
Speech Recognition Final Project

An Weighted Finite State Machine

Implementation of Alignment and

Translation Models

Authors:

Andres Muñoz

David Álvarez-Melis

December 17, 2012

Contents

1 Introduction 1

2 The IBM Models 2

3 Alignment Model Implementation 5

3.1 An FSM IBM Model 2 . 5

3.2 Computing the AER . 8

4 Translation Model Implementation 9

5 Results 12

6 Conclusion 12

i

List of Figures

1 Automata for example parallel sentences. 5

2 Transition transducer encoding word-to-word translation probabilities. . 6

3 Permutation Automaton for target language sentence. 7

4 Automaton with most likely alignment. 7

5 Transducer computing 0-1 loss on pairs of alignments. 8

6 Transducer K after pruning at level .5 for the sentence “cette maison est

rouge”. Notice that the real translation is not even a contestant. . . . 10

7 Top 5 hypothesis according to ta bigram model.After composition with

a bigram model the score of the real translation appears. 11

ii

Abstract

We present a translation model based on weighted finite state machines. More

precisely, we implement and train an IBM2 alignment model on a weighted trans-

ducer and use this transducer to translate sentences from French to English. We

provide details of its characteristics.

1 Introduction

Machine translation has proven to be one of the most di�cult tasks in Natural

Language Processing [2]. The di�culties arising from this problem are countless:

the sintaxis of languages is not homogeneous, same words translate to several

di↵erent things and most of the time multiple words translate to one single word

and viceversa.

Since the amount of bilingual text for some languages is huge an statistical

approach is natural for attacking this problem and di↵erent attempts to solve it

have been tried for example: alignment models [1], phrase based translations [4]

and syntactic translation [6]. And the results obtained so far are quite impressive

considering the hardness of the problem.

The statistical approach to machine learning can be set up as follows: given a

sentence from a source langugage f we try to find the most likely sentence from

the target language e:

e⇤ = argmax
e

p(e|f)

Following the noisy channel approach we can recast this as

e⇤ = argmax
e

p(f |e)p(e)

The two parts of the noisy channel model are the translation model (p(f |e))

1

and the language model (p(e)). What we will do in this project is to implement

an IBM 2 model for the translation part of the problem and use a Backo↵ model

for evaluating the probability measure p(e). In the rest of the paper we will call

the source language french and the target language english. The rest of the paper

is as follows: first we talk about the IBM models as word alignment tools. Then

we present a way of encoding an IBM 2 model into a transducer and how to

obtain alignment probabilities and how to evaluate these alignments. Finally we

say how we can use this model as an automatic translator.

2 The IBM Models

In a seminal paper (Brown et al, 1993), a team of IBM reasearchers proposed a

series of models for statistical alignment, which would become the foundations for

many other machine translation techinques. The models are increasingly complex,

and incorporate more features and less simplifications than the previous one. The

second one, also known as IBM2, is simple enough to be easy to implement but

at the same time it incorporates some crucial features shared by all the other

models. It is this model that we study in this work.

The motivation for IBM2 comes when dealing with the problem of how to

model p(f1 . . . fm|e1 . . . el,m). This conditional probability is very complicated

to model directly. The idea that all IBM models share is to introduce additional

alignment variables, and thus, to try to model

p(f1 . . . fm, a1 . . . am|e1 . . . el,m) (2.1)

instead, where a = (a1 . . . am) is a vector of alignment variables. Here, aj = k

means that the source language word fj is aligned to the target word ek. With

this, we can e↵ectively obtain the required probability by summing over the newly

2

introduced alignment variables as follows

p(f1 . . . fm|e1 . . . el,m) =
X

a

p(f1 . . . fm, a1 . . . am|e1 . . . el,m)

The next step is to decompose the term in (2.1) into simpler terms. First, let

us formalize the argument above by denoting with capital letters the random

variables A,F,E and with lower-case letters the corresponding values that they

take. Also, let us denote fm
1 = f1 . . . fm and el1 = e1 . . . el to simplify the notation.

