
Stochastic Constraints for Vision-Aided
Inertial Navigation

by

David D. Diel
Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

Masters of Science in Mechanical Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

January 2005

c© 2005 David D. Diel. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Mechanical Engineering

January 27, 2005

Certified by .
Paul DeBitetto

Senior Member of Draper Technical Staff
Thesis Supervisor

Certified by .
Derek Rowell

Professor of Mechanical Engineering
Thesis Supervisor

Accepted by. .
Professor Lallit Anand

Chairman, Committee on Graduate Studies

Stochastic Constraints for Vision-Aided
Inertial Navigation

by
David D. Diel

Submitted to the Department of Mechanical Engineering
on January 27, 2005, in partial fulfillment of the

requirements for the degree of
Masters of Science in Mechanical Engineering

Abstract
This thesis describes a new method to improve inertial navigation using feature-based con-
straints from one or more video cameras. The proposed method lengthens the period of
time during which a human or vehicle can navigate in GPS-deprived environments. Our
approach integrates well with existing navigation systems, because we invoke general sen-
sor models that represent a wide range of available hardware. The inertial model includes
errors in bias, scale, and random walk. Any camera and tracking algorithm may be used, as
long as the visual output can be expressed as ray vectors extending from known locations
on the sensor body.

A modified linear Kalman filter performs the data fusion. Unlike traditional Simultane-
ous Localization and Mapping (SLAM/CML), our state vector contains only inertial sensor
errors related to position. This choice allows uncertainty to be properly represented by a
covariance matrix. We do not augment the state with feature coordinates. Instead, image
data contributes stochastic epipolar constraints over a broad baseline in time and space, re-
sulting in improved observability of the IMU error states. The constraints lead to a relative
residual and associated relative covariance, defined partly by the state history. Navigation
results are presented using high-quality synthetic data and real fisheye imagery.

Thesis Supervisor: Paul DeBitetto
Title: Senior Member of Draper Technical Staff

Thesis Supervisor: Derek Rowell
Title: Professor of Mechanical Engineering

Acknowledgments

Let me not forget those who helped me on this journey. From a very young age, my mother
gave me many things to observe, and the power of observation is still my most valued
possession. My father never tired of answering my technical questions, so I never stopped
asking them.

I cannot forget the great teachers who laid my early mathematical foundations: Mrs.
Habel, Mrs. Pierce, Mrs. Geoielli, Mr. Frongello, Mike Bouch, and Larry Brown, who
taught until he died in the service of his students.

From the University of Central Florida, I would like to thank Madi Dogariu, Jamal
Nayfeh, Richard Zarda, and Niels da Vitoria Lobo for perceiving that I could have a career
in research before I had any interest in such a thing.

In the pursuit of this thesis, several people have helped me directly. Special thanks to
James Donna and Brent Appleby for describing classical inertial navigation models and
concepts; J.-J. Slotine and Rami Mangoubi for insights on nonlinearities and error projec-
tions; Brock Bose for introducing me to spherical harmonics; John Leonard and Andrew
Patrikalakis for use of their gantry; and Scott Rasmussen for his invaluable hardware assis-
tance.

Thanks to Paul DeBitetto, Seth Teller, and Derek Rowell for their advisement, and for
listening to me while I rambled on about issues unrelated to my work. Finally, I send
brotherly love to my editors, Frank Goergen and Jeremy Parks.

Soli Deo Gloria!

Disclaimer

This thesis was prepared at The Charles Stark Draper Laboratory, Inc., and supported by In-
ternal Company Sponsored Research Project C5058, Navigation and Mapping. Any opin-
ions, findings and conclusions or recommendations expressed in this thesis are those of the
authors and do not necessarily reflect the views of Draper. It is published for the exchange
and stimulation of ideas.

. .

Contents

1 Introduction 19
1.1 Navigation Problem . 20
1.2 Unified Notation . 21
1.3 Chapter Descriptions . 21

2 Approach 25
2.1 Sensor Configurations . 25

2.1.1 Gyroscope Reliance . 26
2.2 Applied Machine Vision . 27

2.2.1 Tracking vs. Flow . 27
2.3 Data Fusion . 27

2.3.1 An Alternative to SLAM . 29
2.3.2 System Block Diagram . 31

3 Inertial Measurements 33
3.1 Accelerometer Error . 34

3.1.1 Discrete Implementation . 36
3.1.2 Hardware Cost . 37

3.2 Geological Effects . 37
3.2.1 WGS 84 Geoid Model . 37
3.2.2 Geoid Rotation and Apparent Gravity 40

4 Visual Measurements 43
4.1 Image Formation . 44

4.1.1 Calibration . 44
4.2 Rotation Compensation . 45
4.3 Corner Strength . 47

4.3.1 Feature Detection . 49
4.4 Feature Tracking . 49

4.4.1 Feature Database . 51

9

5 Epipolar Constraint Filter 55
5.1 Residual . 56
5.2 Stochastic Update . 56

5.2.1 Relative Covariance . 57
5.2.2 Multiple Features . 59
5.2.3 State Transfers . 60
5.2.4 Camera Mount . 60

5.3 Outlier Protection . 61
5.4 Numerical Caveats . 62

6 Experiments 65
6.1 Hardware . 65
6.2 Data Sets . 66

7 Analysis 75
7.1 Validation of Epipolar Geometry . 76
7.2 Overall Performance . 77

7.2.1 Relationship to SLAM . 77
7.3 Remaining Issues . 78

8 Conclusions 81
8.1 Future Work . 82

A System Parameter Tradeoffs 85
A.1 Experiments . 85
A.2 Analysis . 86

B Projection Reference 89
B.1 Gall Isographic . 89
B.2 Apianus . 90
B.3 Standard Perspective . 90
B.4 Equidistant Fisheye . 91
B.5 Radial Division Model . 91

C Rotation Reference 99
C.1 Orientation Representations . 99

C.1.1 Matrix Form . 100
C.1.2 Quaternion Form . 101
C.1.3 Euler Form . 102
C.1.4 Axis-Angle Form . 103

C.2 Body Orientation from Angular Velocity 104

10

11

12

List of Figures

1-1 Diagram of selected symbolic ornaments. 23

2-1 Sensor configuration with active camera mount. 26
2-2 “Optical Flow” vs. “Feature Tracking” . 28
2-3 Inertial dead-reckoning. 29
2-4 SLAM vs. Constraint-Based Localization 31
2-5 Top-level block diagram. 31

3-1 Navigation coordinate frames. 38
3-2 Gradient of the gravity potential. 39

4-1 Lens calibration setup. 45
4-2 Demonstration of rotation compensation. 46
4-3 Corner strength transformation. 48
4-4 Contours of corner strength metrics. 49
4-5 General corner strength histogram. 50
4-6 Features and corresponding corner strengths. 50
4-7 Feature selection and masking. 52

5-1 The epipolar constraint. 55
5-2 Graphical interpretation of the state update. 56
5-3 Algebraic relative covariance. 58
5-4 Multiple epipolar constriants. 59

6-1 Experimental hardware. 66
6-2 Representative images from each scene. 68
6-3 Factory7—full motion plot. 69
6-4 Factory7—plot of each dimension. 69
6-5 Factory7—plot of the error estimation process. 69
6-6 GantryB—full motion plot. 70
6-7 GantryB—plot of each dimension. 70
6-8 GantryB—plot of the error estimation process. 70
6-9 GantryC—full motion plot. 71
6-10 GantryC—plot of each dimension. 71

13

6-11 GantryC—plot of the error estimation process. 71
6-12 GantryF—full motion plot. 72
6-13 GantryF—plot of each dimension. 72
6-14 GantryF—plot of the error estimation process. 72

7-1 Two instances of the same scene. 75
7-2 Constraint-plane normals. 76
7-3 Chatter phenomenon. 78

A-1 Mean error for each IMU type. 86
A-2 Imaging parameters vs. performance. 87

B-1 Demonstration of the Gall isographic projection. 93
B-2 Demonstration of the Apianus projection. 94
B-3 Demonstration of the standard perspective projection. 95
B-4 Demonstration of the equidistant fisheye projection. 96
B-5 Demonstration of the radial division model for projection. 97

14

15

16

List of Tables

1.1 Definitions of mathematical symbols. 22
1.2 Definitions of symbolic ornaments. 23

3.1 Typical IMU parameter values. 35
3.2 Typical IMU prices. 37
3.3 1984 World Geodetic System physical constants. 39

6.1 Parameters for the four main experiments. 67

7.1 Position error results. 77

A.1 System parameters and options. 85
A.2 Results of the orthogonal array experiments. 86

C.1 Special notation for Appendix C only. 100

17

18

Chapter 1

Introduction

Navigation is an old problem that periodically receives attention as new sensors are de-
veloped. Two inventions that have had a profound impact on navigation in the twenti-
eth century are the Inertial Measurement Unit (IMU) and the Global Positioning System
(GPS)[27]. A typical IMU consists of three accelerometers and three gyroscopes arranged
on orthogonal axes such that the full motion of a rigid body can be measured. The GPS
relies on a complex network of satellite transmitters to supply the sensing context for a
number of receivers that each calculate their own position.

Many commercial navigation systems include an IMU and a GPS receiver. These de-
vices support each other, so vendors will often sell them in a single package. Inertial
sensors tend to capture quick motions, while the GPS receiver ensures long-term accuracy.
However, circumstances such as sky occlusion, radio-reflective surroundings, and hostile
jamming may deny access to GPS signals. And, when a GPS receiver fails, alternative
sources of information become vital.

A video camera is a rich source of information when coupled with machine vision.
During the past three decades, the practice of estimating scene Structure From Motion
(SFM) has emerged, and two researchers in particular have demonstrated the current state
of the art, namely Andrew Davison [13][14][15] and Alessandro Chiuso [10][11][12]. For
many applications, SFM can produce a satisfactory model of local geometry. However,
even the best algorithms require initialization, and as the camera moves far away from its
starting point, computational requirements grow quickly and accuracy suffers.

Recently, vision-aided inertial navigation has been seriously addressed by several re-
searchers [1][7][9][19][24][36][44][45][49]. We know that visual (optical) and inertial
(vestibular) information can be combined, because people intuitively use these senses to
navigate every day. A question of practical significance remains—how should we com-
bine these senses within engineered systems, where accuracy and computation are costly
resources? If we are willing to accept suboptimal performance, does our system need to
maintain a map of all observed features in order to self-localize? The main problem with
inertial navigation is drift. Can we simply use the camera to reduce inertial drift?

19

1.1 Navigation Problem

To describe our navigation problem, we begin with basic motion analysis. All motion is
relative, so two or more references must be defined before distances can have meaning.
The simplest system consists of two points in a single-dimensional space.

In the illustration above, the separation of physical reality from its mathematical construct
has been emphasized in order to show the choice of origin and the possibility of inaccuracy.
We call this scenario target-relative navigation, because the origin of the construct has been
defined as the target itself. The body position is modeled by a single number—the directed
distance from the origin to the body. If a range sensor were attached to the body, it would
operate in the space of physical reality, measuring the directed distance from the body to
the target.

Suppose someone wanted to bring the body in contact with the target1. Given range
measurements and a means of actuation, a variety of control schemes could solve this prob-
lem. The accuracy and sampling frequency of the range sensor would affect the solution,
but one can find real-world examples where the construct converges to reality and the body
itself converges to the target. For an relevant example, see Huster’s work on vision-aided
robotic grasping [24]

A navigation system generally combines elements of self-localization, path planning,
control, and actuation for the purpose of transporting people or material goods. In this the-
sis, we will focus on the self-localization part of the system. It is assumed that a person or
intelligent agent will take care of the other components. Therefore, the single-dimensional
version of our navigation problem looks like this:

We call this scenario map-relative navigation, because the destination is defined as a lo-
cation on a map (one type of mathematical construct). The map origin corresponds to an
invisible fixed point somewhere in the space of reality. Since our system relies on cameras,

1The body and target locations are concrete examples of states. In general, we could refer to the actual
and desired states of any state-vector system.

20

we have introduced another reference—the point feature. Nothing is known about point
features in advance, except that they do not move. Finally, an arrow has been drawn to
show a hypothetical range measurement from the body to a feature2.

Self-localization in reality means finding the six Degree-Of-Freedom (DOF) transfor-
mations xxx [t] that relate body poses to a map origin. Note that neither of our sensors are
capable of observing the origin3, so initial misalignment of the map cannot be corrected by
runtime measurements.

We are specifically interested in terrestrial navigation. Likely environments include
warehouses, factories, offices, homes, city streets, suburbs, highways, rural areas, forests,
and caves. These environments happen to share some important visual characteristics:
1) Most of the scene remains stationary with respect to the planet’s surface; and 2) For
typical scenes, the ratio of body velocity to scene depth lies within a limited range. Other
environments that meet these criteria include the sea floor and unexplored planets. The sky,
outer space, and most seascapes do not fall in this category.

1.2 Unified Notation

The bodies of literature on navigation, estimation, and machine vision contain many con-
flicting notations. Given the limited number of characters in the Greek and Roman alpha-
bets, one can easily see why variables are reused in different contexts. We present a unified
notation for vision-aided inertial navigation that maintains moderate compatibility across
fields. In selecting the symbols and ornaments shown in Tables 1.1 and 1.2, we have tried
to avoid visual ambiguities, such as the confusion between the number 1 and the letter l.

1.3 Chapter Descriptions

In Chapter 2, we clarify our approaches toward vision and estimation. Constraint-based
localization is presented as a computationally efficient alternative to feature mapping.

Chapter 3 defines common frames of reference, and describes classical inertial navi-
gation relative to the Earth geoid. The problem is further clarified by an analysis of how
inertial error propagates over time. Chapter 4 then gives the reader enough information to
reproduce our vision system, which is otherwise treated as a black box.

Our method of data fusion is presented in Chapter 5. This is the glue that ties all of the
other pieces together in what we call the epipolar constraint filter.

Finally, Chapters 6–7 analyze the response of the filter as it operates on real and syn-
thetic data sets. Suggestions for future work are offered in Chapter 8.

2Most cameras measure radiant light, not range. Exceptions include active-focus and structured-light
cameras, which are outside the scope of this thesis.

3In saying this, we are ignoring the marginal observability of latitude and height above the geoid through
measurements of the gravity potential and of planetary rotation.

