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ABSTRACT
Heterogeneity has grown in popularity both at the core and
server level as a way to improve both performance and en-
ergy efficiency. However, despite these benefits, scheduling
applications in heterogeneous machines remains challeng-
ing. Additionally, when these heterogeneous resources ac-
commodate multiple applications to increase utilization, re-
sources are prone to contention, destructive interference, and
unpredictable performance. Existing solutions examine het-
erogeneity either across or within a server, leading to missed
performance and efficiency opportunities.

We present Mage, a practical interference-aware runtime
that optimizes performance and efficiency in systems with
intra- and inter-server heterogeneity. Mage leverages fast and
online data mining to quickly explore the space of application
placements, and determine those that minimize interference
between co-resident applications. Mage continuously moni-
tors active applications, and, upon detecting QoS violations, it
determines whether alternative placements would prove more
beneficial, taking into account any overheads from migration.
Across 350 application mixes on a heterogeneous CMP, Mage
improves performance by 38% and up to 2x compared to
a greedy scheduler. Across 160 mixes on a heterogeneous
cluster, Mage improves performance by 30% on average over
the greedy scheduler, and by 11% over Paragon [15].

1 INTRODUCTION
The end of Dennard scaling [22] has motivated an exten-
sive line of work on architecture heterogeneity. Incorporating
heterogeneity, whether at an individual resource (core, mem-
ory), or server granularity, allows the system to better match
applications to the underlying hardware [11, 34, 41]. Apart
from core and memory heterogeneity, platform heterogene-
ity has become increasingly the norm in large-scale cloud
infrastructures [5, 15–17, 19, 21, 55]. As servers are progres-
sively replaced and upgraded during a datacenter’s lifetime,
the system can end up with several tens of different platform

generations and configurations. Cloud platforms often em-
ploy multi-tenancy to increase utilization. Unfortunately this
also leads to unpredictable performance due to resource in-
terference. While interference is present in homogeneous
architectures as well, it becomes more challenging in the pres-
ence of heterogeneity, as the scheduler must also account for
the impact of heterogeneity on resource contention [18, 41].

Both heterogeneity and interference contribute to perfor-
mance unpredictability, which results in violations of the
strict quality of service (QoS) requirements most cloud ap-
plications have. To eliminate unpredictable performance, one
must address two challenges. First, the scheduler must de-
termine the performance an application will achieve on each
of the different heterogeneous resources or platforms, in the
presence of interference from co-scheduled applications. Ini-
tial placement needs to happen fast to avoid high scheduling
overheads at admission control. Second, the scheduler must
revisit its initial placement decisions to adapt to application
churn, changes in application behavior, and to correct poor
initial placements. Rescheduling must incur minimal perfor-
mance overheads and, when migration is needed, it needs to
distinguish between stateless and stateful applications.

Related work has proposed several approaches to tackle
heterogeneity and interference. For example, BubbleFlux [41]
determines the sensitivity of applications to memory pressure
in order to co-schedule high-priority services with appro-
priate best-effort workloads. Similarly, Paragon [15] uses
fast classification techniques to determine the most suitable
server platform for a given application, and its sensitivity to
interference in shared resources. While these approaches ac-
curately capture an application’s resource preferences, they
focus on platform-level heterogeneity, which is a relatively
small design space (a few tens of platforms). When addition-
ally considering heterogeneity at the granularity of individual
resources, a lot of previously-proposed mechanisms do not
scale without substantially increased runtime overheads.

In this work we improve resource efficiency while pre-
serving QoS through a tiered scheduling approach that takes
advantage of heterogeneity both within and across servers.
Specifically, we propose Mage, a practical runtime system
that leverages a set of scalable and online machine learning
techniques based on latent factor models, namely stochastic
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gradient descent (SGD), to determine the performance of each
scheduled application under different application-to-resource
mappings, in the presence of heterogeneity and multi-tenancy.
The techniques in Mage are transparent to the user, light-
weight, and scale linearly with the number of applications.

Mage is a hierarchical scheduler, first determining the most
suitable server platform across the datacenter, and then al-
locating appropriate resources within the server, trading off
inter- for intra-server heterogeneity when needed. Once a
workload is scheduled, Mage monitors its performance and
reacts to discrepancies between estimated and measured per-
formance within a few milliseconds. When an active workload
underperforms, Mage evaluates alternative application place-
ments and determines whether the performance improvement
from re-scheduling one or more workloads outweighs the
corresponding performance penalties.

The main contributions of Mage are the following:

• Bridge CMP- and cluster-level heterogeneous schedul-
ing via a tiered approach that outperforms the sum of
systems addressing these problems independently.
• Introduce a staged, parallel SGD to determine the re-

source requirements of a new application, which greatly
reduces complexity, allowing the scheduler to scale
to hundreds of applications, and to explore the entire
space of application placements. This removes the need
for empirically decomposing scheduling to smaller,
independently-solved sub-problems, which keep over-
heads low, but result in suboptimal performance, and
require substantial allocation adjustments at runtime.
• Enable fast and lightweight re-scheduling, in the event

that QoS violations are observed. Because Mage consid-
ers heterogeneity at the server and cluster level jointly,
it can re-allocate resources in a less invasive way than
systems accounting for these two problems separately.

We have evaluated Mage using both simulation and exper-
iments on a 40-server heterogeneous cluster, with latency-
critical services, and batch workloads. We compare Mage
against five schedulers: (i) a Greedy scheduler that allocates
the largest available server (or core) first, (ii) a power-aware
scheduler that allocates the lowest-power platform first, (iii)
a static version of Mage, Mage-Static, where decisions are
made at admission and not revisited thereafter, (iv) PIE [52],
a heterogeneity-aware CMP scheduler, and (v) Paragon [15],
a heterogeneity-aware cluster scheduler.

