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Complex Networks

Diffusion Dynamics

Given a vector of initial heat values v the change in temperature at node i
with respect to time is given by

dvi
dt

= −K
∑
i∼j

vi − vj

or

dv

dt
= −KLv

where L is the graph Laplacian. This is a symmetric, positive semi–definite
matrix so the value at time t is

v(t) =

n∑
i=1

civ
ie−λit

where the (vi, λi) are eigenpairs for L.
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Diffusion Animation
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Degree Matrix

D =



1 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 6 0 0 0 0
0 0 0 0 5 0 0 0
0 0 0 0 0 4 0 0
0 0 0 0 0 0 4 0
0 0 0 0 0 0 0 3



Degree Centrality: You are popular if you have many friends.
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Complex Networks

Adjacency Matrix

A =



0 0 0 1 0 0 0 0
0 0 0 1 1 1 1 1
0 0 0 1 1 0 0 0
1 1 1 0 1 1 1 0
0 1 1 1 0 1 0 1
0 1 0 1 1 0 1 0
0 1 0 1 0 1 0 1
0 1 0 0 1 0 1 0


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Complex Networks

Eigenvector Centrality

• Intuitively: You are popular if your friends are popular

• Formally: Your popularity should be proportional to the sum of your
friends’ popularities.

• Mathematically: Given a vector v whose entries represent the initial
popularity of each node in the network we seek a solution to:

vi = λ
∑
i∼j

vj =

n∑
j=1

Ai,jvj

or equivalently:

v = λAv
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Toy Eigenvector Centrality

v =



0.1052
0.4470
0.2022
0.4508
0.4155
0.3926
0.3683
0.2873


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Dynamics on Networks

• Adjacency
• Matrix: A
• Symmetric, binary
• Eigenvector centrality – leading eigenvector

• Laplacian

• Matrix: L = D −A
• Positive semi–definite
• Discretized version of Laplacian heat diffusion
• Fiedler value: smallest non–zero eigenvalue

• Random Walk

• Matrix: AD−1

• Stochastic, regular if G is connected
• Transition matrix of associated Markov process
• Convergence governed by second largest eigenvalue
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Spectral Graph Theory

Fan Chung: Spectral Graph Theory, AMS, (1997).

“Roughly speaking, half of the main problems of spectral theory lie in
deriving bounds on the distributions of eigenvalues. The other half concern
the impact and consequences of the eigenvalue bounds as well as their
applications.”
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What is a multiplex?

Definition

A multiplex is a collection of graphs all defined on the same node set.

Formally, M = (V, (E1, E2, . . . , Ek)) where (V,Ei) is a graph for all i.

(a) Family (b) Colleagues (c) Facebook
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What is a Multiplex?

Karnataka Village Data1

(a) Village 5 (b) Village 61

Figure: Karnataka Villages

1 A. Banerjee, A.G. Chandrasekhar, E. Duflo, and M.O. Jackson, The Diffusion of Microfinance. Science, (2013).
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What is a Multiplex?

Village Layers

Layer Village 5 Village 61
Description Density Comp. Giant % Density Comp. Giant %

Borrow Money .0082 26 .8354 .0108 15 .9188
Give Advice .0077 49 .5892 .0098 34 .7377

Help Make Decisions .0076 61 .1277 .0100 24 .8562
Borrow Kerosene or Rice .0085 21 .8338 .0113 14 .9171

Lend Kerosene or Rice .0086 22 .8308 .0113 14 .9255
Lend Money .0081 14 .7908 .0107 17 .9036

Medical Advice .0075 84 .2938 .0106 14 .9306
Friends .0089 15 .9277 .0105 22 .8714

Relatives .0085 29 .7231 .0105 26 .5448
Attend Temple With .0073 117 .0462 .0089 108 .0372

Visit Their Home .0087 15 .9185 .0116 11 .9475
Visit Your Home .0088 16 .9108 .0117 11 .9492

Aggregate .0121 3 .9862 .0155 8 .9679

Table: Layer information for two of the Karnataka Villages.
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Medical Advice

(a) Village 5 (b) Village 61
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What is a Multiplex?

