features in interior-point methods for

4

Distance Metric Learning Through Convex Optimization

solving linear programs are shared by the corresponding SDP variants. And, although
highly dense matrix can make SDP particularly costly to solve, sparse problems and
those with special structure can be solved much more efficiently2.

4. Solving the Optimization Problem

In this section we will analyze some approaches to solving the distance metric learn-
ing problem (2). We will focus on three of them in particular; the original method to
learn Mahalanobis distances proposed by Xing et al. (2002), the Large Margin Nearest
Neighbor Classification algorithm due to Weinberger et al. (2009) and the recent for-
mulation as an eigenvalue optimization problem due to Ying and Li (2012). The first
and last of these methods are general in their nature: they learn a metric in that can
be later used for clustering by k-means or nearest neighbor (kNN) classification. The
second one, although specific to the context of kNN is of particular theoretical interest,
and for this reason we include its analysis in this section.

4.1 Probabilistic Global Distance Metric Learning

In the original approach to the problem, Xing et al. dealt directly with the problem in
its form (2). They define

g(M) =
∑

(i,j)∈D

d(xi, xj)M (5)

f(M) =
∑

(i,j)∈S

d(xi, xj)
2
M ≤ 1 (6)

and come up with a gradient ascent iterative method to solve optimize g(M), where in
each successive iteration feasibility is ensured by projecting the matrices iterates onto
the sets P = {M :

∑
(i,j)∈S d(xi, xj)

2
M ≤ 1} and Sd+. Thus, the method consists of the

projection steps

M̃ = arg min
M ′

{‖M ′ −M‖F : M ′ ∈ P} (7)

M̂ = arg min
M ′

{‖M ′ − M̃‖F : M ′ ∈ Sd+} (8)

iterated until convergence, followed by the gradient ascent step

Mk+1 = M̂ + α(∇Mg(M̂))

Note that (7) is a Quadratic Programming (QP) problem with a single linear constraint,
where the variable is the vectorizedM , that is, uM = (M11,M12, . . . ,M1d,M21, . . . ,Mdd).

For the subproblem (8), the authors propose to “force” positive semidefinitentess
into the matrix M by discarding negative eigenvalues. Specifically, they obtain a (full)

2. Various references on these topics can be consulted in http://www.stanford.edu/ boyd/paper-
s/pdf/semidefprog.pdf

5

Alvarez-Melis

eigendecomposition M = XTΛX and then set Λ′ = diag(max{0, λ1}, . . . ,max{0, λ1}).
This step, although conceptually simple, turns out to be the weakest feature of this
method, for the computation of full eigendecompositions is considerably expensive.

All combined, the gradient-ascent method proposed by Xing takes can be imple-
mented with the following pseudocode.

Algorithm 1 Gradient ascent with iterative projection algorithm.

Input: µ > 0, tol, αt
Initialize Sµ1 ∈ Sd+ with tr(Sµ1) = 1
while do

while do
M := arg minM ′{‖M ′ −M‖F : M ′ ∈ C1}
M := arg minM ′{‖M ′ −M‖F : M ′ ∈ C2}

end while
M := M + α(∇Mg(M))⊥∇Mf

end while
return M

4.2 Large Margin Nearest Neighbor Classification

An interesting generalization due to Weinberger et al. [11] of the arguments described
above for distance metric learning combines ideas form various preceding methods, such
as PGDM, POLA and NCA, by building on their individual strengths. Their method
is specifically designed for the context of kNN classification. According to the authors,
the key features of their method are (i) its convex loss function, (ii) its goal of margin
maximization and (iii) kNN-specific constraints.

Within the context of kNN, the authors define the concept of target neighbors;
those elements xj that we require to be closest, under the learnt metric, to a particular
element xi. This relation is denoted by i j. Impostors are those elements that invade
(i.e. have a different label) the perimeters within which we enclose target neighbors.
Thus, the goal of learning in this case is to maintain a large distance between impostors
and the perimeters established by target neighbors. The method is made robust by
maintaining a safety margin around the kNN decision boundaries. From this idea, the
method takes its name, Largest Margin Nearest Neighbor Classification.