21

Symbol Meaning Units Type
d distance meters scalar
` world radiance lumens constant scalar function
t time seconds scalar
v gravitational potential meters2

second2 constant scalar function
yij pixel value lumens array of scalars
γ geodetic latitude radians scalar
ε relatively small number dependent scalar
κij corner strength lumens

pixel2
array of scalars

λ geocentric latitude radians scalar
σ statistical deviation dependent scalar
τ interval of time seconds constant scalar
bbb bias dependent vector
cccij camera ray none array of vectors
fff specific force meters

second2 vector
ggg gravity meters

second2 vector
hhh measurement gain dependent vector
kkk Kalman gain dependent vector
nnn white noise dependent random vector
ppp general point meters vector
qqq kinematic joint state dependent vector
sss scale none vector
uuuij normalized image coordinate none array of vectors
xxx body state radians, meters vector
zzz feature observation ray none vector
ζζζ end-effector state (body frame) radians,meters vector
θθθ Euler angles (body frame) radians vector
ρρρ imaging parameters none vector
ψψψ inertial sensor state mixed vector
ωωω angular velocity (body frame) radians

second
vector

EEE edge energy (Hessian) lumens
pixel2

matrix
RRR rotation none matrix
ΛΛΛ covariance dependent matrix
ΦΦΦ state transition dependent matrix

Table 1.1: Definitions of mathematical symbols. Scalars are regular italic; vectors are bold
lowercase; and matrices are bold uppercase. Values may vary with time unless noted.

22

Ornament Meaning
�() continuous samples
�[] discrete samples
�T translation part
�R rotation part (quaternion)
�T transpose
�◦ units of degrees
�̇ 1st temporal derivative
�̈ 2nd temporal derivative
~� unit magnitude
�̄ intermediate estimate
�̃ residual
�̂ estimated
d� derivative
∂� partial derivative
δ� error or perturbation
∆� change
∇∇∇� gradient

Table 1.2: Definitions of symbolic ornaments. The � symbol is a placeholder.

Figure 1-1: Diagram of selected symbolic ornaments.

23

24

Chapter 2

Approach

The task of self-localization can be posed as a problem in stochastic geometry [4][50].
Neither IMUs nor cameras produce geometric models, but their measurements are related
to geometry. An IMU observes motion through a small window in time, while the camera
observes projections of space through the complicated process of image formation [38][39].
Given noisy data from both sensors, we seek the most likely body path that could have
caused the data. Some researchers have addressed this problem by minimizing reprojection
error in the image space [32], but we attempt to minimize position error in the world space.
Others define the body path incrementally through visual velocity estimates, but we will
tackle pose estimation directly.

To make progress, we adopt some basic assumptions. The body begins at rest in a
North-East-Down frame that is fixed to a geoid of known shape and gravitation. The initial
position, orientation, and geodetic latitude of the body are given. We assume that the
surroundings are mostly static and illuminated by steady ambient lighting. The optical
system has been calibrated, and the error characteristics of all sensors have been determined
by experimentation.

We also impose several constraints on what can be considered an acceptable solution.
Similar to Chiuso, we only permit causal schemes—based on information from the past
and present, but not the future [10][11]. Our system should operate without user interven-
tion or access to external networks. The camera model should accommodate various lens
types, including active lenses. The vision system should be robust to moderate lighting
variation and changes in viewpoint. And finally, the data fusion algorithm should handle
an occasional dropped frame or a temporary lens-cap situation.

2.1 Sensor Configurations

This development applies to a range of plausible sensor configurations. A single six
Degree-Of-Freedom (DOF) IMU is rigidly attached to a body, such that the IMU and body
coordinate frames are coincident. One or more cameras can then be attached to the body

25

Figure 2-1: Sensor configuration with active camera mount.

via passive or active kinematic linkages. The physical mount will introduce an offset and a
rotation for each camera, which can be represented by a simple transformation (see Section
5.2.4).

Outside of Chapter 4, our vision system will be treated as a black-box that produces ray
vectors corresponding to tracked points. This layer of abstraction allows various camera
types and projections to be accommodated. For example, infrared cameras could be used to
handle low-light conditions, and parabolic and fisheye projections could be used together
within the same system. Variable telephoto lenses are also covered by this abstraction,
although a wide field-of-view lens is preferred because it allows more points to be tracked
for longer periods of time.

2.1.1 Gyroscope Reliance

In this work, the body orientation is calculated by integration of the gyroscope (gyro) out-
put. The gyros are used to compensate for camera rotation; however, visual data does not
contribute the orientation estimate. In other words, our filter estimates and removes transla-
tion error only. This is not a huge limitation or barrier to implementation, because modern
gyros can be trusted to provide orientation estimates for periods up to several minutes [9].
Nevertheless, the practical length of an excursion will be limited by the drift of the gyros.

For many hardware combinations, gyro accuracy exceeds imaging accuracy by orders
of magnitude. Consider a typical wide-field video camera with a pixel separation of 0.25

degrees. A common flight control gyro can maintain similar angular precision for about
10 minutes with no visual assistance. Therefore, during an observation baseline of 2–3

minutes, the vision system could remove no more than a half-pixel of angular drift. How-
ever, after 20–30 minutes, the unmodeled gyro error could significantly degrade the perfor-
mance of the whole system.

26

2.2 Applied Machine Vision

Several ideas from machine vision have potential relevance to inertial navigation. The
list would certainly include stereo vision, optical flow, pattern recognition, and tracking of
points, curves, and regions. Each of these methods produces a different kind of information.
Stereo vision can produce dense relative depth estimates within a limited range. Optical
flow can produce dense motion fields [6][22]. Pattern recognition can locate the direction to
a unique landmark [17], which may be linked to absolute coordinates. And finally, various
tracking methods can offer data association over multiple frames [41].

The scope of relevance can be narrowed by considering our requirements. Since the
sensor platform might not be equipped with multiple cameras, we eliminate stereo vision.
Pattern recognition demands a lot of memory to store the feature labels and world coor-
dinates of numerous objects. In our unstructured environment, there would be no way to
bound the memory requirements, so this option must also be eliminated. Therefore, we are
left with tracking-based and flow-based approaches.

2.2.1 Tracking vs. Flow

Both optical flow and tracking provide local estimates of image motion. As a camera
translates, light rays from the environment slice through a theoretical unit sphere centered
at the camera’s focus. Patterns of light appear to flow outward from a point source, around
the sides of the sphere, and into a drain at the opposite pole. If the camera also rotates, then
a vortex-like flow is superimposed on the flow induced by translation. Despite the naming
conventions, both optical flow and tracking are supposed to track the flow. The difference
between them lies in the selection of discrete coordinates, as demonstrated by Figure 2-2.
Optical flow calculations are defined on a discrete regular mesh, with the assumption of
underlying spatial and temporal continuity. In contrast, tracking methods tend to utilize
discrete particles that retain their identity over a broad baseline in time. A particle could
represent any kind of geometric entity, including points, lines, and curves [2][8].

We choose to track corner features, because they offer a powerful form of data asso-
ciation over time. Unlike smooth image regions, corner features have a high information
content, and are easily tracked. The coordinates of a corner can be clearly defined and his-
torically associated without regard to other parts of the image. Consequently, mistracked
features in a local region will have little effect on the others in the system.

2.3 Data Fusion

Our data fusion strategy is to play the strength of the camera against the weakness of
the IMU. Inertial estimates integrate small amounts of error over time, resulting in large
amounts of long-term drift. In contrast, the accuracy of image data is mostly independent

27

Figure 2-2: Visualizations of two approaches to motion extraction. Left—The displace-
ment field calculated at a fixed number of discrete points on a grid, often called “Optical
Flow” and associated with Euler. Right—The trajectory of a single particle, often called
“Feature Tracking” and associated with Lagrange.

of time. Our concept is to anchor the current estimate of the body position to the state
history through observations of visual constraints.

We will build our estimation algorithm around a single feature observation in a single
camera. If multiple cameras and multiple features are available, then they will be handled
by duplicating the process for one feature. This choice simplifies our work, although it may
not result in the best estimator. The underlying assumption is that each feature measure-
ment has independently distributed error. If that assumption is not true, then we can only
hope that the errors are weakly correlated.

Probably the most common approach to combining feature observations with inertial
data is Simultaneous Localization and Mapping (SLAM) [15][19][28]. Mapping offers the
potential for landmark recognition and loop closure, but these extra benefits come at a high
computational cost. Consider the overwhelming number of features that can be observed
with a video camera. Several thousand salient features may appear during a one-minute
excursion. And, it is possible that many of those features will be virtually indistinguishable
in appearance. This leads to a web of uncertain data associations coupled with uncertain
feature position estimates.

Our problem is essentially SLAM without mapping. Nevertheless, we can learn from
solutions that involve mapping. For instance, SLAM can be solved by brute-force state
augmentation and optimal filtering. Every observed feature can be added to a large state
vector. Then, for a linear system with Gaussian measurement noise, the Kalman Filter (KF)
recursively incorporates all of the information in each measurement [26], resulting in the
most likely estimate of the body and feature states. For nonlinear systems, one can use the
Extended Kalman Filter (EKF) without the same guarantee of optimality [25]. However, in
the KF and EKF, computation scales quadratically with the number of states, and becomes

28

intractable after approximately 300 features or 900 states have been included1.

2.3.1 An Alternative to SLAM

Consider the one-dimensional map-relative navigation problem from the previous chapter.
Suppose the body begins at x (0) = 0 and translates in the horizontal plane with a sinusoidal
motion x = sin

(
πt
20

)
. If a linear accelerometer is attached to the body, then it will measure

f̄ = ẍ + nw, where nw ∼ N (0, σw) represents zero-mean Gaussian noise. Chapter 3
will present a more detailed error model, but for now, we will assume that the noise is
uncorrelated over time.

Without any other information, the best estimate of the body position is given by inte-
grating the accelerometer output, as in x̂ = x̄ =

∫∫
f̄dt = x+ δx. The error itself can also

be expressed in state-space form:[
δẋ

δẍ

]
=

[
0 1

0 0

] [
δx

δẋ

]
+

[
0

nw

]
(2.1)

The state-space equations document the propagation of uncertainty, but the error cannot be
corrected without additional measurements. Ordinary integration is equivalent to inertial
dead-reckoning, and it results in unbounded error growth, as shown in Figure 2-3.

Figure 2-3: Position estimation by integrating accelerometer output.

Now, suppose that a single point feature exists at p = 5, and the body is equipped with
a distance sensor. The sensor measures d̄ = p − x + nd with a sampling frequency of
10Hz, where nd ∼ N (0, σd). Given this additional information, we can consider methods
for fusing data from multiple sources. Two approaches are presented below; SLAM and
constraint-based localization.

1Extensions such as Atlas [7] and FastSLAM [37] have been developed to manage large numbers of
features by breaking them up into small groups, and these alternatives are worthy of further investigation.

29

A SLAM approach implies that the feature should be mapped, and this can be done by
including p in the state-space. Since the feature does not move, its dynamics amount to
ṗ = 0, or equivalently δṗo = 0, where δpo ≡ p̄ [0]− p. The expanded set of equations can
be written δẋ

δẍ

δṗo

 =

 0 1 0

0 0 0

0 0 0

 δx

δẋ

δpo

+

 0

nw

0

 (2.2)

Then, noticing that d̄ = d + δd, we can formulate a measurement model that is a function
of the states

δd =
[

1 0 −1
] δx

δẋ

δpo

+ nd (2.3)

With these equations, the KF can be applied directly, and it will drive δd̂ → δd, and
therefore d̂→ d. Figure 2-4 shows an example of the simulated filter response. Notice how
the body position error becomes bounded, and the feature position estimate settles down to
a constant value around p̂ = 5.5.

Constraint-based localization has much in common with SLAM. The noise models are
identical, and the inertial error dynamics come from Equation 2.1. However, we introduce
a subtle difference in the measurement equation:

δd =
[

1 0
] [δx

δẋ

]
+ nd (2.4)

Equations 2.3 and 2.4 appear to contradict one another, but they can both be true if we
change one of the noise distributions. In the second case, nd ∼ N (−δpo, σd) balances
the equation. However, since δpo remains unknown, we cannot inform the KF of this new
error distribution. So, in our new approach, we will run the filter with nd ∼ N (0, σd), and
ignore the unmodeled bias.

Referring again to Figure 2-4, one can see that the result of constraint-based localiza-
tion is not as good as state augmentation. In the latter simulation, an unwanted bias from
the flawed noise model has perturbed the body position estimate. Why would anyone want
to choose the latter option? First, recall that the camera is not a distance sensor, so the mea-
surement specified here must be analogous to an attainable measurement from the camera
(for more detail, see Section 5.1). Second, we can avoid the computation of p or δp. There-
fore, requirements for memory and processing will grow linearly (not quadratically) with
the number of visible features, and we never have to worry about points at infinity. Third,
if multiple features are observed, then the effects of their unmodeled biases will balance
one another. Specifically, given N independent simultaneous observations with equal un-
certainty σd, their average will have an unmodeled uncertainty σavg = σd√

N
. This reduction

of uncertainty is very desirable, since images tend to contain a lot of features.

30

Figure 2-4: Left—SLAM solution by state augmentation. Right—Constraint-based local-
ization.

2.3.2 System Block Diagram

The block diagram in Figure 2-5 foreshadows our concept for a class of vision-aided inertial
systems. There are seven components, and most of the data flow is unidirectional. The left
half of the diagram connects to the right half through a minimal exchange of information
(typically on the order of 100kBPS), which might suggest dedicated hardware on each
side. Besides power and an unobstructed view of the world, the system requires no external
interface beyond what is shown.

Figure 2-5: Proposed block diagram showing data fusion in the EPC Filter.

31

32

Chapter 3

Inertial Measurements

An Inertial Measurement Unit (IMU) senses rotation rates and specific forces associated
with a moving body. A typical packaged IMU contains accelerometers and gyroscopes
placed on on each of three orthogonal axes. They come in two common configurations:
the gimballed type, which maintains a fixed orientation while the body rotates around it;
and the strapdown type, which rotates with the body. In this chapter, we will characterize
accelerometer error in a strapdown IMU1.

