
Faster and Cheaper Serverless Computing on
Harvested Resources

Yanqi Zhang
Cornell University

yz2297@cornell.edu

Íñigo Goiri
Microsoft Research

inigog@microsoft.com

Gohar Irfan Chaudhry
Microsoft Research

gochaudh@microsoft.com

Rodrigo Fonseca
Microsoft Research

Fonseca.Rodrigo@microsoft.com

Sameh Elnikety
Microsoft Research

samehe@microsoft.com

Christina Delimitrou
Cornell University

delimitrou@cornell.edu

Ricardo Bianchini
Microsoft Research

ricardob@microsoft.com

ABSTRACT
Serverless computing is becoming increasingly popular due
to its ease of programming, fast elasticity, and fine-grained
billing. However, the serverless provider still needs to pro-
vision, manage, and pay the IaaS provider for the virtual
machines (VMs) hosting its platform. This ties the cost of
the serverless platform to the cost of the underlying VMs.
One way to significantly reduce cost is to use spare resources,
which cloud providers rent at a massive discount. Harvest
VMs offer such cheap resources: they grow and shrink to
harvest all the unallocated CPU cores in their host servers, but
may be evicted to make room for more expensive VMs. Thus,
using Harvest VMs to run the serverless platform comes with
two main challenges that must be carefully managed: VM
evictions and dynamically varying resources in each VM.

In this work, we explore the challenges and benefits of
hosting serverless (Function as a Service or simply FaaS)
platforms on Harvest VMs. We characterize the serverless
workloads and Harvest VMs of Microsoft Azure, and design
a serverless load balancer that is aware of evictions and re-
source variations in Harvest VMs. We modify OpenWhisk,
a widely-used open-source serverless platform, to monitor
harvested resources and balance the load accordingly, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSP ’21, October 26–29, 2021, Virtual Event, Germany
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8709-5/21/10. . . $15.00
https://doi.org/10.1145/3477132.3483580

evaluate it experimentally. Our results show that adopting
harvested resources improves efficiency and reduces cost. Un-
der the same cost budget, running serverless platforms on
harvested resources achieves 2.2× to 9.0× higher through-
put compared to using dedicated resources. When using the
same amount of resources, running serverless platforms on
harvested resources achieves 48% to 89% cost savings with
lower latency due to better load balancing.

CCS CONCEPTS
• Computer systems organization → Cloud computing; •
Computing methodologies → Distributed computing method-
ologies; Planning and scheduling.

KEYWORDS
Serverless computing, harvested resources

1 INTRODUCTION
Serverless computing is becoming an increasingly popular
cloud programming paradigm, especially in the form of Func-
tions as a Service (FaaS), with offerings from several com-
mercial providers [3, 23, 39]. These FaaS platforms offer
intuitive event-based interfaces for application development.
The interface obviates the need for users to explicitly config-
ure resources, such as the number and size of virtual machines
(VMs) or containers to run the functions. FaaS is also cheaper
for users, as they only pay for the exact amount of resources
they use during function execution. This is in contrast to In-
frastructure as a Service (IaaS), where users pay for long-term
reserved resources in the form of VMs. FaaS is an ideal can-
didate for applications with high data-level parallelism and/or
intermittent activity (e.g., online sites that are driven by fluctu-
ating user load). However, the serverless provider still needs

724

https://doi.org/10.1145/3477132.3483580

to provision, manage, and pay the IaaS provider for the VMs
hosting its platform. This ties the cost of serverless to the cost
of the underlying VMs. Worse, the serverless provider must
pre-provision a large amount of VM capacity to provide fast
elasticity and the illusion of infinite resources, while the FaaS
users pay only for the resources their functions actually use.
Harvested resources. Fortunately, IaaS providers offer their
surplus resources as VMs at a much lower price (and relaxed
guarantees), such as Spot [6, 10] and Burstable VMs [7, 8].
Along similar lines, Harvest VMs [4] are an even cheaper and
more efficient alternative. Each Harvest VM is evictable and
has a minimum size, but it grows by harvesting unallocated
CPU cores in its host server beyond this minimum. When a
new “regular” (non-evictable) VM is placed on the server, the
Harvest VM shrinks. The IaaS provider only evicts Harvest
VMs when their minimum size is needed for a regular VM.

Serverless functions, which are mostly single-threaded and
short-running [53], are a natural fit for running on harvested
resources. Despite their low cost, Harvest VMs introduce two
challenges: workloads can be evicted, and VMs have dynamic
variations in terms of compute and/or memory resources. Not
only do Harvest VMs have the potential to reduce the cost
of hosting FaaS platforms, but they can also provide better
performance at the same cost.
Our work. This paper tackles the challenges of running
serverless platforms on Harvest VMs. To understand the im-
pact of evictions and of the variability in harvested resources
on a FaaS platform, we first characterize both a FaaS offer-
ing (Azure Functions) and the resources available to Harvest
VMs using production traces from Azure. We contrast the
duration of function executions with the lifetime of Harvest
VMs and the durations over which resources are available for
harvesting. Our characterization suggests a good match be-
tween FaaS platforms and Harvest VMs. Thus, we next study
how to adapt a FaaS platform to run on harvested resources.

To address Harvest VM evictions, we explore the space of
regular and Harvest VMs mixes, for short- and long-running
functions, and quantify the trade-off between cost and reliabil-
ity. Using detailed simulations combining FaaS and Harvest
VM traces, we find that when running FaaS solely on Harvest
VMs, evictions cause at most 0.0015% of invocations to fail.

To make this practical, we must address resource variations
inherent to Harvest VMs. To this end, we design and imple-
ment a load balancer for FaaS platforms that places functions
in VMs according to the availability of harvested resources.
Our load balancer reduces resource contention while keeping
the function cold start rate low.

Our implementation modifies OpenWhisk [45], a widely-
used open-source FaaS platform, to monitor the availability of
harvested resources and balance the load accordingly. Our ex-
perimental results demonstrate the performance improvement
over the existing OpenWhisk load balancer and other widely

used policies, achieving 22.6× throughput than vanilla Open-
Whisk. We finally demonstrate the performance improvement
and cost savings of serverless computing on Harvest VMs,
compared to regular and Spot VMs. Under the same cost
budget, serverless platforms hosted on Harvest VMs are able
to achieve 2.2× to 9.0× throughput than regular VMs. When
provisioned with the same amount of resources, serverless
platforms hosted on Harvest VMs are 45% to 89% cheaper
than regular VMs and 0% to 44% cheaper than Spot VMs.

2 BACKGROUND AND RELATED WORK
Serverless and FaaS. Serverless computing, especially Func-
tions as a Service (FaaS), is gaining popularity as the way to
deploy applications on the cloud [52]. The FaaS programming
model offers simplicity of just uploading application code
without having to manage resources or configurations. In the
FaaS platform we study, functions are logically grouped to
form applications and the application is the unit of schedul-
ing and resource allocation. The platform provides elasticity
by automatically scaling up resources with increasing load
and scaling down to zero during idle periods. The user only
gets billed for the resources consumed during function execu-
tions. All these properties make FaaS a compelling option for
programming the cloud from the user’s perspective.

The serverless provider faces the challenge of ensuring high
performance while minimizing cost. To provide the illusion
of always-on and infinitely scalable resources to the user,
the provider needs to have the resources ready whenever a
function is invoked. Shahrad et al. [53] show that 50% of
functions execute for less than 1s and about 90% execute for
less than 10s on average. A function can start quickly when
the code is already in memory (warm start) and does not have
to be brought in from persistent storage (cold start). Since
these function executions are generally short lived, cold starts
can dominate the overall execution time if the resources are
not available at invocation time. To mitigate this, providers
typically set a keep-alive threshold for which the function
container is kept available after the invocation completes in
anticipation of an upcoming invocation to the same function.

There has been a wealth of research on serverless comput-
ing, both to expand the set of applications that can use the
model, and to improve the serverless infrastructure. Broadly, it
spans: (a) scheduling policies for making serverless platforms
cost-effective and performant [28, 53]; (b) performance-aware
and cost-effective storage [33, 34, 43, 51]; (c) secure and light-
weight container infrastructure [1, 2, 42, 44, 54, 56, 59]; (d)
characterization of existing serverless workloads [53]; and
(e) enabling applications to run in a serverless-native man-
ner, including data processing and analytics [26, 49], video
processing [20], ML training [14], DNA sequence visualiza-
tion [36] and compilation [19]. We show that mindfully using

725

cheaper resources without performance/reliability degrada-
tion is the right way to minimize the hosting cost of FaaS.
Harvest VMs. Harvest VMs were proposed in [4]. Users
select and deploy them as they do any other VM. Each Harvest
VM is defined by its minimum size (in terms of physical CPU
cores, memory, disk space, and network bandwidth) and how
many harvested physical cores they are capable of using.
While the number of physical cores assigned to a Harvest
VM may change dynamically, the other resources do not. The
workload running on the Harvest VM can query the number
of physical cores assigned to it in /proc in Linux and the
registry in Windows. The Harvest VM receives a 30-second
notice before an eviction happens. These mechanisms allow
the workload to take appropriate actions.

Users pay for the minimum size at a heavy discount, like
those for Spot VMs, compared to regular VMs. For example,
Spot VMs are 48% to 88% cheaper than the same size regular
VMs in Azure [9]. The additional harvested cores are even
cheaper because they vary over time. The total cost for the
users is the sum of the minimum cost and the harvested one.

