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Abstract

Most recent work on interpretability for complex machine learning models has
focused on estimating a posteriori explanations for particular predictions, but less
attention has been devoted to designing the models themselves to be interpretable.
We approach this problem by characterizing what makes archetypical “interpretable”
models—such as linear classifiers—this way, and then deriving a set of principles that
more complex models should satisfy to be interpretable. We progressively generalize
various aspects of the simple prediction models to yield a rich class of complex models
that are self-explaining: i.e., they provide human-understandable explanations for their
predictions as an intrinsic part of their operation. The resulting model class in flexible,
easy to train, and encompasses various existing interpretable models as particular
cases. Experimental results in applications ranging from digit classification to cancer
detection show that our framework offers a promising direction for reconciling model
complexity and interpretability.

1 Introduction

State-of-the-art machine learning methods provide strong predictive power but generally
lack interpretability. This limits adoption of such methods in decision-critical domains
such as medical or legal. Interpretability also often serves as a step in satisfying other
criteria such as fairness, privacy, or causality [Doshi-Velez and Kim, 2017]. Our goal in
this paper is to recast models in a manner that makes them “self-explaining” without
sacrificing predictive power.

Linear regression models or decision trees ofter serve as prime examples of what we
mean by interpretable models. They are, however, too simple for most modern machine
learning applications where high modeling capacity is often necessary for competitive per-
formance. Much of the recent work on interpretability has therefore focused on producing
a posteriori explanations for complex deep learning approaches, where the explanation
is provided locally, around a given example. The interpretation is derived on the basis
of limited access to the inner workings of the model. For example, explanations may be
derived from gradients or running the model in reverse [Bach et al., 2015, Selvaraju et al.,
2017] or obtained through oracle queries by estimating simpler surrogate models to capture
the observed local input-output behavior [Alvarez-Melis and Jaakkola, 2017, Lundberg
and Lee, 2017, Ribeiro et al., 2016]. A number of technical challenges arises already in this
setting, from the definition of locality (e.g., in case of structured examples) to identifiability
issues [Li et al., 2018]. Offering an explanation of this kind also invariably necessitates
additional computation beyond the forward prediction, ranging from a backward pass
Bach et al. [2015] to running a full-fledged optimization subroutine [Yosinski et al., 2015].
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External a posteriori explanations may be necessary if the model has already been
trained or offered only as a black-box system after the fact. However, when we can
influence model building, we would ideally have the models set up from the start in a
manner that they automatically offer human-interpretable explanations of their predictions.
Such “self-explaining” models would facilitate verification and error analysis, and they
could be more easily guided by and integrated with the available domain knowledge.
Despite the advantages, relatively little work has been devoted to self-explaining models.
One approach to integrating explanations into the model while preserving accuracy is to
require a compact selection of the (textual) input as an intermediate, explanatory step. In
this vein, in the context on text classification, Lei et al. [2016] specify two neural networks,
trained cooperatively, where one selects a small portion of the text as an explanation while
the other makes predictions only based on the selected text. An alternative approach
by Li et al. [2018] relies on a small, learnable set of prototypes to make neural network
predictions interpretable, by having all downstream computations depend on the input
only through a vector of distances to all the prototypes.

In this paper we offer a different approach to self-explaining models. We commence
with a simple a priori model – here a linear predictor – and generalize it to make it
more powerful without loosing the key ingredients of how to interpret it. In this sense,
in contrast to prevailing approaches, we do not constrain complex models to make
them interpretable but rather generalize simple models in a manner that preserves their
mechanism of interpretation. Linear models, for example, are built from simple concepts
(features) and how relevant they are (coefficients). This combination of features and their
coefficients can be generalized substantially without destroying the basic interpretation.
The coefficients, for instance, can be made input dependent, produced by a complex
deep learning architecture. The only constraint is that the coefficients should vary slowly
enough around each input so that the overall model, around each specific input, remains
interpretable as a linear model. We also generalize and learn interpretable features to
accompany learned functional coefficients.