World Trade Web2

Figure: World trade networks

2 R. Feenstra, R. Lipsey, H. Deng, A.C. Ma, and H. Mo. World Trade Flows: 1962-2000. NBER Working Paper 11040, (2005).
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What is a Multiplex?

WTW Layers

Layer Description Volume % Total Transitivity

0 Food and live animals 291554437 5.1 .82
1 Beverages and tobacco 48046852 0.9 .67
2 Crude materials 188946835 3.3 .79
3 Mineral fuels 565811660 10.0 .62
4 Animal and vegetable oils 14578671 0.3 .64
5 Chemicals 535703156 9.5 .83
6 Manufactured Goods 790582194 13.9 .87
7 Machinery 2387828874 42.1 .85
8 Miscellaneous manufacturing 736642890 13.0 .83
9 Other commodities 107685024 1.9 .56

All Aggregate Trade 5667380593 100 .93

Table: Layer information for the 2000 World Trade Web.
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Multiplex Representations

Given an n node multiplex M = (V, (E1, E2, . . . , Ek)) there are several
ways to represent the data with a single network.

• Disjoint Layers: Form an nk node network with no connections
between the edge sets:

∐k
i=1(V,Ei).

• Aggregate:

• Weighted: Form an n node weighted graph whose edge set is a
multiset (V, ∪̇ki=1Ei).

• Thresholded: Fix a parameter ` ≥ 1 and form an n node network
(V, {(i, j) : (i, j) ∈ Em for at least ` values of 1 ≤ m ≤ k}

• Matched Sum∗: Start with the disjoint layers model and then
connect all copies of the same node. That is, nαi ∼ n

β
j if and only if:

• α = β and (i, j) ∈ Eα
• or α 6= β and i = j.

∗Manlio De Domenico, Albert Solé-Ribalta, Emanuele Cozzo, Mikko Kivelä, Yamir

Moreno, Mason A. Porter, Sergio Gómez, and Alex Arenas, Mathematical formulation

of multilayer networks, Physical Review X 3 (2013), 4, 041022.
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Multiplex Null Models

Definition

The multiplex null model with n nodes and k edge sets, where each layer is
an Erdos–Renyi (ER) graph with connection probability pi will be denoted:

MER(n, k, (p1, p2, . . . , pk)).

Definition

The multiplex null model with n nodes and k edge sets, where each layer
is an Stochastic Block Model (SBM) graph with connection matrix Pi and
partition zi will be denoted:

MSBM(n, k, (z1, z2, . . . , zk), (P1, P2, . . . , Pk)).
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Multiplex Representations

Disjoint Layers

Figure: Disjoint Layers



Multiplex Networks

Multiplex Representations

Aggregate Representations

(a) Disjoint Layers (b) Aggregate
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Multiplex Representations

Matched Sum

(a) Disjoint Layers (b) Matched Sum
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Multiplex Representations

Adjacency Matrices

We can represent the matched sum with a supra–adjacency matrix:
A1 wIn · · · wIn wIn
wIn A2 · · · wIn wIn

...
. . .

. . .
. . .

...
wIn wIn · · · Ak−1 wIn
wIn wIn · · · wIn Ak


where the Aα are the adjacency matrices of the individual layers and w is
a connection strength parameter.
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Network Properties of the Matched Sum

Although the original motivation for the matched sum was dynamical (the
supra–Laplacian∗) many applications of the supra adjacency methods are
equivalent to studying the matched sum as a single network.

Our first task is to observe how the matched sum behaves under standard
network measures. We use the MER(n, k, (p, p, . . . , p) as the main object
of study and are particularly interested in the behavior as k →∞ as the
number of inter–layer edges has an increasingly large effect on the global
structure.

∗S. Gómez, A. D́ıaz-Guilera, J. Gómez-Gardeñes, C. J. Pérez-Vicente, Y. Moreno, and

A. Arenas, Diffusion dynamics on multiplex networks, Physical Review Letters 110

(2013), 2, 028701.
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Multiplex Representations

Matched Sum Properties

Proposition

For MER(n, k, (p, p, . . . , p)) the expected density and expected local
clustering coefficient are:

pk
(
n
2

)
+ n

(
k
2

)(
nk
2

) ≈ p

k
+

1

n
and

(
k−1
2

)
+ p3n2(

pn+(k−1)
2

) .