Thus, we are interested in simplfying

p(Fm
1 = fm

1 , Am
1 = am1 |El

1 = el1)

for which we can use the product rule to obtain

p(Fm
1 = fm

1 , Am
1 = am1 |el1) = p(Am

1 = am1 |El
1 = el1, L = l,M = m) (2.2)

· p(Fm
1 = fm

1 |Am
1 = am1 , El

1 = el1, L = l,M = m) (2.3)

For the first of these terms, we make the (strong) assumption that alignments are

independent of particular words attached and of other alignments, and thus we

can obtain

p(Am
1 = am1 |El

1 = el1, L = l,M = m) =
mY

i=1

p(Ai = ai|Ai�1
1 = ai�1

1 , El
1 = el1, L = l,M = m)

=
mY

i=1

p(Ai = ai|L = l,M = m)

Thus, we set

p(Ai = ai|L = l,M = m) = q(ai|i, l,m)

whre q is a probability function to be determined. There are many possibilities for

this function. A common choice is to set it so as to penzlize excesive movement

3

of words during translation. That is, we seek to penalize words that are displaced

far away from their original position. One possibility to implement this is to chose

q(ai|i, l,m) = e�↵|i�j l
m |

For the other term in (2.3) we make an equally strong independence assumption.

We will suppose that the value of Fi depends only on the english word that is

aligned to it. With this, we can write

p(Fm
1 = fm

1 |Am
1 = am1 , El

1 = el1, L = l,M = m) =

=
mY

i=1

p(Fi = fi|F i�1
1 , Am

1 = am1 , Em
1 = em1 , L = l,M = m)

=
mY

i=1

p(Fi = fi|Eai = eai)

If we denote p(Fi = fi|Eai = eai) = t(fi|ej), then our goal has been reduced to

finding the transition probabilities t(fi|ej). These are usually trained by using an

Expectation-Maximization algorithm, by iterating on observed parallel sentences.

The method can be initialized with t(fi|ej) as uniform distributions, although it

is a common practice to use a simpler model (in this case, IBM1) to get a “warm”

start for the iterative process.

With this model built, we can find the most probable alignment under thw

model by computing

arg max
a1...am

p(am1 |fm
i , el1,m)

which, in view of the previous analysis, yields

ai = arg max
j2(0,...,l)

q(j|i, l,m) · t(fi|ej)

4

3 Alignment Model Implementation

In this section we present an implementation of the alignment model for machine

translation. In Section 3.1 we list the Finite State Machines required for the task

and display the Automata and Transducers for a simple example.

3.1 An FSM IBM Model 2

Suppose we are given a pair of translated sentences (e, f). For the purpose of

exemplification, we will use the following simple pair of sentences in French and

English:

e = “The red house”, f = “La maison rouge ”

The first ingredient required in the FSM implementation of IBM2 are the

auotmata encoding these sentences. We will denote them by F and E . They

consist simply of linear automata of lengths |e| = l and |f | = m, respectively,

with unweighted transitions labeled as the words e1e2 . . . el and f1f2 . . . fm. At

this point we warn the reader that although E will not be built explicitly in

the actual implementation, it is helpful for the purpose of developing the theory

behind to consider it. The automata for the example sentence are shown in Figure

1.

0 1
The

2
red

3
house

0 1
La

2
maison

3
rouge

Figure 1: Automata for example parallel sentences.

5

The next step is to encode the transition probabilities t(f |e) in a weighted

transducer T , with input labels in Vf and output labels in Ve. It will we a flower

transducer with transition for each possible pair of translated words (f, e). The

number of such transitions for a particular word f will naturally depend on the

number of english words that appeared in parallel senteces to f in the training

corpus. The weights of these transitions, namely t(f |e), are trained externally by

using the EM method. The conceptual transducer representing this is shown in

Figure 2.

0

f:e/t(f|e)

Figure 2: Transition transducer encoding word-to-word translation probabilities.

The next step consists of introducing permutations of positions in the sentece

by composing with a suitable transducer. This transducer ⇧ should act on E and

send it to another automaton where each pair of states are joined by l transitions,

one for each possible choice of word in english. These transitions have weights

corresponding to the alignment probabilities q(ai|i, l,m), which according to the

previous section, can be taken as e�↵|i�j l
m | for IBM2. We denote this automaton

by EP = ⇧ � E .

For computational purposes, it turned out to be more e�cient to directly

build EP from the target language sentece provided, instead of creating E and

then composing it. For the example sentence, the aforementioned automaton is

shown in Figure 3.

Note in the figure above the “o↵-diagonal” penalty introduced by the choice

of function for q(ai|i, l,m): the cost of aligning The, red and house with the first,

second and third words in french, respectively, is zero in each case. Indeed, as

6

0 1

The/0

red/0.200

house/0.400
2

The/0.200

red/0

house/0.200
3/0

The/0.400

red/0.200

house/0

Figure 3: Permutation Automaton for target language sentence.

said before, words are penalized for departing their original position.