The paper is structured as follows. In Section 2 we take the example of linear classifiers
to build intuition on desirable properties of self explaining models. We successively
generalize this class of models while maintaining interpretability. In Section 3 we then
take these intuitions and formalize a class of self-explaining complex models. Section 4

discusses the case where the basis concept functions are to be learnt in conjunction with
the prediction model. Next, in Section 5 we present experimental results portraying
various configurations of our general framework, ranging from digit classification to
cancer detection applications. Through various metrics of relevance and stability, we show
that the explanations provided by our models are coherent and faithful to its operation.
Furthermore, we show that this additional functionality comes a at a minimal cost in
performance, often even helping our self-explaining models outperform similar non-
interpretable architectures due to the additional regularization provided by our robust
training objectives.
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2 Interpretability: linear and beyond

To motivate our approach, we start with a simple linear regression model and successively
generalize it towards the class of self-explaining models. For input features x1, . . . , xn ∈ R,
and associated parameters θ0, . . . , θn ∈ R the linear regression model is given by

f (x) =
n

∑
i

θixi + θ0 (1)

For simplicity, we will write the model as f (x) = θTx, omitting the explicit bias term.
We maintain that the linear model is interpretable for three specific reasons: 1) input
features (xi’s) are clearly anchored with the available observations, e.g., arising from
empirical measurements; 2) each parameter θi provides a quantitative positive/negative
contribution of the corresponding feature xi to the predicted value; and 3) the aggregation
of feature specific terms θixi is additive thus not further conflating the feature-by-feature
interpretation of impact. We offer several generalizations in the following subsections and
discuss how this mechanism of interpretation is preserved.

2.1 Generalized coefficients

We can substantially enrich the linear model while keeping the overall structure of (3), if
we permit the coefficients themselves to depend on the input x. Specifically, we define
(offset function omitted)

f (x) = θ(x)Tx (2)

and choose θ from a complex model class Θ, realized for example via deep neural networks.
Without further constraints the model is nearly as powerful as any deep neural network.
However, in order to maintain interpretability, at least locally, we must ensure that for close
inputs x and x′ in Rn, θ(x) and θ(x′) should not differ significantly. To make this more
precise, we can, for example, regularize the model in such a manner that ∇x f (x) ≈ θ(x0)
for all x in a neighborhood of x0. In other words, the model functions locally, around each
x0, as a linear model with a vector of coefficients given by θ(x0). The individual values
θ(x0)i act as and are interpretable as coefficients of a linear model with respect to the
final prediction, but adapt dynamically to the input, albeit varying slower than x. We will
discuss specific regularizers so as to keep this interpretation in Section 3.

2.2 Beyond raw features – feature basis

Typical interpretable models tend to consider each variable (one feature or one pixel) as the
fundamental unit which explanations consist of. However, pixels are rarely the basic units
used in human image understanding; instead, humans would rely on strokes and other
higher order features. We adopt and refer to these higher order features as interpretable
basis concepts, and use them in place of raw features in our models. Formally, let Z ⊂ Rk

be some space of interpretable atoms, and define h(x) : X → Z , i.e., h maps raw inputs to
interpretable concepts. Naturally, k should be small so as to keep the explanations easily
digestable. Alternatives for hi(x) include

3



1. Subset aggregates of the input (e.g., with h(x) = Ax for a boolean mask matrix A).

2. Predefined, pre-grounded feature extractors (e.g. from expert knowledge), such as
specific filters for image processing.

3. Prototype based concepts, e.g. hi(x) = ‖x− zi‖ for some zi ∈ X [Li et al., 2018], or
cast in terms of similarities to prototypes for stability

4. Learnt representations with specific constraints to ensure groundedness

The generality of basis functions allows for significant flexibility. The extended model
is now given by

f (x) = θ(x)Th(x) =
K

∑
i=1

θ(x)ih(x)i (3)

Since each h(x)i remains a scalar, it can still be interpreted as the degree to which a
particular feature is present. θ(x)i in turn, with constraints similar to those discussed
above, remains interpretable as a local coefficient. Note that the notion of locality must now
take into account how the concepts rather than inputs vary since the model is interpreted
as being linear in the concepts rather than x.

2.3 Beyond simple aggregation

The final generalization we propose considers the method by which the weighted units
of explanation, i.e. the elements θ(x)ih(x)i are aggregated. Although the sum is a natural
way to do so, we can achieve a more flexible class of functions by considering more general
aggregation functions g(z1, . . . , zk). Naturally, in order for this function to preserve the
desired interpretation of θ(x) in relation to h(x), it should: i) be permutation invariant, so
as to eliminate higher order uninterpretable effects caused by the relative position of the
arguments, (ii) isolate the effect of individual h(x)i’s in the output (e.g., avoiding multi-
plicative interactions between them), and (iii) preserve the sign and relative magnitude
of the impact of the relevance values θ(x)i. We formalize these intuitive desiderata in the
next section.