(a) Density (b) Clustering Coefficient
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MER Eigenvector Centrality

(a) MER(100,3,(.11,.16,.21)) (b)
MER(100,10,(.11,.12,.13,.14,.15,.16,.17,.18,.19,.20))



Multiplex Networks

Multiplex Representations

MER Clustering

Proposition

If (V,Ei) is connected for all i, the k partition that separates all layers
from each other is a local minimum for the (ratio) cut.

Proposition

If (V,Ei) is connected for all i, the k partition that separates all layers
from each other is a local maximum for modularity.
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Multiplex Representations

MSBM Clustering

(a) Two Clusters (b) Four Clusters
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Multiplex Representations

Random Walk Convergence

(a) Random Walk: Convergence (b) Projected Walk: Steps to Escape
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Multiplex Representations

Matched Sum Diffusion

(a) Inter vs. Intra (b) supra–Laplacian Eigenvalues
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Dynamical Formulation

Dynamics Setup

Given a multiplex M = (V, (E1, E2, . . . , EK)) and a collection of
operators Di associated to (V,Ei) we wish to construct a method for
extending the dynamics to the global structure. We begin by letting D be
the operator that acts diagonally on each respective component by Di.
That is, given a 1× nk vector with values associated to each element nαi
we define the action:

Dv =


D1 0 · · · 0
0 D2 · · · 0

. . .
. . .

. . .
. . .

0 0 · · · Dk

 v =


D1v

1

D2v
2

...
Dkv

k


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Dynamical Formulation

Dynamics on Multiplex Networks

• Two types of interactions
• Within the individual layers
• Between the layers

• Effects should “pass through”
nodes

• Two step iterative model

• Symbolically:

(w)αi =

k∑
β=1

mα,β
i cα,βi (Dv)βi
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Dynamical Formulation

Matrix Realization

The matrix associated to the total operator also takes a convenient block
form: 

C1,1D1 C1,2D2 · · · C1,kDk

C2,1D1 C2,2D2 · · · C2,kDk

...
...

...
...

Ck,1D1 Ck,2D2 · · · Ck,kDk


Where the {Cα,β} are the diagonal proportionality matrices with diagonal

given by (mα,β
1 cα,β1 , . . . ,mα,β

n cα,βn ). When mα,β
i = 1 for all α, β, and i

we say the operator is closed.
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Dynamical Formulation

Choice of Coefficients

• Equidistribution (De)

• cα,βi = 1
k

• Cα,β = 1
k
I

• Starting Point/Aggregate

• Ranked Layers (Dh)

• cα,βi = cα

• Cα,β = cαI
• Global layer rankings
• Villages

• Unified Node (Du)

• cα,βi = cαi
• Cα,β = Cα

• Local node rankings
• WTW

• General Model (D)

• cα,βi = cα,βi
• Pairwise comparisons

between node copies
• Anything goes/Matched

Sum
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Eigenvector Centrality Comparison
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Eigenvector Centrality Comparison
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Dynamical Formulation

Layer Eigenvectors

Proposition

We consider the models Du,Dh, and De and assume that the Cα are
invertible for Du and that the cα 6= 0 for Dh. Then,

1 (Unified Node Model) Let Da = D1C1 + . . . DkCk and {(λi, wi)}
be its eigendata. If λi 6= 0, (λi, vi) is an eigenvalue/eigenvector pair
for Du where

vi = (C1wi, . . . , C
kwi)

T .

2 (Ranked Layers Model) Let Da = m1c1D1 + · · ·+mkckDk and
{(λi, wi)} be its eigendata. If λi 6= 0, (λi, vi) is an
eigenvalue/eigenvector pair for Dh where

vi =
(
m1c1wi, . . . ,m

kckwi
)T
.

