
ReTail: Opting for Learning Simplicity to Enable
QoS-Aware Power Management in the Cloud

Shuang Chen, Angela Jin, Christina Delimitrou, José F. Martı́nez
Computer Systems Laboratory

Cornell University
Ithaca, NY, USA

{sc2682,aj445,delimitrou,martinez}@cornell.edu

Abstract—Many cloud services have Quality-of-Service (QoS)
requirements; most requests have to to complete within a given
latency constraint. Recently, researchers have begun to investigate
whether it is possible to meet QoS while attempting to save power
on a per-request basis. Existing work shows that one can indeed
hand-tune a request latency predictor offline for a particular
cloud application, and consult it at runtime to modulate CPU
voltage and frequency, resulting in substantial power savings.

In this paper, we propose ReTail, an automated and general
solution for request-level power management of latency-critical
services with QoS constraints. We present a systematic process
to select the features of any given application that best correlate
with its request latency. ReTail uses these features to predict
latency, and adjust CPU’s power consumption. ReTail’s predictor
is trained fully at runtime. We show that unlike previous findings,
simple techniques perform better than complex machine learning
models, when using the right input features. For a web search
engine, ReTail outperforms prior mechanisms based on complex
hand-tuned predictors for that application domain. Furthermore,
ReTail’s systematic approach also yields superior power savings
across a diverse set of cloud applications.

I. INTRODUCTION

Warehouse-scale datacenters host an increasing number of
latency-critical (LC) interactive services, such as websearch
and social networks [12, 35, 39]. These services operate
under strict Quality-of-Service (QoS) constraints in terms of
tail latency—meaning that, for example, the 99th percentile
of requests need to complete within a latency threshold to
guarantee predictable performance and good user experience.

In addition to meeting tail latency requirements, energy ef-
ficiency is also important for datacenters, which incur billion-
dollar energy bills each year [23, 39, 49]. To account in
part for load surges and unexpected spikes, servers running
LC applications are often provisioned for the worst case.
This means that under normal conditions, they are severely
underutilized [12, 19, 35, 46]. The same applies to power
management: LC services usually operate at high frequency
to avoid latency spikes [34]. This is neither economical
nor necessary, given the cloud’s well-documented resource
underutilization [12, 19, 20, 35], calling for more fine-grained
power management that accurately captures the real-time
performance needs of interactive, LC services.

Prior work has explored dynamic voltage/frequency scaling
(DVFS) for LC services [23, 24, 29, 34, 39]. Pegasus [34]
dynamically adjusts the frequency for an LC application by
monitoring its load and latency slack. Unfortunately, a key

characteristic of LC services is their large variation in request
latency: a few requests are orders of magnitude slower and end
up defining the application’s tail latency [17, 33]. Thus, power
management at application granularity misses the opportunity
to differentiate frequency at the level of individual requests.
There has been work that explores fine-grained request-level
power management. Some proposals use heuristics [23, 24]
to classify requests into short and long. Others use statistical
models [29] to estimate worst-case latency, which is often too
conservative. The most recent related work, Gemini [51], uses
application-specific neural networks to predict request latency
for websearch, without generalizing to other LC services.

In this paper, we present ReTail, the first automated frame-
work using practical, simple linear techniques to enable QoS-
aware power management of LC cloud services with request-
level latency prediction. ReTail shows that simple techniques
using appropriate input features are much more effective that
complex ML models treated as black boxes. We motivate the
design of ReTail through a characterization of seven diverse
LC applications, showcasing the opportunity to accurately
infer their request latencies from selected request/application
features. ReTail has three main components:
1) Feature selection automatically identifies the features that

most closely correlate with request latency for a given
service. ReTail expands the feature space by including
features not immediately available at request arrival.

2) Latency prediction uses linear regression to predict the
request-level latency based on the selected features. Com-
pared to more complicated models, such as neural net-
works, linear regression is accurate, simple, and general.
It achieves similar accuracy with significantly lower over-
heads, and does not require manual tuning per application.

3) Runtime power management uses the latency predictor’s
output to estimate the end-to-end latency under different
frequencies, and to determine the minimum frequency for
each request to meet the end-to-end QoS.

We evaluate ReTail on a high-end server platform across
various representative LC applications. We compare it with
two state-of-the-art request-level power management schemes,
Rubik [29] and Gemini [51], and show that ReTail reduces
power consumption more than either mechanism, by up to
36.2% and 35.6% (average 11.5% and 8.9%), respectively, and
without dropping any requests. Additionally, ReTail is able to

TABLE I: Qualitative comparison of ReTail vs. two closely related
proposals for power management of latency-critical applications.

Rubik Gemini ReTail
Method Statistical model Neural net Linear regression

Feature space N/A Request Request&Application
Feature selection N/A Hand-picked Systematic
Request-accurate 7 3 3

General applications 3 7 3

Training overhead Low High Low
Inference overhead Low High Low

QoS guarantee 3 7 3

No dropped requests 3 7 3

Adapt to model drift 7 7 3

dynamically adjust to system or application interference by
retraining the latency predictor online.

II. RELATED WORK

Most proposals towards improving power efficiency [15, 26,
43] focus on throughput-oriented batch jobs. Recent work that
explores DVFS for LC services with latency/QoS constraints
can be broadly classified into two categories:
Coarse-grained power management like Pegasus [34] dy-
namically adjusts frequency for the entire LC application. It
addresses long-term latency variations under load fluctuations,
but leaves power savings on the table by not differentiating
individual requests.
Fine-grained power management outperforms coarse-
grained management by differentiating at request granularity,
generally boosting long and slowing down short requests,
while trying to meet QoS. There are two main methods:
• Classification-based methods classify requests into short

and long using various metrics, and boost all requests in the
long category. EETL [23] tracks the progress of each request;
those that exceed a predetermined execution threshold are
flagged as long requests, and EETL boosts the frequency
at that point. However, by the time a request reaches the
progress threshold, it may be too late to prevent tail latency
degradation. Adrenaline [24] introduces the concept of feature-
driven request classification. It studies two LC applications,
web search and key-value stores, and identifies, by human
inspection, request features in each that can be used to
predict incoming requests as being either “short” or “long.”
Adrenaline uses this classification to boost long requests from
the start. Unfortunately, Adrenaline does not easily general-
ize to other LC services, whose features will be different.
Additionally, a downside of request classification is that it
cannot rank requests within each category, and therefore, is not
fine-grained enough to accurately pinpoint requests at the tail;
instead, an entire class of requests are boosted when only the
longest ones needed to. To address this issue, ReTail instead
follows the latency-based approach described next.
• Latency-based methods take a step further over classifica-

tion, by using latency prediction to guide power management.
Recent work [29, 51] has shown great improvement over
classification-based methods. Rubik [29] estimates a latency
distribution for each request based on the current queue length

and a request service time distribution (the latter profiled
offline). It then uses the tail of the estimated distribution
as the predicted latency. This is usually too conservative,
especially when the resulting latency distribution has a long
tail. Gemini [51], most related to our work, predicts per-
request latency using a neural network. Gemini is designed
specifically for web search engines, and both the features and
its prediction model are hand-picked for the specific service,
similar to prior work [28, 31, 36] that also predicts request
latency for web search engines. It also does not provide a
QoS guarantee, as QoS violations still occur in some cases,
e.g., upon wrong latency predictions/high loads.