With the finite state machines EP , T and F as described above, we can finally

obtain alignment probabilities for e and f with the following cascade:

A⇤ = EP � T � F (3.1)

By projecting A⇤ into the target space a finding the minimal cost path on it,

we can e↵ectively compute the most likely alignment of f into e. The fsm ...

library code required to compute this is the following:

fsmcompile �s log �i fwords.syms <AutoFr.txt | fsmcompose ...

� translator.fsm | fsmcompose � Align.fsm | fsmconvert ...

�s tropical | fsmbestpath � | fsmproject �2 � ...

>Predicted.fsm

For the example used throughtout this section, the best alignment, along with

its transition costs over log semiring is shown in Figure 4.

0 1
La:The/3.873

2
maison:house/2.618

3/0
rouge:red/0.851

Figure 4: Automaton with most likely alignment.

7

As we can see in this automaton, the optimal alignment is a = (1, 3, 2), that

is, the word maison, originally in the second position, is mapped to the third

english word house. Analogosuly, rouge is aligned to red.

3.2 Computing the AER

A useful way of measuring the “goodness” of a predicted alignment is the Align-

ment Error Rate (AER), first proposed by Och and Ney (2003). This metric

requires a gold standard manually annotated set of word-word pairs, labelled

“Sure” and “Possible”. The former are used for measuring Recall, while the lat-

ter are used for Precision. If P is the set of possible alignments, S the sure ones

and A the predicted alignment, then the AER associated to A has the following

form

AER(A,P, S) = 1� |P \A|+ |S \A|
|S|+ |A| (3.2)

It is possible to implement a FSM that computes the AER of a predicted

alignment. For this, the main ingredient is a flower transducer K with transitions

labelled by input and output labels in I = {1, . . . ,max l,m}, the set of possible

word indices within the sentence. The weights of these transitions corresponds

to a 0� 1 loss, where w(i, j) = 0 if i = j and w(i, j) = 1 otherwise. A conceptual

representation of K is shown in Figure 5.

0/0

i:j/1
i:i/0

Figure 5: Transducer computing 0-1 loss on pairs of alignments.

In order to use this scoring transducer for a pair of gold and predicted align-

ments, we need to encode these in terms of the position indices of the alignment.

8

That is, we will create the automata P and G of length |f | = l, by labelling the

i-th transition with j if fj is aligned to ej . transition with the index

The actual fsm library code used to compute the AER is shown below.

fsmcompose Gold.fsm ScoreTrans.fsm | fsmcompose � ...

Predicted.fsm |

fsmbestpath | fsmproject �1 | fsmpush �cf>Scored.fsm

Before using this code, we have multiplied the weights of the predicted au-

tomaton by 0. This is necessary because Predicted.fsm is obtained through

the process described in the previous section, and thus in inherently has weighted

transitions. The weight in the final state of Scored.fsm will correspond to the

number of wrong alignments, which can then be used to compute the AER with

(3.2).

4 Translation Model Implementation

As the previous sections have shown the IBM models are “alignment” models

and they do precisely that, they align which is not necessarily the problem we

want to solve. What we need is to find the best possible translation given only a

sentence in french.

When evaluating alignments in reality using a transducer doesn’t help much

in times of speed or space since keeping the data on a table is actually faster to

access and uses the same space, the real use of transducers is apparent when we

try to obtain real translations in reasonable time.

When translating from French to English, every word in French can be trans-

lated to 40-100,000 words depending on which words was it seen with in the

training data. For example the word ‘est’ could be translated to one of 96909

9

words which is basically all the english training vocabulary. Thus a sentence of

20 words could be translated on average to one of the 100020 possible sentences

(being conservative) and this if we only consider english sentences that are the

same length as the source one. This gives a huge search space where any search

algorithm, even the most e�cient would take a really long time to converge.

Nevertheless we know that a lot of this sentences are not likely to be accurate

translations so we use the weighted transducer machinery to reduce this search

space. We explain the procedure:

If we denote the automaton representing the source sentence as F then we

compose K = T � F . This is by far the most costly operation. To simplify this

problem we allow english sentences that are only of the size of the source sentence.

We also reduce the search space by letting each french word to only translate to

the most likely english words. We achieve this by pruning the translator wtih

fsmprune �c 1. The change on size in the automaton K is impressive since

the new automaton consists of only 2000 transitions on average. Most if not all of

the transitions that were pruned were epsilon transitions from the input language,

i.e. transitions that would make the translated sentence larger than the original.