We evaluate three execution scenarios. First, we evaluate
Mage in a heterogeneous 16-core CMP, through simulation.
Across 350 diverse application mixes, Mage improves per-
formance by 38% compared to the greedy scheduler, by 61%
compared to the power-efficient scheduler, by 33% compared
to PIE, and by 13% compared to Paragon. It also outperforms
Mage-Static by 22%, as the latter cannot address changes in

application behavior at runtime, such as from spikes in user
load, or incorrect initial placements. Second, we deploy Mage
in a real heterogeneous 40-server cluster. Mage again im-
proves performance by 30% compared to Greedy, and by 51%
compared to the power-efficient scheduler. Third, we demon-
strate the tiered behavior of Mage by introducing core-level
heterogeneity in the cluster through power management. In
this case, Mage outperforms Greedy by 45%, and the power-
efficient scheduler by 56%. We also compare Mage against
a combination of Paragon for server-level heterogeneity and
PIE for core-level heterogeneity, and show 19% improvement
with Mage. Finally, we use Paragon both at the cluster and
server level, and show that having a unified scheduling frame-
work like Mage outperforms schedulers that handle inter- and
intra-server heterogeneity independently. Mage outperforms
Paragon+Paragon by 11% on average because it has a global
view of resource availability, and can trade off core- (fre-
quency) for server-level heterogeneity whenever necessary.

Finally, we show that the benefits from Mage increase
with heterogeneity. As systems become increasingly heteroge-
neous, such runtimes can ensure that the added heterogeneity
does not come at a performance and efficiency loss.

2 RELATED WORK
Heterogeneity-aware datacenter scheduling: Datacenters
are becoming increasingly heterogeneous. With the datacenter
building provisioned for 15-year lifetime, and servers progres-
sively upgraded over that period, it is not uncommon for
cloud systems to consist of a few tens of server generations
and configurations. This heterogeneity can have a significant
impact on application performance, especially for interactive,
latency-critical applications [15, 18, 44, 55]. The most closely
related work to Mage is Paragon, which leverages practical
classification techniques to determine which server platform
is best suited for an incoming, unknown application [15].
Whare-map also quantifies the impact of server heterogeneity
on performance and cost for a set of Google production work-
loads [41]. Similarly, Nathuji et al. leverage server heterogene-
ity to improve datacenter power efficiency [44]. While these
systems can correctly identify the platforms that optimize the
performance and/or energy efficiency of cloud applications
at the granularity of servers, they are not lightweight enough
to make decisions at core granularity. As cloud servers start
incorporating heterogeneity in compute [30,47], memory, and
storage, it is essential to have scalable schedulers that account
for heterogeneity and make high quality decisions online.
Contention-aware datacenter scheduling: Sharing system
resources to increase utilization results in interference, and
performance degradation [15,18,41,46], and in some cases se-
curity vulnerabilities [20]. Several recent systems aim to min-
imize destructive interference by disallowing colocation of
jobs that contend in the same resources [15, 18, 41, 42, 45, 46],
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or by partitioning resources to improve isolation [20, 31, 32,
39]. For example, BubbleFlux determines how the sensitiv-
ity of applications to pressure in memory resources evolves
over time, and prevents multiple memory-intensive applica-
tions from sharing the same platform. Similarly, DeepDive
identifies the interference VMs sharing resources experience,
and manages it transparently to the user [46]. In the same
spirit, Nathuji et al. [45] develop Q-Clouds, a QoS-aware
control framework that dynamically tunes resources in vir-
tualized clouds to mitigate resource interference between
contending VMs. On the isolation front, Lo et al. [39] study
the sensitivity of Google applications to different sources of
interference. They then combine hardware and software isola-
tion techniques, including containers, cache partitioning, net-
work bandwidth partitioning, and power management [38] to
preserve QoS for the latency-critical, interactive application,
when they share resources with batch, low-priority workloads.
Heterogeneous CMP scheduling: The end of process scal-
ing has made compute and memory heterogeneity highly rel-
evant to modern multicores [11, 23, 25, 27, 40, 47, 51, 52]. To
manage this fine-grained heterogeneity, several recent sched-
ulers and runtime systems account for the impact of hetero-
geneity on application performance at the hypervisor [24],
OS [23, 25, 51], or hardware-level [11, 40, 52]. Shelepov et
al. [51], for example, present a heterogeneity-aware scheduler
that achieves good performance and fairness, and is simple
and scalable, while Craeynest et al. [52] use performance
statistics to find application placements that offer the highest
performance in CMPs with big and small cores. Scheduling
datacenter applications shares a lot of commonalities with
multi-core scheduling, with the added challenge that cloud
services care about tail latency as opposed to average through-
put. This makes interference equally critical to heterogeneity.

3 MAGE DESIGN
3.1 Overview
The key requirement for interference-aware scheduling in
heterogeneous systems is determining the impact of hetero-
geneity and interference on application performance in a
fast and accurate manner. Previous work has either tack-
led heterogeneity and/or interference at platform granular-
ity [15,41,55], or has exclusively managed core heterogeneity
within a server via per-core performance models and OS run-
times [11, 23, 25, 40, 51, 52]. Unfortunately managing hetero-
geneity at server granularity poses more relaxed constraints
on scheduling overheads than when heterogeneity is at the
granularity of individual cores. Additionally, accounting for
heterogeneity and interference separately ignores the impact
the former has on the latter. This means that either perfor-
mance will be suboptimal, or several scheduling decisions
will have to be revisited at runtime, incurring penalties from
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Figure 1: Overview of the Mage runtime.

migration. Finally, while per-core performance models can ac-
curately predict the performance difference between high-end
and low-power cores [40, 52], they do so with applications
running in isolation, hence they do not account for the in-
terference between co-scheduled jobs. Additionally, because
they rely on detailed analytical models, they can be compu-
tationally expensive when applied across a cloud system. As
systems become increasingly heterogeneous, we need accu-
rate, scalable, and lightweight runtimes that optimize for both
performance and efficiency.