Consider a model of an ideal inertial sensor. The gyros would output small changes in
orientation ∆θθθ [t], which could be integrated to find an associated direction cosine matrix
RRR (t). And, the accelerometers would output specific force, which is a combination of
acceleration and apparent gravitation:

fff = RRR−1
(
ẍ̈ẍxT − gggapp

)
(3.1)

This model describes perfect sensors, but it contains hidden uncertainty in the term
gggapp. Apparent gravity cannot be determined exactly. Instead, one must select a method
to calculate its value, understanding that each method has limited accuracy. For example,
one could simply assume a constant value gggapp = [0 0 9.8]T meters

second2 near the Earth’s surface.
Another method is to let the inertial sensor sit still, and take gravity to be the average
accelerometer output over a period of time.

Section 3.2 presents an expression for apparent gravity near the Earth that is accurate
to the fifth decimal place (about 16 bits of information). It varies strongly with latitude and
altitude, and weakly with velocity. We use this expression because its error is small enough
to be neglected2.

1The development for a gimballed IMU can be derived by analogy.
2Relative to a tactical-grade IMU.

33

3.1 Accelerometer Error

The basic concept of inertial navigation is to determine the location of a body by integrating
IMU output with respect to time. Unfortunately, errors in the derivative measurements are
integrated along with the desired signal.

Extensive studies of accelerometers have shown that their principal errors fall into three
categories—bias, scale, and random walk. This is evidenced by manufacturers’ reports
[30], and verified by experts in the field [16]. These additive errors show up in the mea-
surement of specific force as follows:

f̄̄f̄f = (III + diag (δsss))fff + δbbb+ nnnw (3.2)

where nnnw represents Gaussian white noise. Rewriting Equation 3.2 as an acceleration mea-
surement yields

¨̄ẍ̄ẍ̄xT = Rf̄Rf̄Rf̄ + gggapp

=
(
ẍ̈ẍxT − gggapp

)
+RRR (diag (δsss)fff + δbbb+ nnnw) + gggapp

= ẍ̈ẍxT +RRRdiag (fff) δsss+RRRδbbb+ nnnw

(3.3)

Therefore, omitting the second order effect of diag (δfff) δsss, the error process may be defined

δẍ̈ẍxT ≡ ¨̄ẍ̄ẍ̄xT − ẍ̈ẍxT = RRRdiag
(
f̄̄f̄f
)
δsss+RRRδbbb+ nnnw (3.4)

The bias and scale error terms can be further broken-down into a “turn-on” component
and an “in-run” component:

δbbb = δbbbTurnOn + δbbbInRun (3.5)

δsss = δsssTurnOn + δsssInRun (3.6)

The turn-on error is constant, but in-run errors vary slowly over time. The in-run charac-
teristic can be modeled by passing Gaussian white noise through a low-pass filter:

δḃ̇ḃbInRun = − 1

τb
δbbbInRun + nnnb (3.7)

δṡ̇ṡsInRun = − 1

τs
δsssInRun + nnns (3.8)

Putting Equations 3.2–3.8 together leads to a Linear-Time-Varying (LTV) state-space
model for the body position error. Note the nonlinearity with respect to external inputs RRR
and f̄̄f̄f , though no elements of ψψψ appear in ΦΦΦ:

ψ̇̇ψ̇ψ = ΦΦΦψψψ + nnn (3.9)

34

ψψψ ≡

δxxxT

δẋ̇ẋxT

δbbbTurnOn

δbbbInRun

δsssTurnOn

δsssInRun

nnn =

000

nnnw

000

nnnb

000

nnns

ΦΦΦ =

000 III 000 000 000 000

000 000 RRR RRR RRRdiag
(
f̄̄f̄f
)
RRRdiag

(
f̄̄f̄f
)

000 000 000 000 000 000

000 000 000 − III
τb

000 000

000 000 000 000 000 000

000 000 000 000 000 − III
τs

To calculate the body position without image data, one would twice integrate the first

form of Equation 3.3. Given image data, one would also integrate Equation 3.9 and apply
stochastic updates yet to be defined.

Accelerometers
Bias Scale Walk

Identifier σTurnOn σSteady τ σTurnOn σSteady τ σ
meters
second2

meters
second2 seconds none none seconds

meters

second
3
2

LN1 2.5×10−4 9.8×10−5 60 5.0×10−6 0∗ ∞∗ 5.0×10−5

LN2 2.0×10−3 4.9×10−4 60 3.0×10−4 0∗ ∞∗ 5.0×10−4

IMU1 2.0×10−2 9.8×10−3 60 1.3×10−4 6.0×10−4 60 3.3×10−4

IMU2 2.5×10−1 3.2×10−2 60 3.0×10−3 3.0×10−3 60 1.5×10−3

Gyroscopes
Bias Scale Walk

Identifier σTurnOn σSteady τ σTurnOn σSteady τ σ
radians
second

radians
second

seconds none none seconds
radians√

second

LN1 1.5×10−8 1.5×10−8 100 5.0×10−6 0∗ ∞∗ 2.9×10−7

LN2 4.8×10−6 1.7×10−6 100 1.0×10−4 0∗ ∞∗ 2.0×10−5

IMU1 1.5×10−5 2.4×10−5 100 7.0×10−5 1.0×10−4 100 1.5×10−5

IMU2 9.7×10−4 9.7×10−4 100 1.0×10−3 1.0×10−3 100 8.7×10−4

Table 3.1: Typical IMU parameter values derived from product manuals. These numbers
have not been approved by any manufacturer. They are presented for order-of-magnitude
comparison only. ∗Indicates a reasonable substitution for missing data.

35

3.1.1 Discrete Implementation

There are some small but important differences between the theory of the previous section
and its implementation. First, the continuous model needs to be converted to a discrete one

ψψψ [t] = expm (∆tΦΦΦ [t−∆t])ψψψ [t−∆t]

ΛΛΛ [t] = expm (∆tΦΦΦ [t−∆t])ΛΛΛ [t−∆t] expm (∆tΦΦΦ [t−∆t])T + ∆tΛΛΛn

(3.10)

Here, expm () represents the matrix exponential function, and ∆t is a small time step,
typically in the range of 1

50
to 1

1000
seconds. The initial uncertainty is given by

ΛΛΛ [0] = blockdiag
(
σσσ2

δx,σσσ
2
δẋ, σ

2
bTurnOnIII,000, σ

2
sTurnOnIII

)
(3.11)

The driving term ΛΛΛn in Equation 3.10 corresponds to the noise nnn. Since the noise is
zero-mean Gaussian, uncorrelated with itself over time, its first-order expectation is E [nnn] =

000, and its second-order expectation is the diagonal matrix

ΛΛΛn = E
[
nnnnnnT] = blockdiag

(
000, σ2

wIII,000, σ
2
bIII,000, σ

2
sIII
)

(3.12)

Now, the driving noise for a discrete system differs from that of a continuous system.
Given the values in Table 3.1, the discrete versions of σb and σs can be derived (σw remains
the same). Consider the one-dimensional bias variability equation:

δḃInRun = − 1

τb
δbInRun + nb (3.13)

Noticing that the error dynamics are slow compared to the IMU time step (∆t� τ), we
choose a first-order approximation to the exponential function

δbInRun [t] =

(
1− ∆t

τb

)
δbInRun [t−∆t] + ∆tnb (3.14)

Then, consider the steady-state variance

σ2
bSteady = lim

t→∞
E
[
δb2InRun [t]

]
=

∆t2σ2
b

1−
(
1− ∆t

τb

)2

(3.15)

Therefore, solving for the amplitude of the discrete driving noise nb, we have

σb = σbSteady

√
2

τb∆t
− 1

τ 2
b

(3.16)

36

And, by analogy we also know the amplitude of ns:

σs = σsSteady

√
2

τs∆t
− 1

τ 2
s

(3.17)

3.1.2 Hardware Cost

Estimated
Identifier Price

dollars

LN1 80,000
LN2 20,000

IMU1 1,200
IMU2 500

Table 3.2: Typical IMU prices.

Navigation hardware can be expensive, so businesses are often interested in the tradeoff
between cost and quality. For the right amount of money, greater than $1, 000, 000, one can
buy an IMU capable of circling the Earth with no visual assistance. On the other hand,
there are sensors that cost much less, but could never be used for unaided navigation. We
speculate that a highly profitable market exists for low-end IMUs coupled with vision.

3.2 Geological Effects

In this work, objects composing a scene are rigidly attached to a rotating planet. The vi-
sual navigation problem is most naturally expressed relative to the scene. However, inertial
measurements are naturally expressed relative to an inertial frame. Three frames are in-
volved all together; the inertial, the scene, and the body. Our goal is to understand the
motion of a body frame relative to the inertial frame, as expressed in the scene frame.

Frame definitions are mostly, though not entirely, arbitrary. None of the sensors pre-
sented in this chapter are capable of measuring a planetary orbit around the sun, so we treat
the geocentric (GC) frame as an inertial reference. The GC frame does not rotate, but the
geoid rotates around it. For the body frame, we choose the forward-right-down convention.
And for the scene reference, we choose a North-East-Down (NED) frame located at the
origin of the body path. The fixed angle γ defines the geodetic latitude of the NED origin.

3.2.1 WGS 84 Geoid Model

To explain the specific forces associated with a body frame, one must first describe plane-
tary geometry (geoids). There are few planetary models to choose from, and creating a new

37

Figure 3-1: Navigation coordinate frames related to the ellipsoidal Earth model. The Earth
rotates around the GC frame, and the NED frame is fixed to the Earth’s surface. The body
altitude is exaggerated to show its separation from the Earth.

model would be far beyond the scope of this thesis. So, we appeal to a model standardized
by the scientific community known as the 1984 World Geodetic System, or simply “WGS
84” [18][53]. Table 3.3 defines the WGS 84 parameters that will be used in subsequent
sections.

The standard model defines a spherical harmonic potential representing gravity plus
centripetal acceleration. Spherical harmonics bear resemblance to a 3-dimensional fourier
basis set. Iso-surfaces of the 1st harmonic of the potential are spheres, and iso-surfaces of
the potential formed by the first two harmonics are ellipsoids. For example, the physical
surface of the Earth known as sea level is a particular iso-surface of the 2nd-order potential.
In practice, the first two spherical harmonics dominate the higher-order harmonics.

WGS 84 provides a model of the gravity potential, with centrifugal effects. Dropping
all terms beyond the 2nd harmonic results in the following potential:

v =
GM

‖ppp‖
+

√
5GMr2

eC20

2 ‖ppp‖3

(
3 sin2 λ− 1

)
(3.18)

where ppp is the 2D position of the body relative to the geoid center, and λ is the geocentric
latitude of the body. Then, the gradient operator can be rewritten in the local NED frame

38

Figure 3-2: The gradient of the gravity potential, valid only outside the geoid and for
p1 > 0. Note that this diagram is defined in two dimensions by the planet’s rotational axis
and the body frame origin at an instant. By this convention, the out-of-plane component of
the gradient is zero. The interior layers of the planet’s crust are shown to emphasize the 2D
slice through a 3D potential.

Parameter Meaning Value Units Source
ζ inverse flattening ratio 2.98257223563×102 none [18]
re equatorial radius 6.378137×106 meters [18]

rp polar radius re

(
1− 1

ζ

)
meters [18]

Ω rotation rate 7.292115×10−5 radians
seconds

[18]
GM gravitational constant 3.986005×1014 meters3

seconds2 [18]
C20 2nd harmonic coefficient −4.84166×10−4 none [18][53]
ge equatorial gravity −9.7803253359− Ω2re

meters
seconds2 [18][53]

gp polar gravity −9.8321849378 meters
seconds2 [53]

Table 3.3: 1984 World Geodetic System physical constants for navigation on Earth.

39

using the chain rule:

∇∇∇ =
∂

∂xxxT

=
[

∂‖ppp‖
∂xxxT

∂λ
∂xxxT

] [∂
∂‖ppp‖

∂
∂λ

]
(3.19)

Taking the gradient of the potential

∇∇∇v =
1

‖ppp‖

 p1 sin γ −p2 sin γ

0 0

p1 cos γ −p2 cos γ

−GM
‖ppp‖2

((
3
√

5C20r
2
e

2 ‖ppp‖2

)(
3p2

2

‖ppp‖2 − 1

)
+ 1

)

3
√

5C20r
2
eGMp1p2

‖ppp‖6

(3.20)

leads to an equation for gravity by itself:

ggg =∇∇∇v + Ω2p1

 sin γ

0

cos γ

 (3.21)

Note that ggg depends only on the variable ppp and several constants, so ggg = ggg (ppp).

3.2.2 Geoid Rotation and Apparent Gravity

Inanimate objects near the surface of a geoid appear to be stationary, but they are actually
hurling through space rather quickly. Given sensitive hardware, the rotation of the geoid
can be measured3, and a conflict may arise between what is seen and what is felt. This
conflict can be resolved through an analysis of rigid-body dynamics.

The dynamic equations for a body in a rotating reference frame are well known. Here,
we rewrite those basic equations in different frames, so that the effects of geoid rotation
can be removed from the IMU output. The geoid rate can be subtracted from the gyro rates
as follows:

∆θθθ [t]−∆tRRR−1Ω

 cos γ

0

− sin γ

 (3.22)

The effects of rotational acceleration can be lumped together with gravity. Let apparent
gravity gggapp be defined as the specific force felt by a body moving at a constant velocity
relative to a NED frame:

3The procedure for finding true North using sensitive gyroscopes is called geocompassing.

40

gggapp = ggg + g̃̃g̃ga + g̃̃g̃gb + g̃̃g̃gc

g̃̃g̃ga = −Ω2rs

 1
2
sin 2γ

0

cos2 γ

g̃̃g̃gb = Ω2

 sin2 γ 0 1
2
sin 2γ

0 1 0
1
2
sin 2γ 0 cos2 γ

xxxT

g̃̃g̃gc = 2Ω

 0 − sin γ 0

sin γ 0 cos γ

0 − cos γ 0

 ẋ̇ẋxT

(3.23)

This is gravity plus a few correction factors: g̃̃g̃ga accounts for the centrepetal acceleration of
the NED frame; g̃̃g̃gb adds the centrepetal acceleration due to the body position in the NED
frame; and g̃̃g̃gc represents the Coreolis effect. In most cases, only g̃̃g̃ga is necessary, but the
other terms are presented for completeness. Finally, we need to define rs, the distance from
the geocentric origin to the NED origin:

rs =

√
r4
e cos2 γ + r4

p sin2 γ

r2
e cos2 γ + r2

p sin2 γ
(3.24)

41

42

Chapter 4

Visual Measurements

Vision systems are designed to extract meaningful information from images. A successful
system provides an answer to a question, which often can be expressed as a transforma-
tion from the image space to a space of higher-level information. In this work, a central
question is, “What does a video stream say about a camera’s motion?” This could be an-
swered if a transformation from the image space to the space of the camera path could
be found. Unfortunately, information about the camera path is lost through the process of
image formation.