Table I shows the main differences between ReTail and two
latency-based methods. Compared with Rubik and Gemini,
ReTail targets general LC applications, and adopts much
simpler linear regression for latency prediction, automatically
selecting the request features that impact latency most. ReTail
dynamically detects and adjusts to model drift, and does not
need to drop requests. We compare with Rubik and Gemini in
Sections V-A and VII.

III. THE LATENCY IMPACT OF REQUEST FEATURES

We now characterize seven diverse LC applications (Ta-
ble II) from Tailbench [30], to discover any underlying latency
patterns, and explore opportunities for latency prediction.
These applications are widely used in both academia and
industry, giving us a realistic pool of LC workloads to study.

A. Service Time Distribution

0 5 10 15 20
RPS (k)

0

5

10

15

T
ai

l l
at

en
cy

 (
m

se
c)

ImgDNN

Service Time
Sojourn Time

Fig. 1: Tail latency with RPS.

Request latency (sojourn
time) is the sum of service
time (the time to process a
request) and queueing delay
(the waiting time before a
request starts execution).
Fig. 1 shows that service time
of a 20-threaded ImgDNN
remains constant, while
sojourn time increases with
request-per-second (RPS) due to the increase in queuing
delay. Throughout all Tailbench applications and many other
LC applications [14], no batching is adopted during request
processing to preserve low request latency, i.e., a single
request is processed at a time, and once started, it runs to
completion.

In this section, we focus on characterizing service time.
Queuing delay is incorporated in Section VI to predict sojourn
time. Fig. 2 plots each application’s service time cumulative
distribution function (CDF); median and tail latencies are
marked with green stars and red circles, respectively, and
the median-to-tail ratios are recorded in Table II. The x-
axis distance between the two markers visually indicates the
service time variation across all requests. Among the seven
applications, Masstree and ImgDNN have little or no variation
in service time: the median is less than 20% of the tail, i.e.,
most requests are serviced in roughly the same time.

TABLE II: Latency-critical applications.

Application Masstree ImgDNN Sphinx Xapian Moses Shore Silo

Domain Key-value store Image
recognition

Speech
recognition Web search Real-time

translation
Database

(disk/SSD)
Database

(in-memory)

Dataset One million
<key,value> pairs MNIST [21] CMU AN4 [11] English Wikipedia Spanish

articles [6] TPC-C [16], 1 warehouse

QoS Target 1ms 5ms 4s 8ms 120ms 5ms 1ms
Median:Tail Ratio 0.84 0.81 0.36 0.27 0.26 0.25 0.19

Request
90% <GET, key>
10% <PUT, key,

value>

An image with a
handwritten digit

Path to an
audio file A single-word term

A Spanish phrase
to be translated

into English

47% PAYMENT
45% NEW ORDER

4% ORDER STATUS
4% STOCK LEVEL

Classification Little or no
variation

Little or no
variation

Predicted by
request features

Predicted by
application features

Predicted by
request features

Predicted by request and
application features

Feature(s) N.A. N.A. Audio file size Document count Word count Request type, Item count, Rollback

0 1 2 3
Service Time (ms)

0.0

0.5

1.0

C
D

F

(a) Masstree

0.5 1.0 1.5
Service Time (ms)

(b) ImgDNN

1000 2000 3000
Service Time (ms)

(c) Sphinx

1 2 3 4
Service Time (ms)

(d) Xapian

25 50 75 100
Service Time (ms)

(e) Moses

1 2 3
Service Time (ms)

(f) Shore

0.25 0.50 0.75 1.00
Service Time (ms)

(g) Silo

Fig. 2: CDF of service time. Median and 99th-percentile latency are marked by green stars and red circles.

0 100 200 300 400
Phrase Length

25

50

75

100

S
er

vi
ce

 T
im

e
(m

s)

20 40 60
Word Count

(a) Moses

69 70 71 72 73
File Path Length

0

1

2

3

S
er

vi
ce

 T
im

e
(s

)

50 100 150 200
Audio File Size (KB)

(b) Sphinx

Fig. 3: Correlation between various interpretations of request length and request
service time. Each blue dot represents one request sample.

0 1 2 3
Service Time (ms)

0.0

0.5

1.0

C
D

F

(a) Shore

0.25 0.50 0.75 1.00
Service Time (ms)

ORDER_STATUS
PAYMENT
NEW_ORDER
STOCK_LEVEL

(b) Silo

Fig. 4: CDF of service time of each request type.

B. Correlation with Request Features

To understand the factors influencing service time variation
in the remaining five applications, we start by exploring
request features, namely request length and request type.

1) Request length: Requests of Sphinx and Moses have
different lengths. Since request length can have multiple
interpretations, it is critical to identify all of them. Fig. 3 shows
the scatter plots between various definitions of request length
and service time.

For Moses, whose requests are phrases, request length can
be defined as phrase length (number of characters in the
phrase), or as word count (number of words in the phrase).
Despite this seemingly subtle detail, Fig. 3a demonstrates that
only word count correlates with service time. Intuitively, a
longer word does not take longer to translate than a shorter
word, but a phrase with many words indicates a complex
structure, and will likely induce a longer translation time.

Similarly, for Sphinx, whose requests are paths to audio
files, request size can be naı̈vely defined as path length, or,
more meaningfully, as the audio file size. Fig. 3b shows that
only file size correlates with service time.

2) Request type: Shore and Silo both use the same TPC-
C benchmark, so they have the same types of requests.
Fig. 4 shows their per-type service time CDF graphs. The
curves of ORDER STATUS and PAYMENT both exhibit a
nearly vertical rise from 0.0 to 1.0, i.e., all requests of the
same type have similar service times. NEW ORDER and
STOCK LEVEL requests have more service time variation,
and we further investigate below.

C. Correlation with Application Features

Xapian and two types of requests in Shore and Silo require
further investigation into their service time variations. Due to
the lack of useful features in their request packets, we look
into intermediate variables in each application, i.e., application
features.

1) Xapian: Fig. 6a shows four major steps during Xapian’s
request processing. In the first step, we find an intermediate
variable titled term frequency, which correlates strongly with
service time, as shown in Fig. 5a. Term frequency represents
the number of documents matched to a searched term, and the
correlation can be interpreted intuitively: the more matched

250 500 750 1000
Matched Documents

1

2

3

S
er

vi
ce

 T
im

e
(m

s)

Xapian

(a) Xapian

5 10 15
Ordered Items

5

10

15

Shore
Rolled back
Committed

(b) NEW ORDER

200 250
Distinct Items

1

2

3

4 Shore

(c) STOCK LEVEL

Fig. 5: Correlation between application features and service time.

