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ABSTRACT
We study the problem of active learning for multilabel clas-
sification. We focus on the real-world scenario where the
average number of positive (relevant) labels per data point
is small leading to positive label sparsity. Carrying out mu-
tual information based near-optimal active learning in this
setting is a challenging task since the computational com-
plexity involved is exponential in the total number of la-
bels. We propose a novel inference algorithm for the sparse
Bayesian multilabel model of [17]. The benefit of this alter-
nate inference scheme is that it enables a natural approxi-
mation of the mutual information objective. We prove that
the approximation leads to an identical solution to the exact
optimization problem but at a fraction of the optimization
cost. This allows us to carry out e�cient, non-myopic, and
near-optimal active learning for sparse multilabel classifica-
tion. Extensive experiments reveal the e↵ectiveness of the
method.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning

General Terms
Algorithms, Performance, Machine Learning, Optimization

Keywords
Multi-label Learning; Active Learning; Mutual Information

1. INTRODUCTION
The goal in multilabel classification is to learn a classi-

fier which can automatically tag a data point with the most
relevant set of labels. This is in contrast to multi-class clas-
sification where only a single label needs to be predicted
per data point. Our objective, in this paper, is to develop
an e�cient, non-myopic and near-optimal active learning
algorithm for multilabel classification employing a mutual
information based data point selection criterion.
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There has been much recent interest in sparse multilabel
learning [2, 15, 17]. In this scenario, each data point ex-
hibits positive label sparsity in that only a small fraction of
any point’s labels are ever marked as positive or relevant.
Note that this is a typical setting in most real world ap-
plications – the average number of positive labels per data
point ranges from less than 5% on most UCI data sets to
less than 0.001% on Wikipedia and other web data sets [2].
Sparse multilabel learning therefore presents an important,
real-world and novel challenge to active learning techniques.

Traditional active learning techniques for multilabel learn-
ing do not take positive label sparsity into account [11, 13,
20,21,31]. Furthermore, these techniques are myopic and ac-
tively select only a single data point at a time for annotation.
As a result, there is no provable guarantee that the final set
of annotated points is optimal or even near-optimal. While
mutual information based data sampling can provide near-
optimal guarantees in certain regression settings [18,19], it is
non-trivial to extend those to the active multilabel setting.

In this paper, we first develop an alternate inference tech-
nique for the sparse Bayesian multi-label graphical model
of [17] which allows us to carry out e�cient mutual infor-
mation based active learning. We develop an approximation
to the mutual information which is tightly coupled to our in-
ference algorithm and which can be optimized much more
e�ciently than the exact mutual information. This approxi-
mation allows us to develop an active learning strategy that
has the following desirable properties:

• The set of annotated points selected by our algorithm
is provably near optimal.

• The selection of annotated points can be done in time
independent of the size of the label space if all labels
of the point are to be annotated, as opposed to the
existing methods which scale linearly (at best) with
the number of labels.

• The train and test times are considerably reduced due
to the reduction of the label vector to a low dimen-
sional space using a compressed sensing matrix.

• The method can be easily adapted to be integrated
with di↵erent compressed sensing approaches in liter-
ature [3, 5, 8, 10,12,15–17,28,29,32,33].

• The method takes into account label sparsity which
has been proven to be a desirable characteristic in past
work on multilabel classification [2, 15,17].



• The method allows us to generalize to other active
learning scenarios like active diagnosis (selecting which
labels to annotate for a point) and generalized active
learning (selecting both the points and the labels to
annotate).

Our main technical contribution is Theorem 1 where we
prove that, at any given data point selection step, our ap-
proximation leads to an identical solution as would have
been obtained using exact mutual information in the limit-
ing case, but at a fraction of the optimization cost. Further-
more, by performing inference in a sparse Gaussian Process
regression model, we can leverage the mutual information
guarantees to provably show that the entire subset of data
points selected for annotation by our proposed algorithm
is near-optimal. This enables us to carry out active sparse
multilabel learning in an e�cient, non-myopic and theoret-
ically principled fashion. Finally, as a natural extension of
our method, the matrix inversions necessary for traditional
active learning can be carried out in time that is independent
of the size of the label vector for a point.

Extensive experiments reveal that our proposed active
learning strategy consistently outperforms the state-of-the-
art approaches based on variance sampling, SVM based ac-
tive learning proposed in [20] and random sampling base-
lines. Furthermore, we demonstrate that our inference pro-
cedure leads to a better estimate of the variance needed for
Bayesian active learning as compared to existing techniques.
We also show that our method has significant gains (20 times
gain over the delicious dataset with 983 labels) in time
consumption over the state-of-the-art [20] as the number of
labels increases. Finally, we demonstrate that our proposed
approach can also be used to sample both labels as well
as data points, thereby allowing learning at an even lower
annotation cost as compared to existing techniques which
have so far focussed on all the labels being annotated for a
selected data point.

Our main contributions are as follows: (a) a novel infer-
ence procedure for the Bayesian sparse multilabel graphical
model of [17]; (b) an approximation to the mutual infor-
mation which follows naturally from our proposed inference
procedure; (c) a proof that our proposed approximation se-
lects the same data point as would have been chosen by op-
timizing mutual information (in the limiting case); and (d)
an extensive evaluation of the proposed scheme on a diverse
range of real world datasets to prove the gains obtained by
our algorithm. These contributions allow us to carry out
e�cient mutual information based active sparse multilabel
learning for the first time (to the best of our knowledge).