People are often surprised by the simple questions that cannot be answered using cur-
rent vision technology. The answer may be attainable, but only under a host of human
assumptions that machines have not learned to make. Sometimes, the desired information
is not there. One might ask, “Is a visible object the same as one that was previously ob-
served?” In this case, the answer depends more on the assumptions and circumstances than
the data itself—no general solution exists.

Instead of struggling to extract camera motion directly, or trying to identify landmarks,
our system will assign labels to any distinct feature that enters the video stream. In other
words, the goal will be to maintain local correspondences without high-level scene repre-
sentation.

The left half of Figure 2-5 in Chapter 2 provides a graphical summary of the proposed
vision system. Vision begins with the process of image formation, so we will consider
how camera motion affects images in general. Next, we will show how to compensate
for camera rotation through an information-conservative transformation. Then, we will
examine the criteria for patterns of light to be distinct and trackable. A corner strength
space will be presented as a quantitative measure of local information content. Finally,
we will describe a tracking method that identifies and gives priority to points of highest
information content.

43

4.1 Image Formation

There are many ways to model a camera in its environment, and choosing the right rep-
resentation is essential to the development of this thesis. We begin with an achromatic
ray-based model of light and its interaction with optical elements. An idealized achromatic
ray can be represented by a unit vector radiating from a point. Likewise, an image projec-
tion can be represented by an array of unit vectors and a focal point. This implies a single
focus for the optical elements associated with the camera [4]. Not all lenses fit this model,
although pinholes and lenses with an infinite focal length do.

Structures and lights in the world create a web of radiant light ` (), which has been
called the “plenoptic space” [38][39]. This space is parameterized by a viewpoint and a
direction of observation, expressed in the visual (NED) frame1. If the camera frame is
coincident with the body frame, then the viewpoint is xxxT , and the direction of observation
is ~z~z~z = RRR~c~c~c. If the frames are not coincident, then the effect of the camera mount can be
handled within the visual-inertial filter (see Section 5.2.4).

An ideal camera returns the image yij = ` (xxxT ,RRR~c~c~cij), where the subscripts correspond
to a pixel location in an array. This is the generic single-focus camera model discussed
earlier. To this, we add one of several specific camera projections, listed in Appendix B. All
of the projections have the form uuu = uuu (~c~c~c), where uuu ∈ [−111,111] stretches to fill a rectangular
array. All of the projections are invertible, so we also know ~c~c~c = ~c~c~c (uuu). A forward-right-
down frame is associated with the camera, such that~c~c~c = [1 0 0]T corresponds to the optical
axis. This model is general enough to accommodate both active optics and any field-of-
view from extreme telephoto to the full 360◦ imaging sphere.

At this stage, the only unknowns are the function ` () and the camera position error
δxxxT . Thousands of image measurements yij become available with each video frame, so it
may be possible to learn about ` () while estimating δxxxT . We have not modeled, nor do we
plan to model, the explicit structure of the environment.

4.1.1 Calibration

This work relies on a calibrated camera, so the relationship uuuij = uuu (~c~c~cij) must be known for
all pixels, at all times. For a standard perspective lens, this relationship is determined by
a single parameter that might be printed on the lens housing. For other radially symmetric
camera models, Bakstein and Pajdla propose a simple calibration experiment, which we
have recreated [5]. Their idea is to take a snapshot of a visual target and discover the
intermediate relationship r = r (c1, ρρρ), which is a part of Equation B.9 in Appendix B. The
target is printed so that it forms concentric rings at equiangular increments when inserted in
a cylinder, as shown in Figure 4-1. The radial distance to each ring can then be measured,
in pixels, by plotting the average image intensity with respect to radius and looking for

1By assuming that the environment is static and diffuse, we do not have to include time explicitly in the
plenoptic expression.

44

local minima in the plot. Finally, the calibration parameters ρρρ can be found by a numerical
routine, given several measurements and the known values of c1 = cos (α), where α is the
angular deviation of each ring from the optical axis.

Figure 4-1: Left—Unwrapped calibration template designed as an insert for a cylinder.
The lines are spaced at 5◦ intervals. Right—Calibration image taken with a commercially
available fisheye lens mounted to a 2/3” CCTV camera (lens sold as Kowa LMVZ164,
Rainbow L163VCS, or VITEK VTL-1634).

4.2 Rotation Compensation

The general motion of a camera can be separated into rotation and translation components.
Typically, camera rotation causes most of the change that is perceived in the image plane,
while the effect of translation is less significant. Since we want to keep track of bits of
information, we would like the information to change slowly between frames. Therefore,
we propose a transformation from the image space to a rotationally-fixed space.

An ideal output space would cover the imaging sphere evenly, with no variation in pixel
density or directional preference2. The field of cartography has addressed this problem by
producing numerous map projections. Each one is a flat representation of the surface of a
sphere; a projection of the SO (2) space onto the R2 space. We have used both the Gall
isographic projection and the Apianus projection as output spaces, with similar results.
Appendix B describes these and other useful projections.

To transform an image from one projection to another, each destination pixel is cal-
culated as a function of the source image. The location of interest in the source space is
uuu = uuu (RRR−1~z~z~zij), where the subscripts ij correspond to the destination space. Since uuu is a
non-integer, a bilinear weighted sum interpolates the value at the source location of inter-
est. This transformation is almost exactly reversible, except for the slight blur introduced

2A fully 3D geodesic mesh would be ideal, but it is difficult to implement such a data structure.

45

Figure 4-2: Top—Fisheye image before rotation compensation, with the camera point-
ing to the West. Middle—Rotation compensation with the Gall isographic reprojection.
Bottom—Rotation compensation with the Apianus reprojection.

46

during interpolation. Therefore, the output space contains nearly all of the information in
the original image.

For this application, a static map of ~z~z~zij can be pre-calculated for each destination pixel
during algorithm initialization. To clarify, one can freely choose ~z~z~z = ~c~c~cGall, or ~z~z~z = ~c~c~cApianus,
or ~z~z~z = ~c~c~cother as the destination projection.

4.3 Corner Strength

In this section, we describe a transformation from one image space to another of the same
size. The input is the rotationally-fixed projection from the previous section, and the output
is a local information metric, calculated for each pixel. This idea builds on corner detection
theory [21][46], so we call it the corner strength transformation.

Some patterns of light contain more information than others. Consider the images
below:

When compressed, the first image reduces by 95%, while the second reduces by only 41%.
The first one is invariant to vertical and horizontal shifts, while the second varies substan-
tially in both directions. Clearly, the second pattern is distinct, and it would be easier to
track than the plain pattern.

There is a fundamental relationship between spatial variation and information content.
This can be seen in the definition of the local image Hessian:

EEE =
∑
winwinwin

[
∂2y
∂i2

∂y
∂i

∂y
∂j

∂y
∂j

∂y
∂i

∂2y
∂j2

]
winwinwin

N (winwinwin; 000, IIIσsmooth) (4.1)

wherewinwinwin represents a small region or window around each pixel of interest. Like a covari-
ance matrix, the Hessian measures information content. Its eigenvalues represent gradient
energy (ie. edges), and its eigenvectors define the major and minor gradient directions.

The ability to track a pattern depends on the eigenvalues of EEE. If one eigenvalue is
strong and the other is weak, then tracking will probably fail along the eigenvector corre-
sponding to the weak direction. For this reason, Harris and Stephens proposed this corner
strength metric that measures trackability [21]:

κ =
det (EEE)

tr (EEE) + ε
(4.2)

Similarly, Shi and Tomasi reasoned that a “good feature to track” is determined by the

47

minimum eigenvalue, which can be expressed in this concise form [46]:

κ = MinEigVal (EEE) =
1

2

(
E11 + E22 −

√
(E11 − E22)

2 + 4E2
12

)
(4.3)

After several experiments with the two common metrics listed above, it became appar-
ent that another factor contributes to tracking performance: balanced eigenvalues. When
one eigenvalue dominates another, the shape of the pattern will be sharply defined in one di-
rection, but elongated in the other. This problem can be avoided by using a corner strength
metric that gives more weight to balanced eigenvalues:

κ =
det (EEE)

tr (EEE)n + ε
(4.4)

We use this metric with n = 1.5, though any n > 1 is valid. Figure 4-3 shows the corner
strength output, calculated by the balanced metric.

Figure 4-3: Demonstration of the corner strength transformation using the balanced eigen-
value metric.

48

Figure 4-4: Contours of corner strength metrics, based on the eigenvalues of the edge en-
ergy Hessian: 1) Minimum eigenvalue, 2) Harris & Stephens, and 3) Balanced eigenvalue.

4.3.1 Feature Detection

When the number of features being tracked drops below a threshold, a detection algorithm
can be executed to search for new ones. The corner strength metric makes feature selection
trivial. First, a threshold is applied to highlight regions in the image that are trackable,
and to reduce the amount of data being handled. The values above the threshold are then
sorted from strongest to weakest, and feature selection begins with the strongest corner. A
mask identifying valid image data is kept to constrain the region of feature selection. If the
location of the candidate lies over a masked region, then it is selected, and a region around
the feature is blacked out. This continues until the desired number of features are selected
or until no more candidates are available.

Figure 4-5 shows a histogram from an actual corner strength image. Since the slope of
the histogram is small in the region of the threshold, the algorithm is not overly sensitive to
this parameter.

4.4 Feature Tracking

Images from the camera undergo rotation compensation and corner strength transformation
before reaching the tracker. This final stage of the vision system produces historically
linked observations of features. The observations are then passed to the inertial-visual filter
in the form of ray vectors.

A feature can be tracked in either the rotation-compensated image space or the κ space.
We found that κ has a slight advantage, because it tends to retain its appearance while the
camera moves over large distances. When a feature is selected, a patch around its center is
permanently stored to represent its appearance.

Features are tracked using the classical method of normalized cross-correlation [29].
This is essentially a template-matching method, where all of the feature positions in a small
search region are evaluated, and the best match wins. By this method, features are located

49

Figure 4-5: Histogram of a corner strength image and two reasonable thresholds: Otsu’s
binary classification threshold [40] and a threshold determined by human observation of its
effect on several images.

Figure 4-6: Examples of features and their corresponding corner strengths.

50

with single-pixel discrete accuracy. The normalization step makes the solution robust to
lighting variation.

A feature can be lost in one of three ways: 1) No strong correlation exists within a
local search region; 2) Another feature with a higher peak corner strength already occupies
the space; or 3) It gets too close to the image boundary. If the feature survives, then an
observation ray ~z~z~z [t] is stored along with the feature’s current pixel location.

Although we recommend normalized cross-correlation, the choice of tracking algo-
rithm is not critical. For example, the Kanade-Lucas-Tomasei (KLT) tracker uses a gradient
descent solver to locate features with sub-pixel accuracy [33][51][52]. Any object tracker
could substitute, as long as the result can be expressed as a set of points that are associated
with ray vectors.

4.4.1 Feature Database

A feature is like a record that has a one-to-many relationship with a set of observations,
so it makes sense to store features in a database structure. A record can be defined by the
following fields: 1) A small, square, corner strength patch representing the first observa-
tion of the feature; 2) The current location of the feature in the image; 3) Pointers to ray
vectors corresponding to historical observations of the feature; and 4) A status byte. In our
implementation, the signed status byte can take on one of the following states:

(−2) DEAD, another feature already occupies the space
(−1) DEAD, feature could not be tracked
(0) DEAD, no reason given
(1) ALIVE, not included in filter, no reason given
(2) ALIVE, not included in filter, camera has not moved much
(3) ALIVE, not included in filter, feature has not moved much
(4) ALIVE, not included in filter, outlier condition detected
(5) ALIVE, included in filter

51

Figure 4-7: Top—Input to the tracking algorithm. Middle—Features that meet the corner
threshold criteria. Bottom—Mask used during tracking to prevent feature overlap.

52

53

54

Chapter 5

Epipolar Constraint Filter

Consider a feature tracked by a single camera over multiple frames, as shown in Figure
5-1. The camera executes arbitrary 6-DOF motion xxx [t] while recording the ray observa-
tions ~z~z~z [t]. The spheres indicate that each measurement is rotation-compensated, so the
orientation of the camera is irrelevant as long as the feature appears somewhere in the
field-of-view. Referring to the figure again, notice that any two non-parallel rays define a
planar subspace, and their cross product is orthogonal to the subspace. This well known
relationship is often called the epipolar constraint [3][31][34][35], though it appears in
various forms and under different names. In our notation, a basic form of the constraint is
given by

(~z~z~z [ta]× ~z~z~z [tb]) ◦∆xxxT = 0 (5.1)

where ∆ represents a change of state between the time of feature acquisition ta and the
current time tb. The constraint tells us that the camera did not move in the direction per-
pendicular to the plane.

Figure 5-1: The epipolar constraint, satisfied by ideal sensor data.

55

5.1 Residual

Suppose we want to make a filter that incorporates the epipolar constraint. When noise
perturbs the sensors, the left-hand-side of Equation 5.1 may become nonzero. The extra
value that would have to be added to the right-hand-side to maintain equality is called a
residual. We propose an alternative version of the constraint that yields a more meaningful
residual. It is a projection of the out-of-plane body motion:

x̃̃x̃xT ≡
(
III − ~̄e~̄e~̄ex~̄e~̄e~̄e

T
x

)
~̄e~̄e~̄ez~̄e~̄e~̄e

T
z∆x̄̄x̄xT

?
= 000 (5.2)

with

~̄e~̄e~̄ex =
∆x̄̄x̄xT

‖∆x̄̄x̄xT‖
~̄e~̄e~̄ez =

~̄z~̄z~̄z [ta]× ~̄z~̄z~̄z [tb]∥∥~̄z~̄z~̄z [ta]× ~̄z~̄z~̄z [tb]
∥∥

The residual x̃̃x̃xT of Equation 5.2 has several desirable properties: 1) It vanishes when
the epipolar constraint is satisfied; 2) It depends only on directly measurable quantities,
so scene depth does not appear explicitly; 3) It is a vector; and 4) Its direction is always
perpendicular to the observation baseline. Figure 5-2 provides a graphical interpretation.
Although this residual was chosen carefully, arguably better forms could exist.