2.4 Multidimensional outputs

For a multidimensional output space Y ⊂ Rm, with m > 1, we can naturally extend
(3) by considering θi : X → Rm, so that θi(x) ∈ Rm is a vector corresponding to the
relevance of concept i with respect to each of the m output dimensions. Although in the
case of classification, we will most likely be interested in the scores corresponding to the
maximizing class, i.e., θi(x)ŷ for ŷ = argmaxy f (x)y, a representation of θ of the same
dimension as the output allows us to understand individual effects of the concepts on
each of the output classes.
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Figure 1: The proposed architecture consists of three components: a concept encoder
(green) that transforms the input into a small set of interpretable basis features; an input-
dependent parametrizer (orange) that generates relevance scores; and an aggregation
function that combines them. Concepts and their relevance parameters are used by the
aggregation function to produce the final label prediction. The robustness loss on the
parametrizer encourages f to behave locally as a linear function on h(x) with parameters
θ(x), allowing for immediate interpretation of both both concepts and relevances.

3 Self-explaining models

In this section we formalize the class of models that were obtained through subsequent gen-
eralization of the simple linear predictor in the previous section. We begin by formalizing
the properties we wish to impose on θ in order for it to act as coefficients of a linear model
on the basis concepts h(x). The intuitive notion of slow-variation discussed in Section 2.2
suggests using a Lipschitz-type condition bounding ‖ f (x)− f (y)‖ with L‖h(x)− h(y)‖ for
some constant L. We emphasize however that this is not exactly Lipschitz continuity since
it bounds the variation of f with respect to a different—and indirect—measure of change,
provided by the geometry induced implicitly by g on X . For lack of existing terminology,
we refer to such condition as difference-bounding with respect to another function.

Definition 3.1. We say that a function f : X ⊆ Rn → Rm is difference-bounded by g : X ⊆
Rn → Rk if there exists L ∈ R such that ‖ f (x)− f (y)‖ ≤ L‖g(x)− g(y)‖ for every x, y ∈ X .

Note, however, that imposing such a global condition might be undesirable in practice.
The data arising in machine learning applications often lies on low dimensional mani-
folds of irregular shape. Requiring the function’s adaptability to be uniformly bounded
throughout the space of inputs might result in excessive and unnecessary constraining.
Furthermore, in our case we are interested in having θ be consistent for neighboring inputs.
Thus, we seek instead a local notion of stability. Analogous to the local Lipschitz condition,
we propose a pointwise, neighborhood-based version of Definition 3.1:
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Definition 3.2. f : X ⊆ Rn → Rm is locally difference bounded by g : X ⊆ Rn → Rk if
for every x0 there exist δ > 0 and L ∈ R such that ‖x − x0‖ < δ implies ‖ f (x)− f (x0)‖ ≤
L‖g(x)− g(x0)‖.

Note that, in contrast to Definition (3.1), this second notion of stability allows L (and δ)
to depend on x0, that is, the “Lipschitz” constant can vary throughout the space. With this,
we are ready to define the class of functions which form the basis of our approach.

Definition 3.3. Let x ∈ X ⊂ Rn and Y ⊆ Rm be the input and output spaces. We say that
f : X → Y is a self-explaining prediction model if it has the form

f (x) = g
(
θ1(x)h1(x), . . . , θk(x)hk(x)

)
(4)

where:

P1) g is monotone and completely additively separable

P2) For every zi := θi(x)hi(x), g satisfies ∂g
∂zi
≥ 0

P3) θ is locally difference bounded by h

P4) hi(x) is some interpretable representation of x

P5) k is small.

In that case, for a given input x, we define the explanation of f (x) to be the set E f (x) ≡
{(hi(x), θi(x))}k

i=1 of basis concepts and their influence scores.

Clearly, the linear predictors that served as starting point for Definition 3.3 fall within
this class of functions. Various other function classes are contained in it, as stated in the
following Lemma, which we state without proof due to its simplicity.