2. RELATED WORK
Past work in active learning has primarily focused on sin-

gle label classification tasks [24]. However, multilabel clas-
sification has received wide interest in recent times [2,3,5,8,
10, 12, 15–17, 28–30, 32, 33]. Active learning is more advan-
tageous in this setting as label acquisition costs are higher
for multilabel scenario. However, research in active learning
for multilabel classification is still in its preliminary stage.
Current multilabel active learning strategies train a binary
SVM classifier for each label and combine the SVM margins
using di↵erent heuristics to select the training set from a
pool of available data for annotation [11, 21, 27]. [27] takes
the average of the SVM uncertainties obtained by Platt scal-

ing [23] and uses it as a selection criterion for greedily select-
ing the set of points to be annotated. [21] uses Mean Max
Loss(MML) and Max Loss(ML) as two separate selection
criteria for annotation of points. [31] uses logistic regression
to predict the number of positive labels for each point and
uses another SVM based heuristic to minimize expected loss
for point selection. The state-of-the-art method [20] uses a
combination of deviation from mean label cardinality and
an SVM-based loss function for active learning. To the best
of our knowledge, all these works are myopic and do not
provide any theoretical guarantees on the optimality of the
selected set.

On the other hand, mutual information has proved to be
a very useful criterion for active learning with Gaussian Pro-
cesses [18,19,26], both empirically and theoretically. In these
schemes, each point is selected from a pool of available unla-
beled data, so as to maximize the information gain over the
remaining unlabeled data. The approximate submodularity
of mutual information ensures that a set of points selected
greedily based on this criterion will be near-optimal [19].
However, extending mutual information to multilabel clas-
sification is non-trivial as a straightforward computation of
mutual information over the label space is exponential in the
number of labels.

The Bayesian compressed sensing model proposed in [17]
is closest to our work, in the sense that it models the multil-
abel classification task as a Gaussian Process. However, the
approximations made in [17], for the inference procedure to
be tractable, do not preserve the covariance matrix across
labels and hence, render mutual information based active
learning infeasible. The inference procedure proposed in sec-
tion 4, however, preserves this covariance matrix and allows
for e�cient mutual information based active learning.

3. BACKGROUND
Our work builds upon a recently proposed Bayesian ar-

chitecture for multilabel classification [17]. We briefly sum-
marize this framework here. Given a set of N data points
X = {x

i

} and the corresponding sparse l-dimensional bi-
nary label vectors Y = {y

i

}, the key idea was to first reduce
the classification task to a lower multidimensional regression
task via a random projection matrix �, and then during test
time, infer the labels for an unseen point via approximate
Bayesian inference.

Specifically, a factor graph corresponding to the model
consists of three potential functions: (1) the first poten-
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Here, Z is the partition function (normalization term), p(W) =Q
K

i=1

N(w
i

, 0, I) is the spherical Gaussian prior on the lin-

ear regression functions, and p(↵
i

) =
Q

L

j=1

�(↵j

i

; a
0

, b
0

) is
the product of Gamma priors on each individual label. Intu-
itively, the function f

x

i

aligns the latent variable z
i

with the
output of the linear regression functions, and the function
g
�

favors compatibility with the compressed label vector
corresponding to y

i

. Finally, h↵
i

enforces sparsity over the
labels.

Using YL to denote labeled instances, inferring the exact
posterior P (YU | YL,X,�) over labels YU for test points
XU is prohibitive due to the product of Gaussian and non-
Gaussian terms in the joint distribution. The approach in
[17] resorts to variational inference by approximating the
posterior over YU as a Gaussian distribution. While this
showed good performance in terms of classification accuracy,
there is a significant disadvantage of using the same inference
procedure for active learning tasks. The derived variational
inference equations lead to loss in information about the
variances between updates across the di↵erent layers of the
graphical model. Specifically, the procedure approximates
the posterior over y

i

as a Gaussian, but the variance of the
random variable y

i

is completely independent of the variance
of the random variable z

i

. Similarly, the variance of z
i

is in
turn independent of the variance of the random variable W.
The variance related to the Gaussian random variables is
central to the use of mutual information in selective sampling
tasks; hence, with the given inference procedure, mutual
information cannot be optimally used as an active learning
strategy.

4. OUR APPROACH
There are two key ingredients to our framework: first is

an alternate approximate inference scheme that preserves
variances due to the regression part of the graphical model.
Given this inference scheme, the second part focuses on de-
riving an e�cient near-optimal selective sampling strategy.