0 20 40 60 80 100
Time (%)

Query Preparation
Document Retrieval
Document Sorting
Response Preparation

Document Count Obtained

(a) Xapian

0 20 40 60 80 100
Time (%)

Create Order Header
Order Items
Rollback

Item count obtained
Rollback obtained

(b) NEW ORDER

0 20 40 60 80 100
Time (%)

Examine Items
Examine Stock Level

Item count obtained

(c) STOCK LEVEL

Fig. 6: Lifetime of a request.

documents, the longer it takes to retrieve and sort the docu-
ments (step 2&3 in Fig. 6a).

2) NEW ORDER in Shore and Silo: a new order is entered
into the database, by first creating an order header and then
inserting a new row to the ORDER LINE table for each
ordered item [16] (Fig. 6b). Upon user data entry errors,
the transaction is rolled back. Therefore, request service time
depends on (a) if the transaction is rolled back, which incurs
additional operations to remove previously inserted rows, and
(b) the number of ordered items, since both ordering items and
rollback primarily consist of a for-loop with #items iterations.
Fig. 5b shows that Shore’s processing times of these two steps
each increases with the item count, but at different rates. Since
Silo and Shore have similar application logic (but different
underlying implementations to store data), the features that
correlate with service time are the same.

3) STOCK LEVEL in Shore and Silo: A STOCK LEVEL
request examines the stock level of all the items on the last
20 orders; it first examines all items on the last 20 orders, and
then examine each distinct item’s stock level [16] (Fig. 6c).
Fig. 5c shows that processing time increases with the number
of distinct items, as it takes longer to examine the stock level
of all the items.

4) Timeliness of application features: Unlike request fea-
tures, application features are obtained during request pro-
cessing, which means that latency cannot be inferred before
request processing. Luckily, application features in Xapian,
Silo and Shore are all obtained early during request processing,
as shown in Fig. 6. Timeliness ensures the feasibility of
using application features in service time prediction (further
discussed in Section IV-B).

D. Summary

We successfully identified the cause of latency variation
for every characterized application. Based on the selected

TABLE III: Symbols in ReTail feature selection.

Symbol Definition
M Number of candidate features.
N Number of request samples.

Starti, Endi Start and end time of request i’s processing, 1 ≤ i ≤ N
Servicei Service time of request i, i.e., Endi − Starti.

Featurei,j Feature j’s value of request i, 1 ≤ j ≤M
FArrivali,j Feature j’s arrival time of request i.
Latenessj The fraction of service time to obtain feature j’s value,

defined as
∑N

i=1(FArrivali,j−Starti)/Servicei
N

feature(s), we can categorize applications into four categories:
• Little or no variation (ImgDNN, Masstree)): All requests

are serviced in the same amount of time.
• Predicted by request features (Moses, Sphinx): Some

interpretation of request feature (e.g., request size/type)
strongly correlates with service time.

• Predicted by application features (Xapian): No mean-
ingful request feature is known before execution. Instead,
an application feature, ideally obtained early in the request
execution, can explain the variation in service times.

• Combinational (Shore, Silo): Request and application fea-
tures are both needed to jointly explain the variation.
All correlations have very intuitive explanations. The iden-

tified features also generalize across all applications with the
same functionality. For instance, Shore and Silo, which are
both database applications, share the same features. Document
count and word count are likely to correlate with service time
in other websearch and translation services, respectively.

IV. FEATURE SELECTION

We have shown that LC applications generally have some
features that can explain their service time variation. We now
introduce ReTail’s feature selection that automatically selects
critical features for a general LC application.

A. Input of Feature Selection

The input to ReTail’s feature selection for application A
consists of M candidate features and N request samples (see
Table III). For each request sample i, Starti and Endi are
required to obtain request service time Servicei. For each
feature j of request i, the feature value Featurei,j and the
time to obtain the feature FArrivali,j are required.

1) Input Features: The cloud user of A is responsible for
providing a full list of candidate features, including request
and/or application features. Not to be confused with hand-
picking features, this list is unfiltered and can be as long
as needed; it is ReTail’s job to automatically pick the final
features that most closely correlate with latency.

2) Input Requests: Once the application and the list of
candidate features are submitted, the cloud provider collects
all the request samples using live traffic. The application is de-
ployed at a fixed frequency in isolation, to rule out the impacts
of runtime frequency fluctuations and resource contention on
per-request service time variation. N should be large enough
to cover a representative subset of all kinds of requests. For

instance, our characterization of Tailbench applications uses
load generators that randomly generate requests with various
request lengths/types, and we find N = 1000 to be sufficient.

B. Feature Selection

ReTail’s feature selection consists of the following steps to
systematically select one or more distinguishing features that
correlate with request service time for an LC application:

Step 1: Calculate each candidate feature’s lateness ∈ [0, 1],
defined in Table III as the fraction of service time that
has elapsed when the feature value is obtained. Request
features have lateness = 0. We rule out all features with
lateness greater than 0.5, since these features’ values cannot
be obtained until after half of the request processing time
has elapsed, which is too late for benefiting from frequency
adjustment. For other purposes that may benefit from such
features, this threshold can be adjusted.

Step 2: Calculate the correlation degree (CD) of each
candidate feature, and sort all the features in decreasing order
of CD. Features are either numerical or categorical.
• For numerical features (e.g., request size), correlation degree

is defined as |ρ|, the absolute value of the Pearson correla-
tion coefficient (ρ) [10, 48] between the feature and service
time. |ρ| ∈ [0, 1]; |ρ| closer to 1/0 indicates strong/no linear
correlation. The use of the Pearson coefficient over other
correlation coefficients is guided by the observation that
correlation relationships are usually linear (Fig. 3 and 5).

• For categorical features (e.g., request type), correlation de-
gree is defined as η2, the square of the correlation ratio [3].
η2 ∈ [0, 1]; η2 closer to 1 indicates less variation within
each category. η2 = |ρ| when the relationship is linear.
Step 3: We follow the forward stepwise feature selection

algorithm [25] to select features that correlate the strongest
with service time. We first select the top feature with the
highest CD, and then repeatedly add one more feature at a
time until CD cannot be improved further. Note that we do
not simply select the top few features. Redundancy in features
is avoided by only selecting a feature only if it improves the
overall CD; CD will remain unchanged if multiple features
capture the same information about a workload. We define
CD of multiple features as follows:
• Multiple categorical features are merged into a single cate-

gorical feature with
∏n

i=1 ai categories, given n categorical
features that each have ai categories. Without numerical
features, CD is defined as η2 using the merged feature.