Despite offering a large amount of resources at low price,
evictions and resource variation can impact the system relia-
bility and performance [4]. This paper addresses those issues.
Cluster scheduling and load balancing. A large body of
work [12, 16, 18, 21, 22, 25, 27, 30, 47, 48, 55] has focused
on cluster scheduling frameworks, such as Kubernetes [35]
and Apache YARN [57]. However, these works assumed that
the underlying resources (VMs or bare-metal servers) are
constant over time.

In contrast, Harvest VMs may experience significant vari-
ation in their number of cores over their lifetime. Ambati
et al. did adapt YARN to run on Harvest VMs [4]. How-
ever, the batch and Big Data analytics workloads common
of YARN deployments are quite different than those of FaaS
platforms [50, 53]. For example, function executions are typi-
cally substantially shorter than data analytics tasks, so FaaS
workloads can more easily adjust to the frequent changes
in the numbers of cores. On the other hand, each function
typically consumes fewer resources (e.g., memory) than an
analytics task, meaning that many of them can be packed on
the same VM so an eviction may affect more computations.

3 CHARACTERIZATION
While previous work has studied some production character-
istics of Harvest VMs [4] and FaaS workloads [53], in this
section we take a closer look with the goal of understanding
how they might interact. We are interested in the impact of
Harvest VM evictions and core variations on function exe-
cutions. In particular, we look at the distribution of Harvest
VM lifetimes and the distribution of intervals between Har-
vest VM core changes. Before each eviction, the Harvest VM

1min 10min 1h 1d 1mo 5mo
Harvest VM lifetime

0
10
20
30
40
50
60
70
80
90

100

CD
F

(%
)

Figure 1: Distribution of the Harvest VM lifetime [4].

receives a 30-second grace period, which can be used to stop
sending new invocations to the VM, and to finish ongoing
function executions. Invocations that last longer than 30 sec-
onds are at risk of being killed, and below we pay particular
attention to these long invocations. Compared to the previous
characterization of FaaS workloads [53], we feature a new
analysis addressing the issues involved in hosting FaaS on
Harvest VMs: the impact of VM evictions and the capacity
needed to host the FaaS workloads.

3.1 Harvest VMs
Evictions. To study Harvest VM evictions, we use a trace of
the private cluster described in [4]. The trace includes 1075
Harvest VM instances deployed between October 8𝑡ℎ 2019
and March 28𝑡ℎ 2020. We include both evicted and not evicted
Harvest VMs, and remove from the VM lifetime the 10 min-
utes required to install the FaaS platform and dependencies.
Despite this overhead, 96.7% of all Harvest VMs are suitable
for hosting FaaS. Figure 1 shows the lifetime distribution of
these Harvest VMs. The average lifetime is 61.5 days, with
more than 90% of Harvest VMs living longer than 1 day.
More than 60% survive longer than 1 month.
Resource variability. To study the resource variation pat-
terns of Harvest VM, we look at a smaller and more detailed
trace of 37 Harvest VMs running in Azure production clus-
ters between January 1𝑠𝑡 and February 24𝑡ℎ 2021. To match
the memory size of the smallest Harvest VM (i.e., 16 GB),
the maximum CPUs of each Harvest VM is limited to 32.
Figure 2 shows the distribution of intervals between changes
in Harvest VM CPUs. The expected interval is 17.8 hours,
with around 70% of them being longer than 10 minutes, and
around 35% longer than 1 hour. 62.2% of the studied Har-
vest VMs experienced at least one CPU shrinkage and 54.1%
experienced at least one CPU expansion. 35.1% VMs never
experienced any CPU changes.

Figure 3 shows a histogram of individual CPU changes
for the studied Harvest VMs. Positive numbers represent
expansions and negative numbers represent shrinkage. The

726

1s 10s 1m 10m1h 1d 1mo
Harvest VM CPU change interval

0
10
20
30
40
50
60
70
80
90

100

CD
F

(%
)

Figure 2: Intervals between Harvest VM CPU changes.

−30 −20 −10 0 10 20 30
VM CPU change size

0

2

4

6

Pr
ob

ab
ilt

y
(%

)

Figure 3: Distribution of Harvest VM CPU change sizes
and correlation of change sizes and change interval.

Trace 𝐹𝐿𝑎𝑟𝑔𝑒 𝐹𝑆𝑚𝑎𝑙𝑙

Duration Data Percentiles Start/End Times
Granularity Per App Per Invocation
Dates 2021-01-31 2021-01-31 to 2021-02-13
#Apps 20,809 119
Invocations 910M 2.2M

Table 1: Details on the two FaaS traces used in the paper.

points at 0 represent the VMs that did not change during the
period covered by the traces. The distribution tends to be
symmetric with most of CPU changes falling within 20 CPUs.
The average and maximum CPU change size are 12 and 30
for both shrinkage and expansion. Considering the maximum
CPUs of the profiled Harvest VMs is 32, the size of the
changes has a significant impact on instantaneous capacity
of Harvest VMs. We did not find a significant correlation
between the size of the change and the change interval.

3.2 Serverless Functions
We now study the duration of function invocations. We ob-
tained two traces (Table 1) of invocations from Azure Func-
tions: 𝐹𝐿𝑎𝑟𝑔𝑒 is a coarse 1-day trace with invocation duration

1ms 10ms100ms 1s 30s 10m 1h
Invocation duration

0
10
20
30
40
50
60
70
80
90

100

%
 o

f A
pp

s w
ith

 d
ur

at
io

n≤
 x Max

P99.9
P99
P95
P90
Mean

Figure 4: CDFs of the average and top percentiles of the
invocation durations per application in the 𝐹𝐿𝑎𝑟𝑔𝑒 trace.

percentiles for a subset of a cloud region, and 𝐹𝑆𝑚𝑎𝑙𝑙 is a de-
tailed trace of a small cluster with precise invocation timings.
We look at the overall trends with 𝐹𝐿𝑎𝑟𝑔𝑒 , and use 𝐹𝑆𝑚𝑎𝑙𝑙 for
deeper analysis, including trace-driven simulations.
Duration per application. Figure 4 shows the distribution
of maximum invocation durations per application from the
𝐹𝐿𝑎𝑟𝑔𝑒 trace, as well as those of the mean and other duration
percentiles. The invocations are generally short. The graph
shows the 30-second grace period of Harvest VM eviction.
Invocations shorter than this are safe from evictions, while
longer invocations could be terminated. 20.6% of the appli-
cations have at least one invocation (maximum) longer than
30 seconds. We refer to these applications as “long” applica-
tions. 16.7% and 12.3% of applications have 99.9𝑡ℎ and 99𝑡ℎ
percentile durations longer than 30 seconds, respectively.

Figure 5 compares the same distributions between the two
traces. The traces are similar with respect to the tails of the
per-application invocation durations, with the applications in
the 𝐹𝑆𝑚𝑎𝑙𝑙 trace having higher fractions of longer invocations.
This is acceptable for our purposes, as it makes our analysis
more pessimistic. We base our analysis in the remainder of
the paper on the 𝐹𝑆𝑚𝑎𝑙𝑙 trace.
Durations per invocation. The 𝐹𝑆𝑚𝑎𝑙𝑙 trace allows us to
look at the duration of every invocation. Figure 6 shows the
latency distribution of all considered invocations. The vast
majority are short, with more than 85% of invocations shorter
than 1 second, and 96% of the invocations shorter than 30s.
The longest recorded invocation is 578.6 seconds.
Long applications. In terms of sensitivity to Harvest VM
evictions, only 4.1% of the invocations are ‘long’, but these
long invocations take over 82.0% of the total execution time
of all invocations. At the granularity of application, 58 ap-
plications (48.7% of all) are long applications. These long
applications take up 67.5% of all invocations and 99.68% of
the total invocation time. These long invocations (and appli-
cations) are vulnerable for evictions if placed on a Harvest
VM. As we see in §4, naïvely allocating the long applications

727

1ms 100ms 1s 30s 10m 1h0

20

40

60

80

100

%
 o

f A
pp

s
wi

th
 d

ur
at

io
n≤

 x FLarge Max
FSmall Max

1ms 100ms 1s 30s 10m 1h

FLarge P99.9
FSmall P99.9

1ms 100ms 1s 30s 10m 1h
Invocation duration

0

20

40

60

80

100

%
 o

f A
pp

s
wi

th
 d

ur
at

io
n≤

 x

FLarge P99
FSmall P99

1ms 100ms 1s 30s 10m 1h
Invocation duration

FLarge P95
FSmall P95

Figure 5: Invocation durations per app for 𝐹𝐿𝑎𝑟𝑔𝑒 and
𝐹𝑆𝑚𝑎𝑙𝑙 .

1ms 10ms 100ms 1s 30s 10m
Invocation duration

0
10
20
30
40
50
60
70
80
90

100

CD
F

(%
)

Figure 6: Durations of all invocations in the 𝐹𝑆𝑚𝑎𝑙𝑙 trace.

to regular VMs, and running the others on Harvest VMs may
be too conservative a strategy, with very modest gains.