Lemma 3.4. The following classes of models are self-explaining:

(i) Linear predictors (c.f. (3))

(ii) Generalized linear models

(iii) Nearest-neighbor classifiers

Naturally, the richness of this function class depends predominantly on the complexity
of the functions h( · ) and θ( · ). Thus, the true power of the models described in Defini-
tion 3.3 comes when θ(·) (and potentially h(·)) are realized by architectures with large
modeling capacity, such as deep neural networks. This allows f to model a much richer
class of functions. When at least θ(x) is realized with a neural network, we refer to f as
a self-explaining neural network (SENN). If g depends on its arguments in a continuous
way, f can be trained end-to-end with back-propagation. Since our aim is maintain model
richness even in the case where the hi are chosen to be trivial input feature indicators, we
rely predominantly on θ for modeling capacity, furnishing it with larger, higher-capacity
architectures.
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It remains to discuss how the properties (P1)-(P5) in Definition 3.3 are to be enforced.
The first two depend entirely on the choice of aggregating function g. Besides the trivial
function g(z1, . . . , zk) = ∑i zi, other additive functions of the form g(z1, . . . , zk) = ∑i Aizi
where Ai’s values are constrained to be positive. On the other hand, the last two conditions
in Definition 3.3 are subjective in the sense that they will depend on the application: what
and how many basis “concepts” are adequate should be informed by the problem and
goal at hand.

The only condition in Definition 3.3 that warrants further discussion is (P3): the stability
of θ with respect to h. For this, let us consider what the function f would look like if the θi’s
were indeed (constant) parameters. Looking at f as a function of h, that is, f (x) = g(h(x)),
let z = h(x). Using the chain rule we see that its derivative with respect to x would have
the form

∇x f = ∇z f · Jxh (5)

where Jx denotes the Jacobian of h (with respect to x). At a given point x0, we want θ(x0)
to behave as the derivative of f with respect to the concept vector h(x) around x0. Thus,
we would like θ(x0) ≈ Jh(x0). Although this is hard to enforce directly, we can instead use
(5) and plug in this ansatz to obtain a proxy condition

Lθ( f ) := ‖∇x f (x)− θ(x)T Jxh(x)‖ ≈ 0 (6)

All three terms in Lθ( f ) can be computed, and when using differentiable architectures h(·)
and θ(·), we can obtains gradients with respect to (6) through automatic differentiation
and thus use it as a regularization term in the optimization objective. With this, we obtain
a gradient-regularized objective of the form

Ly( f (x), y) + λLθ( f ) (7)

where Ly( f (x), y) is the classification loss and λ a parameter that trades off performance
against stability—and therefore, interpretability— of θ(x).

4 Learning interpretable basis concepts

Raw inputs are the natural basis for interpretability when the input is low-dimensional
and individual features are meaningful. Yet, even in that case they might lead to brittle,
noisy explanations. For example, explanations of computer vision systems based on raw
pixels are prone to imperceptible artifacts in the data, often hard to analyze coherently
and not robust to simple transformations such as constant shifts [Kindermans et al., 2017].

To avoid some of these shortcomings, we can instead operate higher level features. In
the context of images, we might be interested in the effect of textures or shapes—rather
than single pixels—on predictions. For example, in medical image processing higher-level
visual aspects such as tissue ruggedness, irregularity or elongation are strong predictors of
cancerous tumors, and are among the first aspects that doctors look for when diagnosing,
so it seems natural that such aspects be the “units” of explanation.

Ideally, these basis concepts would be informed by expert knowledge, such as the
doctor-provided features mentioned above. However, in cases where such prior knowledge
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is not available, we will need to learn the basis concepts. Interpretable concept learning is
a challenging task in its own right [Kim et al., 2017], and as other aspects of interpretability,
remains ill-defined. What is right level of abstraction for interpretability? What criteria
should be imposed on them? Here again, we take a systematic approach by stating
desirable conditions, and the proposing computational approaches to achieve them. A
minimal set of desiderata for a basis of interpretable concepts is:

i) Fidelity: the representation of x via concepts h(x) should preserve relevant informa-
tion of it

ii) Diversity: concepts should be “non-overlapping” and express different aspects of
the input, with each input represented in terms of only a few basis concepts.

iii) Grounding: each concept should have an immediate interpretation on human-
understandable aspects

Here, we propose to enforce these conditions on the set of basis concepts in our self-
explaining models by: (i) training h as an autoencoder, (ii) enforcing diversity through
sparsity and (iii) providing interpretation on the concepts by prototyping (e.g., by providing
a small set of training examples that maximally activate each concept). Learning of h is
done end-to-end in conjunction with the rest of the model. If we denote by ĥ( · ) : Rl → Rn

the decoder associated with h, and x̂ := ĥ(h(x)) the reconstruction of x, we use an
additional penalty Lh(x, x̂) on the objective, yielding:

Ly( f (x), y) + λLθ( f ) + ξLh(x, x̃) (8)

This is the training objective that we use in all the experiments in the next section.
We close this section by discussing approaches to achieve desideratum (iii), i.e., the

grounding of h(x). The most obvious solution consists of representing each concept by the
elements in the training data that maximize their value, that is, we can represent concept i
through the set

Xi = argmax
X̂⊆X,|X̂|=l

∑
x∈X̂

h(x)i (9)

where l is small, e.g. 5 or 10. A slightly different approaches would be to optimize over the
input space to find the (synthetic) input that maximally activates each concept (and does
not activate others). E.g. by solving for every i argmaxx∈X hi(x)−∑j 6=i hj(x). Alternatively,
when available, one might want to represent concepts via their learnt weights—e.g.,
by looking at the filters associated with each concept in a CNN-based h( · ). In our
experiments, we use approach (9), leaving the exploration of the two other approaches for
future work.

5 Experimental Results

5.1 Data and Model Details

5.1.1 Datasets
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MNIST. We use the original MNIST dataset with standard mean and variance normal-
ization, using 10% of the training split for validation.

Breast Cancer. Our second benchmark is the popular Breast Cancer Wisconsin (Diag-
nostic) Dataset from the UCI machine learning repository [Lichman, 2013]: a binary
classification task with tissue imaging measurements and an associated cancer diagnosis
label. In contains 569 examples and 32 continuous attributes. We preprocess the data by
scaling and use (80%, 10%, 10%) train, validation and test splits.

COMPAS Scores. The COMPAS Recidivism Risk Score dataset released by Propublica.
It is a publicly available1 dataset consisting of criminal recidivism (“relapse”) risk scores
produced by COMPAS, a proprietary algorithm by a private company (Northpointe) that is
currently used in the Criminal Justice System to aid in bail granting decisions. Propublica’s
study showing racial biased scores sparked a flurry of interest in the COMPAS algorithm
both in the media and in the fairness in machine learning community [Grgic-Hlaca
et al., 2018, Zafar et al., 2017]. We preprocess the data by rescaling the ordinal variable
Number of priors to the range [0, 1]. The data contains several inconsistent examples, so
we filter out examples whose label differs from a strong (80%) majority of other identical
examples.

5.1.2 Architectures

The architectures used in each task are summarized below, where CL/FC stand for
convolutional and fully-connected layers, respectively. Note that in every case we use more
complex architectures for the parametrizer than the concept encoder.

COMPAS/Cancer MNIST

h( · ) h(x) = x 2×CL→ FC(16,10)
θ( · ) FC(10, 5, 5, 1) LeNet+DropOut
g( · ) sum sum

In all cases, we train using the Adam optimizer with initial learning rate l = 2× 10−4

and, whenever learning h( · ), sparsity strength parameter ξ = 2× 10−5.

5.2 Evaluation Criteria

The notion of interpretability is notorious for eluding easy quantification [Doshi-Velez
and Kim, 2017]. Here, however, the motivation in Section 2 produced a set of desiderata
according to which we can validate our models. Throughout this section, we base the
evaluation on four main criteria:

(i) Performance: How well do our models perform at task of interest compared to their non-
modular, non interpretable counterparts?

1github.com/propublica/compas-analysis/
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In addition, we evaluate interpretability through:

(ii) Consistency: Does θ(x) really behave as relevance?

(iii) Stability: How consistent are the explanations for similar/neighboring examples?

(iv) Intelligibility: How understandable are the explanations? Do they provide useful insights?

Below, we discuss methods for evaluating (ii) and (iii). Naturally, we can quantify (i) with
standard accuracy metrics, while for (iv) we provide several examples of explanations for
qualitative assessment.

