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WikiLSHTC has 325k labels. Good luck with that!!
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• Training data can also 
be very expensive, 
like genomic data, 
chemical data 

• Getting each label 
incurs additional cost
Need to reduce the required training data.
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In this talk
• An active learner for Multi-label classification that: 

• Answers all your questions 

• Is Computationally Cheap 

• Is Non myopic and near-optimal 

• Incorporates label sparsity 

• Achieves higher accuracy than state-of-the-art
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a0 = 10�6, b0 = 10�6
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Active Learning Criteria

• Entropy: Is a measure of uncertainty. For a 
random variable X, the entropy H is given as: 

!

• Picks points far apart from each other 

• For a Gaussian process, H =

1

2

log(|⌃|) + const

H(X) = �
X

i

P (xi) log(P (xi))



Active Learning Criteria

• Mutual Information: Measures reduction in 
uncertainty over unlabeled space 

!

• Used in past work successfully for regression

MI(A,B) = H(A)�H(A|B)
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• We have already modeled the distribution over 
labels, Y as a Gaussian process 

• The goal is to select a subset of labels that offers 
the maximum reduction in entropy over the 
remaining space

A⇤
= argA✓U maxH(YU\A)�H(YU\A|A)Problem: Variance is not preserved across layers
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• We have already modeled the distribution over 
labels, Y as a Gaussian process 

• The goal is to select a subset of labels that offers 
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Active Learning: Mutual 
Information

• We have already modeled the distribution over 
labels, Y as a Gaussian process 

• The goal is to select a subset of labels that offers 
the maximum reduction in entropy over the 
remaining space

A⇤
= argA✓U maxH(YU\A)�H(YU\A|A)

Problem: Computing Mutual Information still needs 
exponential time



Solution: Approximate 
Mutual Information

• Approximate the final distribution over Y by a 
Gaussian 

• Use the Gaussian to estimate the mutual 
information 

• Theorem 1: lim
a0!0,b0!0

M̂I ! MI



Active Learning: Mutual 
Information

• We have already modeled the distribution over 
labels, Y as a Gaussian process 

• The goal is to select a subset of labels that offers 
the maximum reduction in entropy over the 
remaining space

A⇤
= argA✓U maxH(YU\A)�H(YU\A|A)Problem: Subset selection problem is NP complete



Solution: Use Submodularity

• Under some weak conditions, the objective is 
sub-modular 

• Sub-modularity ensures that the greedy solution 
is a constant times the optimal solution



Algorithm

• Input: Feature vectors for a set of unlabeled 
instance, U and a budget n 

• Iteratively, add a datapoint x to labeled set A, 
such that x leads to maximum increase in MI

x arg max

x2U\A
ˆ

MI(A [ x)� ˆ

MI(A)



Performance Evaluation



Datasets

Dataset Type Instances Features Labels

Yeast Biology 2417 103 14

MSRC Image 591 1024 23
Medical Text 978 1449 45
Enron Text 1702 1001 53

Mediamill Video 43907 120 101
RCV1 Text 6000 47236 101

Bookmarks Text 87856 2150 208
Delicious Text 16105 500 983



Setup

• Unlabeled pool size: 4000 points, test size: 2000 
points 

• For smaller datasets, the entire data was in 
unlabeled pool. Testing on all unlabeled data 

• Initial seed size: 500 points 



Compared Algorithms

• MIML: Mutual Information for Multilabel 
Classification (proposed method). 

• Uncert: Uncertainty sampling (Entropy based) 

• Rand: Random sampling 

• Li-Adaptive*: SVM based adaptive active 
learning

*Li et al, 
IJCAI 2013
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Time Complexity

Dataset Labels MIML Li-Adaptive

Yeast 14 3m 25s 1m 54s

Mediamill 101 41m 29s 54m 35s

RCV1 101 30m 45s 37m 35s

Bookmarks 208 48m 58s 3h 57m

Delicious 983 1h 11m 20h 15m



Related Work

• SVM based Active Learning: Li et al [IJCAI, 
2013], Yang et al [KDD 2009], Esuli et al [ECIR 
2009], Li et al [ICIP 2004], … 

• Mutual Information: Krause et al [UAI 2005], 
Krause et al [JMLR 2008], Singh et al [JAIR 
2009], … 



Conclusion

• Proposed mutual information based active 
learning for multi-label classification 

• Collapsed Variational Bayes to infer variances 

• Theoretical analysis of mutual information 
approximation showing that it is near-optimal 

• Showed significant empirical improvements over 
the state-of-the-art