Looking closer, Figure 7 shows the duration distribution of
the long applications, where each point on x-axis corresponds
to one application, and the error bar shows the standard devia-
tion of the durations. There are big gaps between the max and
mean duration of long applications, especially for applica-
tions with max duration longer than 100 seconds, indicating
that long applications fall under this category mainly due to
a small fraction of invocations in the tail of their duration
distribution. We use this to our advantage in the next section.

3.3 Implications
Combining the characteristics of Harvest VMs (Section 3.1)
and serverless workloads (Section 3.2) shows that, intuitively,
FaaS workloads are a good fit for Harvest VMs. The short du-
ration of the majority of the invocations (only 4.1% are longer
than 30 seconds) and the relatively much longer Harvest VM
lifetime (more than 90% of Harvest VMs live longer than 1
day) make serverless workloads unlikely to be affected by

Figure 7: Durations of long applications invocations.

Harvest VM evictions. Based on this intuition, in Section 4
we use trace-drive simulations to more precisely characterize
the reliability of serverless compute on Harvest VMs.

Resource variation on Harvest VMs is much more common
than evictions, but compared to the short duration of most
invocations, the number of CPUs of Harvest VMs can be
considered relatively stable: 70% of CPU change intervals are
longer than the longest invocation in the studied serverless
workload trace (578.6 seconds). However, because of the
frequency and magnitude of resource changes (Figure 3),
Harvest VM-aware load balancing is essential to guarantee
system performance. In addition to this, even if mostly stable,
Harvest VMs tend to be more heterogeneous than regular
VMs, reinforcing the importance of proper load balancing.

4 HANDLING EVICTIONS
In this section, we study the impact of Harvest VM evictions
when running serverless workloads. When an eviction occurs,
any function running at the time fails. What is the best strategy
to eliminate or minimize these failures?

4.1 Methodology
While the comparison of the distributions in the previous
section provides bounds on the failure rates, the interaction
of evictions and long executions is not trivial, and we resort
to trace-driven simulations to answer this question.

We used the Harvest VM trace from Figure 1 and the 𝐹𝑆𝑚𝑎𝑙𝑙

functions trace (§3). Since the Harvest VM trace (173 days) is
longer than the serverless workload trace (14 days), we select
a 14-day period from the Harvest VM trace which aligns with
the serverless workload trace. Figure 8a shows, for the 14-
day period starting at each Sunday (dotted vertical lines), the
total number of VMs, and the number of VM creations and
evictions. We use the Harvest VM eviction rate defined as
number of VM evictions over the number of existing VMs,
as the metric to categorize the Harvest VM trace periods. The
average eviction rate of all 14-day periods is 13.1%. We select
two periods: (1) one with the max VM eviction (86.4%), as

728

0 20 40 60 80 100 120 140 160
Time (day)

0

100

200

300

400

500

600

Nu
m

be
r o

f V
M

s

Evict
Deploy
Existing
Sunday
Worst
Typical

(a) 14-day period in the entire trace.

2 4 6 8 10 12 14
Time (day)

400

450

500

550

600

650

Nu
m

be
r o

f V
M

s

Worst
Typical

(b) Selected 14-day periods for simulation.

Figure 8: Harvest VM creations and eviction patterns.

worst case, and (2) one with an eviction rate close to average
(8.4%), as the typical case. Starting days of the worst and
typical cases are marked as Worst and Typical in Figure 8a.

We simulate the serverless framework as a global pool of
containers; an invocation is able to use any existing container
of the same application and randomly chooses one if there are
multiple candidates. Invocations have a keep-alive time set to
10 minutes (the default in OpenWhisk [45]). A container is
removed if it does not execute any invocations for the entire
keep-alive period. Each container is randomly allocated to
VM that has not been warned of eviction. The number of
concurrent invocations that each container can host is set to
1. Since our traces do not record CPU usage, we assume that
the CPU usage of all applications is identical.

For Harvest VMs, when we receive the 30-second evic-
tion warning for a VM, the load balancer stops sending new
invocations to it. Pending invocations continue to execute
on the VM and fail if they do not complete before the VM
eviction. In the event that resources start to decline below a
pre-configured threshold, it spins up additional VMs.

For each 14-day Harvest VM trace snippet, we run the
simulation 1000 times and show the aggregated results. Our

1ms 1s 10s1m10m1h 1d5d
Invocation inter-arrival time

0
10
20
30
40
50
60
70
80
90

100

CD
F(

%
)

Long Apps
Short Apps

Figure 9: Inter-arrival times for short vs. long apps.

simulation models the key components of serverless frame-
works, including container pool and keep-alive. It can model
potential future workload changes by simply acquiring new
traces, assuming no changes to the serverless framework.

4.2 Combining Regular and Harvest VMs
Strategy 1: No failures. We start with the most conservative
provisioning where all long applications (i.e., those with at
least one invocation longer than 30 seconds) are allocated in
regular VMs and the rest in Harvest VMs. This guarantees that
no invocation longer than 30s will run on Harvest VMs, but
is the least efficient provisioning strategy. Section 3.2 showed
that long applications take up to 67.5% of all invocations but
99.7% of the invocation time. However, we also need to ac-
count for the keep-alive period to prevent cold starts. We ran
a simpler version of our simulation here to estimate the com-
putation capacity taken by the two application types, while
accounting for their arrival times and keep-alive behavior.

For 10-minute keep-alive, the simulation shows that only
12.0% of computation capacity can be hosted by low-cost
Harvest VMs. While this is much higher than the fraction
of execution time for short applications (0.32%), it is signifi-
cantly lower than the fraction of invocations that corresponds
to short applications (32.5%). This is due to their shorter
invocation times on average, and to their inter-arrival times.
Figure 9 shows that a larger fraction of the inter-arrival times
for short applications is below 10s, and multiple close invo-
cations reduce the wasted idle time due to keep-alive. We
verified that these results do not change significantly for dif-
ferent keep-alive periods ranging from 1 minute to 24 hours.
Ultimately, this strategy is too conservative, and 94% of the
invocations that run on the regular VMs are still short.
Strategy 2: Bounded failures. Given the high operational
cost of Strategy 1, we study a relaxation of the bound on
failures caused by eviction. If we are willing to tolerate a small

729

95.0 95.5 96.0 96.5 97.0 97.5 98.0 98.5 99.0 99.5 99.9
Acceptable percentile of long running invocations

0

10

20

30

40

50

60

%
 C

om
pu

ta
tio

n
ca

pa
cit

y
ho

st
ed

 o
n

Ha
rv

es
t V

M
s

Figure 10: Fraction of Harvest VM capacity versus ac-
ceptable percentile of per-app long invocations.

fraction of eviction failures, we can allocate more applications
to Harvest VMs, and trade reliability for efficiency.

We can provide an upper bound (100−𝑥)% (say, 1%) on the
per-application eviction failure rate by allocating to regular
VMs applications with the 𝑥𝑡ℎ (say, 99𝑡ℎ) percentile duration
longer than 30s, instead of the maximum. In effect, some
long applications from Strategy 1 are allocated to Harvest
VMs in this strategy, but only those where (100 − 𝑥)% of the
invocations are longer than 30s.

To characterize the trade-off between reliability and effi-
ciency of the policy, we perform the same trace-driven simu-
lation as in §4.2, and sweep the percentile 𝑥 from 95 to 99.9,
with increments of 0.1. Figure 10 shows the results, with the
decision percentile in the x-axis, and the resulting fraction of
computing capacity used by Harvest VMs.

In summary, bounding the failure rate to less than 0.1%
allows 28% of computation to be hosted by Harvest VMs. A
rate lower than 1% allows 45.7% of computation to be hosted
by regular VMs. Although efficiency improves compared to
Strategy 1, it is still pessimistic, as most invocations that run
in regular VMs are still short, and even the long invocations
would only fail if they run in a Harvest VM and start less than
30s before an eviction.

4.3 Running on Harvest VMs
Strategy 3: Live and Let Die. We next examine running a
full serverless workload solely on Harvest VMs. We ran the
full simulation described in §4.1. For the Worst period in the
Harvest VM trace (i.e., max VM eviction rate), the average
invocation failure rate is 0.0015% (99.9985% success rate).
The Typical period has a failure rate of 3.68 × 10−8 (i.e., “7
nines” of reliability).

Intuitively, failures caused by VM evictions are rare be-
cause they require two low-probability events to happen si-
multaneously: a Harvest VM gets evicted while it is running
a long invocation. VM evictions are also correlated and fre-
quently happen in bursts, with a large number of VMs evicted
within a few seconds, as shown in Figure 8b.

Cold starts are also minimal when the workload runs on
Harvest VMs. The average simulated cold rate is 1.1967% in
the Typical period, and 1.1981% in the Worst period, increas-
ing by 0.0084% and 0.1254% compared to regular VMs.

4.4 VM Migration/Snapshotting
An alternative, or even complementary approach, to increase
the reliability of the serverless framework hosted on Harvest
VMs is to use VM live migration [15] or snapshot/restore [17,
56]. The idea is to run serverless applications in nested VMs
hosted by Harvest VMs, and migrate the nested VMs that cor-
respond to long invocations when the Harvest VM is warned
of eviction. The main metric, however, is not the downtime
of the application, but the total time for which the source VM
must be available. Because of the low invocation failure rate
from Strategy 3, we leave using VM migration to improve
system reliability as future work.