5.2.1 Consistency

Assessing whether the value of θi does indeed correspond to the importance of concept
h(x)i requires a reference “true” notion of influence to compare against. A common
approach to quantifying influence in the interpretability literature relies on removing
aspects of the input and observing the effect on the output. Depending on the structure
of the model and the type of input data, the notion of removal might be ambiguous,
and thus previous work often relies on heuristic choices, e.g., substituting input pixels
by random noise, white or averaged pixels. Although we could use a similar approach
when h is chosen to be the identity (i.e., the concepts are the inputs), in the case were the
concepts are learnt it is not clear what these perturbations would correspond to. Instead,
we leverage the additive structure of our model, which allows us to remove inputs by
setting their coefficient to zero. This intervention has the effect of predicting with that
concept “missing”. We can then use the change in probability of a particular class (e.g.,
the one with largest probability) to quantify the importance of that concept towards that
class. Formally, let y(i→0) for i ∈ {1, . . . , k} represent the output of the model when the
coefficient θi is set to 0 in the forward pass. We quantify the actual relevance of concept hi
as the drop in probability of the predicted class: yi − y(i→0). Although there is no reason
why the magnitude of these values should be the same as the θi’s, we would expect their
order to be similar if they are indeed behaving as relevance scores, that is, their relative
ordering should be preserved. A similar approach has been used by Samek et al. [2017]
and Arras et al. [2017].

5.2.2 Stability

As argued in Section 3, we seek a function θ that varies slowly with respect to h, in the
sense of Definition 3.2. Thus, we can quantify this stability by estimating, for a given input
x and neighborhood size ε, the bound L of that definition. Then, we can estimate the
overall stability of our method by analyzing the distribution of bounds Li for every test
example xi. The most straight-forward way to estimate this quantity is

L̂i = argmax
xj∈Bε(xi)

‖θ(xi)− θ(xj)‖2

‖h(xi)− h(xj)‖2
(10)
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Figure 2: Left: The effect of gradient-regularization on explanation stability. The unregular-
ized version (second row) produces highly variable, sometimes contradictory, explanations
for slight perturbations of the same input. The regularized version (λ = 2× 10−4) provides
substantially more robust explanations. Right: Prototypes for the 6 learnt concepts (rows).

To compute this, we leverage the fact that our models are fully differentiable and expressed
via computational graphs. In similar spirit to the work on adversarial examples (e.g.,
[Goodfellow et al., 2015]), we seek to optimize inputs in an adversarial manner. Here, how-
ever, we have full access to the model so we can simply use direct automatic differentiation
and back-propagation to optimize (10) for the maximizing argument xj. Note that this type
of evaluation is not available for post-hoc explanation frameworks. In our experiments, we
compute L̂i by minimizing a Lagrangian relaxation (11) through backpropagation.

This continuous notion of local stability might not be suitable for models with discrete
inputs or those where adversarial perturbations are overly restrictive (e.g., when the true
data manifold has regions of flatness in some dimensions). In such cases, we can instead
define a (weaker) empirical notion of stability based on finite sample neighbors. Let
X = {xi}n

i=1 denote a sample of points. For any x ∈ X, we define its ε-neighborhood
within Xt o be Nε(x) = {x′ ∈ X | ‖x− x′‖ ≤ ε}. The notion of interest is then

L̂i = argmax
xj∈Nε(xi)

‖θ(xi)− θ(xj)‖2

‖h(xi)− h(xj)‖2
(11)

Computation of this quantity, unlike (11), is trivial since it operates only over a finite
sample of points. To obtain an objective measure of stability, we compute this quantity on
the test set.

5.3 MNIST

We observed that any reasonable choice of parameters in our model leads to very low
test prediction error (< 3%). Since these variations are within the margin of error, we
focus here instead on the evaluation of explanations for this dataset. We first evaluate
SENN models trained on the MNIST dataset in terms of consistency (c.f. Section 5.2.2).
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Figure 3: Explanation consistency for a SENN predictor on MNIST with 20 concepts and
regularization λ = 1× 10−4.
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Figure 4: Effect of gradient regularization on prediction performance and local consistency
(as per (11) and (10), respectively) on the COMPAS (left) and Cancer (right) datasets.

The relevance scores and concept importance as measured by probability drop for a
single prediction is shown in Figure 3. We compute these profiles over the full test set and
measure their discrepancy using label ranking loss. The improvement in mean ranking loss
(from 26% to 54%) obtained by adding regularization shows that the proposed gradient
penalty indeed enforces faithfulness of the θ(x)i’s as relevance scores.

Next, we investigate the stability of the relevance scores. Figure 2 shows a randomly
selected input and the explanations produced by two version of our model for 5 random
and one adversarial perturbation (the maximizer of (10)).

