Active Learning for Sparse Bayesian Multilabel Classification

> Deepak Vasisht, MIT & IIT Delhi Andreas Domianou, University of Sheffield Manik Varma, MSR, India Ashish Kapoor, MSR, Redmond

Given a set of datapoints, the goal is to annotate them with a set of labels.

Given a set of datapoints, the goal is to annotate them with a set of labels.

Given a set of datapoints, the goal is to annotate them with a set of labels.

 $x_i \in \mathcal{R}^d$

Feature vector, d: dimension of the feature space

Given a set of datapoints, the goal is to annotate them with a set of labels.

 $x_i \in \mathcal{R}^d$

Feature vector, d: dimension of the feature space

Iraq	Flowers	Human	Brick	Sea	Sun	SKY

Given a set of datapoints, the goal is to annotate them with a set of labels.

 $x_i \in \mathcal{R}^d$

Feature vector, d: dimension of the feature space

Training

Meeting

Clinton E

6

rawing

WikiLSHTC has 325k labels. Good luck with that!!

Training Is Expensive

- Training data can also be very expensive, like genomic data, chemical data
- Getting each label incurs additional cost

Training Is Expensive

- Training data can also be very expensive, like genomic data, chemical data
- Getting each label incurs additional cost

Need to reduce the required training data.

f

Active Learning Iraq Sky Sun Flowers 2 3 23 \mathbb{N}

f

Active Learning Sky Iraq Sun Flowers 2 3 2 \bigcap 3 \mathbb{N}

In this talk

- An active learner for Multi-label classification that:
 - Answers all your questions
 - Is Computationally Cheap
 - Is Non myopic and near-optimal
 - Incorporates label sparsity
 - Achieves higher accuracy than state-of-the-art

Classification

*Kapoor et al, NIPS 2012

 x_i

*Kapoor et al, NIPS 2012

*Kapoor et al, NIPS 2012

Classification Model: Potentials

Sparsity Priors
$$a_0 = 10^{-6}, b_0 = 10^{-6}$$

Inference: Variational Bayes x_i W z_i^k z_i^2 z_i^1 Φ y_i^2 y_i^3 y_i^L y_i^1 $lpha_i^3$ α_i^2 α_i^{\perp} α_i^L

Inference: Variational Bayes x_i W z_i^1 z_i^2 z_i^k Approximate Gaussian Φ y_i^2 y_i^3 y_i^L y_i^1 α_i^3 α_i^2 α_i^L α_i^{\perp}

Active Learning Criteria

• Entropy: Is a measure of uncertainty. For a random variable X, the entropy H is given as:

$$H(X) = -\sum_{i} P(x_i) \log(P(x_i))$$

- Picks points far apart from each other
- For a Gaussian process, $H = \frac{1}{2} \log(|\Sigma|) + const$

Active Learning Criteria

 Mutual Information: Measures reduction in uncertainty over unlabeled space

$$MI(A, B) = H(A) - H(A|B)$$

Used in past work successfully for regression

Active Learning: Mutual Information

- We have already modeled the distribution over labels, Y as a Gaussian process
- The goal is to select a subset of labels that offers the maximum reduction in entropy over the remaining space

$$\mathcal{A}^* = \arg_{\mathcal{A} \subseteq \mathcal{U}} \max H(Y_{\mathcal{U} \setminus \mathcal{A}}) - H(Y_{\mathcal{U} \setminus \mathcal{A}} | \mathcal{A})$$

Active Learning: Mutual Information

- We have already modeled the distribution over labels, Y as a Gaussian process
- The goal is to select a subset of labels that offers the maximum reduction in entropy over the remaining space

Problem: Variance is not preserved across layers

$$f_{x_i}(W, z_i) = e^{-\frac{||W^T x_i - z_i||^2}{2\sigma^2}}$$
$$g_{\phi}(y_i, z_i) = e^{-\frac{||\Phi y_i - z_i||^2}{2\chi^2}}$$
$$y_i^j \sim N(0, \frac{1}{\alpha_i^j})$$

$$\alpha_i^j \sim \Gamma(\alpha_i^j; a_0, b_0)$$

Integrate to get a Gaussian distribution over Y

$$f_{x_i}(W, z_i) = e^{-\frac{||W^T x_i - z_i||^2}{2\sigma^2}}$$
$$g_{\phi}(y_i, z_i) = e^{-\frac{||\Phi y_i - z_i||^2}{2\chi^2}}$$
$$y_i^j \sim N(0, \frac{1}{\alpha_i^j})$$