The loss function consists of two terms, one of which “pulls” target neighbors closer
together, and one which “pushes” different neighbors apart. The former, shown in (9),
is simply a reformulation of the original constraint in (2), for it penalizes large distances
between target neighbors.

εpull(M) =
∑
j i

‖xi − xj‖2
M (9)

6

Distance Metric Learning Through Convex Optimization

The second component of the loss function is

εpush(M) =
∑
i,j i

∑
l

[
1− I(yi = yl)

][
1 + ‖xi − xj‖2

M − ‖xi − xl‖2
M

]
+

(10)

where [z]+ = max(z, 0). This term penalizes small distances between elements with
different labels, by controlling the violation of the margin inequality ‖xi − xl‖2

M ≤
‖xi − xj‖2

M + 1, where i j and xl is an impostor. The final loss function is obtained
by a weighted combination of the previous two ε-functions (9) and (9) as follows

ε(M) = (1− µ)εpull(M) + µεpush(M) (11)

In the original formulation of the authors (in which distances are expressed in terms of L
instead of M = LTL, the objective function is not convex. Although a gradient descent
method could be used to solve it, this approach will be vulnerable to running into local
optima. Therefore, the authors transform their original problem into an SDP, first, by
transforming adopting M as the variable of interests (as we have done in (11)) and
requiring that M be SDP. In addition, to deal with the hinge loss function [z]+, slack
variables are introduced. For every triplet of target neighbors (j i) and impostors xl
a nonnegative variable ξijl is added, whose purpose is to measure the amount in which
the margin constraint is violated. Finally, the problem takes the form

Minimize
M

(1− µ)
∑
i,j i

‖xi − xj‖2
M + µ

∑
i,j i,l

(1− yil)ξijl

subject to (1) ‖xi − xl‖2
M − ‖xi − xj‖2

M ≥ 1 + ξijl

(2) ξijl ≥ 0

(3) M � 0

(12)

The authors use their own algorithm for solving this problem and achieve remarkable
results, especially when preprocessing the data with PCA. A key difference between
LMNN and PGDM as done in the previous section, is that LMNN learns local features
of the metric, whilst the latter attempts to learn metrics globally. This accounts for
a higher accuracy rate in most datasets, particularly in high-dimensional ones (Wein-
berger, 2009).

4.3 Eigenvalue Optimization

In recent work by Ying and Li [13], yet another approach to distance metric learning
is proposed. The authors establish an equivalent min-max formulation of the problem
of learning a distance metric, and then use an approximate Frank-Wolfe algorithm to
solve it.

4.3.1 Reformulation as an Eigenvalue Problem

To recast (2) as an eigenvalue problem, the authors start by defining the simplex

∆ = {u ∈ RD : uτ ≥ 0,
∑
τ∈D

uτ = 1}

7

Alvarez-Melis

and the spectrahedron
P = {M ∈ Sd+ : tr(M) = 1}

To minimize the notation, we will adopt the authors’ convention of denoting by τ =
(i, j) the dissimilarity pairs and by Xij = (xi − xj)(xi − xj)

T the vector difference
rank-one matrices. Then, the linear combination of the similarity matrices is given by
XS :=

∑
(i,j)∈S Xij.

Their main result shows that the original problem can be reformulated as

min
u∈∆

max
M∈P

〈∑
τ∈D

uτX̃τ ,M

〉
= min

u∈∆
λmax

(∑
τ∈D

utX̃τ

)
(13)

where X̃τ = X
− 1

2
S XτX

− 1
2

S . The convexity of ∆ and P allows us to use a variant of
Sion’s mini-max Theorem to exchange the order of the operators above and obtain the
equivalent problem

max
M∈P

f(M) = max
M∈P

min
u∈∆

∑
τ∈D

uτ

〈
X̃τ ,M

〉
(14)

Furthermore, the authors introduce a smoothed version of problem (14), by defining

fµ(M) = min
u∈∆

∑
τ∈D

uτ

〈
X̃τ ,M

〉
+ µ

∑
τ∈D

uτ lnuτ = −µ ln

(∑
τ∈D

e−
〈X̃τ ,M〉

µ

)
Thus, the problem of learning a metric can be cast as

max
M∈P

fµ(M) (15)

This is a linearly constrained convex optimization problem.