4.5 Conclusion
When running solely on Harvest VMs, the failures caused by
VM evictions are rare while fully utilizing the cheap harvested
resources. This is caused by the low joint probability of a rare
long-running execution during a Harvest VM eviction. As a
result, in the rest of the paper, we assume all applications are
hosted on Harvest VMs.

5 HANDLING RESOURCE VARIABILITY
In this section, we develop a resource variation-aware load
balancing policy for serverless frameworks on harvested re-
sources. We start with the well-known algorithm join-the-
shortest-queue (JSQ) [24], which aims to minimize the re-
source contention caused by CPU variation. Based on that,
we then present our min-worker-set (MWS) algorithm, which
aims to reduce the container cold start rate for serverless
workloads while reducing resource contention.

5.1 Join-the-Shortest-Queue (JSQ)
JSQ is a CPU-aware load balancing algorithm. The load bal-
ancer monitors the compute load of each backend VM and
allocates an invocation to the VM that has the least amount
of pending work. This effectively reduces queueing time and
resource contention, leading to shorter end-to-end latencies.

Since the ground truth of pending compute work is un-
known in advance, we approximate it with a weighted sum of
CPU and memory utilization 𝑤𝑐

𝑐𝑝𝑢𝑢𝑠𝑒𝑑
𝑐𝑝𝑢𝑎𝑣𝑎𝑖𝑙

+𝑤𝑚
𝑚𝑒𝑚𝑢𝑠𝑒𝑑

𝑚𝑒𝑚𝑎𝑣𝑎𝑖𝑙
, with

730

𝑤𝑐 > 𝑤𝑚 to reflect the scarcity of allocated CPUs. We show
that the weighted utilization of CPU and memory is a better
usage metric than the number of pending invocations (queue
length) at an invoker, or the sum of expected resource us-
age of pending invocations (weighted queue length). This is
because queue length does not account for varying function
resource needs, and weighted queue length can deviate from
the ground truth, due to insufficient samples and different
function inputs. The utilization metric also captures the varia-
tion of allocated CPUs of Harvest VMs, and avoids starvation
by stopping assigning invocations to VMs that suffer from
excessive resource shrinkage. In terms of overhead, the com-
plexity of each scheduling operation is 𝑂 (𝑁), where 𝑁 is
the number of backend VMs in the system. The scheduling
overhead can be reduced by randomly sampling a subset of 𝑑
backend VMs and choosing the least loaded one [13, 47, 58],
although at the expense of scheduling quality.

5.2 Min-Worker-Set (MWS)
In serverless computing, the end-to-end latency of an invo-
cation includes cold start time, queueing time and execution
time. Although JSQ can reduce queueing time by prevent-
ing long queues and execution time by alleviating resource
contention, it can potentially increase the cold start rate and
harm the end-to-end latency. Assuming that a function has a
Poisson arrival process with arrival rate 𝜆, and the serverless
platform has 𝑁 backend VMs, JSQ will distribute the invo-
cations across all 𝑁 backend VMs. The resulting invocation
arrival rate on each backend VM will be 𝜆

𝑁
. In a large system

(i.e., large 𝑁), the expected inter-arrival time 𝑁
𝜆

is more likely
to be larger than the container keep-alive time of serverless
platform, increasing the chance of cold starts.

We design the MWS algorithm to jointly reduce queueing
time, execution time, and cold starts. This is inspired by the
intuition that, in the common case, where the compute re-
sources of the system are not overloaded, slight imbalance of
invocation assignment among invokers is unlikely to cause
resource contention and queueing leading to increased la-
tency. MWS consolidates each function to a minimal set of 𝑘
backend VMs that have adequate resources to accommodate
all invocations of the function. The invocation arrival rate
on individual backend VMs becomes 𝜆

𝑘
. With 𝑘 ≪ 𝑁 , the

invocation inter-arrival time in MWS is much shorter than
JSQ. Thus, it is very likely to be shorter than the container
keep-alive time, enabling warm starts. The sketch of MWS is
shown in Algorithm 1. For each function 𝑓 , the load balancer
assigns it a home VM as the beginning of the search process,
and estimates its resource usage 𝑢𝑓 as the product of requests
per second (RPS), expected resource usage, and expected
duration. The load balancer keeps adding new VMs to the
worker set 𝑠 until the total usable resources 𝑟 of all VMs in the
set 𝑠 exceeds the estimated usage of the function 𝑢𝑓 . Finally,

the load balancer picks the least loaded VM in the worker set
𝑠 to execute the invocation, where the load is defined as the
weighted sum of CPU and memory utilization as in JSQ.

Algorithm 1: Min-worker-set (MWS) algorithm

Input: Function 𝑓 ;
Function: Expectation 𝐸; Consistent hashing 𝐶𝐻 ;
Variable: Requests per second 𝑅𝑃𝑆 𝑓 ;
Variable: CPU usage 𝐶𝑃𝑈𝑓 ;
Variable: Invocation latency 𝑙𝑎𝑡𝑓 ;
𝑢𝑓 = 𝑅𝑃𝑆 𝑓 · 𝐸 (𝐶𝑃𝑈𝑓) · 𝐸 (𝑙𝑎𝑡𝑓);
𝑟 = 0, 𝑠 = ∅;
𝑉𝑀 = 𝐶𝐻 (𝑓);
while 𝑟 < 𝑢𝑓 do

𝑟 = 𝑟 + usable_resources(𝑉𝑀);
𝑠 = 𝑠 ∪𝑉𝑀;
𝑉𝑀 = next(𝑉𝑀);

end
return 𝑎𝑟𝑔𝑚𝑖𝑛𝑉𝑀 {load(𝑉𝑀) | 𝑉𝑀 ∈ 𝑠}

In the common case that the system is not overloaded,
MWS is more scalable than JSQ, with minimum scheduling
overhead. For each invocation, the controller only needs to
search for the least loaded invoker in the worker set of the
function (i.e., usually a small number) rather than searching
among all invokers. In the worst case that the system is run-
ning at full utilization, the scheduling overhead increases with
the load of the system and converges to JSQ as MWS spans
all backend VMs. Compared to JSQ, MWS can also reduce
the number of functions allocated to each VM, thus reducing
the storage space occupied by function images.
Dealing with VM evictions. Harvest VM evictions can be
detrimental to the performance of the MWS algorithm, be-
cause VM failure and redeployment lead to variation in the
number of VMs in the system, and thus reshuffling of home
VMs for all functions, making cold starts dominant. To mini-
mize the number of functions that need to be reshuffled and
thus minimize cold starts, we use consistent hashing. Thus,
whenever the number of VMs changes, home VMs are only
reshuffled for a minimal number of functions.

In consistent hashing [31], all VMs in the system are as-
signed a hash ID within [0, 𝐼] where 𝐼 is much larger than the
number of VMs in the system, so that VMs are uniformly dis-
tributed in the ID space. Conceptually, all VMs in the system
are organized into a ring with VM IDs increasing clockwise,
except VM 𝐼 , whose next VM in the ring is VM 0. Functions
are mapped to and uniformly distributed in the same ID space
[0, 𝐼] and are assigned next VM in clockwise direction (to
the ID of the function) as home VM. As the VM IDs are uni-
formly distributed, the expected number of functions assigned

731

Controller

Kafka

Function-1
Container

Invoker
Harvest Monitor Harvest Monitor Harvest Monitor

Invoker Invoker

Function-2
Container

Function-3
Container

NGINX

Controller

Harvest VM Harvest VM Harvest VM

Resource Monitor

Figure 11: Architecture of our resource-variation-aware
load balancing solution on OpenWhisk. The dotted lines
show our modifications and components not present in
vanilla OpenWhisk.

to each VM are identical. When an existing VM crashes or a
new VM joins the system, only functions originally assigned
to the crashed VM or the new VM are reshuffled.

6 IMPLEMENTATION
We implement our proposed resource-variation-aware load
balancing scheme on OpenWhisk [45], a popular open source
serverless platform developed by IBM. In this section we first
describe the architecture of OpenWhisk and then the changes
we made for Harvest VM-aware load balancing.

6.1 OpenWhisk Architecture
Figure 11 shows the architecture of OpenWhisk including the
modifications we have made represented by in dotted lines.
NGINX acts as a reverse proxy of the system and exposes a
public HTTP endpoint to clients and forwards user requests
to Controllers. The Controller performs load balancing and
selects an Invoker instance to execute the function invocation.
OpenWhisk by default implements memory bin packing: the
Controller keeps track of memory usage of all pending in-
vocations that are issued and iteratively directs all incoming
invocations to one Invoker until the memory quota of that
Invoker is exhausted. Controllers do not communicate with
each other, and each Controller has access to all Invokers. The
message delivery system between Controllers and Invokers is
implemented using Kafka [29]. Invokers are usually deployed
per VM and each manages a pool of containers, which are
Docker containers by default. Depending on whether a suit-
able container exists, a function invocation is assigned to an
existing container (warm start), or a newly created one (cold
start). Existing containers are removed after a fixed keep-alive
period (10 minutes by default) and when usable memory is

inadequate to allocate a new container. Invocation results are
stored in CouchDB for later retrieval.