4.1 An Alternate Inference Procedure
Our goal here is to derive an inference scheme that would

preserve the variances of the latent random variables and
propagate correct uncertainties to Y, thereby enabling an
e↵ective active learning strategy. The key observation here
is the fact that such variances can in fact be preserved if
instead of directly applying variational approximation, we
first analytically integrate out the latent variables Z and W
from the joint distribution (Eq. 1). Such analytic integra-
tion is feasible due to the form of potential functions f

x

i

, g
�

and the Gaussian Process prior p(W). This results in a joint
distribution over Y and ↵ that is a product of a Gaussian
and a Gamma distribution. Formally,
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Here the label vectorY is anNl-dimensional vector obtained
by appending all l-dimensional y0

i

s one after the other. Sim-
ilarly, Z is an Nk-dimensional vector resulting from stacking
all k-dimensional z0

i

s. Further, the term ⌃
Y

takes the fol-
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Here, the Nk⇥Nk-dimensional matrix ⌃
Z

is a special block
matrix, where K

ij

is the ith row and jth column entry of
K = (XTX+ �2I)1 and I

k

is the k ⇥ k identity matrix. Fi-
nally, �̃ is another Nk ⇥Nl block diagonal matrix with all
the N diagonal entries set to �. Further, we’d like to explic-
itly point out that the matrix ⌃

Y

�1 is a precision matrix
and is not full-rank. Note that such non-invertible precision
matrices are in-line with use of improper un-normalizable
Gaussian distributions in Bayesian inference [9, 34] and do
not pose any theoretical or practical problems.

The above mentioned marginalization preserves all the in-
formation about uncertainty due to the Gaussian Process re-
gression part of the graphical model and is succinctly repre-
sented in the term ⌃

Y

. We propose to use variational infer-
ence and obtain an approximate posterior distribution over
the label matrix Y that is a product of Gaussian terms and
the corresponding Gamma terms over ↵. If we denote the
approximation at the tth iteration as qt(Y) = N(µt

Y

,⌃t

Y

)
and qt([↵]) =

Q
i

�(at

i

, bt
i

), the resulting update rules are as
following:

Update for qt+1(Y): ⌃t+1

Y

= [diag(E(↵t)) +⌃�1

Y

]�1
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= a0
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+ 0.5,
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= b0
i

+ 0.5[⌃t+1(i, i)]

Given observed labels and q(Y), the posterior distribution
q(YU ) over unobserved labels is simply the conditional Gaus-
sian distribution obtained by using standard Gaussian iden-
tities. We’d like to point out that unlike the previous ap-
proach [17], the cross co-variances across all the labels for all
the points are preserved in ⌃�1

Y

. Further note that this al-
gorithm results in the final variance over the label vectors in
terms of the kernel function over the input features X. This
is a direct consequence of the fact that uncertainty from the
regression part of the network has already been propagated
to Y and sets a basis for an active learning scheme that is
e↵ective.
Selecting Hyperparameters a

0

and b
o

: The choice of
the hyperparameters a

0

and b
0

is critical to induce sparsity,
as arbitrary assignments can lead to non-sparse solutions.
To see this, consider the joint distribution p(Y, [↵

i

]N
i=1

|X,�)
and analytically marginalize over [↵
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]N
i=1

. This results in a
distribution of the following form:
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The above marginalization leads to a very intuitive interpre-
tation where the term⌃

Y

�1 arises due to the regression part

1Extension to non-linear kernel is straightforward by replac-
ing XTX with an appropriate kernel function.
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Figure 1: Plot of the sparsity inducing prior term

(1 + y

2

2b0
)�a0 for di↵erent values of a

0

and b
0

. The
desirable shape of the prior term is shown in bottom-
left corner (indicated by a green X) and occurs when
a
0

and b
0

are set to 10�3 . The bottom-right figure
characterizes the shape as a function of a

0

and b
0

and highlights that the shape is undesirably concave

when �
q

2b0
2a0+1

< y <
q

2b0
2a0+1

.

of the framework and the terms (1+
y

2
ij

2b0
)�a0 induce the spar-

sity in the solution. Note that in the sparsity term, higher
values of y

ij

lead to a lower value of the potential, thereby
penalizing non-zero instantiations. However, the shape of
the penalty term critically depends upon the values of a

0

and b
0

. Figure 1 plots these penalty prior functions for dif-
ferent values of a

0

and b
0

. Figure 1 shows several shapes
corresponding to di↵erent hyperparameter settings. Most of
the shapes shown in the figure are undesirable for inducing
sparsity due to their non-convexity localized around a large
range near zero (highlighted by a red ⇥). The bottom-right
panel on the other hand shows what a desirable penalty
function should look like (a

0

= b
0

= 10�3) (denoted by a
green X).

The bottom-right subpanel in figure 1 characterizes the
shape of the function in terms of the hyperparameters. In
particular, the function can decomposed into three regions:

(1) y < �
q

2b0
2a0+1

, (2) y >
q

2b0
2a0+1

, and (3) �
q

2b0
2a0+1

<

y <
q

2b0
2a0+1

. It is straightforward to show that the sec-

ond derivative of the function will always be greater than
zero for region (1) and (2), thereby implying a nice locally
convex behavior leading to a desirable shape of the penalty
function. The region (3) on the other hand has the second
derivative less than zero, thus leading to a shape with a flat-
ter penalty structure. Consequently, in order to induce an
appropriate sparsity inducing prior it is desirable to mini-
mize the range where region (3) occurs. This is achieved
when either a

0

takes a very high value or when b
0

tends to
zero. However, setting a

0

to a high value will result in a very
peaky penalty function (see figure 1 bottom-middle panel).
A peaky penalty function is undesirable as it will override
the potential arising due to the regression term in the over-
all mutilabel framework. Thus, a desirable prior can only be
achieved when we select a very small value for both a

0

and
b
0

. It is no surprise that in prior research on Bayesian com-
pressed sensing [6, 17, 25], a

0

and b
0

were set to very small
values. Our analysis above validates such choices in order to

incorporate a reasonable sparsity inducing prior. This ob-
servation about requiring a

0

and b
0

to be close to zero will
be critical in the next section where we discuss non-myopic
active learning.