Figure 5-2: State update in a case of extreme sensor conflict. 1—residual definition, 2—
Kalman state update, 3—final update after spherical normalization.

5.2 Stochastic Update

Nearly all of the tools are now in place to define a stochastic visual update. When error
appears in the residual, we can rationally distribute its value between the image data and

56

the inertial data. The IMU uncertainty is properly represented by a dynamically evolving
Gaussian distribution, as in Equation 3.10. If we trust the residual direction and loosely
assume Gaussian measurement noise associated with its magnitude, then the Bayes Least
Squares (BLS) posterior estimates are given by

hhh =

[
x̃̃x̃xT

T

‖x̃̃x̃xT‖
000

]
(measurement gain) (5.3)

kkk = ΛΛΛ−hhhT (hΛhΛhΛ−hhhT + σ̃2
)−1

(Kalman gain) (5.4)

ψψψ+ = ψψψ− + kkk ‖x̃̃x̃xT‖ (state update) (5.5)

ΛΛΛ+ = (III − khkhkh)ΛΛΛ− (reduced uncertainty) (5.6)

and, as a matter of notation

ψψψ+ = ψ̂̂ψ̂ψ =

δx̂̂x̂xT

δ ˙̂ẋ̂ẋ̂xT

δb̂̂b̂bTurnOn

δb̂̂b̂bInRun

δŝ̂ŝsTurnOn

δŝ̂ŝsInRun

(5.7)

Admittedly, we do not know much about the measurement variance σ̃2. It depends on
the imaging hardware, the tracking algorithm, the body path, and the scene. From our
simulations, we were able to determine strong dependence on the body path and the feature
cross product.

σ̃2 ≈
∆x̄̄x̄x2

Tσ
2
angular∥∥~̄z~̄z~̄z [ta]× ~̄z~̄z~̄z [tb]

∥∥2 + σ2
tol (5.8)

Here, σangular is the expected long-term deviation of the tracking algorithm, which we
assume to be about six pixels of angular separation, or 1.5◦. We also set the noise floor at
σtol = 0.01 meters.

5.2.1 Relative Covariance

Suppose the sensor platform has been traveling for some time in a pitch-black room. Sud-
denly, the lights are turned on, and newly acquired feature rays are stored. The body po-
sition estimate at that time would act as a reference for future visual constraints, and the
state covariance would also be a reference. At any time, consider what happens to the
covariance, given the exact body position:

ΛΛΛ | xxxT =

[
000 000

000 ΛΛΛ4:18,4:18 −ΛΛΛ4:18,1:3ΛΛΛ
−1
1:3,1:3ΛΛΛ1:3,4:18

]
(5.9)

57

Also, consider the algebraic change in covariance:

∆ΛΛΛ = ΛΛΛ [tb]−ΛΛΛ [ta] (5.10)

Assuming that prior knowledge of the state xxxT [ta] does not affect the change in covariance,
we make the following approximation:

∆ΛΛΛ ≈ ΛΛΛ [tb] | xxxT [ta] −ΛΛΛ [ta] | xxxT [ta] (5.11)

By doing this, we lose some fidelity of the noise model. However, we avoid the need to
maintain complicated relationships between multiple features.

Figure 5-3: The algebraic relative covariance.

Rearranging Equations 5.10 and 5.11 to put the unknown quantity on the left-hand-side
yields

ΛΛΛ [tb] | xxxT [ta] = ΛΛΛ [tb]−ΛΛΛ [ta] + ΛΛΛ [ta] | xxxT [ta]

= ΛΛΛ [tb]−ΛΛΛref [ta]
(5.12)

with

ΛΛΛref =

[
ΛΛΛ1:3,1:3 ΛΛΛ1:3,4:18

ΛΛΛ4:18,1:3 ΛΛΛ4:18,1:3ΛΛΛ
−1
1:3,1:3ΛΛΛ1:3,4:18

]
(5.13)

Since the expression ΛΛΛ [tb] − ΛΛΛref [ta] includes an approximation, some of its eigenvalues
could drop below zero. A covariance matrix by definition must be symmetric and positive
semi-definite. Therefore, the approximate relative covariance for the BLS update is defined
as follows

ΛΛΛ− ≡ EnforceSPD (ΛΛΛ [tb]−ΛΛΛref [ta]) (5.14)

where EnforceSPD() brings all eigenvalues of its argument up to ε and enforces symme-
try. The idea is to ignore states that are unobservable, given the temporal baseline of the
measurement. After the BLS update, the reference uncertainty is then reinstated.

ΛΛΛ [tb] = ΛΛΛ+ + ΛΛΛref [ta] (5.15)

58

5.2.2 Multiple Features

So far, the discussion has been limited to a single feature, but multiple features can be
handled naturally. Each feature has its own reference time ta, and all features share the
current time tb. We apply individual stochastic updates in sequential order, beginning with
the oldest visible feature and iterating through all currently visible features. The order
does matter, because of the slight nonlinearity of the updates. Each feature contributes one
planar constraint, leading to state observability in multiple dimensions.

Since the inertial process runs continually, the filter is able to handle as few as zero
visual observations. There are no special cases or minimum requirements on the number of
features, so a temporary loss of vision will not crash the algorithm. However, for obvious
reasons, the best performance is achieved with many features that are tracked over a long
period of time.

Figure 5-4: Multiple epipolar constraints can result in a fully constrained body position.

59

5.2.3 State Transfers

There are two kinds of state updates. The first update is the natural propagation of the
state dynamics from Equation 3.10. After each IMU event, but before visual updates are
applied, the values of the first six elements of ψψψ [t] are transferred: The position error
estimate goes into the position estimate, and the velocity error estimate is fed back into the
IMU integration process according to these equations:

x̄̄x̄xT − δx̂̂x̂xT ⇒ x̄̄x̄xT , 000 ⇒ δx̂̂x̂xT (5.16)

˙̄ẋ̄ẋ̄xT − δ ˙̂ẋ̂ẋ̂xT ⇒ ˙̄ẋ̄ẋ̄xT , 000 ⇒ δ ˙̂ẋ̂ẋ̂xT (5.17)

The second update comes from the vision system through the epipolar residual and
Equation 5.5. Due to the nature of image projection, the residual contains no information
about the magnitude of the body translation, but it does affect the direction of translation.
Its direction is perpendicular to the translation baseline. Therefore, the visual updates are
actually incremental rotations of point x̄̄x̄xT [tb] about point x̄̄x̄xT [ta]. To be sure that the mag-
nitude of translation is not affected, the state transfer must be constrained to the surface of
a sphere of radius ‖∆x̄̄x̄xT‖, as follows:

x̄̄x̄xT [ta] +~e~e~eupd ‖∆x̄̄x̄xT‖ ⇒ x̄̄x̄xT [tb] , 000 ⇒ δx̂̂x̂xT (5.18)

˙̄ẋ̄ẋ̄xT −
(
III −~e~e~eupd~e~e~e

T
upd

)
δ ˙̂ẋ̂ẋ̂xT ⇒ ˙̄ẋ̄ẋ̄xT , 000 ⇒ δ ˙̂ẋ̂ẋ̂xT (5.19)

with
~e~e~eupd =

∆x̄̄x̄xT − δx̂̂x̂xT

‖∆x̄̄x̄xT − δx̂̂x̂xT‖
This visual update happens often—once for each feature in each image from any number
of cameras. Again, refer to Figure 5-2 for a graphical interpretation of these equations.

5.2.4 Camera Mount

Sometimes, the camera frame is not coincident with the IMU frame, due to a fixed or active
mount between the body and the camera. In general, there could be a set of active joints
qqq (t) that determine the state of the camera relative to the body.

ζζζ = ζζζ (qqq (t)) (5.20)

The camera state can be broken into an offset ζζζT and an orientationRRRcam = RRRcam (ζζζR),
and each part has a separate role in the system. The role of the camera orientation is
straightforward. Rotation compensation simply takes on an extra term, so uuu = uuu (RRR−1~z~z~zij)

becomes uuu = uuu (RRR−1
camRRR

−1~z~z~zij). The camera offset has a more complicated effect, because
it is embedded in the filter equations. From Figure 5-1, notice that the epipolar plane
constrains the motion of the camera, which can differ from the motion of the body. This

60

has an effect on the definition of the residual, so Equation 5.2 becomes:

x̃̃x̃xT ≡
(
III − ~̄e~̄e~̄ex~̄e~̄e~̄e

T
x

)
~̄e~̄e~̄ez~̄e~̄e~̄e

T
z∆ (xxxT +RζRζRζT)

?
= 000 (5.21)

with

~̄e~̄e~̄ex =
∆ (x̄̄x̄xT +RζRζRζT)

‖∆ (x̄̄x̄xT +RζRζRζT)‖
~̄e~̄e~̄ez =

~̄z~̄z~̄z [ta]× ~̄z~̄z~̄z [tb]∥∥~̄z~̄z~̄z [ta]× ~̄z~̄z~̄z [tb]
∥∥

Similarly, the state transfer equations must incorporate the camera offset. The updates,
analogous to Equations 5.18 & 5.19, become:

x̄̄x̄xT [ta]−∆ (RζRζRζT) +~e~e~eupd ‖∆ (x̄̄x̄xT +RζRζRζT)‖ ⇒ x̄̄x̄xT [tb] , 000 ⇒ δx̂̂x̂xT (5.22)

˙̄ẋ̄ẋ̄xT −
(
III −~e~e~eupd~e~e~e

T
upd

)
δ ˙̂ẋ̂ẋ̂xT ⇒ ˙̄ẋ̄ẋ̄xT , 000 ⇒ δ ˙̂ẋ̂ẋ̂xT (5.23)

with

~e~e~eupd =
∆ (x̄̄x̄xT +RζRζRζT)− δx̂̂x̂xT

‖∆ (x̄̄x̄xT +RζRζRζT)− δx̂̂x̂xT‖

5.3 Outlier Protection

Even the best tracking algorithms occasionally mistrack, and when they do, the types of
errors observed can be difficult to characterize. Although many factors lead to measure-
ment error, we can identify some measurements as being highly unlikely. In a statistical
framework, events that almost never happen are called outliers, and it is common practice
to ignore them when they are identified.

Here, we identify three criteria that must be true for a reasonable measurement. The
first rule says that the magnitude of the angle-of-conflict between the IMU data and image
data should not exceed π

4
radians: ∣∣~̄e~̄e~̄ex ◦ ~̄e~̄e~̄ez

∣∣ < cos
(π

4

)
(5.24)

The second rule constrains the angle-of-conflict to a half-space, such that the camera and
feature observation move in opposing directions:

~̄e~̄e~̄ex ◦
(
~̄z~̄z~̄z [tb]− ~̄z~̄z~̄z [ta]

)
< 0 (5.25)

Refer to Figures 5-1 & 5-2 for a graphical interpretation of these inequalities. Finally, the
residual magnitude should have a reasonable probability of being observed, where anything
beyond 2.5 standard deviations could be considered highly unlikely. In practice, one can
test the residual against the joint uncertainty

‖x̃̃x̃xT‖ < 2.5
√
hΛhΛhΛ−hhhT + σ̃2 (5.26)

61

or against the state uncertainty alone (more conservative)

‖x̃̃x̃xT‖ < 2.5
√
hΛhΛhΛ−hhhT (5.27)

If any of these criteria are not met, then the current measurement is excluded from the filter.

5.4 Numerical Caveats

There are four divide-by-zero traps to avoid in the proposed system. The first two appear
when the triangle in Figure 5-1 becomes degenerate. If either of the denominators in Equa-
tion 5.2 become small, we exclude the corresponding feature from the update phase. The
third trap appears when the magnitude of the residual drops below ε. In this case, the filter
is doing well. The measurement should be included, but calculation of its direction may be
numerically unstable. To work around this, we replace Equation 5.3 with

hhh =
[
~̄e~̄e~̄e

T
z 000

]
(5.28)

This works because the constraint plane normal and the residual point in approximately
the same direction when the residual becomes small. The fourth trap appears when the
inversion in Equation 5.13 becomes ill-conditioned. We prevent this by adding σ2

tol to the
diagonal elements of ΛΛΛ1:3,1:3 during inversion.

62

63

64

Chapter 6

Experiments

In this chapter, we present hardware, data, and results that demonstrate the capability of the
proposed system. Our aim is not to test any particular aspect of the filter, but to encourage
future interest in the field of inertial-visual sensing by showing the potential of this com-
bination. To that end, we have created both custom hardware and an extensive simulation
system that are equally valid platforms for future experimentation.

The synthetic visual scenes are rendered with POV-Ray, a free ray-tracing system, and
the corresponding inertial data is produced by Monte-Carlo simulation. By correctly mod-
eling rough textures, transparency, reflected light, and pixel sampling, a ray-traced image
can closely resemble reality. In the world of simulation, everything is known, from the
exact body path to the camera projection and the structure of the environment. However, it
is simple enough to separate the images from those variables that would be unknown under
real circumstances.

Although synthetic data can be very accurate, our real data differed from the simula-
tions in several ways. In the real data: 1) Pixel saturation was more common; 2) There
were about three times as many visual features per image; 3) The lens deviated from the
calibrated model by as much as ±0.5 degrees; 4) The initial conditions were estimated
from the data itself, while the sensor was at rest; and 5) The time synchronization of the
images relative to the IMU could only be determined up to about ±0.03 seconds.

The same code was applied to all data sets. Besides initial conditions, the only para-
meters that had to be adjusted were the camera calibration and σangular. To the best of our
knowledge, the results presented here are typical.

6.1 Hardware

The hardware used to collect real data consists of an IMU, a camera, a laptop, custom data
acquisition devices, and rigid mounting frames. Two complete packages were assembled,
with different mounts and data acquisition devices, although only one of them was used.
Figure 6-1 shows both versions.

65

The camera offset was ζζζT =
[

0 0 −0.145
]T

, and the relative camera orientation

was ζζζR =
[

0.5 −0.5 −0.5 0.5
]T

, the quaternion form ofRRRcam. The lens focal length
was fixed at 1.6 mm, and the aperture was set to its maximum. A Windows DirectShow
application called AmCap was used to set the camera parameters and store video data.
Images were taken at 640 × 480 pixels resolution (subsampled by 2), with an exposure
time of 8.3 ms and a gain of 4.3. The requested frame rate was 12.27 Hz, but the actual
rate was measured at 12.60 Hz. As a check of the lens and camera together, we were able
to verify that the image was circular.