Mage is a runtime that accounts for heterogeneity and inter-
ference jointly, at the server and datacenter level. It operates
as a tiered scheduler, providing a unified framework for man-
aging heterogeneity within and across server platforms. Mage
first determines the appropriate platform for an application in
a heterogeneous cloud, and then determines the most suitable
among different heterogeneous resources of a single server.
To simplify our discussion, we will focus on heterogeneous
cores for now, and expand Mage to other resources in Sec-
tion 6.2. Instead of employing performance models, Mage
follows an architecture-agnostic, data-driven approach. Mage
is architecture-agnostic in the sense that it does not require
the users to provide detailed specifications of servers, cores,
or applications for scheduling decisions to happen. Rather, it
leverages a set of practical machine learning techniques that
rely on a minimal amount of profiling information to infer an
application’s performance on any of several heterogeneous
resources in the presence of interference. Mage introduces a
staged latent factor model using Stochastic Gradient Descent
(SGD) [8,33,53] to infer the impact of interference when new
unknown applications run on heterogeneous resources.

Figure 1 shows an overview of the system. Once a new
application arrives 1 , it is profiled for 1-2 seconds to provide
SGD with a sparse signal of the application’s resource require-
ments 2 . Profiling captures an application’s performance
(throughput and latency) on a subset of resources. SGD then
uses this signal to determine how the application will behave
on any of the available heterogeneous resources, given how
previous, similar applications behaved on them. Subsequently,
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Mage uses this information to select the application-to-core
mapping that maximizes performance across co-scheduled
applications 3 . Once applications are scheduled, Mage con-
tinuously monitors their behavior 4 . If one or more applica-
tions experience suboptimal performance, they are reprofiled,
reclassified, and potentially rescheduled 5 .

Below we discuss the machine learning techniques, over-
heads and scalability of Mage, and present a validation that
ensures that the inferred performance reflects the application’s
behavior once scheduled.
Machine learning background: Stochastic Gradient De-
scent (SGD) is a popular latent factor model in online machine
learning systems [6, 8, 33, 37, 48, 49, 53, 56]. It is primarily
used as a preprocessing step to matrix factorization, in recom-
mender systems and online classifiers [6], and more recently
to train weights and biases in neural networks. SGD has be-
come the training model of choice primarily because of its
efficiency in the presence of massive datasets, which have
been a major roadblock for previously-used techniques, such
as the Interior-Point, or Newton Method [28], which rely on
linear algebra routines like Cholesky, LU, or DGEMM. The
input to SGD is an m×d matrix A, called the utility matrix.
Each row (or sample) r in A corresponds to an instance of the
training set containing d features (the dimensionality of the
dataset), and each column corresponds to different items to
be recommended. SGD finds a d-dimensional vector w, which
minimizes objective function, f , also known as loss function.
In Mage, the loss function is the error between inferred and
measured performance on a real heterogeneous platform.

SGD is an iterative process. In each iteration SGD computes
the gradient of the objective function with respect to each
entry in the matrix, and updates the model in the negative
direction of the gradient. The initial utility matrix A is heavily
sparse. Before SGD can iterate over each element of A, we
need to provide it with an approximation of the dense utility
matrix R using PQ-reconstruction [8, 53], where R≈ Q ·PT .
A popular approach to obtain P and Q is through matrix
factorization, e.g., via a technique like Singular Value Decom-
position (SVD) [6], under which Qm×r =U , and PT

r×d = Σ ·V T .
Um×r is the matrix of left singular vectors, Σr×r is the diagonal
matrix of singular values, and Vd×r is the matrix of right sin-
gular vectors. Once we obtain the initial R, SGD progressively
improves its per-element estimations:
∀rui, where rui an element of the reconstructed matrix R

εui = rui−qi · pu
T

qi← qi+η (2 · εui pu−λqi)
pu← pu+η (2 · εuiqi−λ pu)

until |ε|L2 =
√

∑u,i |εui|2 becomes marginal.
η is the learning rate, and λ is the regularization param-

eter. The learning rate determines how quickly the values
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Figure 2: The staged SGD approach employed in Mage.
SGD1 infers the sensitivity of incoming applications to re-
source contention, SGD2 determines per-application per-
formance for a subset of placement strategies, and SGD3
infers performance for the remaining placements.

adapt between iterations, thus affects the speed of conver-
gence, and the regularization parameter avoids overfitting to
a specific dataset. The learning rate is selected to be small
enough for SGD to achieve linear convergence. It is set at
(λ · k−1) where k the current iteration, which can be proven
to be optimal, since the Hessian of the cost function at the
optimum is strictly positive [9]. The regularization parameter
is selected empirically for a given dataset. The complexity
of SGD is O(k ·m · p), where k the number of iterations, m
the number of rows of the utility matrix, and p the average
number of non-zero entries per row (density degree).
Parallel SGD: A major advantage of SGD is its significantly
lower complexity compared to prior techniques. Nevertheless,
scheduling applications on heterogeneous multicores poses
strict constraints on scheduling overheads, both during the ini-
tial placement, and any adjustments needed at runtime. Under
these constraints, SGD can still add considerable overheads,
especially for large datasets, since the number of columns in
the utility matrix grows as m!. To further improve the scala-
bility of Mage, we implement parallel SGD [37, 49], which
leverages shared memory to achieve near-linear speedup with
the number of processors. When running Mage on a dedicated
server, parallel SGD reduces scheduling overheads by at least
an order of magnitude.
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3.2 Heterogeneous Scheduling with SGD
The input to Mage is profiling information of incoming appli-
cations with co-scheduled applications, either targeted con-
tentious kernels, or other cloud applications. The output is per-
formance across application placements. Both Paragon [15]
and Quasar [18] demonstrated that SGD can be used to clas-
sify unknown applications with respect to different server
configurations and sources of interference. Mage improves on
these findings in two ways. First, to improve inference scala-
bility, Mage uses parallel SGD. Second, to further reduce the
overheads of scheduling, Mage introduces a staged approach
in parallel SGD with three phases, one used for training and
two for inference, as illustrated in Figure 2.