4.2 Non-Myopic Selective Sampling
The goal of active learning is to select a set of points A

to label from the available pool of unlabeled data U under
budget constraints, |A| = n, such that the resulting clas-
sifier is most accurate. Intuitively, we want to sample the
n most informative points with respect to the classification
task. Two potential criteria for the task are entropy and mu-
tual information. Selecting points with maximum entropy
boils down to choosing a set of points that jointly have the
maximum uncertainty on their labels. The mutual infor-
mation criterion [7], on the other hand, chooses A so that
the uncertainty over the labels of remaining points is maxi-
mally reduced after the labels of A are incorporated in the
predictive model.

The mutual information based criterion is the best of the
two heuristics as the entropy criterion tends to select points
that are far apart from each other in the feature space and
hence ends up selecting points on the boundary. Since a
point usually provides information about points in its nearby
region, selecting points on the boundary wastes information
gathering e↵ort. In this paper, we present results in the con-
text of mutual information as a criterion. Formally, if H(·)
denotes the entropy, then we write the non-myopic subset
selection problem as:

A⇤ = argmax
A✓U,|A|=n

H(YU\A)�H(YU\A|YA). (5)

We call this problem non-myopic due to the fact that the
goal is to reason about the entire set A at once. This is dif-
ferent from the other schemes for active classification where
a single point is chosen for querying a label, the model up-
dated after observing the label and the process repeated for
a total of n rounds. This non-myopic subset selection prob-
lem is NP-complete as shown below:

Proposition 1. The subset selection problem defined in

equation 5 is NP-complete for the density p(Y, [↵
i

]N
i=1

|X,�).

This proposition can easily be established by observing that,
when the random variables ↵ are completely observed, the
distribution reduces to the form of a multivariate Gaussian
density. The proof simply follows from the fact that the
subset selection problem for mutual information criterion
has been previously shown to be NP-complete [19].

Given the hardness of this problem, we resort to a greedy
approximation algorithm following recent ideas in submod-
ular optimization. Specifically, if we can show that the
objective (eq. 5) being optimized is submodular and non-
decreasing, then we can derive a greedy strategy that se-
quentially selects data points based on marginal improve-
ment of the objective. Note that the mutual information
criterion is not submodular in general, but under some weak
conditions, both submodularity and its non-decreasing prop-
erty can be established. Formally, [18] have proved the fol-
lowing proposition for random variables S and U in a graph-
ical model:

Proposition 2. [18] Let S, U be disjoint subsets of

random variables such that the variables in S are indepen-

dent given U . Let information gain be F (A) = H(U) �



H(U\A|A), where A ✓ U . Then F is submodular and non-

decreasing on U , and F (;) = 0.

The following observation identifies the graphical model cor-
responding to the joint distribution p(Y, [↵

i

]N
i=1

|X,�) as a
special case of the above, thus establishing the submodular-
ity and non-decreasing characteristic of our objective func-
tion.

Corollary 1. Let S = [↵]n
i=1

and U = YU , then due

to the form of h↵
i

and p(↵
i

), we have [↵
i

]N
i=1

independent

given YU . Consequently, the objective in equation 5 is sub-

modular and non-decreasing.

Given this observation, we can now propose a greedy al-
gorithm that repeatedly picks the points with the highest
increase in mutual information and adds them to the subset
A. The point x⇤ 2 U selected to be added to the subset A
is such that x⇤ = argmax

x

(MI(A [ x) �MI(A)). Here,
MI(A) = H(YU\A)�H(YU\A|YA) and it has been proved
earlier that this algorithm selects the subset A⇤ such that
the value of the objective function will at least be (1 � 1

e

)
times the optimal solution [19,22].

While the above mentioned corollary shows the existence
of a greedy algorithm that has a good approximation guaran-
tee, it is still non-trivial to compute the mutual information
MI(A) for the multilabel classification model. Specifically,
in order to compute mutual information, we need to solve
exact inference, which itself is non-trivial in our model. Here
also, in order to derive an implementable solution, we need
to establish a similar approximation M̂I to mutual informa-
tion such that that the set of selected points A⇤ does not
change when the approximated mutual information is used
instead of the exact one. Formally, we prove the following
theorem which in turn will imply that such an approxima-
tion is feasible:

Theorem 1. Let M̂I denote the mutual information of

any set A computed over the probability distribution, p(Y) /
exp[YT⌃�1

Y

Y/2], where ⌃�1

Y

is as defined in eq. 3, then for

any x 2 U :
lim

a0!0

b0!0

MI(A[ x)�MI(A) = M̂I(A[ x)� M̂I(A).