4.3.2 The Frank-Wolfe Algorithm

In 1956, Marguerite Frank and Philip Wolfe [3] proposed an algorithm for solving con-
cave3 quadratic programming problems with linear constraints, which they described as
a “gradient-and-interoplation” method. This algorithm, also known as the conditional
gradient method, solves in each iteration a subproblem given by a linear approximation
of the objective function, subject to the original constraints, namely

Minimize
x

zk(y) = f(xk) +∇f(xk)
T (y − xk)

subject to y ∈ S
(16)

The solution yk to this linear problem determines a search direction pk = yk − xk. The
convexity of the simplex S ensures that pk is a feasible direction, and furthermore, it
is easy to prove that it is a descent direction. The next step consists of finding a step
size 0 ≤ αk ≤ 1 such that f(xk + αpk) is minimized.

3. Or convex, with the appropriate change of sign.

8

Distance Metric Learning Through Convex Optimization

Although appealing for its simplicity, the Frank-Wolfe method has only sublinear
convergence in general and tends to slow down significantly when approaching the so-
lution. Thus it is rarely used is practice for constrained optimization problems, unless
its purpose is to obtain only an approximate solution. However, its suitability for high
dimensional problems and the sparse convexity properties of its iterates have caused
revived interest recently, particularly in the context of machine learning and transporta-
tion network problems.

Recently [4], Hazan extended the classic Frank-Wolfe algorithm to deal with SDP
over the cone of positive semi-definite matrices with trace equal to one (that is, on
the spectrahedron P defined in the previous section). Over the space of matrices, the
original linear subproblem (16) is now a an eigenvalue problem, and is solved approx-
imately in Hazan’s algorithm. This method produces sparse solutions, where sparsity
is understood in this context as a low-rank solution matrix. This property (through
a Cholesky decomposition) makes the method particularly appealing in our machine
learning context, where the high-dimensionality of the problems can be tackled with
sparse matrix-vector products.

4.3.3 The DML-eig Algorithm

With the eigenvalue formulation given in section 4.3.1 and the revisited Frank-Wolfe
algorithm of section 4.3.2 at hand, Ying and Li propose the following algorithm for
learning a distance metric.

Algorithm 2 Approximate Frank-Wolfe Algorithm for Distance Metric Learning

Input: µ > 0, tol, αt
Initialize Mµ

1 ∈ Sd+ with tr(Mµ
1) = 1

while |fµ(Mµ
t+1)− fµ(Mµ

t)| > tol do
Find v =eigmax∇fµ(Mµ

t)
Zµ
t = vvT

Mµ
t+1 = (1− αt)Mµ

t + αtZ
µ
t

end while
return Mµ

t

Under certain conditions on the sequence of step sizes αt used (namely, if αt → 0
but

∑
αt diverges), it can be proven that the sequence of matrices Mµ

t generated by
Algorithm 2 converges to the maximum of fµ(M). In fact, for the particular sequence
carefully chosen sequence {αt ∝ t−1 : t ∈ N}, the authors obtain the the bounds given
by the following Theorem.

Theorem 1 For any 0 < µ ≤ 1, let {Mµ
t : t ∈ N} be generated by Algorithm 2 with

step sizes given by {αt = 2
t+1

: t ∈ N}. Then, for any t ∈ N we have that

max
M∈P

f(M)− fµ(Mµ
t) ≤ 2µ lnD +

8 maxτ∈D ‖X̃τ‖2

µt
+

8 lnD

t

9

Alvarez-Melis

Figure 2: (a) Randomly sampled data, with classes indicated by colors. (b) Rescaled according
to learnt metric from PGDM and (c) form DML-eig.