6.2 Harvest VM-Aware Load Balancing
We modify both the Invoker and the Controller to implement
the resource variation-aware MWS load balancing algorithm.
Invoker. We modify the Invoker so it can efficiently use the
dynamically changing number of available CPUs. We intro-
duce a module called Harvest Monitor in each Invoker that is
responsible for periodically gathering: (a) the latest number
of CPUs allocated to the Harvest VM using Hyper-V Data
Exchange Service [11]; (b) the cumulative CPU time using
cpuacct.usage interface from cgroups [37]; and (c) any sched-
uled deallocation event for the VM using Azure Metadata
Service [40]. This information is embedded into the health
pings that the Invoker sends to the Controller every second.

All function containers for the same user run in the same
cgroup so that we can gather CPU utilization statistics. For
each function invocation, the Invoker collects its (a) execution
duration and (b) CPU usage by querying the cgroup for its
container. The Invoker embeds the information in the invoca-
tion response message back to the Controller. In addition, the
Invoker performs admission control by computing the current
utilization as (𝑐𝑝𝑢𝑢𝑠𝑎𝑔𝑒

𝑐𝑝𝑢𝑎𝑣𝑎𝑖𝑙
); if this is higher than a predefined

threshold, new function invocations are delayed.
Controller. We modify the Controller to receive the addi-
tional information collected by the Harvest Monitors through
the Invoker health pings. The Controller updates its local
data structures with this information (off the critical path,
using Scala Actors). It maintains (a) CPU usage, (b) available
CPUs, and (c) eviction notifications events for each Invoker.
If an Invoker has an eviction notification, the Controller stops
sending new invocations to it. The Controller maintains local
per-function histograms of the observed execution times and
CPU usage. Each Controller independently constructs these
histograms which eventually converge to similar values as
more samples are collected. The Controller also maintains
a per-function invocation arrival rate which is periodically
updated. We multiply the arrival rate observed locally with
the number of Controllers in the system (available at startup)
to get an estimated total invocation arrival rate.

We use the expected values computed from the execution
time and CPU usage histograms along with the estimated
total invocation arrival rate as inputs to execute the MWS
algorithm for the function. To mitigate the potential user load
oscillation and smooth the worker set size changes, we set a
minimal interval of 30 seconds between worker reductions.

Finally, the Controller also maintains the mapping of func-
tions to their hash ID (used in assigning home VM based on
consistent hashing) and hash IDs to list of functions (used

732

for function to home VM assignment update in the face of
Invoker arrival/departure) as described in Section 5.2.
Resource Monitor. We introduce a separate module per de-
ployment, called Resource Monitor, to track the resource
variation in our system. It periodically queries for the to-
tal available resources (e.g. CPUs) and spins up new VMs
to maintain a minimum pool of available resources, if they
fall below a pre-configured threshold. As mentioned in Sec-
tion 4.1, this is important because reduction in the CPUs or
eviction of Harvest VMs reduces the available resources and
can adversely impact service quality.

7 EVALUATION
We first demonstrate the benefits of the MWS algorithm com-
pared to JSQ and the default load balancing algorithm of
OpenWhisk. Then we demonstrate the benefits and cost sav-
ings of Harvest VMs for hosting serverless workloads.

7.1 Experiment Setup
For this evaluation, we deploy OpenWhisk (PR#4611) [46]
on Azure with Ansible [5]. We use one controller VM and a
variable number of invokers with their own VMs. The con-
troller VM contains core OpenWhisk components, including
two controllers, NGINX and CouchDB. In this section, we
use cluster size to refer to the number of invoker VMs.

We port multiple Python serverless functions from Func-
tionBench [32] to OpenWhisk as the benchmark (Table 2).
We create a Docker image for each function for a total of 401
functions. We use Locust [38] to generate the workload with
a Poisson arrival process, and MinIO [41] as the object store
to serve the input data. We use the 99𝑡ℎ percentile latency de-
noted P99 as the SLO metric and set it to 50 seconds, which
clearly indicates saturation for our benchmarks.

The experiments use actual Harvest VMs (where we cannot
control how their resources vary) and Harvest VM traces.
When using traces, each trace corresponds to a Harvest VM.
To emulate the CPU changes from the trace on a regular VM,
we use cgroups to set the CPU limit of the parent Docker
group of all user invocations. Each experiment runs for 20
minutes unless otherwise stated.

7.2 Impact of Load Balancing
First, we compare three load balancing algorithms: min-worker-
set (𝑀𝑊𝑆), join-the-shortest-queue (𝐽𝑆𝑄), and vanilla Open-
Whisk (𝑉𝑎𝑛𝑖𝑙𝑙𝑎). We deploy OpenWhisk with 10 invokers,
each hosted by a regular VM with 32 CPUs and 128 GB of
memory. The CPUs of the invokers are asymmetric, with the
maximum of 28 and the minimum of 5, to mimic the resource
heterogeneity in Harvest VM clusters. Figure 12 depicts the
𝑃99 latency of the three algorithms.

Functions Description

Floatop Sine, cosine & square root
Matmult Square matrix multiplication
Linpack Linear equation solver
Chameleon HTML table rendering
Pyaes AES encryption & decryption
Image processing Flip, rotate, resize, filter

& grayscale images
Video processing Grayscale video
Image classification MobileNet inference
Text classification Logistic regression

Table 2: The examined serverless functions from Func-
tionBench [32] and their description.

0 5 10 15 20 25 30
Requests per second

20

40
50
60

80

100

120

P9
9

la
te

nc
y

(s
ec

)

MWS
JSQ
Vanilla

Figure 12: P99 latency across load balancing algorithms.

Throughput. We evaluate the throughput without breaking
the SLO of each policy. MWS achieves a throughput 22.6×
higher than the vanilla OpenWhisk load balancing. Vanilla has
the worst throughput because it only considers memory and
keeps allocating invocations to an invoker until the memory
capacity of the invoker is exhausted. However, because of
the scarcity of CPUs on some Harvest VMs, CPU tends to
saturate at much lower load than memory. The CPU saturation
caused by vanilla is also exacerbated by the heterogeneity
of VM CPUs in the test cluster because even if there are
additional CPU resources in the cluster, the invoker with the
least CPUs will always saturate at low loads. MWS has a
throughput 1.6× higher than JSQ because it improves locality.
Cold starts. Better locality reduces the cold start rate. Fig-
ure 13 compares the cold start rate of MWS and JSQ at their
non-saturating loads. At the same input loads, MWS reduces
cold starts between 56.0% and 75.9%. Figure 14 compares
the latency of both policies. It shows that reducing cold starts,
we also reduce the latency. With our strategy, we can provide
the same latency with fewer VMs.

733

0 5 10 15 20 25
Requests per second

0

20

40

60

80

100

Co
ld

 st
ar

t r
at

e
(%

)

MWS
JSQ

Figure 13: Cold start rate of MWS vs. JSQ.

0 5 10 15 20 25
Requests per second

1

2

3

4

5

6

7

8

P9
9

la
te

nc
y

(s
ec

)

P25 MWS
P25 JSQ

P50 MWS
P50 JSQ

P75 MWS
P75 JSQ

Figure 14: Low percentile latency of MWS vs. JSQ.

7.3 Impact of Resource Variability
We use Harvest VM traces that have frequent CPU changes
with large change sizes to show the worst-case performance.
Although CPUs of Harvest VMs are relatively stable in the
normal case, they can also experience frequent and signifi-
cant resource changes as depicted in Figure 3. Frequent CPU
changes are challenging to handle since they require the load
balancer to detect the changes and adjust task assignment
promptly. Significant CPU shrinkage has a direct impact on
system performance since pending activations on the Invoker
that experiences significant shrinkage are prone to severe
resource contention, especially at high loads.

To study the worst-case performance of Harvest VMs, we
select a set of Harvest VM traces that have both extremely
frequent and significant CPU changes. Specifically, we choose
8 real Harvest VM traces among the traces with the highest
change frequency and large change size, and also synthesized
2 traces to control the total capacity of the cluster. The average
CPU change interval in the set of 10 traces is 3.6 minutes,
orders of magnitude shorter the expected CPU change interval

for the common case as discussed in Section 3.1. The traces
also include significant CPU shrinkage, with the maximum
shrinkage size being 26 CPUs, meaning that 81.3% of all
CPUs are suddenly taken away from an Invoker.

We compare the performance of this actively changing
Harvest VM cluster (“Active”) to two clusters: “Normal”, a
Harvest VM cluster with normal variations, and “Dedicated”,
a cluster with dedicated resources using regular VMs. All
three clusters have 180 CPUs total. The “Normal” harvest
cluster has stable per-VM CPUs, but the size of each Harvest
VM varies, with the largest VM having 28 CPUs and the
smallest VM having 5 CPUs. The “Dedicated” cluster has
both stable and homogeneous per-VM CPUs.

0 5 10 15 20 25 30
Requests per second

20

40
50
60

80

100

120

P9
9

la
te

nc
y

(s
ec

)

Active MWS
Normal MWS
Dedicated MWS
Active vanilla
Dedicated vanilla

Figure 15: Performance of harvest clusters in normal
case (“Normal”), under frequent and significant CPU
changes (“Active”), and of the “Dedicated” cluster.