• Multiple correlation coefficient [9], an extended version of
the (Pearson) correlation coefficient, is used to calculate
correlation degree for multiple numerical features in the
absence of categorical features.

• For combinations of categorical and numerical features,
correlation degree is defined as the average correlation
degree using numerical feature(s) across all the categories.

• When considering a new feature fnew to the current pool
of features f1..k, we say correlation degree is improved if
CD(f1..k, fnew) > CD(fnew) if fnew is the first numerical
feature, or CD(f1..k, fnew) > CD(f1..k) if otherwise.

Fig. 7: Identified application features (red arrows) in function
Server::processRequest

C. Discussion

How to identify all candidate features? If the cloud users
are also the application developers, they can leverage their
knowledge of the application to provide a list of features
(note that developers do not need to know which features
will be critical, just which features exist in requests and
applications). Even if developers are not confident in the
feature list, candidate features can still be easily identified,
leveraging our successful experiences with selecting features
for Tailbench as outsiders:
• Our characterization shows that more than half of the

services do not require any application feature. Simply
providing request type and request size is sufficient.

• When application features are necessary, to avoid hand-
picking them, the simplest and most effective approach
is to leverage the tracing statements embedded by the
application developers. It is typical in software development
to insert event logging messages throughout a program, for
debugging and monitoring purposes [44, 50]. All Tailbench
applications have embedded /logging that records important
variables. These variables form the list of candidate features.

• Alternatively, profiling tools (e.g., perf record
--call-graph and perf report) can be used to
collect application stack traces and identify intermediate
variables created or used in the traced functions. For
instance, Fig. 7 shows the application features identified
for Xapian (marked by red arrows) in the source code
of Server::processRequest, the top function in
Xapian’s stack trace.
Note that once the final features are selected, application’s

source codes have to be modified to explicitly expose the
selected features (more details in Section VI-A).

What if the user is not willing to share information with
the cloud operator? Since ReTail requires information about
application features, concerns about application privacy are
valid, especially when running on a public cloud. Fortunately,
ReTail need not know what the features are or mean; it only
needs labeled values. Both labels and values can be obfuscated
by the application, as long as obfuscated values remain linear
to service time. In fact, an increasing amount of computation
can be performed over encrypted data [41, 42, 47], and ReTail

can make use of these mechanisms to preserve the applica-
tion’s privacy. Furthermore, the feature selection itself can be
offloaded to the client’s side, with the user only providing
ReTail with the list of (obfuscated) features to use. In any case,
we note that an increasing number of applications running in
public clouds are hosted in a way where the cloud provider
has access to the application’s source code. In serverless and
Function-as-a-Service (FaaS) frameworks, for example, users
upload their code to the cloud, and requests are executed under
an event-driven model, on short-lived instances. In this case,
the cloud provider already has access to the application logic
and incoming requests, therefore ReTail does not leak any
additional information about the workload.

What if there are interactions between features? Re-
dundant features that strongly correlate with other features
are explicitly handled as described in Section IV-B. For other
types of cross correlation between features, although we did
not observe any, if it occurs, it can be supported by including
pairs/groups of features in the first two steps of feature
selection. While this slightly increases the feature space, in
practice, usually a small number of features (1-2 in our case)
is enough.

Note that ReTail is designed based on observations from
Tailbench. It is possible that applications do not have features
that correlate with request service time, and there might be
complex feature interactions, such as XOR relationship, both
of which ReTail currently does not consider.

V. LATENCY PREDICTION

We now introduce ReTail’s latency prediction, which infers,
for a given application, a request’s service time under a certain
frequency. We first introduce the linear regression prediction
model, then describe the training dataset, and finally, elaborate
on our training, retraining, and inference processes.

A. Prediction Model

Suppose an application has n categorical features (each with
ai categories) and m numerical features, and the system has k
frequency settings. Our goal is to build a prediction function
that takes in, as input, the n +m feature values of a request
and a target frequency, and outputs the predicted service time
of this request under the target frequency. Specifically, the
prediction function is composed of k ×

∑n
i=1 ai separate

prediction functions, each handling prediction for one combi-
nation of categorical values under each frequency setting. This
is because prediction functions may vary significantly across
different categories (e.g., NEW ORDER and STOCK LEVEL
requests in Shore cannot share the same prediction function).

We build a separate prediction model under each avail-
able frequency setting since latency is not necessarily lin-
ear/proportional to frequency. Rubik and Gemini both assume
a proportional relationship between frequency and latency, and
simply scale the latency prediction at a certain frequency up
and down for prediction under other frequencies. We find that
this does not hold for typical LC applications, especially non-
compute-intensive ones.

TABLE IV: Quantitative comparison of three prediction models:
linear regression, Gemini’s neural network model (NN-G), and an
optimized hand-tuned NN model (NN-T) which requires careful
hand-tuning for each application. Each NN model is described
using a tuple of of (#layer, #neuron/layer, #epoch, batch size).

Model Info Overhead Accuracy
Training Inference R2 RMSE/QoS

Xapian
Linear Regression 0.003s 5µs 0.959 4.18%

NN-G: (5, 128, 15, 32) 9.71s 363µs 0.973 3.38%
NN-T: (1, 16, 5, 32) 0.98s 107µs 0.974 3.30%

Moses
Linear Regression 0.003s 5µs 0.854 3.02%

NN-G: (5, 128, 500, 32) 85.10s 514µs 0.833 3.22%
NN-T: (1, 4, 400, 1024) 0.74s 258µs 0.854 3.01%

Sphinx
Linear Regression 0.003s 5µs 0.746 5.45%

NN-G: (5, 128, 1000, 32) 36.15s 344µs 0.747 5.43%
NN-T: (3, 128, 700, 32) 15.39s 300µs 0.747 5.43%

For applications with only categorical features, we simply
predict latency under a specific combination of categories
and a certain frequency using the average service time of
all the requests under the category combination and the
target frequency. Applications with little-to-no variation can
be treated as applications with a single category. In the rest
of this section, we focus on building the separate prediction
function for applications with numerical features.

B. Prediction Model of Numerical Features

We use the following metrics to evaluate a model:
• R2 [2]: A goodness-of-fit measure for predictions, normally

ranges from 0 to 1. Higher is better.
• Root-mean-squared error (RMSE) [27]: An aggregated

measure of the differences between predicted and observed
values. Smaller is better. We evaluate RMSE, by dividing
RMSE by the application’s QoS target, to show the im-
portance of RMSE. For instance, increasing RMSE from
0.1ms to 1ms may seem significant degradation, but if the
application’s QoS is 1s, RMSE of 1ms is still negligible.

• Training overhead: The time it takes to train the model,
which is less important if the model is trained offline. How-
ever, LC applications usually experience inevitable system
interference and/or dynamic resource allocations; both affect
service time and model accuracy. The prediction model only
captures application-level sources of latency variation, and
has to be updated or completely retrained online upon such
model drifts. Models with high training time are unable to
quickly adapt to such environment changes at runtime, and
result in longstanding QoS violations.