Thus, Algorithm 2 finds an ε-approximate solution to (15) in O(d2/ε2) (compare this
to the O(n3) eigedecomposition needed in the algorithm of Section 2).

5. Experiments

We implemented and tested the two most general methods analyzed in this survey: the
gradient ascent algorithm with projections (PGDM) of Section 2 by Xing et al. (2002)
and the approximate Frank-Wolfe method (DML-eig) for the eigenvalue optimization
problem by Ying and Li (2012) of Section 4.3.3. Our main goal was to compare the
performance and complexity that result of setting the problem of learning a distance
metric (2) in two considerably different theoretical frameworks, namely, that of a stan-
dard SDP problem (2) or a min-max eigenvalue optimization problem (14).

For the implementation of PGDM, we made use of Xing’s auxiliary functions4 for
computing the value of f and its gradient, but coded the main method ourselves. The
implementation of DML-eig was built from scratch. Additionally, we coded a k-means
clustering method for MATLAB, largely based on Naothi Seos implementation5, but
modified to accept general Mahalanobis distances and not only covariance matrices.
This, after being fed with the corresponding learnt metric matrix, was the main tool
used for classification.

First, we analyze the distorting effects of the metrics learnt by these two methods
on an artificial dataset. We created random points drawn from k normal multivari-
ate distributions (where point from different distributions are considered to belong to
different classes), and then used PGDM and DML-eig to train metrics MPGDM and

MDML−EIG. Then, we rescale the sample points by the transformation x 7→M
1
2 .

4. Available at http://www.cs.cmu.edu/epxing/papers/Old papers/code Metric online.tar.gz
5. Code available at http://note.sonots.com/SciSoftware/kmeans.html

10

Distance Metric Learning Through Convex Optimization

Figure 2 shows the different effect that the two metrics have on the data. As
expected, the two methods have “clustered” points belonging to the same class, while
separating different classes. Thus, the effect of the metrics can be interpreted as shrink-
ing dimensions in which the points on the clusters are similar, and expanding those in
which they are not. However, it is clear that the metric form DML-eig has done a
more successful job of compressing similar points together. It is interesting how PGDM
projects the points into plane, thus effectively reducing the dimension of the range of
the clusters.

Now, we test our methods on two real classification tasks. The first one is Fisher’s
famous Iris flower data set. It consists of four features measured in 50 samples from
each of the three species of the Iris flower (Setosa, Virginica and Versicolor). This
classic data set is one the canonical classification tasks.

We ran 10 trials, randomly splitting in each trial the database in a 70/30% propor-
tion for training and testing set, respectively. That is, the metrics were trained with
70% of the points, and then used to cluster (by using k-means) the 30% test set. Since
we want to measure the performance in terms of similar pairs being grouped into the
same class (regardless of which class it is), we need a special accuracy measure. We use
the following, as suggested by Xing (2002):

Accuracy =
∑
i>j

I
(
I(ci = cj) = I(ĉi = ĉj)

)
0.5m(m− 1)

where I(·) is the indicator function and m is the number of clusters (three in this case).
The average results of the trials are shown on Table 1.

Table 1: Performance of clustering in the Iris dataset.

Metric Euclidean PGDM DML-eig

Accuracy 84.3430 86.3961 89.7536

As expected, clustering with learnt matrices delivers better accuracy than with
the “zero-information” identity (Euclidean) metric. Also, note that DML-eig performs
considerably better than the other two. It is interesting to compare the metrics learnt
in any given iteration by the two methods.

M PGDM =

0.1010 0.0004 0.0004 −0.0000
0.0004 0.1005 0.0004 0.0002
0.0004 0.0004 0.0998 −0.0003
−0.0000 0.0002 −0.0003 0.1000

11

Alvarez-Melis

Figure 3: (a) Original test points. (b) Test points after metric transformation.