Proof Sketch: To prove this theorem, we first use the
fact that MI(A [ x)�MI(A) can be written as H(x|A)�
H(x|U\x) [19]. Next, we consider the joint distribution over
Y given in eq. (4) that arises after analytically marginalizing
over [↵

i

]N
i=1

. It is easy to show that given A, the conditional
predictive distribution of x takes a similar form:

p(x|A) / exp[� (x�mA)2

2�2

A
](1 +

x2

2b
0

)�a0

where: mA = ⌃
x,A⌃�1

A,AYA

�2

A = ⌃
x,x

�⌃
x,A⌃�1

A,A⌃A,x

The above reduction follows from simple algebraic manipu-
lation where the terms corresponding to the set A are col-
lected by using matrix inversion lemma. A similar form
also can be derived for the conditional predictive distribu-
tion of x given U\x. Let us denote the conditional en-
tropy of x given A computed via the Gaussian distribu-
tion as Ĥ(x|A). The proof then follows from the fact that
lim

a0!0

b0!0

H(x|A) = Ĥ(x|A) (similarly for H(x|U\x)). Proof

for the above statement is provided in appendix A.

The implication of the above theorem is that the greedy
selection strategy described above will yield nearly the same
subset when M̂I is used instead of the true mutual infor-
mation, as a

0

and b
0

are set to very small values in our
algorithm. This is due to the fact that the greedy proce-
dure seeks to include x such that (MI(A [ x)�MI(A)) is
maximized at each step and the above theorem guarantees
that the order of selecting the points will not change when
MI is replaced by M̂I. This result enables us to derive an
algorithm based on the approximate inference procedure de-
scribed earlier in the paper. Note that the M̂I is defined over
a Gaussian Process; thus, prior work [19] on near-optimal se-
lective sampling can be directly applied here. Also, note that
the discussion above only focuses where the Gaussian term
has a zero mean for clarity purposes. It is fairly straightfor-
ward to extend the analysis to non-zero mean cases.

One of the surprising by-products of our result is the fact
that, similar to Gaussian Process regression models, the ob-
served labels do not a↵ect the order in which the points
should be selected, which in turn allows us to do non-myopic
selection of points. Intuitively this is feasible by realizing
that the mapping of the discrete label vectors to the con-
tinuous space via the matrix � is almost 1-to-1 [15]. So,
any subset selection via Gaussian Process regression on the
continuous space, which is independent of observations, au-
tomatically transfers to the discrete labeled space. We wish
to point out explicitly that ⌃�1

Y

is not full-rank; however,
the computation over Gaussian mutual information is still
feasible in such cases [14].

The proposed compressed sensing framework compresses
the information about the labels, Y into the compressed
space, Z and then couples the Z in a single covariance ma-
trix, hence allowing us to do mutual information based ac-
tive learning in time that is independent of the number of
labels. The compressed sensing formulation also enables us
to train lesser number of classifiers for the training process
and reduce the training time significantly. Finally, note that
the mutual information computation need not be done from
scratch after each iteration of the active learner. We use
lazy evaluations proposed in [19] to drastically reduce the
computational cost for selection of subsequent points to be
annotated.

5. ACTIVE LEARNING
It is interesting to note that selective sampling via M̂I can

accommodate many di↵erent scenarios of selective sampling.
The most popular setting in literature considers revealing all
the labels for selected data points. Alternatively, in active
diagnosis, di↵erent labels can be probed for one particular
test case only. Finally, in the most general case, individual
labels from di↵erent input points can be selected (general-
ized active learning).

5.1 Traditional Active Learning
In traditional active learning, we select a subset of points

from the available data points for which all labels are re-
vealed. Ideally, the goal is to choose a subset of size n
that leads to maximum decrease in entropy over the remain-
ing unlabeled points as described in equation 5. However,
proposition 2 and corollary 1 allow us to greedily select
points to be annotated so as to maximize the mutual in-
formation at each step. Algorithm 1 shows the outline of
the method that allows e�cient sampling of points based



Algorithm 1Mutual information based active learning over
the compressed space

Input: Input features X and budget n
Output: A: The set of points to be labeled

Compute C = ⌃
Z

+ �2I using ⌃
Z

defined in eq. 3
A �
for i 1 to n do

for x 2 X\A do

�
x

 |C(x,x)�C(x,A)C(A,A)

�1
C(A,x)|

|C(x,x)�C(x,

¯A)C(

¯A,

¯A)

�1
C(

¯A,x)|
end
x⇤  argmax

x

�
x

A A [ x⇤

end

on mutual information. Note that, for this case, when all
the labels are revealed per data point, we can be far more
e�cient in computation by directly using the Kernel matrix
defined over the points alone.

5.2 Active Diagnosis
Such an active learning scenario is more specific to multi-

label active learning, where obtaining each label for a point
has significant cost associated with it. For example, in in-
dustrial or medical settings, where each label may be ob-
tained as a result of an expensive test, it is wiser to se-
lect the labels which you want to be annotated for a se-
lected point to decrease the overall cost, as opposed to an-
notating all the labels. If we denote the label vector as
y = {y

1

, y
2

, y
3

, ...y
l

}, then the active diagnosis problem is
to select a subset of labels, l0 ⇢ {1, 2, ...l}, which need to
be annotated. This scenario can be easily handled by our
model as we obtain the complete covariance matrix over
the labels and the mutual information criterion M̂I treats
each label independently. We can follow a greedy algorithm
similar to the one followed in algorithm 1 to sample la-
bels, wherein at each step, we select the label with index,
i = argmax

i2U M̂I(yL[i

)� M̂I(yL) to be labeled, where U
and L denote the unlabeled and labeled indices respectively,
as before. We present evaluation of our scheme for active
diagnosis in the results section.