• Inference overhead: Time to get a latency prediction. Since
the inference will be triggered (multiple times, as introduced
in Section VI-B) for every request, keeping inference over-
head negligible to the request latency is critical.
We start from linear regression (LR), one of the simplest

approaches to model relationship between variables, fitted
using the ordinary least squares method, which minimizes
the sum of squared residuals [22, 27]. Specifically, under a
specific combination of categories and a certain frequency, the
prediction function L(f1, ...fm) equals to

∑m
i=1 ai ∗ fi + b,

where f1...fm are the m numerical features, and a1...am and
b are constants. As shown in Table IV, LR achieves pretty high
accuracy: R2 is close to 1, and the prediction error (RMSE)
is less than 6%. We find various advantages of the simple LR:
1) Section III shows that the relationship between numerical

features and service time is rather simple. The good align-
ment between each red solid line (LR prediction) and the
scatter plot trend in Fig. 3 and 5 shows that the simple LR
clearly captures each application’s service times.

2) LR incurs minimal training and inference overheads. Train-
ing takes only 3ms per request on average, making online
retraining very affordable. Inference takes only 5µs each
time, negligible to most if not all LC applications.

3) The process of building a LR model is generalizable
across applications. Once features are selected, each feature
corresponds to one variable in the regression model (e.g.,
f1...fm). Coefficients (a1...am and b) are automatically
calculated through training.

4) LR is easily explainable, which, as opposed to the ML
black-box model, can lend itself to insights for software
optimizations. For instance, Xapian’s service time increases
almost linearly with the number of matched documents.
Given this, we could split a large request into two, each
with a smaller doc count, to reduce its service time.

Despite these advantages, more complicated models may
further improve accuracy. Taking Xapian as an example, the
scatter plot in Fig. 5a shows a slightly concave trend.We
further investigate Xapian’s service time decomposition in
Fig. 6a. Suppose document count is d. Then, the time com-
plexity of query and response preparation are O(1) each,
of document retrieval is O(d), and of document sorting is
O(dlogd). We attribute the curved scatter plot pattern to the
document sorting time complexity. Therefore, we also explore
neural networks (NN), known for their ability to identify
almost any underlying relationship between variables. LR and
NN fall at the two ends on the spectrum of prediction models:
the former being simple but potentially less accurate, and the
latter being complicated but more powerful. Comparing these
models helps us understand the tradeoff between accuracy and
overhead when predicting service times.

NN-based request latency prediction was proposed in very
recent work, Gemini [51]. Gemini’s NN model has 5 hidden
layers and 128 neurons/layer. It uses the ReLU activation
function and MSE (mean-square error) loss function. We
implemented NN in PyTorch [40] and reproduced Gemini’s
NN model (shown as NN-G in Table IV), using the same
input features as those used for LR. We observe some accuracy
improvement for Xapian, visualized in Fig. 8: NN-G captures
the concave nature between the number of matched docu-
ments and service time. However, the zigzag pattern around
matched documents = 450 indicates that the model is
slightly overfitting. Because Gemini is designed for Apache
Lucene Search [1], the exact NN model proposed cannot be
generalized to other LC applications. We also find negligible
accuracy improvement for Moses and Sphinx, but more than
3000× increase in training time and more than 60× increase

in inference time.
Therefore, we manually tune the NN model for each LC

application to find the configuration with the least overhead
without losing accuracy. We first choose a large epoch at which
accuracy has converged. Then, we successively tune batch
size, the number of hidden layers, the number of neurons
per layer, and the number of epochs in order, to reduce
the training overhead while maintaining accuracy. Table IV
shows the results of our hand-tuned optimized NN model,
shown as NN-T. Sometimes, accuracy even increases because
smaller NN structures reduce the likelihood of overfitting,
as demonstrated by Xapian and Moses. Fig. 8b also shows
that the line is smoother under NN-T. Training and inference
overheads are both significantly reduced compared to NN-
G, but are still much higher than LR. Note that NN-T does
not offer generalization over NN-G; neural networks always
require careful tuning of a number of parameters to find the
best configuration for each application.

To conclude, LR is the best model for our problem setting.
NN improves accuracy slightly, but at the expense of orders
of magnitude higher training&inference time.

C. Training Dataset

The predictor uses a training dataset that includes the
following information for each training sample:
• Frequency: The frequency the request ran at.
• Queueing delay: The time elapsed after a request is gen-

erated and before it starts processing. We pass the request
generation timestamp in wall time (t1) to the server through
the request packet, and take another timestamp (t2) when
the packet is received by the application. Queueing delay is
calculated as t2 − t1.

• Feature values: The values used for service time prediction.
Unlike the input for ReTail’s feature selection, only values of
selected features are needed, imposing negligible overhead
to the application to provide these information.

• Sojourn time: The end-to-end request latency. We take a
timestamp (t3) when the client has received the response
packet. t3 − t1 and t3 − t2 produces the sojourn time and
the service time, respectively.
Data collection and training/retraining both happen online,

using live data. When a new application comes to the system,
we set the system frequency to the lowest setting and progres-
sively increase the frequency until it reaches the maximum
configuration. We collect information for 1000 requests at each
frequency. As shown in Fig. 9, we did a sensitivity study
on the training dataset size, and found that 1000 samples1

are sufficient for the model (i.e., R2) to converge for all
applications. Depending on the application’s real-time RPS,
data collection takes less than one second most of the time
(when RPS ≥1000), but may take up to tens of seconds, e.g.,
for Sphinx, whose request service time is up to 3s and whose

1Even 100 samples are sufficient for most applications thanks to the
simplicity of LR. Intuitively, because LR is like plotting a line, we only need
two points to be able to draw the line if it is in 2D. Because of noise and
features not being perfectly correlated with latency, we need more samples.

250 500 750 1000
Matched Documents

1

2

3

4
S

er
vi

ce
 T

im
e

(m
s)

(a) NN-G

250 500 750 1000
Matched Documents

(b) NN-T

Fig. 8: NN models for Xapian.

500 1000
Requests

0.0

0.5

1.0

R
-s

qu
ar

ed

Sphinx

500 1000
Requests

0.0

0.5

1.0

R
-s

qu
ar

ed

Xapian

500 1000
Requests

0.0

0.5

1.0

R
-s

qu
ar

ed

Moses

Fig. 9: Sensitivity to training dataset size. Each line represents one trial, and
we plot three trials for each application.

RPS is usually less than 10. When an application has started
running, we use live data to maintain the latest 1000 samples
under each frequency setting in case retraining is needed.
At runtime, for every request, ReTail provides the latency
prediction at arrival. Also, it obtains its actual service time
after completion, replacing the oldest request sample in the
dataset for future retraining.