M DMLEIG =

0.0429 −0.0351 0.0285 0.0976
−0.0351 0.3057 −0.0171 −0.0156
0.0285 −0.0171 0.3755 −0.0514
0.0976 −0.0156 −0.0514 0.2759

The matrices are certainly different, and there is obvious relation between them.
This portrays the fact that the matrices are learnt through very different processes,
neither of which yields a clear interpretation in terms of the actual data.

In Figure 3 we show (by plotting only on the first three coordinates of the space)

the effect of distorting the test points by M
1/2
DML−eig. The increased accuracy of the

method is easy to appreciate in this case: points from different classes which were
before mixed are now almost linearly separable. Indeed, for this particular trial, the
accuracy obtained after clustering with this metric was 95.17% against only 73.72%
when using euclidean distances.

The second dataset in which we trained metrics was from a Breast cancer diagnosis
task6. This base, containing entries with 107 features, was chosen to illustrate the
performance of the two methods on problems with high-dimensionality. We made a
subset of the data base containing subsamples with 10, 000, 50, 000 and 80, 000 entries.
As before, we split these each time into a training and a testing set, learnt metrics on
the former and clustered the latter by using k-mean with the learnt metric. The results
are shown in Table 2.

We can see from these results that even though clustering with either metric was,
again, better than using euclidean distances, this time DML-eig clearly outperformed

6. The database was used for a yearly data mining competition KDD Cup 2008. It can be obtained
at www.kdd2008.com

12

Distance Metric Learning Through Convex Optimization

Table 2: Performance of clustering in the Breast Cancer dataset.

Metric Euclidean PGDM DML-eig

10, 000 64.26 65.38 72.71
50, 000 70.12 72.14 81.90
80, 000 73.12 − 84.22

PGDM and was significantly better than using the identity as a metric. In the largest
problem, PGDM failed to finish in a reasonable time. We now compare the running
times of learning the metric by each of the two optimization methods. The same
2.53GHz Intel Core 2 Duo with 8Gb memory was used in all the trials.

Table 3: Running time (in seconds) of metric learning in the Breast Cancer dataset.

Sample Size 10, 000 50, 000 80, 000

PGDM 1, 226 5, 835 −
DML-eig 448 1, 613 4, 097

The difference between the two results shown by 3 is considerable. PGDM consis-
tently required more computational time. This gap between the methods’ efficiency
was amplified as the dimensionality of the training set used increased. With 80, 0000
entries, the PGDM did not finish and had to be interrupted. This poor performance
in a large database is certainly largely due to the full eigendecomposition required by
the first of these methods, as opposed to the O(n2) approximate algorithm used by the
second one. We conclude that Ying and Li’s DML-eig method provides better results
for clustering, and is significantly more efficient that then corresponding PGDM (Xing
et al, 2002) method.

6. Conclusions

We have analyzed in depth the problem of learning a distance metric from a sample
of points of which we have a notion of similarity. We presented various approaches to
this problem that can be found in the literature, most of which are fairly recent. We
justified their derivations, presented convergence properties and briefly discussed their
algorithmic implementation. In addition, we implemented two of the main methods and
compared their performance on some classification tasks. This was used to exemplify
the advances in solving this problem that has been made over the last few years.

Further work could be aimed at comparing the performance of optimization-based
methods for DML to that of canonical statistical eigenvector methods, such as PCA
and LDA. Another extension would be to investigate improvements to Ying and Li’s
framework by means of kernelization and linear transformations, which has been re-
cently shown to be especially appropriate for high-dimensional data (Chatpatanasiri

13

Alvarez-Melis

et al., 2010; Jain et al. 2012). The list of approaches presented here is by no means
exhaustive, and is intended only to provide the reader with a brief panorama of current
research directions in the field.