0 1

cette:containing/1.423

cette:deplores/1.178

cette:devolving/1.203

cette:Five/1.323

cette:gaggle/1.169

cette:predicament/1.261

cette:rebalanced/1.245

cette:spine/1.326

cette:Ursula/1.167

cette:washing/1.394

2

maison:halfway/1.638

maison:timer/1.833

maison:Wright/1.600

3
est:east/0.683

est:is/0.786
4/0

rouge:red/0.651

Figure 6: Transducer K after pruning at level .5 for the sentence “cette maison est

rouge”. Notice that the real translation is not even a contestant.

We now need to get some information about the likelihood of this sentences

in english so we compose the last automaton with a language model. It turns out

10

that even after pruning composing with a trigram model is computationaly too

expensive so we cmopose K with a Backo↵ bigram model and obtain the n-best

sequnces. In practice n = 50 yielded resaonable results.

0

1this/5.173

6this/5.173

11
this/5.173

16

this/5.173

21

this/5.173

2
house/8.588

7
home/13.06

12
homes/14.91

17
acquired/15.19

22
house/8.588

3is/4.624
4red/13.11

5/0</s>/5.221

8is/5.629 9red/13.11 10/0
</s>/5.221

13
is/5.538

14
red/13.11

15/0
</s>/5.221

18
is/6.125

19

red/13.11

20/0
</s>/5.221

23

adopted/12.78

24

red/13.31

25/0
</s>/5.221

Figure 7: Top 5 hypothesis according to ta bigram model. After composition with a

bigram model the score of the real translation appears.

Finally for each of the hypotheses e we create a new automaton that represents

the possible permutations (or alignments)of the sentence. This automaton uses

the hypothesis of IBM 2 that a word in position i aligns to position j with

probability / e�↵|j�i|. Nevertheless since there are english words that appear

too often for exampe ‘is’ or ‘of’, by letting them take any possible alignment we

are going to end up with a sentences that only includes those words, thus we

allow only permutations such that ei is always more likely than any other word in

position i. After creating the alignment model we compose this with the trigram

model and obtain the best path.

0 1
this/8.798

2
house/15.47

3
is/8.558

4
red/25.80

5/0
</s>/10.77

It is worth saying that the use of the language model is crucial in the perfor-

mance of the algorithm, as you can see in figure 6 the translation model on its

own doesn’t even consider the real translation as a plausible hypothesis.

11

5 Results

The Finite State Machines introduced in the two previous sections were im-

plemented using the fsm library. It was tested in the Canadian Hanshard

dataset, containing transcribed debates of the Canadian House of Commons.

This parallel French- English corpus has more than 1,000,000 sentences, although

because of computing limitation, we used only 50, 000 of those.

To test the method, we had an additional test set with 447 translated sen-

tences, along with their gold starndard alignments. The AER obtained in this

set was 42.1%, while Precision and Recall where 58.93% and 68.72, respectively.

With out current implementation, the computation of these measures takes about

30 minutes.

This relatively poor result shows that out implementation, and the underlying

IBM model 2 are too simplistic. Common errors found corresponded to french

words aligning to too many english words, instead ob being align to the null word.

Unfortunately we weren’t able to present performance results on the transla-

tion (word error rate or BLEUE score) because of time constrains. By running

some examples though we saw that it was really bad for sentences of more than 5

words. For really simple sentences though it performed rather well even when the

sentences weren’t reallly related to the training set. Nevertheless the intention

of our project wasn’t to beat the state of the art algorithms for translation but

to give a reasonable introduction to alignment models and run the translation

search on a transducer which eventhough is slow I can only imagine that it would

be much worse without the help of the fsm�library.

12

6 Conclusion

We have shown an implementation of alignment and translation models with

Weighted Finite State Machines. We o↵ered a motivation for and briefly reviewed

the statistical theory and assumptions behind the IBM model 2.

The model used is extremely simplistic and is seldom used in practice anymore.

Better, more involved models have been developed progressively over the last

years. For example, phrase-based methods attempt to improve on one of the

main disavantages on word-based translation by keeping phrases in nonseparable

“phrase” nuclei (usually 1 to 3 words), and then permutting alignments of those.

Syntax-based models [6], in addition, incorporate POS tags and Syntax Trees, in

order to better exploit characteristics of the target and source languages when

translating (e.g. verb placement in a sentence).