We compare the performance of these three clusters in Fig-
ure 15. “Active” achieves 73.1% throughput of the “Normal”
harvest cluster and 61.2% of the “Dedicated” cluster. The
frequent and significant CPU changes result in a higher cold
start rate for the “Active” harvest cluster compared to “Nor-
mal” harvest cluster at similar loads as shown on the left side
of Figure 16. The “Dedicated” cluster achieves 19% higher
throughput than the “Normal” cluster because the small VMs
in “Normal” are more prone to saturation at high loads. We
also experiment deploying vanilla OpenWhisk on the “Active”
and “Dedicated” clusters. Vanilla OpenWhisk only achieves
39.0% throughput on “Active” compared to “Dedicated” clus-
ter. This demonstrates that MWS can better handle active
resource variations. Even with the 26.9% performance loss
for the worst case, we show in the next section that running
serverless computing workloads on Harvest VMs significantly
outperforms running them on regular VMs under the same
cost budget.

734

0 5 10 15 20 25 30
Requests per second

0

10

20

30

40

Co
ld

 st
ar

t r
at

e
(%

) Active
Normal
Dedicated

0 10 20 30
Requests per second

0

10

20

30

40
Baseline
Lowest
Typical

High
Best

Figure 16: Cold start rate against load for fixed budget.

Discount 𝑑𝑒𝑣𝑖𝑐𝑡 (%) 𝑑ℎ𝑎𝑟𝑣 (%) #VMs

Baseline (dedicated) 0 0 2
Lowest 48 48 6
Typical 70 80 12
High 80 90 18
Best 88 90 21

Table 3: Number of Harvest VMs with the same budget,
based on the discount level.

7.4 Cost vs Performance
Cost. To evaluate the benefits of using harvested resources,
we set a fixed budget and compare how many Harvest VMs
we can provision and the load we can serve. As the budget
baseline, we use two regular VMs with 16 CPUs and 64 GB
of memory. We use the cost model introduced in Section 2
where the minimum resources and the harvested cores have
a discount of 𝑑𝑒𝑣𝑖𝑐𝑡 and 𝑑ℎ𝑎𝑟𝑣 respectively. Table 3 shows the
impact of the discounts. With the most pessimistic discount,
we obtain 6 Harvest VMs, and up to 21 with an optimistic
discount configuration.
Performance. Figure 17 compares the performance of each
of these cluster configurations. These harvest clusters have
1.9×, 4.6×, 7.8× and 9.7× more CPUs than the baseline with
2 regular VMs. The throughput is 2.2×, 4.6×, 7.7× and 9.0×
better as a result of cheaper harvested CPUs.
Cold start rate. The improvement in throughput is also
reflected with lower cold start rates for each load value as de-
picted in Figure 16 (right side). Notice that at very low loads,
all clusters have high cold start rates since the function invo-
cations are spread across many VMs but without significant
impact on latency. As the load increases, the cold start rate
initially decreases in all configurations, and then increases as
load approaches system capacity (around 25% at saturation).

7.5 Harvest VMs vs Spot VMs
Harvest VMs and Spot VMs are both evictable VMs that
leverage surplus resources. In this section, we compare host-
ing serverless workload on Harvest VMs and Spot VMs via
simulation, and focus on reliability and cost.

0 5 10 15 20 25 30 35
Requests per second

20

40
50
60

80

100

120

P9
9

la
te

nc
y

(s
ec

)

Baseline
Lowest

Typical
High

Best

Figure 17: Regular vs Harvest VMs with same budget.

Experiment setup. For a fair comparison, we create syn-
thetic Spot VM and Harvest VM traces with the idle resources
of the same physical cluster (described in the characterization
of resource variability in Section 3.1). For Harvest VMs, we
place one VM on each node as long as the node can accommo-
date its base size, and the VM can harvest all idle resources
on the node. For Spot VMs, we place as many as VMs as
will fit on each node. Both Harvest VM and Spot VM are
given a 30-second grace period before eviction. We use the
same serverless workload trace as in Section 3.2, and pick
the 5-day snapshot with aligning weekdays as the VM traces.
We also extend the simulation framework in Section 4.1 to
incorporate CPU usage: each invocation consumes one CPU
and an invocation is buffered when the cluster runs out of
CPUs. New containers are created on the VM with the least
CPU utilization.
Sensitivity analysis. We analyze Harvest VMs with base
size of 2, 4 and 8 CPUs (referred to as H2 to H8), and Spot
VMs with size of 2, 4, 8, 16, 32 and 48 CPUs (referred to as S2
to S48), and the results are shown in Figure 18. 𝐶𝑃𝑈𝑠 × 𝑡𝑖𝑚𝑒

is normalized against the idle 𝐶𝑃𝑈𝑠 × 𝑡𝑖𝑚𝑒 of the physical
cluster, and price is normalized against regular CPUs under
the Typical configuration in Table 3.
Reliability. H2 achieves the lowest invocation failure with
4.31 × 10−6 (i.e., “5 nines” of reliability). For Harvest VMs,
the invocation failure rate increases with base size, reaching
3.54 × 10−5 at H8. For Spot VMs, invocation failure rate
reaches its minimum of 1.00 × 10−4 at S2, but is significantly
higher than Harvest VMs, being at least 23.2× higher than
H2. The invocation failure rate on Spot VMs reaches the
maximum at S16 and decreases with VM size afterwards. This
is because the fragmentation caused by large VMs creates a
larger buffer of unused resources that prevents VM eviction
upon shrinkage of idle resources. Cold start rates show similar
trends for the same reason.

735

Cost. To calculate the price, we incorporate the additional
per-VM cost incurred by the framework installation as in [4].
Assuming an installation time of 10 minutes as in Section 3.1,
we use the following equation:

𝑏𝑎𝑠𝑒 𝑐𝑜𝑟𝑒 𝑡𝑖𝑚𝑒 × 𝑑𝑒𝑣𝑖𝑐𝑡 + ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑐𝑜𝑟𝑒 𝑡𝑖𝑚𝑒 × 𝑑ℎ𝑎𝑟𝑣

𝑏𝑎𝑠𝑒 𝑐𝑜𝑟𝑒 𝑡𝑖𝑚𝑒 + ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑐𝑜𝑟𝑒 𝑡𝑖𝑚𝑒 − 𝑖𝑛𝑠𝑡𝑎𝑙𝑙 𝑐𝑜𝑟𝑒 𝑡𝑖𝑚𝑒

With the same idle resources, Harvest VMs also provide
more effective compute power (𝐶𝑃𝑈𝑠 × 𝑡𝑖𝑚𝑒) than Spot VMs
at cheaper prices. H2 can utilize 99.62% of the total idle com-
pute power, and S2 can only utilize 91.67%. H2 offers an
amortized per-CPU price of 0.211$/ℎ𝑜𝑢𝑟 , while the lowest
per-CPU price of Spot VM is 0.313$/ℎ𝑜𝑢𝑟 (offered by S48).
Harvest VMs are cheaper for two reasons: 𝑑ℎ𝑎𝑟𝑣 being smaller
than 𝑑𝑒𝑣𝑖𝑐𝑡 , and less installation overhead as a result of less
VM evictions. For Spot VMs, the effective compute power
decreases with VM size as a result of fragmentation.

4.3e-4

3.5e-3

1.0e-2
1.3e-2
1.6e-2

In
vo

ca
tio

n
fa

ilu
re

 ra
te

 (%
)

0.0

0.5

1.0

1.5

Co
ld

 st
ar

t r
at

e
(%

)

H2 H4 H8 S2 S4 S8 S16S32S48
VM type

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
CP

U
s

×
tim

e

H2 H4 H8 S2 S4 S8 S16S32S48
VM type

0.0

0.1

0.2

0.3

No
rm

al
ize

d
pr

ice

Figure 18: Harvest VMs vs Spot VMs. Hx refers to Har-
vest VMs with base size of x CPUs, and Sx refers to Spot
VMs with x CPUs.

7.6 Running on Real Harvest VMs
We now demonstrate executing snapshots of the function
traces on real Harvest VMs. For this experiment, we cannot
control the number of available CPUs and just report the
organic numbers.
Experiment setup. To reproduce the invocations from the
function trace, we use CPU-intensive loops with the same du-
ration. Because the maximum number of concurrent running
invocations in the function trace is too high to fit in the size
of our cluster, we combine multiple 2-hour snapshots with
fewer concurrent running invocations, making it feasible to
replay the function trace.

Figure 19 reports the number of concurrent running invoca-
tions (the peak is 120 invocations), and we provision a cluster
with 150 CPUs so that its CPU utilization is below 80%.

VM type Base CPUs Max CPUs Memory

Harvest 2 6 16GB
Regular 8 8 32GB
Spot-4 4 4 16GB
Spot-48 48 48 192GB

Table 4: Characteristics of the Harvest VMs, regular
VMs, and Spot VMs used in the experiment in §7.6.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Time (hours)

0

25

50

75

100

125

Co
nc

ur
re

nt
 in

vo
ca

tio
ns

Figure 19: Invocations in the combined function trace.

Percentile Harvest Spot-4 Spot-48

25𝑡ℎ 56% 53% 53%
50𝑡ℎ 47% 43% 52%
75𝑡ℎ 32% 4% 38%
90𝑡ℎ 41% 15% 55%
95𝑡ℎ 74% 35% 83%
99𝑡ℎ 62% 16% 81%

Table 5: Latency reduction at multiple percentiles of Har-
vest and Spot VM clusters over regular VM clusters.