List of Algorithms

1 Gradient ascent with iterative projection algorithm. 6
2 Approximate Frank-Wolfe Algorithm for Distance Metric Learning . . . 9

List of Figures

1 A general overview of the approaches to distance metric learning. . . . 2
2 (a) Randomly sampled data, with classes indicated by colors. (b) Rescaled

according to learnt metric from PGDM and (c) form DML-eig. 10
3 (a) Original test points. (b) Test points after metric transformation. . . 12

14

Distance Metric Learning Through Convex Optimization

References

[1] Sanjeev Arora and Satyen Kale, A combinatorial, primal-dual approach to
semidefinite programs, in In Proceedings of the thirty-ninth annual ACM sympo-
sium on Theory of Computing, ACM Press, 2007, pp. 227–236.

[2] R. Chatpatanasiri, T. Korssrilabutr, P. Tangchanachaianan, and
B. Kijsirkul, A new kernelization framework for mahalanobis distance learning
algorithms, Neurocomputing, 73 (2010), pp. 1570–1579.

[3] Marguerite Frank and Philip Wolfe, An algorithm for qudratic program-
ming, Naval Research Logistics, 3 (1956), pp. 95–110.

[4] Elad Hazan, Sparse approximate solutions to semidefinite programs, in Proceed-
ings of the 8th Latin American conference on Theoretical Information, Springer-
Verlag, 2008, pp. 306–316.

[5] Prateek Jain, Brian Kulis, Jason V. Davis, and Inderjit S. Dhillon,
Metric and kernel learning using a linear transformation, J. Mach. Learn. Res., 13
(2012), pp. 519–547.

[6] Jorge Nocedal and Stephen J. Wright, Numerical Optimization, Springer
Series in Operations Research, Springer, 2nd ed., 2006.

[7] Shai Shalev-Shwartz, Yoram Singer, and Andrew Ng, Online and batch
learning of pseudo-metrics, in Proceedings of the Twenty First International Con-
ference on Machine Learning (ICML-04), 2004, pp. 94–101.

[8] Noam Shental, Tomer Hertz, Daphna Weinshall, and Mish Pavel, Ad-
justment learning and relevant component analysis, in Proceedings of the Seventh
European Conference on Computer Vision (ECCV-2002), vol. 4, Springer-Verlag,
2002, pp. 776–790.

[9] Lieven Vandenberghe and Stephen Boyd, Semidefinite programming, SIAM
Review, 38 (1996), pp. 49–95.

[10] Kilian Q. Weinberger, J. Blitzer, and Lawrence K. Saul, Distance
metric learning for large margin nearest neighbor classification, in Advances in
Neural Information Processing Systems 18, MIT Press, 2005.

[11] Kilian Q. Weinberger and Lawrence K. Saul, Distance metric learning
for large margin nearest neighbor classification, J. Mach. Learn. Res., 10 (2009),
pp. 207–244.

[12] Eric Xing, Andrew Ng, Michael Jordan, and Stuart Russell, Distance
metric learning, with application to clustering with side-information, in Advances
in Neural Information Processing Systems 15, MIT Press, 2002, pp. 505–512.

15

Alvarez-Melis

[13] Yiming Ying and Peng Li, Distance metric learning with eigenvalue optimza-
tion, J. Mach. Learn. Res., 13 (2012), pp. 1–26.

16

Distance Metric Learning Through Convex Optimization

Main MATLAB routines used.

function [M DML,M FW] = MetricLearn(X,Y)
%Main function to perform distance metric learning, computed with ...

two methods. X is a matrix of input instances and Y are their ...
labels.

[n,d]= size(X);
[X S,D,S] = createSD(X,Y);

%==== Two methods to obtain the distance metric matrix ...
====================

tic
% Xing's DML
M 0 = 0.1*eye(d);
w=X S(:);
t = w'*M 0(:)/100;
[M DML, converged] = iter projection new2(X, S, D, M 0, w, t, 100)
if(converged)

fprintf('Metric learnt with Xings method.\n');
else

fprintf('Xings method failed. No metric learnt for this ...
algorithm.\n');

end
toc

tic
%Ying's Frank−Wolfe
∆ = 0.01;
X S = X S + ∆*eye(length(X S)); %% For FW, Ridge to ensure PosDef
L = chol(X S,'lower');
M FW = FrankWolfe(X,D,L);
fprintf('Metric learnt with Frank−Wolfe Algorithm.\n');
toc