Despite its de�ciencies and simplicity, the IBM model 2 is a valuable tool for

understanding the main ideas behind Machine Translation. In addition, it allows

for a relatively simple implementation as a cascade of Finite State Machines.

We were really happy with the results of the translator, we are aware that the

word allignment error is rather big but considering this was done using a really

simplistic model we believe the results are good. The major challenge we faced

during this work was that of reducing the search space and taking into account

the alignments while translating. After finishing this work we believe there are

probably better ways of encoding a translator than a transducer. The biggest

problem of a transducer approach on our view is that as opposed to speech recog-

nition there is no ‘time’ component since the permutations that the translation

model induce kill any idea of sequential transformation and so methods like beam

search are doomed to fail.

13

References

[1] P. Brown, S. Della Pietra, V. Della Pietra, and R. Mercer, The

mathematics of statistical machine translation, Computational Linguistics, 19

(1993), pp. 263–311.

[2] D. Jurafsky and J. H. Martin, Speech and Language Processing - An

introduction to Natural Language Processing, Computational Linguistics, and

Speech Recognition, Pearson Prentice Hall, second ed., 2008.

[3] K. Knight and Y. Al-Onaizan, Translation with finite-state devices, in

Proceedings of the Third Conference of the AMTA, Springer-Verlag, 1998,

pp. 421–437.

[4] P. Koehn, F. J. Och, and D. Marcu, Statistical phrase-based translation,

in Proceedings of the 2003 Conference of the North American Chapter of

the Association for Computational Linguistics on Human Language Technol-

ogy - Volume 1, NAACL ’03, Stroudsburg, PA, USA, 2003, Association for

Computational Linguistics, pp. 48–54.

[5] S. Kumar and W. Byrne, A weighted finite state transducer implemen-

tation of the alignment template model for statistical machine translation,

in Proceedings of HLT-NAACL, Association for Computational Linguistics,

2003, pp. 63–70.

[6] K. Yamada and K. Knight, A syntax-based statistical translation model,

in Proceedings of the Conference of the ACL, 2001, pp. 523–530.

Code

import csv, random, re, os,sys, subprocess

14

from math import exp

alpha=.2

path1 = "data/test/"

path2 = "testAutomata/"

en file = open(path1+"test.e","rb").readlines()

fr file = open(path1+"test.f","rb").readlines()

align file = open("data/answers/test.wa.nullalign","rb")

line = align file.readline()

line = line.split()

totalError = 0

validErrors = 0

def P(j,i,m,n):

return alpha

*

abs(j�i
*

n/m);

for sentence num in range(1,len(en file)):

en text = re.sub(r'(<s snum=\d+>)', ...

r'',en file[sentence num�1])

en text = re.sub(r'(</s>)', r'',en text)

fr text = re.sub(r'(<s snum=\d+>)', ...

r'',fr file[sentence num�1])

fr text = re.sub(r'(</s>)', r'',fr text)

en words = en text.split();

fr words = fr text.split();

en m = len(en words)

fr m = len(fr words)

#First, create alignments

15

en align filename = 'AlignedEn'+str(sentence num)+'.txt'

en align automaton = open(path2+en align filename,'w')

for i in range(0,fr m):

s = str(i) + "\t" + str(i+1);

for j,word in enumerate(en words):

weight = P(j,i,fr m,en m);

en align automaton.write(s + "\t" + ...

word + "\t" + str(weight) + "\n");

en align automaton.write(str(fr m));

en align automaton.close()

os.system("fsmcompile �s log �i enwords.syms ...

<"+path2+en align filename\

+"> testAutomata/Align"+str(sentence num)+".fsm")

English � Position Mapper transducer

en posMap filename = 'PosMap'+str(sentence num)+'.txt'

en posMap = open(path2+en posMap filename,'w')

for j,word in enumerate(en words):

en posMap.write(str(0) + "\t" + str(0) + ...

"\t" + word + "\t"+str(j+1) + "\n");

en posMap.write(str(0));

en posMap.close()

os.system("fsmcompile �i enwords.syms �t ...

<"+path2+en posMap filename\

+"> testAutomata/PosMap"+str(sentence num)+".fsm")

fr filename = 'AutoFr'+str(sentence num)+'.txt'

fr automaton = open(path2+fr filename,'w')

16

k=0

for i in range(0,fr m):

fr automaton.write(str(k)+'\t'+str(k+1)+'\t'

+fr words[i]+'\n')

k = k+1

fr automaton.write(str(k))

fr automaton.close()

instruction = "fsmcompile �s log �i fwords.syms ...