Figure 6-1: Experimental hardware developed at Draper Laboratory for inertial-visual sens-
ing. Left—New model. Right—Old model (not used).

Specifications:

• Camera, Lumenera LU125M, monochrome, 2/3” CCD sensor, maximum resolution
1280× 1024 pixels

• Lens, VITEK VTL-1634, focal length 1.6–3.4 mm, maximum aperture F1.4, field-
of-view 180◦

• IMU, Litton LN200 (modeled by LN2 in Table 3.1), fiber optic gyroscopes, silicon
accelerometers

6.2 Data Sets

Our results are based on four data sets. Table 6.1 summarizes the basic parameters that
describe each data set, and Figure 6-2 shows some examples of image data. The remaining
figures in this chapter are plots of results.

66

In the simulated scene, Factory7, the camera follows an open-loop path through an
industrial building. The motion includes some variation in speed and rotation, as if the
camera were carried by a person treading carefully. Ground truth for this scene comes in
the form of a parametric camera path produced by the simulator.

The gantry scenes were produced in a large dry water tank with an overhead robot.
This setup bears resemblance to a related experiment by Roumeliotis et. al. [45]. The
images show random objects sprinkled on the bottom of the tank, while the camera follows
a closed-loop path within a small region. In these scenes, only translational motion was
intended, although the body undergoes some rotation. The robot provides ground truth for
the body path to within a few millimeters.

Image Size Duration Frame Rate IMU Rate
Title Realism Camera pixels seconds Hz Hz

Factory7 simulated B.4 480× 480 60 10 400
GantryB real B.5 460× 460 52 12.6 400
GantryC real B.5 460× 460 36 12.6 400
GantryF real B.5 460× 460 44 12.6 400

Table 6.1: Parameters for each experiment. Camera models are described in Appendix B.

67

Figure 6-2: Representative images from each scene: Factory7, GantryB, GantryC, and
GantryF.

68

Figure 6-3: Factory7—full motion plot.

Figure 6-4: Factory7—plot of each dimension.

Figure 6-5: Factory7—plot of the error estimation process.

69

Figure 6-6: GantryB—full motion plot.

Figure 6-7: GantryB—plot of each dimension.

Figure 6-8: GantryB—plot of the error estimation process.

70

Figure 6-9: GantryC—full motion plot.

Figure 6-10: GantryC—plot of each dimension.

Figure 6-11: GantryC—plot of the error estimation process.

71

Figure 6-12: GantryF—full motion plot.

Figure 6-13: GantryF—plot of each dimension.

Figure 6-14: GantryF—plot of the error estimation process.

72

73

74

Chapter 7

Analysis

Each experiment presented in the previous chapter is an instance of a random process.
The gantry data was collected with a single camera, lens, and IMU. And, the simulated
scene provides one additional instance with a different set of hardware. There are four
experiments in all.

The amount of data that has been collected is insufficient to determine the value of
sensor tradeoffs, or to infer statistical characteristics of the filter. However, there are some
aspects of the system that can be checked. In the following sections, we will validate
our use of epipolar geometry, explore the overall performance of the filter, and address
remaining issues.

Figure 7-1: Factory7—Overhead plot showing two instances of the same scene. The
inertial-visual simulator is capable of creating more instances, although this has been left
to future work.

75

7.1 Validation of Epipolar Geometry

The geometry of the epipolar constraint should be consistent with the visual measurements
in each data set. This test can be difficult to visualize with general motion. Thankfully,
one data set, GantryB, begins with simple linear motion. In this case, the camera and the
observed features together create epipolar constraint-plane normals that are perpendicular
to the body path, as seen in Figure 7-2. The camera points downward (upward in the
diagram), and the normals are formed by the right-hand-rule.

The epipolar constraint filter relies on rich body motion within a rich visual environ-
ment. Images do not provide epipolar constraints unless the body translates and features
are visible. When the body motion is simple, as in the GantryB experiment, the constraints
provide less information than when the motion is complex. In general, the results from the
previous chapter show that visual richness is beneficial to the filter’s performance.

Figure 7-2: Randomly selected constraint-plane normals during the first few seconds of the
GantryB experiment.

76

7.2 Overall Performance

Our primary goal has been to reduce inertial drift using visual information. Table 7.1 sum-
marizes the performance of the proposed filter in terms of the magnitude of the endpoint
error ‖x̂̂x̂xT − xxxT‖. Each experiment ran for a different length of time, so the total error
may not be the best performance metric. For this reason, we also include the percent im-
provement owed to visual information. We would like to emphasize that the actual error
reductions are substantial.

σangular IMU Only Vision-Aided Covariance Actual
Title radians meters meters Improvement Improvement

Factory7 0.02 4.35 0.665 87% 85%
GantryB 0.04 0.61 0.062 97% 90%
GantryC 0.04 0.36 0.006 99% 98%
GantryF 0.04 0.30 0.012 99% 96%

Table 7.1: Summary of position error results for each of four data sets.

A covariance matrix represents the filter’s internal model of its performance, and visual
information should reduce the size of the covariance. For a metric of covariance size, we
use the square-root of the matrix norm

√
‖ΛΛΛ1:3,1:3‖. Referring to Table 7.1 again, the in-

ternal model predicts significant covariance improvements for every experiment. However,
the data implies that the internal model is overconfident, because the actual improvements
are less than the expected improvements.

The factory scene shows less improvement than the gantry scenes because there were
fewer features in the simulated environment and the features were tracked for shorter peri-
ods of time.

The actual errors should be inliers of the normal error distribution model. In other
words, the output of the filter should satisfy this inequality:√

(x̂̂x̂xT − xxxT)T Λ−1
1:3,1:3 (x̂̂x̂xT − xxxT) < 2.5 (7.1)

where the number 2.5 defines a 98.8% confidence ellipsoid. This test is satisfied for all of
our experiments. So, the covariance may be overconfident, but given that covariance, the
error is still reasonable.

7.2.1 Relationship to SLAM

In Section 2.3.1 of Chapter 2, we discussed constraint-based localization as an alternative to
SLAM. The essential principle was to treat the first observation of a feature as a reference
for all subsequent observations, resulting in feature-relative localization. In a simplified
one-dimensional experiment, the performance of the filter was degraded by unmodeled
noise, but the overall position error remained bounded.

77

Our inertial-visual filter is conceptually similar to the filter in Chapter 2. Each mea-
surement acts as a constraint defined relative to an initial observation. The measurement
noise is lumped onto the current feature position. The computational requirements of map-
ping are eliminated by making a compromise in the noise model. And, the resulting filter
is mildly overconfident, probably due to the unmodeled errors in the initial feature ob-
servations. Further analysis of the similarities between the epipolar constraint filter and
constraint-based localization or SLAM are left to future work.

7.3 Remaining Issues

Unfortunately, the proposed filter exhibits chatter, as shown in Figure 7-3. This high-
frequency noise appears intermittently as a velocity error that fights against the visual up-
dates. It could be a result of Kalman learning rates that do not match the information con-
tent in the measurements, but the ultimate cause has not been determined. During our short
experiments, the chatter remained small compared to the error being estimated. However,
it could become a significant problem during long excursions.

Figure 7-3: Chatter phenomenon.

In the gantry experiments, the performance of the IMU was better than anticipated.
This is not a problem, but it can be explained by our data collection method. We turned on
the sensor, allowed it to warm up for about 10 minutes, collected gantry motion data, and
then recorded data while the gantry stood still. An estimate of the turn-on bias from the
last data set was then subtracted from the previous data sets. Since the IMU was powered-
down for only a fraction of a second between experiments, the turn-on bias probably did
not vary. Therefore, the inertial data presented here was essentially bias-corrected before
being integrated. This performance enhancement applies to all of the gantry experiments,
with or without vision.

78

79

80

Chapter 8

Conclusions

We have proposed a new method for fusing visual and inertial data. The main problem
with inertial data is unbounded drift, so our goal was to reduce or eliminate drift through
stochastic visual constraints on the body position. In contrast to previous approaches, we
sought a suboptimal solution that did not involve feature mapping. Our new general method
is called constraint-based localization, and the new filter is called the epipolar constraint
filter.

The proposed system is summarized by the block diagram in Figure 2-5. On the vision
side, images from a calibrated camera are rotation-compensated, followed by feature de-
tection and tracking. Ray-vector observations corresponding to feature directions are then
passed to the filter. On the inertial side, the data comes from both the gyroscopes and the
accelerometers, and we assume that the gyroscopes are ideal. The body acceleration is in-
tegrated in the world frame, taking into account a detailed model of apparent gravity, and
a preliminary body position estimate is passed to the filter. Within the filter, a model of
inertial uncertainty is also integrated. By defining a new epipolar residual with an assumed
Gaussian error distribution, we are able to formulate a Bayes Least Squares (BLS) estimate
of the inertial error states. Each visual feature provides one constraint, and multiple fea-
tures have the potential to fully constrain the IMU error. The measurements reduce the size
of a relative covariance matrix, and error updates are fed back into the inertial integration
process through a normalized state transfer.

Although we have not proved any characteristics of the proposed method, this work
contains several theoretical contributions. First, we offer a unified notation for inertial-
visual estimation, presented in Tables 1.1 and 1.2. Our method is general with respect to
the body motion, the IMU type, and any number of single-focus cameras connected by
active linkages. Each camera can have a different image projection. And, the method is
defined for any user-selectable number of visual features, including zero.

Experiments were performed on simulated and real data, and the results were promis-
ing. Localization errors were reduced by an order-of-magnitude during real experiments
lasting about one minute.

81

8.1 Future Work

This work could be extended in several directions. In the near-term, we would like to
determine how system parameters affect overall performance by conducting simulated ex-
periments. Some important parameters are:

• Inertial bias, scale, and random walk.
• Camera projection type.
• Camera calibration accuracy.
• Image resolution.
• Field-of-view.
• Frame rate.

• Reprojection type.
• Richness of the visual environment.
• Corner strength metric.
• Tracking method.
• Length of an excursion.

The proposed system could be described as almost real-time, but it would be fully real-
time with the help of custom hardware. Rotation compensation and corner detection each
take about one second to complete on a desktop PC. These functions are simple, but they
must be performed for every pixel in every image. Feature tracking is already fast, but it
would also be a useful and marketable hardware function. All three of these functions lend
themselves to an FPGA/SDRAM architecture.

In our implementation, the initial observation of a feature always plays the role of zzz [ta].
But, sometimes a later observation of the feature is more reliable than the initial observa-
tion. For instance, if a single GPS update became available, or an unexpected visual event
is detected, then the features could be re-initialized at the next time step. A study of feature
acquisition, tracking duration, and tracking accuracy could lead to deeper integration of our
algorithm with GPS and other sensors.

Theoretical extensions to the filter might include state history smoothing (in the back-
ward Kalman filter sense), linearized orientation updates to enable longer excursions, ad-
vanced treatment of outliers, and the straightforward application of depth estimation (SFM).
An investigation of the measurement variance σ̃ could also provide insight into the perfor-
mance of the filter.

Standardized data sets are useful for comparing alternative algorithms. To facilitate the
future exchange of ideas, we have posted several sets of inertial-visual data on the web at
http://www.mit.edu/∼ddiel/DataSets.

82

http://www.mit.edu/~ddiel/DataSets

83

84

Appendix A

System Parameter Tradeoffs

This appendix provides information related to the design of a visual-inertial navigation
system. Such a system might include laser rangefinders, barometers, GPS receivers, and
other sensors that are not discussed here. However, our aim is to evaluate a limited number
of tradeoffs between IMU and camera parameters only. Specifically, we evaluate three
IMUs, three image resolutions, and three areas of visual coverage.

A.1 Experiments

Since the process of scene generation is very slow, we did not want to create 27 independent
scenes to test all possible parameter combinations. Instead, we chose to create 9 scenes with
carefully-chosen parameters, based on Taguchi’s method of orthogonal experiments [42].

For all experiments, the camera followed an identical one-minute path through a simu-
lated factory. The three parameters in Table A.1 were varied while other system parameters
were held constant. A single random seed was used to generate all of the inertial data sets
so that the body path errors could be compared across experiments. The gyro noise was
artificially set to zero, because the imaging algorithm was not designed to handle large
orientation errors.

IMU Type Resolution Image Area
none

pixels
steradian

steradians

Option 111 LN2 29000 2π
Option 222 IMU1 23000 1.8π
Option 333 IMU2 17000 1.6π

Table A.1: System parameters and the options used in the array experiment. The IMU
types are described in detail in Chapter 3. Note that the full visual sphere occupies 4π
steradians.

85

IMU Image Image IMU Only Vision-Aided
ID Type Resolution Area meters meters

A Option 1 Option 1 Option 1 6.36 | 7.09 0.872 | 0.477
B Option 1 Option 2 Option 2 6.36 | 7.09 0.969 | 0.821
C Option 1 Option 3 Option 3 6.36 | 7.09 1.07 | 1.12
D Option 2 Option 1 Option 2 36.7 | 47.6 4.71 | 6.57
E Option 2 Option 2 Option 3 36.7 | 47.6 5.25 | 8.20
F Option 2 Option 3 Option 1 36.7 | 47.6 2.91 | 9.79
G Option 3 Option 1 Option 3 445 | 730 26.1 | 164
H Option 3 Option 2 Option 1 445 | 730 51.7 | 63.3
I Option 3 Option 3 Option 2 445 | 730 45.3 | 126

Table A.2: Results of the orthogonal array experiment. Expected and measured endpoint
errors are listed next to each other in the divided columns.

A.2 Analysis

The results in Table A.2 come from a relatively small number of experiments, so any ap-
parent trends should be observed with caution. In general, one should expect system per-
formance to vary with sensor specifications. This is certainly true with respect to the IMU,
as shown in Figure A-1. The IMU is the leading factor contributing to the overall perfor-
mance.

Figure A-1: Expected error for each IMU type, calculated as the square-root of the covari-
ance matrix norm

√
‖ΛΛΛ1:3,1:3‖ at the end of each one-minute experiment.

Intuitively, image resolution and image area must affect performance, but the amount
of influence is uncertain. Considering Figure A-2, one can see that a reduction in image
area negatively affects the percentage of error removed from the body path. However, the
effect of image resolution is not so clear. Higher resolution is usually a benefit, but the data
implies that there is an ideal resolution somewhere between Option 1 and Option 2.