3 (Equi-distribution Model) Let Da = 1
k (D

1 + · · ·+Dk) and
{(λi, wi)} be its eigendata. If λi 6= 0 (λi, vi) is an
eigenvalue/eigenvector pair for De where vi =

1
k (wi, wi, . . . , wi)

T .
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Dynamical Formulation

Preserved Properties

Proposition

If the mixing matrices are closed, the the following properties are preserved
in our operator:

• Stochasticity

• Irreducibility

• Primitivity

• If we are additionally in the unified node case, the operator also
preserves positive (negative) (semi)–definiteness.
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Dynamical Formulation

Multiplex Random Walks

The random walk defined by these dynamics has transition probabilities:

vαi → vβj =


cβ,αj

deg(vαi )
if vαi ∼ vαj

0 otherwise.

∗Manlio De Domenico, Albert Solé-Ribalta, Sergio Gómez, and Alex Arenas,
Navigability of interconnected networks under random failures, PNAS 111 (2014), 23,
8351.
∗∗I. Trpevski, A. Stanoev, A. Koseska, and L. Kocarev, Discrete-time distributed

consensus on multiplex networks, New Journal of Physics 16 (2014), 11, 113063.
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Dynamical Formulation

Laplacian Dynamics

Under our dynamical model, where effects pass through node copies to
other layers, the heat diffusion interpretation of the Laplacian can be
derived from first principles:

dvαi
dt

= −K
k∑

β=1

cα,βi
∑

nβi ∼n
β
j

(vβi − v
β
j )

dvαi
dt

= −K
k∑

β=1

cα,βi (Lv)βi



Multiplex Networks

Dynamical Formulation

Laplacian Eigenvalue Bounds

Proposition

Let {λi} be the eigenvalues of D and {λαi } be the eigenvalues of the
α–layer Laplacian Dα. We have the following bounds for ranked layers
model:

• Fiedler Value:

maxα(λ
α
F ) ≤ kλF ≤ λmF +

∑
β 6=m

λβ1

• Leading Value:

maxi(λ
i
1) ≤ kλ1 ≤

∑
i

λi1

• General Form:

maxi(λ
i
n−j) ≤ kλn−j ≤ min

J`n+k−(j+1)

(
min
σ∈Sn

(
k∑

α=1

λ
σ(α)
jα

))
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Dynamical Formulation

Bounds Example-p
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Bounds Example - c
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Multiplex Clustering

Clustering
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Multiplex Clustering

Clustering Definitions

• Spectral clustering
• Minimize Inter–Community Edges
• Minimize sTLs with s ∈ {±1}n

• Modularity
• Maximize Intra–Community Edges (compared to expectation)

• Maximize sTBs with s ∈ {±1}nwhere Bi,j = Ai,j − deg(i) deg(j)
2m

.

• Markov Stability
• Given a partition (V1, V2, . . . , V`) maximize (for fixed t)
r(t, V ) =

∑`
i=1

∑
vy,vz∈Vi C(t)y,z

• Discrete: C(t) = ΠSt − πTπ where π is the steady state vector and
Π is the diagonal matrix of π

• Continuous: C(t) = Πe−t(I−S) − πTπ where π is the steady state
vector and Π is the diagonal matrix of π
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Multiplex Clustering

Multiplex Cut Computations

Extending spectral clustering to the multiplex setting requires a variety of
additional considerations. Let s = (s1, s2, . . . , sk) be a 1× nk vector in
{±1}nk representing the community assignments.

• Matched Sum (w is the inter–layer weight parameter):

k∑
α=1

sTαL1
2 (A

α+(Aα)T )sα + w

k∑
α,β=1

(
(~1)T~1− sTαsβ

)
• Dynamical (Bβ,α = Cβ,αAα + (Cα,βAβ)T ):∑

α

sTαLBα,αsα +
∑
α6=β

(
(~1)TBα,β~1− sTαBα,βsβ

)
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Experiments Outline

Layer Models

1 ER Layers

2 Aligned SBM Communities

3 Offset SBM Communities

Parameters

1 Number of layers

2 Density of layers

3 Number of communities sought

4 Amount of offset

5 Inter–layer weight w (Matched Sum)

6 Mixing Matrix C (Dynamical)
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ER Layers Clusters

(a) Dynamical (b) Matched Sum
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ER Layers Clusters