SGD 1 (offline training): First, Mage obtains the interfer-
ence profile of a new application. When an application arrives
to the system, it is profiled on any of the available platforms
for a few seconds alone and with two contentious kernels.
The number of runs with contentious kernels is selected based
on a sensitivity study (see Section 6.2). Each contentious ker-
nel targets a specific shared resource (CPU, cache hierarchy,
memory capacity and bandwidth, network bandwidth, storage
capacity and bandwidth) and introduces pressure of tunable
intensity to that resource [14]. The profiling microbenchmarks
and their corresponding intensity are selected at random. We
use the same set of contentious kernels across all incoming
applications, which serve as a common reference point that
trains the scheduler to the differences in the characteristics of
new services. Mage collects the application performance in
MIPS and inserts it as a new row in utility matrix A1m×q below,
where m is the number of incoming applications, and q the
number of contentious kernels multiplied by their intensity
plateaus (10-100% in 10% increments with 100% saturating
the entire shared resource), plus one for the run in isolation.

A1m×q =



alone uB110 ... uB1100 ... uBn100

app1 a11,1 a11,2 ... 0 ... a11,q

app2 a12,1 0 ... a12,11 ... 0

app3 a13,1 0 ... a13,11 ... 0

... ... ... ... ... ... ...
appm a1m,1 0 ... 0 ... 0


SGD recovers the performance for the missing entries, and

provides the scheduler with the sensitivity of the application to
different types of interference across platforms. This SGD step
only needs to happen once for a given application, regardless
of other services present in the system at the time.

SGD 2 (online testing – partial placements): Once Mage
obtains the interference profile for each incoming workload,
it randomly selects an available core in a server, and executes
the new application for 1-2 seconds. As the application is
running, Mage collects performance statistics for this, as well
as any already active applications on the same platform and

populates the corresponding columns in the utility matrix. The
utility matrix A2m×(q+w) - seen below - concatenates A1 with
the profiled application-to-core mappings as columns. Here,
w is the number of columns with at least one application-to-
core entry populated. For example, map1234 below means that
app1 is scheduled on core1, app2 on core2, app3 on core3,
and app4 on core4 of the same server. The obtained perfor-
mance statistics enable Mage to recover the missing entries for
columns w. Unfortunately, this only includes a small subset
of all possible application-to-core mappings. The remaining
mappings correspond to all-zero columns and need to tack-
led separately to avoid having them immediately discarded
by SVD. Randomly initializing all-zero columns to increase
entropy is a frequently-used approach in machine learning
systems. However, in our case it increased scheduling over-
heads substantially, as more iterations were needed for SGD
to converge, and additionally resulted in higher estimation
errors. Instead we break the online inference to an additional
step, SGD3, described below.

A2m×(q+w) = A1⌢



map1234 map1243 ... map4321

app1 a21,1 0 ... 0

app2 0 a22,2 ... 0

app3 0 0 ... 0

... ... ... ... ...
appm 0 0 ... a2m,(q+w)


SGD 3 (online testing – complete placements): A third and
final SGD populates the previously all-zero columns (n−w)
of matrix A3 below, where n is the total application-to-core
mappings. Because all other columns are now fully populated,
randomly initializing the all-zero columns does not have the
same negative impact on estimation error or complexity as
before. The initialization range is [minvalue,maxvalue] of the
existing matrix entries. Once this final SGD completes, Mage
selects the placement (column) with the highest geometric
mean, schedules the applications on the heterogeneous re-
sources, and starts monitoring their performance. 1

A3m×(q+n) = A1⌢



map1234 map1243 ... map4321

app1 a21,1 a21,2 ... a21,(q+n)

app2 a22,1 a22,2 ... a22,(q+n)

app3 a23,1 a23,2 ... a23,(q+n)

... ... ... ... ...
appm a2m,1 a2m,2 ... a2m,(q+n)


3.3 Mage Validation
We now validate the accuracy of Mage’s performance infer-
ence. Figure 3a shows the estimation error for Mage across
350 application mixes of latency-critical and batch jobs in a

1A positive side-effect of breaking the online SGD into two steps is that the
overall overhead is significantly lower, since the sum of the iterations for
SGD2 and SGD3 is lower than the number of iterations it would require to
reconstruct randomly-initialized zero columns.
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Figure 3: Geometric mean error between the measured
performance and the performance estimated by Mage
for: (a) the simulated heterogeneous CMP, and (b) the het-
erogeneous cluster with and without power management.

simulated 16-core CMP with 4 core configurations, a mix of
high-end, and low-power designs (for more details on method-
ology see Section 5). On average, the error between estimated
and measured performance across mixes is 4.6% and at most
9.1%. Figure 3b also shows the estimation error across 160
applications mixes of interactive and batch jobs running on a
real cluster with servers of different hardware configurations,
with and without power management. The error is again low:
1.7% on average and up to 5.8% when no power manage-
ment is used, and 1.9% on average and up to 6.1% when
DVFS is enabled. SGD is resilient to the specific applications
used, with jobs that experience the highest error being mostly
volatile interactive workloads that go through drastic load
fluctuations at runtime. Low estimation errors ensure that the
input Mage uses for scheduling accurately reflects the appli-
cation’s resource requirements, and reduces the need to adjust
its decisions frequently once applications are already running.

4 RUNTIME
4.1 Challenges
Although Mage’s initial placement decisions minimize in-
terference, the actual application behavior during runtime
may vary for several reasons. First, the application itself
may change characteristics. Most workloads, especially user-
driven interactive services go through multiple phases during
their execution, each with different resource needs. Second,
while in general accurate, the techniques in Mage may still
overestimate application performance occasionally. Third,
Mage by default optimizes for the mean performance across
applications on a system. If one or more applications have
higher priorities than the rest, this function may penalize their
performance. Regardless of the reason behind suboptimal per-
formance, Mage needs to take immediate action to recover
from the QoS violation. This creates two challenges: first, the
system must be agile in detecting when performance is subop-
timal. Interactive applications, such as websearch, must meet
strict tail latency requirements, which means that even a few

milliseconds of suboptimal performance can have a significant
impact on tail request latency [13]. Second, once degradation
is detected, Mage should quickly determine whether an alter-
native placement can resolve the performance issues without
incurring disproportionate migration costs.