We test four clusters, consisting of Harvest VMs, baseline
regular VMs, Spot-4 VMs and Spot-48 VMs (Table 4). We
deploy MWS OpenWhisk on the Harvest VM and Spot VM
cluster and the vanilla OpenWhisk on the regular VM cluster.
Utilization and performance. Figure 20 shows the total
number of CPUs and the utilization for the Harvest, regular
and Spot clusters. All clusters show similar CPU utilization
patterns and the Harvest and Spot-48 clusters run all the
functions with no failure. Figure 21 shows the invocation
latency distribution of the tested clusters. Table 5 lists the
latency reduction of Harvest and Spot VM clusters over the
regular VM cluster at different percentiles. Harvest VMs
outperform other alternatives except Spot-48 VM, because
large VMs are less likely to be saturated, both in terms of
CPUs and memory. However, using large Spot VMs leads to
lower resource utilization and higher failure rate, as discussed
in Section 7.5.

736

0

30

60

90

120

150

CP
Us Harvest total CPUs

Harvest CPU usage

0

30

60

90

120

150

CP
U

us
ag

e

Regular total CPUs
Regular CPU usage

0.0 0.5 1.0 1.5 2.0
Time (hours)

0

30

60

90

120

150

CP
Us Spot-4 total CPUs

Spot-4 CPU usage

0.0 0.5 1.0 1.5 2.0
Time (hours)

0

30

60

90

120

150

CP
U

us
ag

e

Spot-48 total CPUs
Spot-48 CPU usage

Figure 20: CPU number and cluster CPU utilization for
Harvest VMs (upper left), regular VMs (upper right),
and Spot VMs with 4 CPUs (lower left) and 48 CPUs
(lower right).

Cost. We now compare the cost of Harvest VMs against
regular VMs and Spot VMs, and we assume that the Spot VM
cluster has the same configuration as the regular VM cluster.
We analyze the four configurations of 𝑑𝑒𝑣𝑖𝑐𝑡 and 𝑑ℎ𝑎𝑟𝑣 from
Table 3. Compared to regular VMs, Harvest VMs are 49%,
77%, 83% and 89% cheaper, respectively. Compared to their
Spot-4 VMs counterparts, they are 0%, 22%, 45% and 11%
cheaper, respectively. The worst case achieves no savings
compared to Spot VMs because it pessimistically assumes
harvested CPUs have the same price as evictable CPUs. This
pricing is unlikely to happen in practice.

1ms 10ms 100ms 1s 10s 1m 10m
Invocation latency

0
10
20
30
40
50
60
70
80
90

100

CD
F

(%
)

Harvest w. MWS wsk
Regular w. vanilla wsk
Spot-4 w. MWS wsk
Spot-48 w. MWS wsk

Figure 21: Response latency comparing MWS on har-
vested resources to vanilla OpenWhisk running on ded-
icated resources.

7.7 Summary
We demonstrate the performance benefit of MWS load balanc-
ing. It achieves 22.6× higher throughput than vanilla Open-
Whisk, as it addresses resource variations. It also improves
locality, resulting in lower cold start rates. With MWS, we re-
alize the benefits of running serverless platforms on harvested
resources, achieving lower cost and better performance: Un-
der the same cost budget, running serverless platforms on
harvested resources achieves 2.2× to 9.0× higher throughput
compared to using dedicated resources; and with the same
amount of provisioned resources, running serverless platforms
on harvested resources achieves 48% to 89% cost savings,
with lower latency due to better load balancing.

8 CONCLUSION
In this paper, we propose to host serverless platforms on
harvested resources. We quantify the challenges of using har-
vested resources for serverless invocations, including Harvest
VM evictions and resource variation by characterizing the
serverless workloads and Harvest VMs of Microsoft Azure.
We demonstrate the reliability of hosting serverless work-
loads on harvested resources with trace-driven simulation.
We also design and implement a harvesting-aware serverless
load balancer on OpenWhisk, with which we demonstrate
the performance and economic benefits of hosting serverless
platforms on harvested resources.

ACKNOWLEDGMENTS
We would like to sincerely thank James Mickens for his feed-
back and guidance while shepherding our paper. We also
thank the anonymous reviewers for their extensive feedback
on earlier versions of this manuscript. This work was partially
supported by a Microsoft Research Faculty Fellowship and
NSF grants NeTS CSR-1704742 and CCF-1846046.

REFERENCES
[1] AGACHE, A., BROOKER, M., IORDACHE, A., LIGUORI, A., NEUGE-

BAUER, R., PIWONKA, P., AND POPA, D.-M. Firecracker: Light-
weight Virtualization for Serverless Applications. In NSDI (2020).

[2] AKKUS, I. E., CHEN, R., RIMAC, I., STEIN, M., SATZKE, K., BECK,
A., ADITYA, P., AND HILT, V. SAND: Towards High-Performance
Serverless Computing. In USENIX ATC (2018).

[3] AMAZON WEB SERVICES. AWS Lambda. https://aws.amazon.com/
lambda/, 2021.

[4] AMBATI, P., GOIRI, Í., FRUJERI, F., GUN, A., WANG, K., DOLAN,
B., CORELL, B., PASUPULETI, S., MOSCIBRODA, T., ELNIKETY, S.,
AND BIANCHINI, R. Providing SLOs for Resource-Harvesting VMs
in Cloud Platforms. In OSDI (2020).

[5] ANSIBLE. Ansible is Simple IT Automation. https://www.ansible.com/,
2021.

[6] AWS. Amazon EC2 Spot Instances. https://aws.amazon.com/ec2/spot,
2021.

737

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://www.ansible.com/
https://aws.amazon.com/ec2/spot

[7] AWS. AWS Burstable performance instances. https:
//docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-
performance-instances.html, 2021.

[8] AZURE. Azure Burstable VMs. https://docs.microsoft.com/en-us/
azure/virtual-machines/sizes-b-series-burstable, 2021.

[9] AZURE. Pricing - Linux Virtual Machines | Microsoft Azure
. https://azure.microsoft.com/en-us/pricing/details/virtual-machines/
linux/, 2021.

[10] AZURE. Use Azure Spot Virtual Machines. https://docs.microsoft.com/
en-us/azure/virtual-machines/spot-vms, 2021.

[11] AZURE, M. Hyper-V Integration Services. https://docs.microsoft.
com/en-us/virtualization/hyper-v-on-windows/reference/integration-
services.

[12] BOUTIN, E., EKANAYAKE, J., LIN, W., SHI, B., ZHOU, J., QIAN, Z.,
WU, M., AND ZHOU, L. Apollo: Scalable and coordinated scheduling
for cloud-scale computing. In OSDI (2014).

[13] BRAMSON, M., LU, Y., AND PRABHAKAR, B. Randomized Load
Balancing with General Service Time Distributions.

[14] CARREIRA, J., FONSECA, P., TUMANOV, A., ZHANG, A., AND KATZ,
R. A case for serverless machine learning. In Workshop on Systems for
ML and Open Source Software at NeurIPS (2018).

[15] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E.,
LIMPACH, C., PRATT, I., AND WARFIELD, A. Live Migration of
Virtual Machines. In NSDI (2005).

[16] DELGADO, P., DINU, F., KERMARREC, A.-M., AND ZWAENEPOEL,
W. Hawk: Hybrid datacenter scheduling. In USENIX ATC (2015).

[17] DU, D., YU, T., XIA, Y., ZANG, B., YAN, G., QIN, C., WU, Q., AND

CHEN, H. Catalyzer: Sub-millisecond startup for serverless computing
with initialization-less booting. In ASPLOS (2020).

[18] FERGUSON, A. D., BODIK, P., KANDULA, S., BOUTIN, E., AND

FONSECA, R. Jockey: Guaranteed Job Latency in Data Parallel Clusters.
In EuroSys (2012).

[19] FOULADI, S., ROMERO, F., ITER, D., LI, Q., CHATTERJEE, S.,
KOZYRAKIS, C., ZAHARIA, M., AND WINSTEIN, K. From Laptop
to Lambda: Outsourcing Everyday Jobs to Thousands of Transient
Functional Containers. In USENIX ATC (2019).

[20] FOULADI, S., WAHBY, R. S., SHACKLETT, B., BALASUBRAMA-
NIAM, K. V., ZENG, W., BHALERAO, R., SIVARAMAN, A., PORTER,
G., AND WINSTEIN, K. Encoding, Fast and Slow: Low-latency video
processing using thousands of tiny threads. In NSDI (2017).

[21] GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWINSKI, A.,
SHENKER, S., AND STOICA, I. Dominant Resource Fairness: Fair
Allocation of Multiple Resource Types. In NSDI (2011).

[22] GOG, I., SCHWARZKOPF, M., GLEAVE, A., WATSON, R. N., AND

HAND, S. Firmament: Fast, centralized cluster scheduling at scale. In
OSDI (2016).

[23] GOOGLE. Google cloud functions. https://google.com/functions/, 2021.
[24] GUPTA, V., BALTER, M. H., SIGMAN, K., AND WHITT, W. Analysis

of Join-the-Shortest-Queue Routing for Web Server Farms. Perfor-
mance Evaluation 64, 9-12 (2007), 1062–1081.

[25] ISARD, M., PRABHAKARAN, V., CURREY, J., WIEDER, U., TALWAR,
K., AND GOLDBERG, A. Quincy: fair scheduling for distributed
computing clusters. In SOSP (2009).

[26] JONAS, E., PU, Q., VENKATARAMAN, S., STOICA, I., AND RECHT,
B. Occupy the Cloud: Distributed Computing for the 99%. In SoCC
(2017).