D. Model Retraining

To handle a dynamic environment with interference and
system noise, it is important to manage model drift [45] by
monitoring and retraining the model online. Cloud environ-
ments have three main sources of model drift:
• Application changes: LC services have high workload

churn, with code roll-outs on a daily/weekly basis [12].
Upon each code update, ReTail checks whether the previ-
ously selected features for a given application still correlate
with request service time. If not, ReTail’s feature selection is
triggered again to reselect features. Note that changes in an
application’s load do not affect request service time, since
a request will usually not be interrupted during execution,
as introduced in Section III-A (we leave request preemption
to future work). Therefore, the latency predictor is robust to
fluctuating input load.

• Application interference: Cloud providers typically sched-
ule multiple applications on the same physical node to im-
prove server utilization and resource efficiency [13, 35, 38].
Each application is typically deployed in a container/VM
with varying amounts of cores, memory, etc. When resource
allocation of an application changes[13, 19, 35, 38], or when
colocated applications share hardware resources causing
resource interference, service time can change, sometimes
significantly [13].

• System interference: Besides applications, some system
tasks or daemons may also run (periodically) on the server,
causing additional latency variability to LC applications.
To detect model drift, we monitor the predictor’s accuracy at

runtime. If RMSE/QoS increases by more than 5%, retraining
will be triggered using the latest dataset. The threshold is
set to avoid constant retraining that may not help improve
model accuracy, e.g., due to small, transient system noise.
This threshold is decided based on the measured variation
of RMSE/QoS when the application and the system are both
running at a stable state, and can be adjusted as needed.

The ReTail manager is in parallel with application threads
(Section VI-B), so the retraining overhead does not affect

ReTail Controller

Achieving low tail latency at microsecond scale is hard

Problem: High OS overheads
Solution: OS Bypass, polling (no interrupts), run-to-completion (no scheduling)

Distributed Queues + First Come First Serve scheduling
d-FCFS (DPDK, IX, Arrakis)

Receive Side Scaling

3

RR

RR

RR

R

Worker Cores

R

Feature Extraction

Feature Extraction

Frequency
Predictor
Latency

Predictor

Latency
Monitor

Frequency
ControllerWorker

Cores
User

Requests

RR

R

RR

R

Fig. 10: Overview of ReTail’s runtime power management.

request latency; the old model is used until the new one is
available. Nevertheless, retraining overhead is very small.

E. Live Inference

Inference happens continuously at runtime. The predictor
takes in an application name, a target frequency, all the feature
values, and then outputs the predicted service time under the
target frequency. Inference overhead is extremely small, only
5µs under LR (also shown in Table IV). Feature values are
logged in shared memory (/dev/shm), which incurs marginal
overheads. Application and the predictor are communicated
through inter-process communication in shared memory. LR
models are very small, e.g., if the model is f(x) = ax + b,
then we store a and b in an array (in L1 cache most likely).

VI. RUNTIME POWER MANAGEMENT

We now describe ReTail’s power management system that
leverages request-level latency prediction to minimize the
power consumption of LC applications while meeting QoS.

A. Feature Extraction

LC applications are usually multithreaded. As shown in
Fig. 10, each thread of an LC application typically has a sep-
arate application queue to hold requests (the leftmost queues
in Fig. 10). Requests in each queue are served first-come-first-
serve. Once a request is scheduled, it runs to completion.

Feature extraction extracts all the feature values needed to
predict the request service time. This step is unnecessary if
predicting latency of only the current request. However, we
show in Section VI-B that ReTail needs to predict latency of
all the enqueued requests, which may not expose their feature
values until after execution. Therefore, ReTail splits each
application into two stages, one before and one after the feature
values have been obtained, and adds a shallow queue between
them. For instance, for Xapian, processRequest() is split
into two functions, one before and one after mset is obtained,
and a queue is added between these two functions. The first

Algorithm 1: Frequency Predictor.
CurT ime = gettime(); // Get the current wall time
for f = 1..M − 1 do

// Enumerate from the lowest to second highest frequency
Service Sum = 0; // Accumulated service time
ok = true; // A flag that indicates if Freqf is enough.
for i = 1..N do

// Predict service time for each requests in the queue under
the enumerated frequency Freqf ,

ServiceT ime = LatencyPredictor(Freqf , Featurei);
// Calculate queueing delay based on the arrival time and

cumulated service time of all previous requests
Queuing = CurT ime−Arrivali + Service Sum;
SojournT ime = Queuing + ServiceT ime;
if (SojournT ime > QoS′) then

// The request latency budget is not met.
ok = false;
break;

// Accumulate the service time of Ri for queuing delay
estimation of later requests

Service Sum+ = ServiceT ime;

if ok then
// All queued requests can meet their latency budget
return Freqf ;

// None of the lower frequencies is enough
return FreqM ;

stage, feature extraction, simply extracts the arrival time and
feature values of each request, and then enqueues requests
waiting for further processing. This allows requests to have
their features parsed as soon as they arrive, without waiting
for all previous requests to finish. Contrary to the belief that
adding a queue would unnecessarily prolong sojourn latency,
the added queue does not increase the overall queueing delay,
but rather moves part of the queueing delay from the original
queue (left queues in Fig. 10) to the newly-added one. Since
features are obtained before/early during request processing,
feature extraction is very lightweight; requests quickly pass
through the first stage, and wait in the second queue instead.

The same worker cores execute both the first and second
application stage, always prioritizing the first stage. Upon any
arriving request, even when the core is busy in stage two,
it will get interrupted and process stage one of the arriving
request, to obtain the features of pending requests. Note that
we only observe such interruptions at high load, which also
partly explains our diminishing gain at high load in evaluation
(Fig. 11a).

B. Frequency Predictor

Once a request is scheduled to run, the frequency predictor
(Algorithm 1) is triggered to decide the appropriate frequency
for that request. .In the outer loop, we enumerate all the
available frequencies, and stop when the minimum satisfying
frequency for the current (oldest) request R1 is found. In the
inner loop, we visit all the requests currently in the queue,
and check whether each request can meet the latency target
under the enumerated frequency. Queueing delay is calcu-
lated by accumulating the service time of previously-queued
requests. We describe the relationship between a request’s

latency target (QoS′) and the application’s QoS target (QoS)
in Section VI-C.

Despite the final output being R1’s operating frequency, it is
insufficient to examine only R1. All currently queued requests
from R1 to RN should be examined. This is because service
time of R1 propagates as queuing delay to R2...RN . Barely
meeting QoS of R1 may leave little room to meet QoS of later
requests. Furthermore, ReTail keeps monitoring the request
queue. Upon any new requests added before R1 completes,
Algorithm 1 is invoked to check or update R1’s frequency.

To adjust frequency for a specific request, we adjust the
frequency of the corresponding core running the request; each
thread is pinned to a different core using taskset [8]. We
use the ACPI frequency driver with the “userspace” governor
to allow manual settings of per-core frequencies.