4.2 Fast Detection
Mage runs at the hypervisor level. Inference happens in Mage
Master, which runs on a dedicated server (see Fig. 1). Each
scheduled application runs in a Linux container to isolate its
cores from co-scheduled workloads. Threads are additionally
pinned to physical cores to avoid interference due to the
OS scheduler’s decisions [35]. The master spawns a Mage
Agent on each worker machine that monitors the performance
of all scheduled applications, and notifies the master when
QoS violations occur. Agents measure low-level performance
metrics, such as MIPS and cache misses that applications
do not always record. Cloud applications often report their
own performance, although this typically reflects high-level
metrics, such as request throughput and latency, which the
agent can then correlate to low-level statistics.

Apart from measuring performance, the main goal of the
Mage agent is to be unobtrusive and transparent to the appli-
cation. To ensure this, the monitor runs in a separate software
thread that wakes up every 1-2 seconds, measures perfor-
mance, and goes back to sleep. If the agent detects that the
performance of one or more of the scheduled applications
deviates significantly from its expected value, it immediately
notifies the master over a lightweight, asynchronous RPC
protocol [1]. The performance threshold that signals a QoS
violation is configurable. Unless otherwise specified we use
a 10% threshold; further reducing it can cause overly eager
rescheduling decisions (thus increasing migration overheads),
while a higher threshold can lead to QoS violations.

4.3 Fast Correction
Once Mage gets notified from one or more agents that ap-
plication performance is suboptimal it takes action. First, it
reprofiles applications online under their current placements.
If the measured performance is different from the correspond-
ing column in the utility matrix, Mage replaces the column
with the profiling data, and reruns the last (or two last) steps
of SGD. There are three possible outcomes from this.

First, Mage determines that there is a better placement
in another core of the heterogeneous platform. In this case,
rescheduling is immediate to allow performance to start re-
covering. The instruction and data footprints of the examined
applications are large enough that the overheads from context
switching and private cache warmup are negligible.

Second, Mage determines that there is a better placement
that involves migrating the offending application to another,
already utilized server. In this case migration to a new server
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Servers Configuration
Server1 8-core, 1 thread/core, ooo, 2.0GHz, 10 servers
Caches L1: 32KB, private, split D/I, L2: 4MB shared, L3: none

Memory DRAM, 16GB
Server2 24-core, 2 threads/core, ooo, 2.30GHz, 10 servers
Caches L1: 32KB, private, split D/I, L2: 256KB, private, L3: 16MB, shared

Memory DRAM, 64GB
Server3 4-core, 4 threads/core, ooo, 3.10GHz, 8 servers
Caches L1: 32KB, private, split D/I, L2: 256KB, private, L3: 8MB, shared

Memory DRAM, 32GB
Server4 4-core, 2 threads/core, ooo, 1.80GHz, 12 servers
Caches L1: 32KB, private, split D/I, L2: 4MB, shared, L3: none

Memory DRAM, 32GB

Table 1: The heterogeneous 40-server cluster.

may come at a significant cost. Mage prioritizes the migration
of stateless applications over stateful, and only reschedules
stateful applications if no alternative exists. The current sys-
tem does not support live migration, however, this could help
alleviate some of the performance penalties from migration.
In case an application has to be migrated, Mage packages its
state in its container, sends the image over the network, and
resumes execution of the container on the new machine.

Third, Mage determines that there is no better application
placement given the currently-available system resources. In
that case Mage either migrates one or more stateless applica-
tions to a new unused machine, paying a penalty in efficiency,
or, if there are low-priority or best-effort workloads, it con-
strains their resources, and, if needed, terminates them to
improve the performance of the high-priority application. In
practice, migration across servers is rare, and in most cases it
is constrained to stateless workloads (see Sec. 6.2).

Finally, because Mage has global visibility in the cluster
state, it can trade off intra-server for inter-server heterogene-
ity. For example, if a stateless application violates its QoS
and scaling up its allocation would cause its co-scheduled
applications to suffer, Mage may prioritize migrating the ser-
vice to fewer resources of a higher-end server, if the resulting
performance counterbalances the overhead of migration.

5 METHODOLOGY
We evaluate Mage under three scenarios: first, a simulated
heterogeneous CMP to show fine-grain scheduling across
cores. Second, a heterogeneous physical cluster with dif-
ferent server configurations to show distributed scheduling
across machines. Third, using the same heterogeneous clus-
ter we introduce core-level heterogeneity with RAPL and
acpi-cpufreq to show the hierarchical operation of Mage
at inter- and intra-server granularity. Below we describe the
systems and applications used in the three scenarios.
Simulated systems: We simulate a heterogeneous CMP us-
ing zsim [50], a fast and scalable multicore simulator. ZSim
supports time virtualization to run real-time, interactive ap-
plications. Unless otherwise specified, we simulate a 16-core
system with four core configurations (4 cores per configura-
tion). Table 2 shows the configuration details.

Configuration
ooo1 Westmere-like OOO 2.4GHz, 4 cores

L1 caches 32 KB, private, 8-way set-associative, split D/I, 1-cycle latency
L2 caches 256 KB, private, 8-way set-associative, inclusive, 6-cycle latency

ooo2 Westmere-like OOO 2.0GHz, 4 cores
L1 caches 32 KB, private, 8-way set-associative, split D/I, 1-cycle latency
L2 caches 128 KB, private, 8-way set-associative, inclusive, 6-cycle latency

ooo3 Atom x5-z8330-like 1.44GHz, x86-64 ISA; 8B-wide ifetch, 4 cores
L1 caches 128 KB, private, 8-way set-associative, split D/I, 2-cycle latency
L2 cache 12 MB, shared, 16-way set-associative, inclusive, 6-cycle latency
in-order1 In-order 1.6GHz, x86-64 ISA; 8B-wide ifetch, single-issue, 4 cores
L1 caches 16 KB, private, 8-way set-associative, split D/I, 2-cycle latency
L2 caches 128 KB, private, 8-way set-associative, inclusive, 6-cycle latency
L3 cache 12MB, shared, non-inclusive, 20-cycle; 16-way, hashed set-assoc

Coherence MESI, 64B lines, no silent drops; sequential consistency
Memory 64GB, 200 cycles latency, 12.8GBps/channel, 2 channels

Table 2: The simulated 16-core heterogeneous CMP.
Cluster: We also use a real 40-server cluster with 4 server
configurations. The servers vary in terms of their core number
and frequency, memory capacity, and storage. They are all
connected to 10Gbe links and within 1 network hop from
each other. Table 1 provides more details on each platform.