<testAutomata/AutoFr"\

+ str(sentence num)+".txt | fsmcompose � ...

translator.fsm | fsmcompose � testAutomata/Align"\

+str(sentence num)+".fsm | fsmconvert �s tropical | ...

fsmbestpath � | fsmproject �2 � >"\

+"testAutomata/Predicted"+str(sentence num)+".fsm"

os.system(instruction)

Print predicted in terms of position

os.system("fsmcompose ...

testAutomata/Predicted"+str(sentence num)+".fsm ...

testAutomata/PosMap"\

+str(sentence num)+".fsm | fsmproject �2 | fsmarith ...

�m 0 � >testAutomata/PredictedPos"\

+str(sentence num)+".fsm")

os.system("rm "+path2+en align filename)

os.system("rm "+path2+fr filename)

Read Gold Alignments and Create Transducer with Them

17

gold aut = ...

open(path2+'Gold'+str(sentence num)+'.txt','w')

gold pos aut = ...

open(path2+'GoldPos'+str(sentence num)+'.txt','w')

NumSures = 0

while int(line[0]) == sentence num:

if not int(line[2])==0: # Dont know how to ...

deal with nulls in french. Pretend they ...

are not there.

if int(line[1])==0: #Fr word ...

mapped into NULL

gold aut.write(str(int(line[2])�1)\

+'\t'+line[2]+'\t'+"NULL"+'\n')

gold pos aut.write(str(int(line[2])�1)+'\t'+\

line[2]+'\t'+str(en m+1) +'\n')

else:

gold aut.write(str(int(line[2])�1)\

+'\t'+line[2]+'\t'+\

en words[int(line[1])�1]+'\n')

gold pos aut.write(str(int(line[2])�1)\

+'\t'+line[2]+'\t'+str(int(line[1]))+'\n')

if line[3] == 'S':

line = line.split()

gold aut.write(str(fr m))

gold pos aut.write(str(fr m))

gold aut.close()

gold pos aut.close()

gold pos aut = open(path2+'GoldPos'\

+str(sentence num)+'.txt','r+')

18

if not int(gold pos aut.readline()[0])==0: # File ...

doesnt start with the 0 node

gold pos aut.close()

f= open(path2+'GoldPos' +

str(sentence num)+'.txt' , 'r')

lines = f.readlines()

lines.sort()

f.close()

writer = open(path2+

'GoldPos'+str(sentence num)+'.txt','w')

writer.writelines(lines)

writer.close()

os.system("fsmcompile <testAutomata/GoldPos"\

+ str(sentence num)+".txt>testAutomata/GoldPos"\

+str(sentence num)+".fsm")

Position Flower to score

transducer = ...

open(path2+'ScoreKroneckerPos'+str(sentence num)+'.txt','w')

for i in range(1,en m+2):

for j in range(1,en m+2):

if i==j:

transducer.write("0\t0\t"+ ...

str(i) + "\t" + str(j) + ...

"\t" + str(�1) + "\n");

else:

transducer.write("0\t0\t"+ ...

str(i) + "\t" + str(j) + ...

"\t" + str(0) + "\n");

transducer.write("0\t0")

transducer.close()

19

instruction = "fsmcompile �t <"+path2+ ...

"ScoreKroneckerPos"+

str(sentence num) + ".txt>"+path2 + ...

"ScoreKroneckerPos" + str(sentence num)+".fsm"

os.system(instruction)

MultCost = �1.0/(NumSures + fr m) # Para ...

calcular AER se necesita (|P int A | + |P int ...

S |) /(|S |+ |A |)

instruction = "fsmcompose ...

testAutomata/GoldPos"+str(sentence num)\

+".fsm ...

testAutomata/ScoreKroneckerPos"+str(sentence num)+".fsm ...

| fsmcompose � testAutomata/PredictedPos"\

+str(sentence num)+".fsm | fsmbestpath | fsmproject ...

�1 | fsmarith �m "+str(MultCost)+ " | fsmpush ...

�cf>testAutomata/Scored"+str(sentence num)+".fsm"

os.system(instruction)

a =subprocess.Popen("fsmprint

testAutomata/Scored"+str(sentence num)+".fsm" , ...

shell=True,stdout=subprocess.PIPE)

(out,err) = a.communicate()

nums = re.findall(r"0+\.?\d+", out)

if not not nums:

error = 1�float(nums[0])

totalError = totalError + error

validErrors = validErrors + 1

print totalError/validErrors

20

print totalError/validErrors

21