86

Figure A-2: Performance variation as a function of each imaging parameter. Each data
point represents the mean of three experiments, and the horizontal line represents the mean
of all nine experiments.

There are two plausible explanations for the resolution data. One likely explanation
is that our experiments were insufficient to capture the effect of the parameter. Each data
point is calculated as the mean of only three experiments, so the mean could be incorrect.
Another explanation says that the data does represent the effect of the parameter–that there
is an ideal resolution. High resolution images can make feature tracking difficult. For
instance, a feature that moves 4 pixels in a low-resolution image could move 7 or 8 pixels
in a high-resolution image. If the feature search radius is fixed at 5 pixels, then the feature
will be successfully tracked in the first case, but not in the second. So, there may be an
ideal resolution, given computational limitations, but our results are inconclusive.

Finally, these simulations confirm that our algorithm breaks down over time, and that
the duration of usefulness depends on the sensor quality. Within a finite time, the filter be-
comes overconfident and the visual updates become sub-optimal. Then, as the error grows
to the scale of the body path itself, the assembly of the epipolar constraint fails, and our
method of outlier removal also fails. In particular, the last few seconds of experiments G
and I could be described as wandering away in the wrong direction. Once the transient nav-
igation capability is lost, the body states can only be recovered by introducing information
from other sensors (ie. GPS).

87

88

Appendix B

Projection Reference

Images are formed by the projection of light rays onto a photosensitive surface. To visualize
a general camera, imagine a unit sphere centered at a focus of projection1. A forward
projection maps rays in the world to the image space, and an inverse projection maps pixels
in the image space to rays in the world.

A few of the most common projection types will be presented here. Some of them
correspond to real optical elements, while others are purely theoretical. For each projection
type, we will provide visual-aides in two forms. First, we will demonstrate mapping to a
rectangular image space by plotting latitude-longitude lines in the image at 10◦ intervals.
Then, we will demonstrate mapping to the ray space by plotting red dots on a unit sphere,
where each dot represents about 100 pixels. Visualizations appear in Figures B-1 to B-5 at
the end of this appendix.

Symbolic notation for the following sections can be found in Table 1.1. A forward-
right-down frame is associated with each projection such that ~c~c~c = [1 0 0]T corresponds to
the optical axis of a camera. The image space uuu ∈ [−111 111] is sampled at discrete points, or
pixels, using array coordinates i ∈ [1 imax] and j ∈ [1 jmax].

B.1 Gall Isographic

The Gall isographic projection covers the full visual sphere. Along any given parallel or
meridian, the mapping is equidistant, with minimal local distortion, except at the poles. In
general, objects maintain a similar appearance as they move throughout most of the image
space. The forward projection is given by

uuu =
1

π

[
2 arcsin (c3)

arctan2
(

c2
c1

)] (B.1)

1Also called a Gaussian image.

89

where uuu is stretched to fill an image array with jmax

imax
=
√

2. The inverse projection is given
by

~c~c~c =

 cos (πu2) cos
(

π
2
u1

)
sin (πu2) cos

(
π
2
u1

)
sin
(

π
2
u1

)
 (B.2)

This projection was derived from the Matlab Mapping Toolbox documentation [43].

B.2 Apianus

Similar to the previous entry, the Apianus projection is also a full spherical projection.
Distortion remains low over the central part of the image, and becomes moderate at the
edges. Distances are preserved along parallels. The forward projection is given by

uuu =
1

π

[
2 arcsin (c3)

arctan2
(

c2
c1

)√
1−

(
2
π

arcsin (c3)
)2
]

(B.3)

where uuu is stretched to fill an image array with jmax

imax
= 2. The inverse projection is given

by

~c~c~c =

cos

(
πu2q
1− u2

1

)
cos
(

π
2
u1

)
sin

(
πu2q
1− u2

1

)
cos
(

π
2
u1

)
sin
(

π
2
u1

)

 (B.4)

This projection was derived from the Matlab Mapping Toolbox documentation [43].

B.3 Standard Perspective

Most lenses approximately fit the standard perspective model. Unfortunately, this model
can only cover part of the image sphere, and distortion becomes untenable as the field-of-
view approaches π radians2. This projection is characterized by a single focal parameter
ρ = cot (αmax), where αmax is half of the horizontal field-of-view in radians. The forward
projection is given by

uuu =
ρ

c1

[
c3
c2

]
(B.5)

2One way cover the full sphere is to project the image onto six faces of a cube, where each face follows
the standard perspective model.

90

where uuu is isotropically scaled to fill the horizontal dimension of an image array. The
inverse projection is given by

~c~c~c =
1√

u2
1 + u2

2 + ρ2

 ρ

u2

u1

 (B.6)

B.4 Equidistant Fisheye

The term fisheye implies a wide-field-of-view. For simplicity, the equidistant fisheye model
presented here covers π radians, or a frontal hemisphere, although it can be extended to
the full sphere. This projection maintains equal angular spacing along any radius3. The
forward projection is given by

uuu =
2 arccos (c1)

π
√

1− c21

[
c3
c2

]
(B.7)

where uuu is stretched to fill a square image array. The inverse projection is given by

~c~c~c =

cos
(

π‖uuu‖
2

)
u2

‖uuu‖ sin
(

π‖uuu‖
2

)
u1

‖uuu‖ sin
(

π‖uuu‖
2

)
 (B.8)

This projection was derived from POV-Ray public source code.

B.5 Radial Division Model

The radial division model comes from a synthesis of recently proposed projections. It
represents a variety of wide-field-of-view optics, including the fisheye lens used to collect
data for this paper. The following equations cover only the frontal hemisphere, but the
model can be extended to the full sphere. The forward projection is given by

uuu =
r√

1− c21

[
c3
c2

]
(B.9)

with

r =
ρ1 arccos (c1) + ρ2 arccos (c1)

2

1 + ρ3 arccos (c1) + ρ4 arccos (c1)
2

3It is the natural logarithmic mapping from SO (2) to R2.

91

where uuu is stretched to fill a square image array. The inverse projection is given by

~c~c~c =

 cos (α)
u2

‖uuu‖ sin (α)
u1

‖uuu‖ sin (α)

 (B.10)

with

α =

ρ3‖uuu‖−ρ1+

q
(ρ3‖uuu‖−ρ1)2+4(ρ2‖uuu‖−ρ4‖uuu‖2)

2(ρ2−ρ4‖uuu‖) when ρ2 − ρ4 ‖uuu‖ 6= 0

‖uuu‖
ρ1−ρ3‖uuu‖ when ρ2 − ρ4 ‖uuu‖ = 0

Notice that the equidistant fisheye projection is a special case of the radial division model
with ρρρ =

[
2
π

0 0 0
]
.

92

Figure B-1: Demonstration of the Gall isographic projection.

93

Figure B-2: Demonstration of the Apianus projection.

94

Figure B-3: Demonstration of the standard perspective projection.

95

Figure B-4: Demonstration of the equidistant fisheye projection.

96

Figure B-5: Demonstration of the radial division model for projection.

97

98

Appendix C

Rotation Reference

There are many ways to represent rotation, and many possible conversions between rep-
resentations [23][48]. Confusion over representation can be very difficult to resolve if a
document does not provide clarification. The purpose of this Appendix is not to present
all possible forms and conversions, but instead to present a minimum set of self-consistent
representations.

Primitives must be defined before rotation can have meaning. First, we assume that
two reference frames exist, where each frame is defined as a right-handed orthogonal triad.
The frames represent local coordinate systems attached to each of two bodies. One frame
is attached to a non-rotating body called the “world,” and the other frame is attached to a
free-floating body. The notation used in this Appendix can be found in Table C.1.

C.1 Orientation Representations

The process of adopting conventions usually involves some combination of rational per-
suasion and arm-twisting. Why use right-handed frames instead of left-handed ones? One
could invent technical arguments, but in reality right-handed people simply outnumber left-
handed people, and for most applications that is the determining factor 1.

To reduce the number of acceptable orientation representations, we must choose con-
ventions. Our process begins by selecting only right-handed frames. Next, we choose four
forms of notation: matrix, quaternion, Euler, and axis-angle. The matrix form has two ver-
sions, and we choose the one that transforms points in the body frame to the world frame.
The quaternion form can be written in scalar-vector or vector-scalar notation. We select
the scalar-vector notation so that ~q~q~q =

[
1 0 0 0

]T
means “no rotation.” For the Euler

1Farmer Philo T. Farnsworth invented the scan-line process used in the first television by analogy to
the way he plowed his fields—East to West, then North to South. Many years later came the invention
of the z-buffer, an array of positive numbers representing virtual depth into a computer screen. These two
historical factors have made the right-down-forward convention popular for researchers in computer graphics
and vision.

99

Symbol Form Size
~q~q~q Quaternion 4-by-1
vvv Axis-Angle 3-by-1
φφφ Euler 3-by-1
RRR Matrix 3-by-3

Table C.1: Special notation for Appendix C only.

form, there are 12 reasonable axis sequences2: 121, 123, 131, 132, 212, 213, 231, 232,
312, 313, 321, 323. We choose the 123 axis sequence because it works intuitively with the
forward-right-down camera frame convention. The outermost axis pans right, the middle
axis tilts up, and the innermost axis rotates clockwise.

Without the previous choices, conversion between representations would be extremely
burdensome. Only considering the matrix, quaternion, Euler, and axis-angle forms, there
are (34 − 1)34 = 1122 possible conversions. But, by limiting the acceptable versions of
each form, the number of conversions has been reduced to (4 − 1)4 = 12. This is a more
tractable number. Therefore, we will present each of the four well-defined representations,
and all twelve of the conversions between them.

C.1.1 Matrix Form

Matrices have the power to transform vectors from one frame to another. A rotation matrix
can be constructed column-by-column from three body frame axes viewed in the world
frame:

RRR =

 | | |
~e~e~e1 ~e~e~e2 ~e~e~e3
| | |

 (C.1)

where ~e~e~e1, ~e~e~e2, and ~e~e~e3 represent the first, second, and third body frame axes. This matrix
would rotate a point in the body frame into the world frame, and its inverse would rotate a
point in the world frame into the body frame.

Conversion: Euler→Matrix

For shorthand, we use cn = cos (φn) and sn = sin (φn).

RRR1 =

 1 0 0

0 c1 − s1

0 s1 c1

 , RRR2 =

 c2 0 s2

0 1 0

− s2 0 c2

 , RRR3 =

 c3 − s3 0

s3 c3 0

0 0 1

2The axis sequences are also known as gimbal configurations.

100

RRR = RRR3RRR2RRR1 =

 c3 c2 c3 s2 s1− s3 c1 s3 s1 + c3 s2 c1

s3 c2 c3 c1 + s3 s2 s1 s3 s2 c1− c3 s1

− s2 c2 s1 c2 c1

 (C.2)

Conversion: Quaternion→Matrix

RRR =

(q2

1 + q2
2 − q2

3 − q2
4) 2 (q2q3 − q1q4) 2 (q2q4 + q1q3)

2 (q2q3 + q1q4) (q2
1 − q2

2 + q2
3 − q2

4) 2 (q3q4 − q1q2)

2 (q2q4 − q1q3) 2 (q3q4 + q1q2) (q2
1 − q2

2 − q2
3 + q2

4)

 (C.3)

Conversion: Axis-Angle→Matrix

RRR = III + VVV sin (‖vvv‖) + VVV 2 (1− cos (‖vvv‖)) (C.4)

VVV =
1

‖vvv‖

 0 −v3 v2

v3 0 −v1

−v2 v1 0

where the angle ‖vvv‖ is shifted to the range [0, 2π) by adding or subtracting increments of
2π as needed. This formula is credited to a Frenchman by the name of Olinde Rodrigues3.

C.1.2 Quaternion Form

A unit quaternion is a compact, hypercomplex, singularity-free representation of body ori-
entation. Sir William Rowan Hamilton invented quaternions in the nineteenth century [20],
and Ken Shoemake brought them to the attention of the computer graphics community
[47]. A quaternion can be written as the sum of a scalar and three orthogonal imaginary
numbers:

~q~q~q ≡ q1 + q2iii+ q3jjj + q4kkk (C.5)

Dropping the imaginary notation, the same quaternion can be expressed as a vector of real
numbers:

~q~q~q =
[
q1 q2 q3 q4

]T
(C.6)

Quaternions have several interesting and useful properties. A quaternion conjugate rep-
resents an inverse rotation ~q~q~q−1 = ~q~q~q ∗. If a quaternion is written in homogenous matrix
notation

~q~q~q =

q1 −q2 −q3 −q4
q2 q1 −q4 q3
q3 q4 q1 −q2
q4 −q3 q2 q1

 (C.7)

3There are many incorrect references to Rodrigues’ formula in mathematical literature. For more infor-
mation, see [54].

101

then consecutive rotations can be calculated by matrix multiplication. Other properties of
quaternions can be found in textbooks on dynamics and kinematics.

Conversion: Euler→ Quaternion

~q~q~q1 = cos

(
φ1

2

)
+ sin

(
φ1

2

)
iii

~q~q~q2 = cos

(
φ2

2

)
+ sin

(
φ2

2

)
jjj

~q~q~q3 = cos

(
φ3

2

)
+ sin

(
φ3

2

)
kkk

~q~q~q = ~q~q~q3~q~q~q2~q~q~q1 =

cos
(

φ3

2

)
cos
(

φ2

2

)
cos
(

φ1

2

)
+ sin

(
φ3

2

)
sin
(

φ2

2

)
sin
(

φ1

2

)
cos
(

φ3

2

)
cos
(

φ2

2

)
sin
(

φ1

2

)
− sin

(
φ3

2

)
sin
(

φ2

2

)
cos
(

φ1

2

)
cos
(

φ3

2

)
sin
(

φ2

2

)
cos
(

φ1

2

)
+ sin

(
φ3

2

)
cos
(

φ2

2

)
sin
(

φ1

2

)
sin
(

φ3

2

)
cos
(

φ2

2

)
cos
(

φ1

2

)
− cos

(
φ3

2

)
sin
(

φ2

2

)
sin
(

φ1

2

)

 (C.8)

Conversion: Axis-Angle→ Quaternion

~q~q~q =

 cos

(
‖vvv‖
2

)
vvv

‖vvv‖
sin

(
‖vvv‖
2

)
 (C.9)

where the angle ‖vvv‖ is shifted to the range [0, 2π) by adding or subtracting increments of
2π, and the reference orientation ~q~q~q =

[
1 0 0 0

]T
covers the singular case ‖vvv‖ = 0.