% ...
===

end

function [X S,D,S] = createSD(X,Y)
%Create Similarity, Disimilarity and X S matrix of Xings paper
[n,d]=size(X);
X S = zeros(d);
D = zeros(n);
S = zeros(n);
k d= 1; k s=1;
for i=1:(n−1)

17

Alvarez-Melis

for j=i+1:n
if (Y(i) == Y(j)) %% They are similar

S(i,j)=1;
k s=k s+1;
x i = X(i,:);
x j = X(j,:);
X S = X S + (x i−x j)'*(x i−x j);

else %% Dissimilar
% Col Diss = L
% D(:,k) = (X(:,i) − X(:,j));
D(i,j)=1; %% Dissimilarity pairs
k d=k d+1;

end
end

end
end

function [M] = FrankWolfe(X,D,L)
% FrankWolfe distance metric learning, as done in Ying and Li 2012
% INPUTS: S is a PSD Matrix for initialization, with t(S)=1
% OUTPUTS: M is a PSD Metric learnt from the data

mu = 10ˆ(−5);
tol = 10ˆ(−5);

% Choosing step sizes
theta = 1;

% Initialization
t=1;
fun = 0;
M = eye(size(X,2));

[newfun,grad] = funEval(M,X,D,L,mu);
while(abs(newfun−fun)>tol)
% fprintf('Frank−Wolfe Iteration number %6d\n',t);

fun = newfun;
opts.issym=1;
[v,lambda] = eigs(grad,1,'lm',opts);
Z = v*v';
alpha = tˆ(−theta);
M = (1−alpha)*M + alpha*Z;
[newfun,grad] = funEval(M,X,D,L,mu);
t = t + 1;

end

end

function [fun,grad] = funEval(M,X,D,L,mu)

18

Distance Metric Learning Through Convex Optimization

num=0; denom=0;
for i=1:size(D,1)

for j = 1:size(D,1)
if(D(i,j)==1)

L inv = L \(X(i,:)−X(j,:))' ;
X hat = L inv*L inv';
exp t = exp(−trace(X hat'*M)/mu);
num = num + exp t*X hat;
denom = denom + exp t;

end
end

end
grad = num/denom;
fun = −mu*log(denom);
end

function [M, converged] = DMLEIG(X, S, D, M, w, t, maxiter)
% DML−eig as done by Xing 2002

s = size(X);
N = s(1);
d = s(2);
error1=1e10; error2=1e10;
threshold2 = 0.01;
epsilon = 0.01;
maxcount = 100;

w1 = w/norm(w);
t1 = t/norm(w);

count=1;
alpha = 0.1; % initial step size along gradient

grad1 = fS1(X, S, M, N, d); % gradient of similarity constraint ...
function

grad2 = fD1(X, D, M, N, d); % gradient of dissimilarity ...
constraint func.

G = grad projection(grad1, grad2, d); % gradient of fD1 orthognal ...
to fS1

A last = A; % initial M
done = 0;

while (¬done)

% projection of constrants C1 and C2
%
M cycle=count;
projection iters = 0;

19

Alvarez-Melis

satisfy=0;

while projection iters < maxiter & ¬satisfy

A0 = A;
x0= A0(:);
if w' * x0 ≤ t

A = A0;
else

x = x0 + (t1−w1'*x0)*w1;
A = vec2mat(x, N);

end

fDC1 = w'*x;
A 1 = A;
A = (A + A')/2; % enforce A to be symmetric
[V,L] = eig(A); % V is an othornomal matrix of A's eigenvectors,

% L is the diagnal matrix of A's eigenvalues,
L = max(L, 0);
A = V*L*V';

fDC2 = w'*unroll(A);
A 2 = A; % resulting A from constraint 2

% ...

error2 = (fDC2−t)/t;
projection iters = projection iters + 1;

if error2 > epsilon
satisfy=0;

else
satisfy=1; % loop until constrait is not violated after ...