[27] JYOTHI, S. A., CURINO, C., MENACHE, I., NARAYANAMURTHY,
S. M., TUMANOV, A., YANIV, J., MAVLYUTOV, R., GOIRI, I., KR-
ISHNAN, S., KULKARNI, J., ET AL. Morpheus: Towards automated
slos for enterprise clusters. In SOSP (2016).

[28] KAFFES, K., YADWADKAR, N. J., AND KOZYRAKIS, C. Centralized
Core-Granular Scheduling for Serverless Functions. In SoCC (2019).

[29] KAFKA. Apache Kafka: A distributed streaming platform. https:
//kafka.apache.org/, 2021.

[30] KARANASOS, K., RAO, S., CURINO, C., DOUGLAS, C., CHALI-
PARAMBIL, K., FUMAROLA, G. M., HEDDAYA, S., RAMAKRISH-
NAN, R., AND SAKALANAGA, S. Mercury: Hybrid centralized and
distributed scheduling in large shared clusters. In USENIX ATC (2015).

[31] KARGER, D., LEHMAN, E., LEIGHTON, T., PANIGRAHY, R., LEVINE,
M., AND LEWIN, D. Consistent Hashing and Random Trees: Dis-
tributed Caching Protocols for Relieving Hot Spots on the World Wide
Web. In STOC (1997).

[32] KIM, J., AND LEE, K. Functionbench: A suite of workloads for
serverless cloud function service. In CLOUD (2019).

[33] KLIMOVIC, A., WANG, Y., KOZYRAKIS, C., STUEDI, P., PFEFFERLE,
J., AND TRIVEDI, A. Understanding ephemeral storage for serverless
analytics. In USENIX ATC (2018).

[34] KLIMOVIC, A., WANG, Y., STUEDI, P., TRIVEDI, A., PFEFFERLE, J.,
AND KOZYRAKIS, C. Pocket: Elastic ephemeral storage for serverless
analytics. In OSDI (2018).

[35] KUBERNETES. Kubernetes Production-Grade Container Orchestration.
https://kubernetes.io/, 2021.

[36] LEE, B. D., TIMONY, M. A., AND RUIZ, P. DNAvisualization.org: A
Serverless Web Tool for DNA Sequence Visualization. Nucleic acids
research 47, W1 (2019), W20–W25.

[37] LINUX. Cgroups. https://www.kernel.org/doc/Documentation/cgroup-
v2.txt, 2021.

[38] LOCUST. Locust: A modern load testing framework. https://locust.io/,
2021.

[39] MICROSOFT AZURE. Azure functions. https://microsoft.com/en-us/
services/functions/, 2021.

[40] MICROSOFT AZURE. Azure metadata service: Scheduled events for
linux vms. https://docs.microsoft.com/en-us/azure/virtual-machines/
linux/scheduled-events, 2021.

[41] MINIO. Minio - high performance, kubernetes native object storage.
https://min.io/, 2021.

[42] MOHAN, A., SANE, H., DOSHI, K., EDUPUGANTI, S., NAYAK, N.,
AND SUKHOMLINOV, V. Agile Cold Starts for Scalable Serverless. In
HotCloud (2019).

[43] MVONDO, D., BACOU, M., NGUETCHOUANG, K., NGALE, L.,
POUGET, S., KOUAM, J., LACHAIZE, R., HWANG, J., WOOD, T.,
HAGIMONT, D., DE PALMA, N., BATCHAKUI, B., AND TCHANA,
A. OFC: An Opportunistic Caching System for FaaS Platforms. In
EuroSys.

[44] OAKES, E., YANG, L., ZHOU, D., HOUCK, K., HARTER, T., ARPACI-
DUSSEAU, A., AND ARPACI-DUSSEAU, R. SOCK: Rapid Task Provi-
sioning with Serverless-Optimized Containers. In USENIX ATC (2018).

[45] OPENWHISK. Apache OpenWhisk Open Source Serverless Cloud
Platform. https://openwhisk.apache.org/, 2021.

[46] OPENWHISK. OpenWhisk Pull Request 4611. https://github.com/
apache/openwhisk/pull/4611, 2021.

[47] OUSTERHOUT, K., WENDELL, P., ZAHARIA, M., AND STOICA, I.
Sparrow: Distributed, Low Latency Scheduling. In SOSP (2013).

[48] PARK, J. W., TUMANOV, A., JIANG, A., KOZUCH, M. A., AND

GANGER, G. R. 3sigma: distribution-based cluster scheduling for
runtime uncertainty. In EuroSys (2018).

[49] PU, Q., VENKATARAMAN, S., AND STOICA, I. Shuffling, fast and
slow: Scalable analytics on serverless infrastructure. In NSDI (2019).

[50] REISS, C., TUMANOV, A., GANGER, G. R., KATZ, R. H., AND

KOZUCH, M. A. Heterogeneity and dynamicity of clouds at scale:
Google trace analysis. In SoCC (2012).

[51] ROMERO, F., CHAUDHRY, G. I., GOIRI, Í., GOPA, P., BATUM, P.,
YADWADKAR, N. J., FONSECA, R., KOZYRAKIS, C., AND BIAN-
CHINI, R. Faa$T: A Transparent Auto-Scaling Cache for Serverless

738

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/burstable-performance-instances.html
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-b-series-burstable
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://azure.microsoft.com/en-us/pricing/details/virtual-machines/linux/
https://docs.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://docs.microsoft.com/en-us/azure/virtual-machines/spot-vms
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/integration-services
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/integration-services
https://docs.microsoft.com/en-us/virtualization/hyper-v-on-windows/reference/integration-services
https://google.com/functions/
https://kafka.apache.org/
https://kafka.apache.org/
https://kubernetes.io/
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://www.kernel.org/doc/Documentation/cgroup-v2.txt
https://locust.io/
https://microsoft.com/en-us/services/functions/
https://microsoft.com/en-us/services/functions/
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/scheduled-events
https://docs.microsoft.com/en-us/azure/virtual-machines/linux/scheduled-events
https://min.io/
https://openwhisk.apache.org/
https://github.com/apache/openwhisk/pull/4611
https://github.com/apache/openwhisk/pull/4611

Applications. arXiv preprint arXiv:2104.13869 (2021).
[52] SCHLEIER-SMITH, J., SREEKANTI, V., KHANDELWAL, A., CAR-

REIRA, J., YADWADKAR, N. J., POPA, R. A., GONZALEZ, J. E.,
STOICA, I., AND PATTERSON, D. A. What Serverless Computing is
and Should Become: The next Phase of Cloud Computing. Communi-
cation of the ACM (2021).

[53] SHAHRAD, M., FONSECA, R., GOIRI, Í., CHAUDHRY, G., BATUM, P.,
COOKE, J., LAUREANO, E., TRESNESS, C., RUSSINOVICH, M., AND

BIANCHINI, R. Serverless in the Wild: Characterizing and Optimizing
the Serverless Workload at a Large Cloud Provider. In USENIX ATC
(2020).

[54] SHILLAKER, S., AND PIETZUCH, P. Faasm: Lightweight Isolation for
Efficient Stateful Serverless Computing. In USENIX ATC (2020).

[55] TUMANOV, A., ZHU, T., PARK, J. W., KOZUCH, M. A., HARCHOL-
BALTER, M., AND GANGER, G. R. TetriSched: global rescheduling
with adaptive plan-ahead in dynamic heterogeneous clusters. In EuroSys

(2016).
[56] USTIUGOV, D., PETROV, P., KOGIAS, M., BUGNION, E., AND GROT,

B. Benchmarking, Analysis, and Optimization of Serverless Function
Snapshots. 2021.

[57] VAVILAPALLI, V. K., MURTHY, A. C., DOUGLAS, C., AGARWAL, S.,
KONAR, M., EVANS, R., GRAVES, T., LOWE, J., SHAH, H., SETH,
S., ET AL. Apache Hadoop YARN: Yet Another Resource Negotiator.
In SoCC (2013).

[58] VVEDENSKAYA, N. D., DOBRUSHIN, R. L., AND KARPELEVICH,
F. I. Queueing system with selection of the shortest of two queues: An
asymptotic approach. Problemy Peredachi Informatsii 32, 1 (1996),
20–34.

[59] WANG, L., LI, M., ZHANG, Y., RISTENPART, T., AND SWIFT, M.
Peeking Behind the Curtains of Serverless Platforms. In USENIX ATC
(2018).

739

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Characterization
	3.1 Harvest VMs
	3.2 Serverless Functions
	3.3 Implications

	4 Handling Evictions
	4.1 Methodology
	4.2 Combining Regular and Harvest VMs
	4.3 Running on Harvest VMs
	4.4 VM Migration/Snapshotting
	4.5 Conclusion

	5 Handling Resource Variability
	5.1 Join-the-Shortest-Queue (JSQ)
	5.2 Min-Worker-Set (MWS)

	6 Implementation
	6.1 OpenWhisk Architecture
	6.2 Harvest VM-Aware Load Balancing

	7 Evaluation
	7.1 Experiment Setup
	7.2 Impact of Load Balancing
	7.3 Impact of Resource Variability
	7.4 Cost vs Performance
	7.5 Harvest VMs vs Spot VMs
	7.6 Running on Real Harvest VMs
	7.7 Summary

	8 Conclusion
	Acknowledgments
	References