(a) Dynamical (b) Dynamical (c) Matched Sum (d) Matched Sum
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ER Layers Eigenvalues

(a) Dynamical (b) Matched Sum
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ER Layers Match Proportion

(a) Dynamical
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ER Layers Match Proportion

(a) Matched Sum
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Aligned SBM Layer Clusters

(b) Dynamical (c) Matched Sum 2 (d) Matched Sum 4
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Aligned SBM Layer Clusters

(e) Matched Sum 2 (f) Matched Sum 4 (g) Matched Sum 4
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Aligned SBM Layer Clusters

(h) Matched Sum 8 (i) Matched Sum 8 (j) Matched Sum 8
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Aligned SBM Layer Eigenvalues

(a) Dynamical (b) Matched Sum
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Offset SBM Layer Clusters

(a) Dynamical (b) Matched Sum 2 (c) Matched Sum 4
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Dynamical Mixing Clusters
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(a) Offset (1,25)
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Matched Sum Weighting ER
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Matched Sum Weighting SBM

(b) SBM Layers
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Matched Sum Offset Weighting

(a) Eigenvalues (b) Offset (1,1,1,10) (c) Offset (1,5,10,15)



Multiplex Networks

Multiplex Clustering

Multiplex Modularity

There are several natural ways to extend modularity to the multiplex
setting.

1 Full Rewiring – Form a single network and apply classic modularity.

2 Intra-Layer rewiring – Compute the individual modularity matrices and
then combine with the matched sum or dynamical mixing matrices.

3 Markov stability using new random walk.

∗ J.-C. Delvenne, S. N. Yaliraki, and M. Barahona Stability of graph communities across time
scales, PNAS, (2010), 107 (29) 12755-12760.
∗∗ Peter J. Mucha, Thomas Richardson, Kevin Macon, Mason A. Porter, and Jukka-Pekka Onnela,
Community structure in time-dependent, multiscale, and multiplex networks, Science 328
(2010),5980.
∗∗∗ L. Jeub, M. Mahoney, P. Mucha, and M. Porter, A local perspective on community structure
in multilayer networks, Network Science 5 (2017), 2, 144163.

∗∗∗∗ Zijing Liu and Mauricio Barahona, Geometric multiscale community detection: Markov

stability and vector partitioning, Journal of Complex Networks (2018), 6(2), 157–172.
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Markov Stability

Our multiplex random walk operator is intrinsically directed, with the
transition probability from nαi → nβj given by{

cβ

deg(nαi )
nαi ∼ nαj

0 nαi 6∼ nαj
.

In the ranked layers case, the random walk can be reduced to studying an
n state Markov process with transition probabilities given by the projected
walk where we only observe the progress of the walker between objects,
not a the level of node copies. The weights on this aggregate are given by

2Wi,j =


0 nαi 6∼ nαj and nβi 6∼ n

β
j

deg(nβj ) nαi ∼ nαj and nβi 6∼ n
β
j

deg(nαj ) nαi 6∼ nαj and nβi ∼ n
β
j

deg(nαj ) + deg(nβj ) nαi ∼ nαj and nβi ∼ n
β
j

.
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SBM Stability Spectral Gap

(a) Continuous Eigenvalues (b) Continuous Spectral Gap (c) Continuous Rand Index



Multiplex Networks

Applications

Offset SBM Markov Stability

(a) Offsets (1,1,1,15) (b) Offsets (1,5,10,15)
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Medical Advice

(a) Village 4 (b) Village 61
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Social Diffusion

(a) Synthetic (b) Villages
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Village 5 Dynamical Diffusion Centrality

(a) Medical vs. Aggregate (b) Multiplex vs. Medical c = 7
24
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World Trade Web2

Figure: World trade networks

2 R. Feenstra, R. Lipsey, H. Deng, A.C. Ma, and H. Mo. World Trade Flows: 1962-2000. NBER Working Paper 11040, (2005).
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Random Walk Model

• Unified Node Model: Random walk dynamics. At each time step,
each country collects its in–flowing dollars and then redistributes
them proportional to its outflow values on each layer.