both projections
end

end % end projection on C1 and C2

%[fDC1 fDC2]
%[error1, error2]

% third constraint: Gradient ascent
obj previous = fD(X, D, A last, N, d);
obj = fD(X, D, A, N, d);

if (obj > obj previous | count == 1) & (satisfy ==1)
alpha = alpha * 1.05; A last = A;
grad2 = fS1(X, S, A, N, d);
grad1 = fD1(X, D, A, N, d);
M = grad projection(grad1, grad2, d);

20

Distance Metric Learning Through Convex Optimization

A = A + alpha*M;
else

alpha = alpha/2;
A = A last + alpha*M;

end;

∆ = norm(alpha*M, 'fro')/norm(A last, 'fro');
count = count + 1;
if count == maxcount | ∆ <threshold2,

done = 1;
end;

end;

if ∆ > threshold2,
converged=0;

else
converged=1;

end;

function [Cluster Codebook] = cvKmeans(X, K, M, stopIter, verbose)
% cvKmeans − K−means clustering
%
% Synopsis
% [Cluster Codebook] = cvKmeans(X, K, [stopIter], [distFunc], ...

[verbose])
%
% Description
% K−means clustering
%
% Inputs ([]s are optional)
% (matrix) X D x N matrix representing feature vectors ...

by columns
% where D is the number of dimensions and N ...

is the
% number of vectors.
% (scalar) K The number of clusters.
% (scalar) [stopIter = .05]
% A scalar between [0, 1]. Stop iterations if the
% improved rate is less than this threshold ...

value.
% (func) [distFunc = @cvEucdist]
% A function handle for distance measure. The ...

function
% must have two arguments for matrix X and Y. See
% cvEucdist.m (Euclidean distance) as a ...

reference.
% (bool) [verbose = false]
% Show progress or not.

21

Alvarez-Melis

%
% Authors
% Original Code by Naotoshi Seo <sonots(at)sonots.com>, Modified ...

By David
% Alvarez−Melis
if ¬exist('stopIter', 'var') | | isempty(stopIter)

stopIter = .05;
end
if ¬exist('distFunc', 'var') | | isempty(distFunc)

distFunc = @cvEucdist;
end
if ¬exist('verbose', 'var') | | isempty(verbose)

verbose = false;
end
[N D] = size(X);
if K > N,

error('K must be less than or equal to the number of vectors N');
end
if ¬exist('M','var') | | isempty(M)

M = eye(size(X,2));
end

% Initial centroids
Codebook = X(randsample(N, K),:);

improvedRatio = Inf;
distortion = Inf;
iter = 0;
while true

% Calculate Mahalanobis distances between each sample and ...
each centroid

d = MahalnobisDistance(Codebook, X,M);
% Assign each sample to the nearest codeword (centroid)
[dataNearClusterDist, Cluster] = min(d, [], 1);
% distortion. If centroids are unchanged, distortion is also ...

unchanged.
% smaller distortion is better
old distortion = distortion;
distortion = mean(dataNearClusterDist);

% If no more improved, break;
improvedRatio = 1 − (distortion / old distortion);
if verbose

fprintf('%d: improved ratio = %f\n', iter, improvedRatio);
end
iter = iter + 1;
if improvedRatio ≤ stopIter, break, end;

% Renew Codebook
for i=1:K

% Get the id of samples which were clusterd into cluster i.

22

Distance Metric Learning Through Convex Optimization

idx = find(Cluster == i);
% Calculate centroid of each cluter, and replace Codebook
Codebook(i,:) = mean(X(idx,:),1);

end
end

Codebook = Codebook';

end

function dist = MahalnobisDistance(X, Y, M)
% cvMahaldist − Mahalanobis distance
[n d] = size(X);
[p d] = size(Y);
for i=1:n

diff = repmat(X(i,:), p,1) − Y;
dsq(i,:) = sum((M*diff').*diff' , 1);

end
dist = sqrt(dsq);
end

23