We additionally use RAPL (using the acpi-cpufreq dri-
ver) to introduce per-core heterogeneity, and to demonstrate
Mage’s tiered scheduling approach. Mage’s inference over-
heads remain in the scale of 250msec for up to 20 frequency
levels per server (uniformly distributed from 1GHz up to
the nominal frequency for each server with turbo mode dis-
abled). Cores with frequencies below 1GHz cause tail latency
to increase beyond the applications’ QoS constraints even
when running in isolation at low load. In this case, Mage first
determines the right server platform, given an application’s
sensitivity across all resources, and then appropriate core fre-
quencies. We assume that during the initial scheduling phase,
core frequencies are not adjusted for any applications already
scheduled on a server. Adjustments can happen in subsequent
intervals if they improve the geometric mean of performance
across the co-scheduled applications.
Workloads: We use both latency-critical, interactive services
and batch, throughput-bound workloads. In terms of inter-
active applications, we use memcached [26] and nginx [3].
memcached is an in-memory distributed caching service that
is compute and memory-bound. Its 99th percentile latency
constraint is set at 200usec, consistent with what many cloud
operators use [4]. nginx is a mostly stateless webserver that
works as a front-end for many popular online multi-tier ser-
vices, and it is primarily compute bound. Unlike memcached,
the tail latency constraints for nginx are more relaxed; 10msec
for the 99th%ile, again consistent with reports from cloud op-
erators [10, 12]. The input load for both services is driven by
open-loop generators, and follows uniform, exponential, and
power-law distributions [35].

For the batch workloads, we use a mix of single- and multi-
threaded applications. We use the entire SPECCPU2006 suite,
and workloads from PARSEC [7], SPLASH-2 [54], BioParal-
lel [29], and Minebench [43]. The ratio of latency-critical to
batch applications is approximately 40:60.
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Figure 4: Performance comparison between Mage, Mage-Static, a Greedy, and a power-efficient (Smallest-First) sched-
uler for (a) the heterogeneous CMP, (b) the heterogeneous cluster, (c) and the heterogeneous cluster with DVFS.

6 EVALUATION
We first compare Mage to existing schedulers, and then ana-
lyze its behavior, overheads, and parameter sensitivity.

6.1 Scheduler Comparison
Performance comparison: We compare Mage against five
schedulers. First, a Greedy scheduler that prioritizes sched-
uling applications to the fastest available core, to optimize
performance. This is a common scheduling approach, espe-
cially in underutilized systems [5,18,36]. Second, we compare
Mage against a power-efficient scheduler (Smallest-first), that
tries to minimize energy consumption, by first mapping ap-
plications on the most energy-efficient cores. Third, against a
static version of Mage, Mage-Static, where decisions are only
made once at the beginning of a program’s execution, and not
revisited thereafter. Fourth, against PIE [52], a heterogeneity-
aware CMP scheduler that uses microarchitectural metrics
to determine appropriate application-to-core mappings at
runtime. Finally, we compare Mage against Paragon [15],
a heterogeneity- and interference-aware cluster scheduler that
uses classification to map applications to server platforms,
but does not consider intra-server heterogeneity.

Fig. 4 compares Mage, Greedy, and the Smallest-First
scheduler. Fig. 4a shows the results for the simulated hetero-
geneous CMP, Fig. 4b for the heterogeneous cluster without
power management and Fig. 4c with DVFS. Performance is
averaged (gmean) across the applications of each mix, and
normalized to the performance achieved by Greedy. Mixes
are ordered from worst- to best-performing for Mage. For
most applications Mage outperforms both Greedy and the
power-efficient scheduler. With respect to Greedy, the benefit
for Mage comes from only allocating the necessary resources
to meet an application’s QoS, leaving high-end resources
available for workloads that arrive later. In contrast, Greedy
prioritizes the allocation of high-end resources, leaving subse-
quent applications with suboptimal options. There is a small

number of applications for which Greedy outperforms Mage
(leftmost part of the graph). These correspond to mixes for
which greedy allocation exactly matches the applications’
resource requirements. In that case, Greedy avoids the over-
heads incurred by SGD, as well as any overhead from repro-
filing and rescheduling applications at runtime.

Mage almost always outperforms the power-efficient sched-
uler, with the exception of a few mixes where performance
is comparable. This is primarily because Smallest-first ig-
nores the resource requirements of incoming applications, and
by prioritizing allocation of low-power resources, it exacer-
bates contention in shared resources. For example, a memory-
intensive application running on a low-end core with a small
and shallow cache hierarchy, will introduce higher interfer-
ence in the shared LLC and memory system, than if the same
application was running in a core with larger private caches.

These results are consistent in the heterogeneous cluster
as well (Fig. 4b). Here the deviation between schedulers is
even more pronounced, as an incorrect placement cannot eas-
ily be corrected by context-switching to another core on the
same machine. The performance difference is also high be-
cause servers are very diverse, ranging from first generation
Nehalem with 1 thread per core and no L3 cache, to the lat-
est Intel Broadwell, with 4 threads per core and 3.10GHz
frequency. Introducing power management (Fig. 4c) further
penalizes schedulers that ignore per-application resource re-
quirements, as it either maximizes frequency for applications
that do not benefit from it (Greedy), or minimizes frequency,
hurting performance (Smallest-First).

Figure 4 also compares Mage and Mage-Static. Mage-
Static behaves considerably better than the power-efficient
scheduler, especially when scheduling applications across
servers, and in several cases matches Mage in performance.
This happens for mixes that do not contend in shared re-
sources, for applications whose resource requirements remain
constant throughout their duration, and for applications for
which the initial scheduling was correct. There are, however,
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Figure 5: Performance comparison between: (a) Mage and PIE in the heterogeneous CMP, (b) Mage and Paragon in the
heterogeneous cluster, and (c) Mage and Paragon+PIE and (d) Mage and Paragon+Paragon in the cluster with DVFS.

several mixes for which Mage outperforms the static sched-
uler. This primarily corresponds to interactive services that go
through diurnal patterns. Since the penalty of re-scheduling
is greater in a distributed system, Mage-Static is not hurt
as much from not revisiting its decisions in Fig. 4b, as for
the heterogeneous CMP in which case, if a more performant
schedule exists it almost always is adopted. On average Mage
outperforms Mage-Static by 22% in the heterogeneous CMP,
by 19% in the cluster without DVFS, and by 29% with DVFS.