5.3 Generalized Active Learning
A combination of the above active learning scenarios leads

to a general active learning problem, wherein the goal is to
select both the points and the labels to be annotated within
a given active learning budget. Given the budget to obtain
n annotations, we select n document-label pairs from the set
of pairs {(1, 1), (1, 2), ....., (N, l)}, where N is the number of
documents with l labels each. To achieve this objective, we
consider the information gain computed using M̂I obtained
over the complete label matrix Y. Once again, we use the
greedy strategy to pick each pair. However, computing this
metric over the entire space of document-label pairs is ex-
pensive and we resort to a two-way approach, wherein we
first select the document to be annotated based on algorithm
1 and then select, the label to be revealed similar to active
diagnosis. Note that, both active diagnosis and generalized
active learning are novel active learning scenarios which are
specific to the multilabel classification problem and can’t be
handled by SVM based state-of-the-art methods.

6. RESULTS
In this section, we present empirical results to demon-

strate a) how the proposed approximate inference proce-
dure compares to the prior work [17](denoted as BML-CS)
in terms of accuracy as well as the capability to estimate
variances, b) the comparison of mutual information based
sampling with the state-of-the-art SVM based active learn-
ing method proposed in [20], uncertainity sampling and ran-
dom sampling baselines, and c) performance of the method
on novel active learning scenarios like active diagnosis and
generalized active learning which are specific to multilabel
classification.

6.1 Setup
Datasets: We used the datasets listed in Table 1 to eval-

Table 1: Datasets Used for Experiments
Dataset Type Instances Features Labels

Yeast Biology 2417 103 14

MSRC Image 591 1024 23

Medical Text 978 1449 45

Enron Text 1702 1001 53

Mediamill Video 43907 120 101

RCV1 Text 6000 47236 101

Bookmarks Text 87856 2150 208

Delicious Text 16105 500 983

uate our algorithm. As can be seen from the table, the
datasets exhibit a wide range in type, feature vector size and
label vector size. For each of the datasets, 4000 randomly
sampled points were used as the active learning pool from
which points had to be selected for training based on the
di↵erent active learning strategies compared. Another set
of 2000 points was used as the test data. For datasets with
fewer than 6000 points (enron, medical, MSRC and yeast),
the entire set was selected as the active learning pool and
testing was done on the points not selected for training. All
the results are reported after averaging over 5 such splits.
For all the methods, an initial seed of 500 randomly sam-
pled points was provided to the algorithms to start with (50
points, in case of MSRC, and 200, in case of enron, medi-
cal and yeast), as has been done in standard active learn-
ing literature. For all our experiments, we used features
downloaded from the Mulan multilabel datasets [1]. For
MSRC, we used 1024 bit features generated using the Picodes
scheme [4].

Baselines We compare the following methods for the
evaluation of the proposed active learning strategy:

• MIML: Mutual Information for Multilabel classifica-
tion as proposed in this paper

• Uncert: Uncertainty sampling on the model proposed
in this paper. This method picks the point with the
highest entropy after each iteration.

• Rand: Random sampling baseline wherein each point
is randomly sampled.

• Li-Adaptive: SVM based adaptive active learning
method proposed in [20], which is the state-of-the-art
in multilabel active learning.

Parameters: For MIML and Uncert, the dimension of
the compressed label space k was set to half of the number
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(a) Sample toy data, L = 5
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(b) Precision at 1
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(c) Precision at 2
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(d) Precision at 3

Figure 2: Active Learning on Toy dataset:a)A sample toy dataset generated with 5 Gaussians. Points are
generated from L = 5 Gaussians for this figure and are assigned labels based on the Euclidean distance from
the Gaussian means. In our experiments, we use L = 35 Gaussians.b,c,d) The precision at 1,2 and 3 on the toy
dataset obtained after averaging over 50 di↵erent runs. This clearly shows how mutual information quickly
picks informative points to be annotated and hence, shows considerable increase in performance.

of labels for all datasets. The hyperparameters �2 and �2 in
MIML and Uncert were selected via evidence maximization
and a

0

and b
0

were set to 10�6, which lead to fairly un-
informative priors. The Li-Adaptive mechanism proposed
in [20] has a hyperparameter �, which was selected from a
prefixed set of values 0.1, 0.2, ..., 0.9, 1 as suggested in [20].
Cross validation was done for all other parameters.

Performance Metric: Typically, the goal in multilabel
classification is to predict the top k labels for each point.
So, we use precision at 1, 2 and 3 to quantify the perfor-
mance of di↵erent active learning schemes, which is in line
with previous work. Precision at k is defined as the frac-
tion of true positives over the top k predicted labels for
each point. For novel active learning scenarios like gen-
eralized active learning and active diagnosis, the ultimate
goal is to recover the whole label set of each single test
point. So, we quantify our results using the F-1 measure
which depends on all labels, rather than on the few top
ones: F - measure = 2 precision ⇤ recall

precision+recall

.