5.4 COMPAS predictions

With default parameters, our SENNmodel achieves an accuracy of 82.02% on the test
set, compared to 78.54% for a baseline logistic classification model. The relatively low
performance of both methods is due to the problem of inconsistent examples mentioned
above. Since most of the variables in this dataset are discrete, and continuous perturbations
are not really meaningful, we use the discrete version of the local difference-bounding
condition (11) to quantify consistency. We compare this quantity and the task accuracy for
various regularization parameters in Figure 5. As expected, larger values of λ are correlated
with lower variation bounds, at the expense of slightly worse prediction performance.
Next, we qualitatively evaluate the consistency of the two model’s explanations for similar
examples on the test set. Following the inspiration of Propublica’s original study (racial
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Figure 5: Prediction explanation for two individuals differing in only one variable
(African American) in the COMPAS dataset. The method trained with gradient reg-
ularization (column b) yields more consistent explanations.

bias), we choose two examples which have identical values for all variables except the
(boolean) African American. The explanations produced by the two models are shown in
Figure 5. Confirming the quantitative results, the unregularized models’ relevance scores
θ(x) have little coherence for these two almost identical inputs.

5.5 Cancer

As with previous experiments, our models are able to achieve competitive performance on
this dataset for most parameter configurations. Since the input features are continuous, in
this case we use 10 to evaluate the local consistency around each point in the test set. The
tradeoff between stability and prediction accuracy through the choice of regularization
parameter λ is shown in Figure 4 (right). Somewhat surprisingly, in this case we observe
an important boost in performance brought by the gradient penalty, likely caused by the
additional regularization it imposes.

6 Related Work

Interpretability methods for neural networks. Various methods for computing relevances
of inputs on predictions of neural networks exist, such as Sensitivity Analysis [Simonyan
et al., 2014], Visualization with Deconvolutional Networks [Zeiler and Fergus, 2014], Layer-
wise Relevance Propagation [Bach et al., 2015], to name a few. For additional information
on these approaches, we refer the reader to excellent survey by Montavon et al. [2017].
These methods have in common that they do not modify existing architectures, instead
relying on a-posteriori computations to reverse-engineer importance values or sensitivities
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of inputs. Our approach differs both in what it considers the unit of explanation (general
concepts, not necessarily raw inputs) and how it uses it, with our model intrinsically
relying on the relevance scores it produces to make predictions, obviating the need for
additional computation. More related to our approach is the method of Lei et al. [2016],
who propose a neural network architecture for text classification which “justifies” its
predictions by means of selecting relevant tokens in the input text. This approach differs
from our method in that the downstream processing of this interpretable representation is
a complex neural network, so the method is transparent as to what aspect of the input it
uses for prediction, but not how it uses them.

Explanations through concepts and prototypes. Li et al. [2018] propose an inter-
pretable neural network architecture based on prototypes. The prediction is based on the
similarity of the input to a small set of prototypes, which are learnt during training. Our
approach can be understood as generalizing this approach beyond similarities to proto-
types into more general interpretable concepts. In addition, our proposed method differs
in how these higher-level representation of the inputs are used. More similar in spirit
to our approach of explaining by means of learnable interpretable concepts is the work
of Kim et al. [2017]. They propose a method for learning human interpretable concepts
through additional supervision; their framework relies on having human-annotated inputs
with a set of desired concepts, and finding inputs that maximally activate certain concepts
in a recognition network. Thus, their approach is focused around training rather than
modifying model architectures.

Residual architectures. The form of the proposed architecture is reminiscent of skip-
connections Srivastava et al. [2015] and residual networks He et al. [2016], which seek
training stability by adding short-cuts between layers of deep neural architectures which by-
pass some number of layers. Thus, the motivation for such approaches differs substantially
from this work; while skip-connections are sought for their effect on training convergence
of deep networks, here the design of the model is inspired by the interpretability of simple
models which act directly in inputs.

7 Discussion and future work

Interpretability and performance stand in apparent conflict in machine learning. The
results of this work suggest that drawing inspiration from classic notions of interpretability
to inform the design of modern complex architectures might hold the key to prove this a
false dichotomy. There are various possible extensions beyond the model choices discussed
here, particularly in terms of interpretable basis concepts. In terms of applications, the
natural next step would be to evaluate interpretable models in more complex domains,
such as multi-class image prediction or text analysis.
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