• Natural centrality measure: Random Walk Betweeness Centrality
(RWBC)∗

• The RWBC of node i is defined by summing over all pairs (j, k) the
probability that a random walk beginning at node j passes through
node i before reaching node k.

∗ Newman, M.E.J.: A measure of betweenness centrality based on random walks.

Social Networks 27(1), 39-54 (2005).
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Global Aggregate Rankings

Year 1970 1980 1990 2000

1 US US US US
2 Germany Germany Germany Germany
3 Canada Japan Japan Japan
4 UK UK France China
5 Japan France UK UK
6 France Saudi Arabia Italy France

Table: RWBC values for the aggregate WTW.
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Commodity Rankings

(a) US Commodities (b) Japan Commodities

(c) Saudi Arabia
Commodities.
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Full Multiplex RWBC

Ranking Country Layer

1 US 7
2 Germany 7
3 China 7
4 UK 7
5 Japan 7
6 US 8
7 Canada 7
8 France 7
9 Japan 3
10 US 6
12 US 3
13 Netherlands 7
14 Germany 6
15 Italy 7

Table: Multiplex RWBC values for the 2000 WTW.
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Commodity Appearance

Layer Ranking Country

0 22 Japan
1 199 Germany
2 47 China
3 9 Japan
4 184 Australia
5 23 Germany
6 10 US
7 1 US
8 6 US
9 39 US

Table: First appearance of each layer in the rankings.
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Ranking Movement

Layer 7 Ranking Country Multiplex Ranking

1 USA 1
2 Japan 5
3 Germany 2
4 China 3
5 France 8
6 UK 4
7 South Korea 18
8 Canada 7
9 Malaysia 16

10 Mexico 20

Table: Comparison of the relative rankings of the RWBC on Layer 7 versus the
multiplex RWBC.
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WTW Clustering

(a) Spectral Clustering (b) Continuous Markov
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That’s all...

Thank You!
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Layer Splitting Partitions

(a) Dynamical k = 3 (b) Dynamical k = 6

(c) Matched Sum k = 3 (d) Matched Sum k = 6
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MER Matched Sum

(a) 1 Eigenector (b) 2 Eigenectors (c) 3 Eigenectors

(d) 4 Eigenectors (e) 5 Eigenectors
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MSBM Matched Sum

(a) 1 Eigenector (b) 2 Eigenectors (c) 3 Eigenectors (d) 4 Eigenectors
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Matched Product

Definition

Given a graph C with k labeled nodes called the structure graph and an
ordered set of k layer graphs (G1, G2, . . . , Gk) each with n labeled nodes

we defined the matched product C (G1, G2, . . . , Gk) of the {Gi} with
respect to C as the graph with vertex set ∪Vi and edges between two
nodes vαi and vβj if either:

• α = β and i 6= j and vi ∼ vj in Gα or

• α 6= β and i = j and vα ∼ vβ in C.
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Other Products

Proposition

There are labelings of the graphs below such that the following hold:

1 The cartesian product of G and H can be represented by

H (G,G, . . . , G)

2 The rooted product of G and H can be represented by

H (G,En, En, . . . , En)

3 The hierarchical product G and H with subset {ai} ⊂ H can be

represented by H (G1, G2, . . . , Gk) where Gi =

{
G if i ∈ {ai}
En otherwise

.
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Vertex Labeling

(a) Cylinder Graph (b) Petersen Graph

Figure: Both of these graphs can be constructed as P2 (C5, C5) with different
labelings of the cycles.
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Multiplex Special Cases

Given a collection of layers (G1, G2, . . . , Gk) we can use this notation to
describe the common multiplex representations:

• Disjoint layers: Ek (G1, G2, . . . , Gk)

• Matched sum: Kk (G1, G2, . . . , Gk)

• Temporal multiplex: Pk (G1, G2, . . . , Gk)
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