6.2 Toy Dataset
We first consider a toy dataset before assessing the per-

formance of the di↵erent schemes on real-world datasets in
6.4. The toy dataset is created as follows: We create L = 35
two-dimensional Gaussians and assign a unique identifier to
each of them. Their mean and standard deviation is ran-
domly selected from a fixed interval such that the contours
of the Gaussians, drawn for C standard deviation away from
the mean, overlap with each other. Points are generated
from each of the L Gaussians. The feature vector is just
the 2-dimensional coordinate of the point and the labels are
the Gaussians whose mean is no more than C standard de-
viations away from the point. For the experiments, C was
selected such that each point belongs to 7 classes on aver-
age. To visualise the dataset, we plot the dataset generated
by setting L = 5, i.e. a dataset generated with 5 Gaussians
in Figure 2(a). For our experiments, we use L = 35 and
start with a randomly sampled set of 20 points. We, then,
select 25 more points based on di↵erent schemes from a pool
of 1000 data points. The performance is averaged over 50
di↵erent runs and compared across all methods mentioned
in section 6.1.

The precision at 1, precision at 2 and precision at 3 is

shown in figure 2. As can be seen in the figure, the mu-
tual information criterion quickly fills the training set with
points that are helpful to the model. Uncertainty sampling
on our model outperforms Li-Adaptive as points are added.
In fact, Li-adaptive baseline performs worse than the ran-
dom sampling baseline in this case. Intuitively, MIML starts
by picking points across di↵erent Gaussians in order to max-
imize mutual information and hence leads to better predic-
tion. On the other hand, the uncertainty sampling criterion
picks points closer to the boundaries, hence missing out on
information.

6.3 Exploration of the Alternate Inference Pro-
cedure:

In order to explore the properties of inference procedures
(BML-CS [17] and proposed method(ML-OSS)), we com-
pare the performance of both algorithms on the MSRC dataset,
which has 23 labels. We used 1024-bit Picodes [4] image de-
scriptors as features.

The results of the experiments are shown in Figure 4(a)
and 4(b). Figure 4(a) plots the means of the labels inferred
by both the methods for five randomly sampled test points
and highlights that the means inferred by both the meth-
ods are highly correlated indicating that they are equally
capable of modeling the means of the posterior distribution.
However, similar correlation is not observed for variance es-
timates. Figure 4(b) plots the variances for the first label
of all the test images inferred by the proposed method vs
BML-CS on a negative log scale. Variances inferred by our
inference method have a much wider spread indicating that
BML-CS underestimates variances due to its limitation in
propagating variances across the graphical model.

6.4 Evaluation of Active Learning Strategy
We compared the performance of the proposed mutual

information (MIML) strategy with the strategy proposed
in [20], uncertainty sampling (UNCERT) and random sam-
pling (Rand). In these experiments, at every active learning
round, all the labels corresponding to an input data point
were revealed. Figure 3 shows the average of precision at
1,2 and 3 achieved on di↵erent datasets. Note that this is
a significant metric as all our datasets except delicious

have less than 3 positive labels per document on average.
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(b) MSRC
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(c) Medical
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(d) Enron
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(e) Mediamill
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(f) RCV1
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(g) Bookmarks
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(h) Delicious

Figure 3: Active Learning with Mutual Information (IG): The averages of precision at 1, 2 and 3 on di↵erent
datasets as points get added to the training set. Our method, MIML, comprehensively outperforms uncer-
tainty sampling(UNCERT) and the random sampling baseline(Rand) as well as the state-of-the-art SVM
based active learning approach, Li-Adaptive [20]. None of the other methods shows such consistent perfor-
mance across the diverse range of datasets. Every other method is outperformed by the random sampling
baseline in one or the other dataset.

Dataset Labels MIML Li-Adaptive

Yeast 14 3m 25s 1m 54s
Mediamill 101 41m 29s 54m 35s
RCV1 101 30m 45s 37m 35s

Bookmarks 208 48m 58s 3h 57m
Delicious 983 1h 11m 20h 15m

Table 2: Time complexity analysis: Time taken
to select 250 points from a pool of 4000 points
for di↵erent datasets for our method (MIML) and
the state-of-the-art SVM based approach [20]. For
Yeast, the pool is 2000 points and other smaller
datasets have been excluded. MIML scales much
better than Li-Adaptive with the number of labels
and achieves nearly 20x gain for Delicious.

We observe that the MIML criterion proposed in this pa-
per outperforms all the compared methods consistently, on
all the datasets. No other method beats the other methods
across all datasets. For instance, Li-adaptive performs worse
than random sampling on almost half of the datasets.

Evaluation of time complexity: Table 2 shows the
time taken by the proposed method (MIML) and Li-adaptive,
to select 250 points to be annotated from a pool of 4000
points. We do not include smaller datasets in this analy-
sis. For Yeast, the pool is 2000 points as the dataset has
only 2417 points. All these experiments were performed on
a standard desktop PC with a 4 core, hyper-threaded Intel
Core-i7 3.4GHz processor and 16GB RAM. As can be seen,

the SVM based approach scales badly (even though train-
ing of binary classifiers per label was parallelized) with the
number of labels and takes approximately 20 times the time
taken by MIML on delicious. The only overhead in MIML
with increasing number of labels is because of the time taken
to learn the Gaussian process over the labels with an initial
set of points. All other updates can be performed incremen-
tally and hence, MIML is extremely time-e�cient.