The ReTail runtime is deployed on a dedicated core, to avoid
contending with application threads, and to avoid making
the frequency prediction and frequency adjustment be on the
critical path (Section VII-F evaluates the overhead). Despite
the small overhead, the frequency prediction is concurrent with
requests; requests by default run at the maximum frequency
before the frequency predictor computes the target frequency
and the new frequency takes effect.

C. Latency Monitor

The frequency predictor is designed to bring all requests’
latency under QoS. However, there are two scenarios when
this is not desired or sufficient. First, since QoS is defined for
a given percentile such as the 99th percentile, by definition,
it allows 1% of requests to violate QoS. If ReTail were to
bring 100% of requests under the QoS target, more power
would be consumed than necessary. Second, during high load
or load spikes, even the highest frequency can be insufficient
to meet QoS. To account for unanticipated QoS violations,
ReTail needs to be more proactive in boosting frequency.

As a safeguard for both cases, latency monitor in ReTail
constantly monitors tail latency and adjusts the internal request
latency target (QoS′), used in Algorithm 1. QoS′ is initially
set to the application’s QoS target (QoS). Similar to prior
work [13, 29, 35], by monitoring tail latency every 100ms,
we compare the measured (m) and target (t) tail latency, and
adjust QoS′ as follows. If m < 0.9t (this threshold can be
adjusted based on the variation degree in tail latency) or m >
t, we increase or decrease QoS′ by 5% at a time. In the worst
case of sudden load spikes, QoS′ can be reduced from 100% to
0% of QoS in 2s thanks to the fine-grained monitoring every
100ms, running all the requests at the maximum frequency
until the load recovers. The thresholds can be adjusted based
on the frequency and degree of load fluctuations.

D. Putting It All Together

When a request arrives at a worker core, feature extraction
extracts all the feature values needed to predict the request ser-
vice time. Once scheduled, the frequency predictor decides the
operating frequency for the core running the current request,
leveraging the latency predictor that outputs predicted request

latency under various frequencies. The final frequency is
enforced using the system’s frequency controller. The latency
monitor constantly monitors the application’s tail latency, and
adjusts the aggressiveness of the frequency predictor, to meet
the application’s QoS target.

VII. EVALUATION

A. Methodology

We evaluate ReTail on an Intel Xeon Gold 6152 CPU with
2 sockets, 22 cores each, and 188GB DDR4, running Ubuntu
16.04 (kernel 4.14). We use the ACPI frequency driver with
the “userspace” governor [13] to allow user-defined frequency
settings ranging from 1GHz to 2.1GHz in 0.1GHz increments.
As frequencies can only be controlled on a per-physical-core
(not per-logical-core) basis, we turn off Hyper-Threading [37]
to show the maximum potential of ReTail. When Hyper-
Threading is enabled, the core frequency can be set to the
maximum of the target frequency of all the hyperthreads.

We focus on single-node experiments, as ReTail is an intra-
node controller. ReTail can be installed on every node in a
datacenter to manage the services running on each node, so
the conclusions would still hold for larger-scale evaluation
platforms. When interactions between nodes exist (e.g., for
multi-tier applications, or services with fanout), where the
application only has an end-to-end QoS target, the cluster
scheduler which has global system visibility is responsible for
determining the per-node QoS target for each service, which
ReTail uses to manage power.

Applications are introduced in Table II. We use the open-
loop load generator provided by Tailbench as clients. Request
inter-arrival times follow an exponential distribution [32] to
simulate a Poisson process in which requests are sent inde-
pendently from one another, at an average rate that remains
constant. Client and server threads run on socket0 and socket1,
respectively. In socket1, we reserve one core for the OS and
one core for the power manager. Both cores always run at the
maximum frequency. Applications run on the remaining 20
cores.

We use CPU Energy Meter [4] to measure the energy
consumption of the entire socket1, which includes energy
consumption from both the package and DRAM, and from
both the applications and the power management runtime.

We first evaluate single applications at constant loads, and
then evaluate application colocation that incurs online retrain-
ing. Each application is instantiated with 20 threads. We define
max load of each application as the maximum request-per-
second (RPS) under QoS when running on the default system.
100% of max load usually takes 60%-80% CPU utilization.
Then, we sweep the input load in 10% increments from 10%
to 100% of the max load. We run three test trials, each with
60s of warmup and 300s of execution, and record socket1’s
average power consumption across all trials. We compare with
two state-of-the-art latency-based power managers:
• Rubik [29] uses statistical modeling and the current queue

length to estimate the request latency distribution, and sets
each request’s frequency based on the estimated tail.

TABLE V: Root Mean Square Error (RMSE) – msec.

Masstree ImgDNN Sphinx Xapian Moses Shore Silo
Rubik 0.05 0.9 2500 2.8 47.1 3.9 0.5
Gemini 0.03 0.8 217 3.6 3.6 2.2 0.2
ReTail 0.04 0.8 217 0.3 3.6 0.3 0.1

• Gemini [51] uses NN for request-level latency prediction.
However, Gemini is designed for search engines, and does
not include a generalizable process for selecting features
and adjusting the model to other services. Therefore, we
implement a generalized version of Gemini, which uses all
available features at request arrival as input features, and
follows the steps in Section V-A to tune the NN structure.

B. Power Consumption

Fig. 11a shows the average power consumption, and Table V
shows the RMSE for each power manager.

Rubik uses the estimated latency distribution’s tail to calcu-
late the target frequency. Because the actual latency is usually
smaller than the tail, RMSE under Rubik is the largest, leading
to conservative frequency adjustment and power saving.

Gemini and ReTail reduce power over Rubik by leveraging
request features to perform request-level latency prediction,
improving prediction accuracy. Compared with Rubik, Gemini
has three major drawbacks:

1) Gemini’s power management algorithm drops all re-
quests that are predicted to miss the deadline. The percent-
age of dropped requests increases super-linearly with load
(Fig. 11b), reaching up to 16% (average 9.2%) at max load.
Due to the unique characteristic of the search workload that
Gemini targets, multiple requests collectively contribute to a
search query; the search aggregator can still form a response
even with some dropped requests (though with degraded
search quality). However, this characteristic is not general-
izable to other LC applications. Drop rate directly affects
user experience [12], and should be kept as low as possible.
ReTail does not drop requests. Since no work needs to be
done for dropped requests and energy can be saved naturally,
ReTail sometimes consumes more power than Gemini at high
load. For instance, at RPS=20 for Sphinx, Gemini drops
16% of requests, i.e., Gemini does roughly 16% less work
than ReTail, but consumes only 3.5% less power. In most
cases, Gemini consumes more power while also dropping
many requests. This is mainly due to two inefficiencies in
the power management algorithm. First, Gemini assumes that
requests are 100% compute-intensive; the target frequency is
calculated based on the estimated number of cycles and the
time budget. Ignoring memory cycles that cannot be changed
by adjusting CPU frequency, Gemini tends to overestimate
frequency, which saves less power. Second, Gemini’s two-
step DVFS adjusts almost every request’s frequency twice, one
low initial frequency and, later, one high frequency to meet
the deadline in case of prediction errors. As power increases
super-linearly with frequency, this consumes more power than
ReTail’s “one-step” approach that sets a single frequency for

Rubik Gemini ReTail Rubik Gemini ReTail

200 400 600 800 1000
RPS (k)

20

40

60

80

100

120

Po
w

er
(W

)

Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(a) Power consumption under each power manager at various input loads.