Finally, Fig. 5 compares Mage with recent work on CMP
and cluster-level scheduling. In the case of the heterogeneous
CMP we compare Mage against PIE [52] (Fig. 5a), in the case
of the heterogeneous cluster against Paragon [15] (Fig. 5b),
and in the case of the heterogeneous cluster with DVFS against
the combination of Paragon and PIE (Fig.5c), and Paragon and
Paragon (Fig. 5d), for inter- and intra-server decisions respec-
tively. In this case, the two schedulers decide independently,
Paragon first selecting the right server for an application, and
PIE (or Paragon) then selecting the right core frequency.

Mage significantly outperforms PIE in Fig. 5a—33% on
average—since it can navigate more diverse heterogeneity,
while PIE is geared towards a simple big-versus-small core
platform. Furthermore, Mage accounts for resource contention,
while PIE only focuses on the impact of core heterogeneity on
performance. In the heterogeneous cluster (Fig. 5b) the differ-
ence is small—8% on average—since Paragon is designed to
handle heterogeneity at server granularity. Most of the differ-
ence comes from Paragon missing some inter-dependencies
between heterogeneity and interference because it tackles the
two separately for the initial placement, and relies on a greedy
scheduler to correct misestimations at runtime.

Finally, where the schedulers deviate significantly is when
introducing core heterogeneity in the cluster (Fig. 5c,d). De-
spite having heterogeneity-aware schedulers at each level the
fact that there is no information exchange between the inter-
and intra-server schedulers, hurts performance, by 21% on av-
erage for Paragon+PIE, and by 11% for Paragon+Paragon. In
contrast, Mage maintains a global view of resource availabil-
ity and per-application resource requirements, which allows

it to account for the trade-offs between faster cores but slower
overall servers when making placement decisions. Apart from
achieving higher performance, Mage also improves the scala-
bility of inference compared to Paragon, since it uses staged
and parallel SGD to obtain the per-application resource re-
quirements. It is also able to handle more diverse hetero-
geneity, especially at the CMP level, without taking a hit in
scalability compared to prior solutions which mostly focus
on placing applications on big versus small cores.

6.2 Mage Analysis
Scheduling overheads: Figure 6 shows the overhead Mage
adds to application runtime during the initial scheduling phase
for the heterogeneous CMP, and for the heterogeneous clus-
ter with power management; the results are similar for the
case without power management. On average overheads are
marginal, 0.36sec for the heterogeneous CMP, and 1.28s for
the heterogeneous cluster. The overhead is 0.92s higher, on
average, for the cluster because of the added time required
to instantiate and initialize containers on different machines.
The low scheduling latency ensures that there is no substantial
application backlog at admission control. The majority of the
overheads in the heterogeneous CMP are due to the sched-
uling algorithm, 76% of total overhead on average, while in
the cluster the overhead is almost equally distributed between
decision and container setup time. In all cases, overheads
amount to less than 3.6% of total application execution time.

Figure 7a shows the total overheads due to scheduling,
throughout the lifetime of scheduled applications for the het-
erogeneous CMP, and Figure 6b for the heterogeneous cluster
with power management. This includes any time Mage de-
tected suboptimal performance for one or more applications
in a mix, reprofiled them, ran the staged SGD, and potentially
migrated them. For each application mix we report the arith-
metic mean across workloads in the mix, and decompose the
overhead to scheduling decisions and migration.

In the case of the heterogeneous CMP, most mixes expe-
rience very low scheduling delay, 0.52sec on average, and
0.98sec for the 90th percentile delay. Almost all the delay
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Figure 6: Initial
scheduling overheads
incurred by Mage.
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Figure 7: Scheduling and migration over-
heads with Mage for the heterogeneous (a)
CMP, and (b) cluster with DVFS.
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Figure 9: Sensitivity
of overhead to the de-
gree of heterogeneity.

comes from the scheduling algorithm, since migration only
involves pausing the application on one core, context switch-
ing, and resuming execution. In total, Mage reran SGD for
46% of all application mixes, and for 33% of all mixes it
rescheduled one or more applications in the mix. The major-
ity of these migrations were caused by changes in application
behavior that made the current placement suboptimal. 11% of
all mixes were rescheduled more than once, with five mixes
experiencing the maximum number of scheduling rounds,
six, and the highest number of migration rounds, four. These
mixes correspond to the rightmost part of Figure 7a, and de-
spite the increased scheduling latencies, outperform both the
Greedy and Smallest-First schedulers (see Section 6.1).

The cluster in Figure 7b experiences a different bottleneck.
The majority of application mixes experience low overheads,
2.3sec on average and 2.6sec for the 90th percentile. Only
the rightmost 10 mixes experience higher scheduling over-
heads than 5sec throughout their execution, and for most of
them this amounts to only a small fraction of their total ex-
ecution time (less than 10% on average). In contrast to the
results for the heterogeneous CMP though, here the schedul-
ing algorithm only accounts for a small fraction of the total
overheads. The majority of scheduling time now comes from
migrating underperforming applications. Migration requires
packaging a container and sending it over the network to a
different server. To avoid needless migration, Mage prioritizes
migrating stateless applications over stateful workloads, such
as databases. The latter would suffer from long migration
latencies, require substantial time to reinitialize and warm
up, and could create network bottlenecks for other nominally
operating applications during their migration.
Sensitivity to the degree of heterogeneity: We now evalu-
ate how the benefits from Mage scale as we change the degree
of heterogeneity in the system. Figure 8 shows the perfor-
mance gains with Mage as we change the number of different
server platforms available in the heterogeneous cluster. The
default configuration has 4 server configurations, as discussed
in Table 1. A degree of 2 corresponds on one high-end and one
low-end server platform, Server2 and Server4 from Table 1

respectively. Similarly, we increase the degree of heterogene-
ity in the cluster by introducing an additional 4 and 6 server
platforms, for a total of 8 and 10 server platforms respectively.
The additional platforms range from high-end two-socket plat-
forms, including E5-2699 v4 and E5-2660 v3, to low-power
designs, such as the Cavium ThunderX (CN88XX_NT). The
total size of the cluster remains the same as before, 40 servers.
For each cluster configuration, we use the same 160 mixes
we previously used for all cluster experiments.