$$\alpha_i^j \sim \Gamma(\alpha_i^j; a_0, b_0)$$

 $f_{x_i}(W, z_i) = e^{-\frac{||W^T x_i - z_i||^2}{2\sigma^2}}$ $g_{\phi}(y_i, z_i) = e^{-\frac{||\Phi y_i - z_i||^2}{2\chi^2}}$ $y_i^j \sim N(0, \frac{1}{\alpha_i^j})$

$$\alpha_i^j \sim \Gamma(\alpha_i^j; a_0, b_0)$$

Integrate to get a Gaussian distribution over Y

Use Variational Bayes for sparsity

Active Learning: Mutual Information

- We have already modeled the distribution over labels, Y as a Gaussian process
- The goal is to select a subset of labels that offers the maximum reduction in entropy over the remaining space

$$\mathcal{A}^* = \arg_{\mathcal{A} \subseteq \mathcal{U}} \max H(Y_{\mathcal{U} \setminus \mathcal{A}}) - H(Y_{\mathcal{U} \setminus \mathcal{A}} | \mathcal{A})$$

Active Learning: Mutual Information

- We have already modeled the distribution over labels, Y as a Gaussian process
- The goal is to select a subset of labels that offers the maximum reduction in entropy over the remaining space
 Problem: Computing Mutual Information still needs

exponential time

Solution: Approximate Mutual Information

- Approximate the final distribution over Y by a Gaussian
- Use the Gaussian to estimate the mutual information

• Theorem 1: $\lim_{a_0 \to 0, b_0 \to 0} \widehat{MI} \to MI$

Active Learning: Mutual Information

- We have already modeled the distribution over labels, Y as a Gaussian process
- The goal is to select a subset of labels that offers the maximum reduction in entropy over the remaining space

Problem: Subset selection problem is NP complete

Solution: Use Submodularity

- Under some weak conditions, the objective is sub-modular
- Sub-modularity ensures that the greedy solution is a constant times the optimal solution

Algorithm

- Input: Feature vectors for a set of unlabeled instance, U and a budget n
- Iteratively, add a datapoint x to labeled set A, such that x leads to maximum increase in MI

 $x \leftarrow \arg \max_{x \in \mathcal{U} \setminus A} \hat{M}I(A \cup x) - \hat{M}I(A)$

Performance Evaluation

Datasets

Dataset	Туре	Instances	Features	Labels
Yeast	Biology	2417	103	14
MSRC	Image	591	1024	23
Medical	Text	978	1449	45
Enron	Text	1702	1001	53
Mediamill	Video	43907	120	101
RCV1	Text	6000	47236	101
Bookmarks	Text	87856	2150	208
Delicious	Text	16105	500	983

Setup

- Unlabeled pool size: 4000 points, test size: 2000 points
- For smaller datasets, the entire data was in unlabeled pool. Testing on all unlabeled data
- Initial seed size: 500 points

Compared Algorithms

- **MIML:** Mutual Information for Multilabel Classification (proposed method).
- **Uncert:** Uncertainty sampling (Entropy based)
- Rand: Random sampling
- Li-Adaptive*: SVM based adaptive active learning

*Li et al, IJCAI 2013

Traditional Active Learning

Traditional Active Learning

Active Learning Labels Iraq Sun Sky Flowers 2 3 For a particular datapoint, which labels should I reveal? \land

Active Diagnosis

Active Diagnosis • MIML

• Rand Uncert

labels

Active Diagnosis

Rand

Uncert

🗗 MIML

RCV

labels

• Rand

♦ Uncert •

MIML

RCV

#points

• Rand

Uncert

Ф MIML

#points

Time Complexity

Dataset	Labels	MIML	Li-Adaptive	
Yeast	14	3m 25s	1m 54s	
Mediamill	101	41m 29s	54m 35s	
RCV1	101	30m 45s	37m 35s	
Bookmarks	208	48m 58s	3h 57m	
Delicious	983	1h 11m	20h 15m	

Related Work

- SVM based Active Learning: Li et al [IJCAI, 2013], Yang et al [KDD 2009], Esuli et al [ECIR 2009], Li et al [ICIP 2004], ...
- Mutual Information: Krause et al [UAI 2005], Krause et al [JMLR 2008], Singh et al [JAIR 2009], ...

Conclusion

- Proposed mutual information based active learning for multi-label classification
- Collapsed Variational Bayes to infer variances
- Theoretical analysis of mutual information approximation showing that it is near-optimal
- Showed significant empirical improvements over the state-of-the-art