Active Diagnosis and Generalized Active Learn-
ing: Next, we demonstrate two active learning strategies
specific to multilabel classification and show the benefits
of our mutual information based strategy in these scenar-
ios. As described before, in active diagnosis, one label per
round is revealed for the test set based on the selection
criteria. This scenario cannot be straightforwardly tack-
led by the method of [20], whereas it naturally fits in our
model, as the employed joint distribution correlates both
points and labels. Thus, we compare our results against the
UNCERT and random sampling baselines. Since the ulti-
mate goal is to recover the whole label set of each single
test point, we quantify our results using the F-1 measure
which depends on all labels, rather than on the few top
ones: F - measure = 2 precision ⇤ recall

precision+recall

. We report the re-
sults of this experiment on the RCV1 dataset; we randomly
selected n⇤ = 30 points collected in a test set Y⇤ for which
we did active diagnosis by selectively sampling their labels.
Each test point has an unknown label vector of size l = 101
and the active diagnosis procedure was given a budget of



(a) Comparing means (b) Comparing Variances

0 5 10 15 20 25 30

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

# labels in active set

F−
m

ea
su

re

 

 

MIML
UNCERT
RAND
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Figure 4: (a, b) Comparison of the inference procedure with BML-CS: Figure (a) is a plot of means propagated
by the proposed method (ML-OSS) vs means propagated by BML-CS for 5 randomly sampled test points.
Mean values propagated by both the methods follow similar trends. Figure (b) plots variances inferred over
the test points by our method vs variances propagated by BML-CS. Both the axis have been converted
to negative log scale. Variances propagated by our approach have a wider spread and are higher. (c)
Active Diagnosis: Plot of mean F-score against the number of active diagnosis rounds. Mutual information
(MIML) outperforms uncertainity sampling (UNCERT) and random sampling (Rand). (d) Generalized
Active Learning: Plot of mean F-score against the number of revealed points. Mutual information proves
advantageous over the other methods.

m = 30 labels to select per point. An initial fully observed
training set of 100 points kick started the experiment.

Fig. 4(c) summarizes the results in a plot averaged over 35
runs. We observe that the proposed criterion selects much
more useful labels to reveal right from the start. The di↵er-
ence in the performance compared to the baselines is even
larger than for the traditional active learning task. This is
due to the fact that output labels within a data point are far
more correlated than across data instances. For example, a
test data corresponding to an article tagged as “investment”
is very likely to also fall into the category “banking”.

Generalized Active Learning is the scenario when both the
input point and the label to be queried are selected based
on the selection criteria. Since the goal here is to learn as
much information as possible for the whole test set, we use
the following criterion to evaluate the performance: after se-
lecting m = 30 labels for each of the chosen data points, we
compute the F-measure of the whole test set given the par-
tially revealed label vectors of the current and all other data
points already in the active set. We ran this experiment 35
times and present the averaged results for F-measure with
number of points in the active set in figure 4(d). Note that,
both active diagnosis and generalized active learning are en-
abled by the fact that our multilabel classification model can
train on partially labelled datasets.

7. CONCLUSION
We presented a novel mutual information based active

learning framework for multilabel classification, that enables
a theoretically principled and non-myopic approach. We ex-
tensively evaluated our algorithm across various datasets in
traditional active learning settings as well as active diagnosis
and generalized active learning (which are specific to multi-
label classification) and showed that it consistently outper-
forms the state-of-the-art, both in terms of time-e�ciency
and precision. Possible future work includes integration
of the framework with other multilabel classification tech-
niques.
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APPENDIX
Appendix A: Proof lim

a0!0

b0!0

H(x|A) = Ĥ(x|A)

By definition H(x|A) = E
YA [H(x|YA)] (also for Ĥ). Here

E
YA [·] is the expectation over the labels YA at the active

sites A under the distribution in eq. 4. Now,

ˆH(x|YA)�H(x|YA) =

1

ˆZ

Z

x

e

�(x�mA)2

2�2
A

(x�mA)

2

2�2

A

�
1

Z

Z

x

e

�(x�mA)2

2�2
A

[1 +

x

2

2b0
]

a0
[

(x�mA)

2

2�2

A
+ a

0

log(1 +

x2

2b
0

)] + log

ˆZ

Z

Here, Z and Ẑ are the corresponding normalizing constants.

Now as a
0

! 0, the term a
0

log(1 + x

2

2b0
) vanishes. Further,

using the binomial expansion [1 + x

2

2b0
]�a0 = 1 � a

0

· t +
a0(a0�1)

2!

· t2 + .., where t = x

2

2b0+x

2 , it is straightforward to
show:

lim

a0!0

b0!0

ˆH(x|YA)�H(x|YA) =

ˆH(x|YA)[1�
ˆZ

Z
] + log

ˆZ

Z

The required proof follows directly by using the binomial

expansion and seeing that as a
0

! 0, the expression
ˆ

Z

Z

! 1
and the above quantity evaluates to zero.
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