Conversion: Matrix→ Quaternion

Direct conversion from matrix form to quaternion form requires an algorithm. Although
implementations of the algorithm are widely available [47], it is simple enough to convert
to an intermediate Euler form, followed by conversion to quaternion form.

C.1.3 Euler Form

Euler rotations are applied about multiple axes in sequential order. To find our Euler rep-
resentation, one would ask, “Beginning with the body frame aligned with the world frame,
how can I sequentially rotate the body about the world’s forward, right, and down axes to ar-
rive at the current orientation?” Although the Euler representation is physically grounded,
its formulation is non-intuitive, and it suffers from singularities. Specifically, there are
multiple numerical values that represent the same orientation.

102

Conversion: Matrix→ Euler

φφφ =

arctan

(
R32

R33

)
arcsin (−R31)

arctan

(
R21

R11

)
 (C.10)

Conversion: Quaternion→ Euler

φφφ =

arctan

(
2 (q3q4 − q1q2)

q2
1 − q2

2 − q2
3 + q2

4

)
arcsin (−2 (q2q4 + q1q3))

arctan

(
2 (q2q3 − q1q4)

q2
1 + q2

2 − q2
3 − q2

4

)
 (C.11)

Conversion: Axis-Angle→ Euler

Convert first to quaternion form, and then convert to Euler form.

C.1.4 Axis-Angle Form

As the name implies, the axis-angle form represents an angular rotation about a single axis.
The direction of vvv determines the axis, and the magnitude ‖vvv‖ determines the angle in
radians.

Conversion: Quaternion→ Axis-Angle

vvv =
arccos (q1)√

1− q2
1

 q2
q3
q4

 (C.12)

Conversion: Matrix→ Axis-Angle

vvv =
arccos

(
1
2
(R11 +R22 +R33 − 1)

)√
(R32 −R23)

2 + (R13 −R31)
2 + (R21 −R12)

2

 R32 −R23

R13 −R31

R21 −R12

 (C.13)

Conversion: Euler→ Axis-Angle

Convert first to quaternion form, and then convert to axis-angle form.

103

C.2 Body Orientation from Angular Velocity

A typical 3-axis gyroscope measures angular velocity ωωω in its own body frame. One basic
problem in inertial navigation is to find the body orientation from a history of angular ve-
locity measurements. After careful inspection, we discover that ωωω is not a gradient of any
potential. In other words, integrating it element-by-element yields no meaningful represen-
tation. Instead, we need to store a summary of past information using one of the previously
discussed forms. Experience has shown that the quaternion form is best for this purpose.

The following derivation makes use of vector and hypercomplex notation as needed. To
integrate angular velocity, we first consider a change in orientation over a small amount of
time:

d~q~q~q ≡

 cos
(
‖ωωω‖∆t

2

)
ωωω
‖ωωω‖ sin

(
‖ωωω‖∆t

2

) (C.14)

From the definition of the derivative, we have

q̇̇q̇q (t) ≡ lim
∆t→0

~q~q~q (t+ ∆t)− ~q~q~q (t)

∆t
(C.15)

Then, dropping the explicit dependence on time, and noting that rotations accumulate by
multiplication.

q̇̇q̇q = lim
∆t→0

~q~q~qd~q~q~q − ~q~q~q
∆t

= lim
∆t→0

~q~q~q

∆t

 cos
(
‖ωωω‖∆t

2

)
− 1

ωωω
‖ωωω‖ sin

(
‖ωωω‖∆t

2

)
=

1

2
~q~q~q

[
0

ωωω

] (C.16)

The quaternion rate may take on any magnitude perpendicular to the quaternion itself,
qqqq̇̇q̇q = 000. Finally, to find the body orientation, one would simply integrate the last form of
Equation C.16.

104

105

106

Bibliography

[1] G. Alenyà, E. Martnez, and C. Torras. Fusing visual and inertial sensing to recover
robot egomotion. Journal of Robotic Systems, 21:23–32, 2004.

[2] Adnan Ansar and Kostas Daniilidis. Linear pose etimation from points or lines. In
European Converence on Computer Vision, pages 282–296, 2002.

[3] Matthew Antone and Seth Teller. Scalable extrinsic calibration of omni-directional
image networks. International Journal of Computer Vision, 49(2–3):143–174,
September–October 2002.

[4] Matthew E. Antone. Robust Camera Pose Recovery Using Stochastic Geometry. PhD
thesis, Massachusetts Institute of Technology, February 2001.

[5] H. Bakstein and T. Pajdla. Panoramic mosaicing with a 180◦ field of view lens. In
Third Workshop on Omnidirectional Vision, pages 60–67, June 2002.

[6] J. L. Barron, D. J. Fleet, S. S. Beauchemin, and T. A. Burkitt. Performance of optical
flow techniques. Computer Vision and Pattern Recognition, pages 236–242, 1992.

[7] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller. An Atlas frame-
work for scalable mapping. In International Conference on Robotics and Automation,
volume 2, pages 1899–1906, September 2003.

[8] M. Bosse, R. Rikoski, J. Leonard, and S. Teller. Vanishing points and 3D lines from
omnidirectional video. In International Conference on Image Processing, volume 3,
pages 513–516, June 2002.

[9] Tye M. Brady, Clemens E. Tillier, Robert A. Brown, Antonio R. Jimenez, and An-
thony S. Kourepenis. The inertial stellar compass: A new direction in spacecraft
attitude determination. In 16th Annual AIAA/USU Conference on Small Satellites,
Logan, Utah, August 2002.

[10] A. Chiuso, P. Favaro, Hailin Jin, and S. Soatto. Structure from motion causally inte-
grated over time. IEEE Transactions on Pattern Analysis and Machine Intelligence,
24(4):523–535, April 2002.

107

[11] A. Chiuso, H. Jin, P. Favaro, and S. Soatto. 3-D motion and structure from 2-D
motion causally integrated over time: Implementation. In Sixth European Conference
on Computer Vision, pages 734–750, 2000.

[12] A. Chiuso and G. Picci. A wide-sense estimation theory on the unit sphere. In IEEE
37th Conference on Decision and Control, pages 3743–9754, Tampa, Florida, De-
cember 1998.

[13] Andrew J. Davison. Mobile Robot Navigation Using Active Vision. PhD thesis, Uni-
versity of Oxford, October 1999.

[14] Andrew J. Davison. SLAM with a single camera. In SLAM/CML Workshop at Inter-
national Conference on Robotics and Automation, 2002.

[15] Andrew J. Davison. Real-time simultaneous localisation and mapping with a single
camera. In International Conference on Computer Vision, Nice, France, October
2003.

[16] James Donna. Personal conversations at the Charles Stark Draper Laboratory, 2004.

[17] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Classification. Wiley-
Interscience, 2 edition, 2000.

[18] EUROCONTROL and IfEN. WGS84 Implementation Manual, 2.4 edition, February
1998.

[19] Ryan Eustice, Oscar Pizarro, and Hanumant Singh. Visually augmented navigation in
an unstructured environment using a delayed state history. International Conference
on Robotics and Automation, April 2004.

[20] W. R. Hamilton. The Mathematical Papers of Sir William Rowan Hamilton. Cam-
bridge University Press, Cambridge, England, 1967.

[21] C. Harris and M. Stephens. A combined corner and edge detector. Fourth Alvey Vision
Conference, pages 147–151, 1988.

[22] B. Horn and B. Schunk. Determining optical flow. Artificial Intelligence, 1981.

[23] P.C. Hughes. Spacecraft Attitude Dynamics. Wiley, NY, 1986.

[24] Andreas Huster. Relative Position Sensing by Fusing Monocular Vision and Inertial
Rate Sensors. PhD thesis, Stanford University, July 2003.

[25] Simon J. Julier and Jeffrey K. Uhlmann. A new extension of the kalman filter to
nonlinear systems. SPIE AeroSense Symposium, April 1997.

108

[26] Rudolph Emil Kalman. A new approach to linear filtering and prediction problems.
Transactions of the ASME–Journal of Basic Engineering, 82, Series D:35–45, 1960.

[27] A. D. King. Inertial navigation—forty years of evolution. General Electric Company
Review, 13(3), 1998.

[28] John J. Leonard, Richard J. Rikoski, Paul M. Newman, and Michael Bosse. Mapping
partially observable features from multiple uncertain vantage points. International
Journal of Robotics Research, 21:943–975, 2002.

[29] J. P. Lewis. Fast normalized cross-correlation. Vision Interface, 1995.

[30] Litton Guidance and Control Systems. Product Description of the LN-200 Family,
September 1996. Document No. 208961.

[31] H. C. Longuet-Higgins. A computer algorithm for reconstructing a scene from two
projections. Nature, 293:133–135, 1981.

[32] Chien-Ping Lu, Gregory D. Hager, and Eric Mjolsness. Fast and globally conver-
gent pose estimation from video images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(6):610–622, 2002.

[33] B. D. Lucas and T. Kanade. An iterative image registration technique with an applica-
tion to stereo vision. In 7th International Joint Conference on Artificial Intelligence,
1981.

[34] Yi Ma, Jana Kos̀ecká, and Shankar Sastry. Motion recovery from image sequences:
Discrete viewpoint vs. differential viewpoint. In European Conference on Computer
Vision, Freiburg, Germany, 1998.

[35] Yi Ma, R. Vidal, S. Hsu, and S. Sastry. Optimal motion estimation from multiple im-
ages by normalized epipolar constraint. Communications in Information and Systems,
1(1):51–74, January 2001.

[36] Ameesh Makadia and Kostas Daniilidis. Correspondenceless ego-motion estimation
using an IMU. To appear in IEEE International Conference on Robotics and Automa-
tion, April 2005.

[37] M. Montemerlo and S. Thrun. Simultaneous localization and mapping with unknown
data association using FastSLAM. In IEEE International Conference on Robotics and
Automation, volume 2, pages 1985–1991, September 2003.

[38] Jan Neumann, Cornelia Fermüller, and Yiannis Aloimonos. Eye design in the plenop-
tic space of light rays. In Ninth IEEE International Conference on Computer Vision,
pages 1160–1167, October 2003.

109

[39] Jan Neumann, Cornelia Fermüller, and Yiannis Aloimonos. Polydioptric camera de-
sign and 3D motion estimation. In IEEE Conference on Computer Vision and Pattern
Recognition, volume II, pages 294–301, June 2003.

[40] N. Otsu. A threshold selection method from gray-level histograms. IEEE Transac-
tions on Systems, Man, and Cybernetics, 9(1):62–66, 1979.

[41] W. Pasman, S. Zlatanova, S. Persa, and J. Caarls. Alternatives for optical tracking.
Technical report, Delft University of Technology, UbiCom Program, May 2001.

[42] M.S. Phadke. Quality Engineering Using Robust Design. Prentice Hall, NJ, Novem-
ber 1989.

[43] MATLAB. Mapping Toolbox User’s Guide. The MathWorks, Inc., 2 edition, 2004.

[44] G. Qian, R. Chellappa, and Q. Zheng. Robust structure from motion estimation using
inertial data. Journal of the Optical Society of America, 18:2982–2997, 2001.

[45] S. I. Roumeliotis, A. E. Johnson, and J. F. Montgomery. Augmenting inertial nav-
igation with image-based motion estimation. In IEEE International Conference on
Robotics and Automation, volume 4, pages 4326–4333, May 2002.

[46] Jianbo Shi and Carlo Tomasi. Good features to track. IEEE Conference on Computer
Vision and Pattern Recognition, June 1994.

[47] Ken Shoemake. Quaternion calculus for animation. Math for SIGGRAPH, 1991.

[48] Malcolm D. Shuster. A survey of attitude representations. The Journal of the Astro-
nautical Sciences, 41(4):439–517, October–December 1993.

[49] Dennis Strelow and Sanjiv Singh. Optimal motion estimation from visual and inertial
measurements. In Workshop on Applications of Computer Vision, Orlando, December
2002.

[50] Sebastian Thrun, Wolfram Burgard, and Dieter Fox. A probabilistic approach to
concurrent mapping and localization for mobile robots. Machine Learning and Au-
tonomous Robots (joint issue), 31(5):1–25, 1998.

[51] Carlo Tomasi and Takeo Kanade. Shape and motion without depth. Technical Report
CMU-CS-90-128, Carnegie Mellon University, May 1990.

[52] Carlo Tomasi and Takeo Kanade. Detection and tracking of point features. Technical
Report CMU-CS-91-132, Carnegie Mellon University, April 1991.

[53] U.S. National Imagery and Mapping Agency. Department of Defense World Geodetic
System, 3 edition, January 2000. TR8350.2.

[54] Eric W. Weisstein. Eric Weisstein’s World of Mathematics.

110

	Introduction
	Navigation Problem
	Unified Notation
	Chapter Descriptions

	Approach
	Sensor Configurations
	Gyroscope Reliance

	Applied Machine Vision
	Tracking vs. Flow

	Data Fusion
	An Alternative to SLAM
	System Block Diagram

	Inertial Measurements
	Accelerometer Error
	Discrete Implementation
	Hardware Cost

	Geological Effects
	WGS 84 Geoid Model
	Geoid Rotation and Apparent Gravity

	Visual Measurements
	Image Formation
	Calibration

	Rotation Compensation
	Corner Strength
	Feature Detection

	Feature Tracking
	Feature Database

	Epipolar Constraint Filter
	Residual
	Stochastic Update
	Relative Covariance
	Multiple Features
	State Transfers
	Camera Mount

	Outlier Protection
	Numerical Caveats

	Experiments
	Hardware
	Data Sets

	Analysis
	Validation of Epipolar Geometry
	Overall Performance
	Relationship to SLAM

	Remaining Issues

	Conclusions
	Future Work

	System Parameter Tradeoffs
	Experiments
	Analysis

	Projection Reference
	Gall Isographic
	Apianus
	Standard Perspective
	Equidistant Fisheye
	Radial Division Model

	Rotation Reference
	Orientation Representations
	Matrix Form
	Quaternion Form
	Euler Form
	Axis-Angle Form

	Body Orientation from Angular Velocity