Figure 8 shows that as the number of heterogeneous server
platforms increases, the benefits from using Mage also in-
crease. For example, when there are only two types of servers
in the cluster, the performance obtained with Mage is 15%
higher compared to Greedy on average. In comparison, in
the cluster with 10 platform configurations, the performance
benefit of Mage jumps to 75% on average and up to 2.5x.
This is because, intuitively, the more heterogeneous a system
becomes, the more likely it is for a heterogeneity-agnostic
scheduler to incorrectly map applications on heterogeneous
servers, impacting both performance and efficiency. These re-
sults are consistent for the heterogeneous CMP as well. When
only using two types of cores, Mage achieves 16% better
performance on average over Greedy, while with 8 types of
high-end and low-power cores, the performance improvement
is 83% on average, and up to 2.8x.

Finally, Fig. 9 shows the sensitivity of Mage’s overhead
to the degree of heterogeneity. The borders of the box plots
show the 25th and 75th %ile of overhead, and the whiskers the
10th and 90th %iles. As heterogeneity increases, the number
of columns in the utility matrices A2 and A3 increase, which
causes a small increase in scheduling overheads. However,
given that the number of heterogeneous general-purpose cores
in a server rarely exceeds a few configurations, the impact on
Mage’s scheduling overheads is manageable. Note that special
purpose accelerators do not affect scheduling overheads, as
they only target a specific application type.
Sensitivity to utility matrix sparsity: By default, Mage uses
three training runs, one in isolation, and two with two con-
tentious kernels of tunable intensity. Figure 10 shows how
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Figure 10: Estimation errors as we vary the density of
the input utility matrix for (a) the heterogeneous CMP,
and (b) the heterogeneous cluster with DVFS.

the performance estimation error changes as we vary the den-
sity of the utility matrix during training. When Mage only
uses one profiling run of the application running in isolation
(r = 1), the average error is 45% for the CMP, and 41% for
the cluster when DVFS is used (the results are similar without
power management). When using one run in isolation and a
single run with a contentious kernel (r = 2), the error drops to
29% on average in Figure 10a, and 23% in Figure 10b. How-
ever, given the strict QoS constraints that cloud applications
must meet, this error is still unacceptable. Adding one more
data point with another contentious kernel reduces the error
to 4.7% on average for the CMP, and 1.7% on average for the
heterogeneous cluster; the default values used in the rest of
the paper. Increasing the utility matrix density further (r = 8)
does not significantly impact the estimation accuracy.
Resource isolation: Mage already uses containers and pins
threads to physical cores, to eliminate interference from the
OS scheduler [35]. It also uses DVFS to determine whether
frequency scaling is beneficial. In the remaining resources, it
leverages heterogeneity to reduce shared resource contention,
but cannot entirely eliminate it. Recently, more isolation tech-
niques have been integrated in modern platforms, including
memory and cache capacity partitioning, and network and
storage bandwidth [39] isolation. However, resources such as
memory bandwidth, TLBs, and private caches (L1, L2) can
still not be isolated, allowing some interference to endure. We
now expand Mage to consider partitions in other resources
apart from cores and the power budget (through DVFS). We
progressively introduce memory capacity and storage band-
width partitioning through cgroups, network bandwidth par-
titioning using the Linux traffic scheduler (LTS) [39], and
cache partitioning using Intel’s Cache Allocation Technology
(CAT) [2]. We consider memory capacity partitions at the
granularity of 4GB, network and storage bandwidth at the
granularity of 10% of the maximum provisioned bandwidth,
and LLC capacity at the granularity of 2 ways. This increases
the number of columns in SGD by 2-3 orders of magnitude
depending on the machine, and the corresponding inference
overheads by 1-2 orders of magnitude, amounting to 2.3sec
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Figure 11: Performance benefits from Mage as we incor-
porate resource isolation in the heterogeneous cluster.

on average. Although the increase is significant, it also trans-
lates to higher speedups compared to the default scheduler.
Because of the staged, parallel SGD, the increased problem
size does not also correspond to higher scheduling overheads.

Figure 11 shows how performance with Mage changes as
we incorporate isolation in the heterogeneous cluster. Parti-
tioning memory capacity substantially improves performance,
with the average speedup over Greedy being 51% and up
to 90.1%. Network bandwidth helps network intensive ap-
plications like memcached, but does not impact the rest of
the workloads. Similarly, storage bandwidth isolation does
not have a major impact on performance, since none of the
examined workloads really stress persistent storage. Finally,
partitioning the last level cache has the largest impact on per-
formance for applications whose working sets fit in the cache,
and which previously suffered from being co-scheduled with
cache thrashing workloads. In general, isolation complements
heterogeneous scheduling by allowing it to reach the full
potential of the heterogeneous resources. One can reduce
the overheads of sizing resource partitions by using Mage
to obtain coarse-grained insights on the benefit of different
resources, and fine-tuning allocations at runtime.

7 CONCLUSIONS
We have presented Mage, a practical, online runtime that
manages intra- and inter-server heterogeneity, and minimizes
resource contention in cloud systems. Mage leverages a set
of scalable machine learning techniques, including stochastic
gradient descent to quickly determine the joint impact of het-
erogeneity and interference on application performance. We
have validated the accuracy of Mage’s performance estima-
tions, and have evaluated the runtime both using simulations
and real cluster experiments. In all cases Mage, improves per-
formance compared to greedy, power-efficient, and previous
heterogeneity-aware CMP and cluster schedulers, while also
improving the latency of scheduling decisions.
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