200 400 600 800 1000
RPS (k)

0
5

10
15

D
ro

pp
ed

(%
) Masstree

2.4 4.8 7.2 9.6 12
RPS (k)

ImgDNN

4 8 12 16 20
RPS

Sphinx

2 4 6 8 10
RPS (k)

Xapian

200 400 600 800 1000
RPS

Moses

3 6 9 12 15
RPS (k)

Shore

200 400 600 800 1000
RPS (k)

Silo

(b) Percentage of dropped requests under each power manager at various input load.

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2

La
te

nc
y

(m
s)

Masstree

Mean Tail0
1
2
3
4
5
6 ImgDNN

Mean Tail0
1000
2000
3000
4000
5000 Sphinx

Mean Tail0
2
4
6
8

10 Xapian

Mean Tail0
20
40
60
80

100
120
140 Moses

Mean Tail0
1
2
3
4
5
6 Shore

Mean Tail0.0
0.2
0.4
0.6
0.8
1.0
1.2 Silo

(c) Mean and tail latency under each power manager at max load. The horizontal dotted lines are the QoS targets.

Fig. 11: Comparison between Rubik, Gemini, and ReTail.

each request most of the time. ReTail, instead, relies on the
latency monitor to adjust the internal request latency target, to
combat prediction errors.

2) Gemini’s feature space include only features that are
readily available at request arrival. For applications that require
applications features, such as Xapian, Gemini consumes even
more power than Rubik. ReTail opens up the feature space to
include features that are not necessarily available at request
arrival, resulting in features that correlate better with request
service time for Xapian and Shore, which eventually leads
to much lower prediction errors (RMSE) than Gemini. The
difference between Gemini and ReTail is smaller for Shore
because only two request types in Shore require features, so
Gemini is still beneficial for the other two request types. Like
Shore, two of Silo’s request types also require application
features, but the difference between the three power managers
for Silo is even smaller. This is because Silo’s request latency
is in the sub-millisecond granularity, and the overhead to adjust
frequency (100s of microseconds) is non-negligible compared
to request latency (Section VII-F), which makes per-request
frequency adjustment less effective.

3) Gemini’s high inference overheads (more than 300µs per
request as shown in Table IV) are significant in applications
with sub-millisecond request latencies (i.e., Masstree and
Silo). For Masstree, Gemini consumes more power than Rubik
due to the additional inference overhead.

In short, ReTail reduces power consumption by up to 36.2%
and 35.6% (average 11.5% and 8.9%) compared with Rubik
and Gemini, respectively, without dropping any requests.

C. QoS Awareness

QoS is always ReTail’s first priority; power is saved only
under QoS satisfaction. The latency monitor (Section VI-C) is

especially designed to adjust the internal request latency target
to meet the overall application’s QoS target even under high
load, or with prediction errors, and/or upon model drift.

As shown in Fig. 11c, even under high load, ReTail still
meets QoS. Compared with Rubik, ReTail has higher mean
latency due to more accurate identification of short requests,
which are slowed down. Rubik also always meets QoS due to
the conservative latency prediction and frequency adjustments.
However, Gemini violates QoS for Xapian, Shore and Silo
(i.e., those that need application features) due to prediction
errors, and for Masstree and Silo due to long inference time.
In addition, Gemini simply sets the request latency target
to the application’s QoS target, i.e., QoS′ = QoS. This is
especially problematic for high load, when frequency has to
be proactively boosted to avoid queues getting quickly filled up
in the future. Gemini is also oblivious to how QoS is defined,
i.e., the power manager will perform exactly the same when
tail latency is defined based on the 90th or 99th percentile.

D. ReTail Decomposition

To understand the effectiveness of each of the three com-
ponents in ReTail, i.e., ReTail’s feature selection, latency
prediction and power management, we decompose ReTail and
compare with mechanisms that differ in one or more of the
components. Specifically, for feature selection, as shown in
Fig. 12, dotted lines use only request features for feature
selection (adopted by Adrenaline and Gemini), and solid lines
use both request and application features (adopted by ReTail).
For each feature space, we adopt five different combinations
of prediction and power management algorithms, including
• Adrenaline: classification-based prediction and power man-

agement;

Adrenaline

Gemini

Gemini-L
R

ReTail-N
N
ReTail

0.8

1.0

1.2

1.4

1.6

1.8

2.0
N

or
m

al
iz

ed
 P

ow
er

Masstree

Adrenaline

Gemini

Gemini-L
R

ReTail-N
N
ReTail

ImgDNN

Adrenaline

Gemini

Gemini-L
R

ReTail-N
N
ReTail

Sphinx

Adrenaline

Gemini

Gemini-L
R

ReTail-N
N
ReTail

Xapian

Adrenaline

Gemini

Gemini-L
R

ReTail-N
N
ReTail

Moses

Adrenaline

Gemini

Gemini-L
R

ReTail-N
N
ReTail

Shore

Adrenaline

Gemini

Gemini-L
R

ReTail-N
N
ReTail

Silo

Fig. 12: Normalized power consumption under two different feature space (dotted/solid lines use request/request+application features),
and five combinations of prediction and power management algorithms, when each application is at 70% of max load.

0
20
40
60
80

100

P
ow

er
 (

W
) Moses

1.0
1.2
1.4
1.6
1.8
2.0
2.2

F
re

q
(G

H
z)

0
20
40
60
80

100

P
ow

er
 (

W
) Silo

0 2 4 6 8 10
Time (second)

1.0
1.2
1.4
1.6
1.8
2.0
2.2

F
re

q
(G

H
z)

Fig. 13: Colocating Moses and Silo. PARTIES alone manages
resources in the first 5s. After 5s, ReTail is applied on top of
PARTIES to further reduce power consumption.

• Gemini/Gemini-LR: NN/LR-based prediction and Gem-
ini’s two-step DVFS;

• ReTail-NN/ReTail: NN/LR-based prediction and ReTail’s
power management algorithm.

Fig. 12 shows power consumption that is measured when each
application runs at medium high load (i.e., 70% of max load),
normalized to the power consumption under ReTail with both
request and application features as feature space.

First, comparing dotted and solid lines shows that increas-
ing the feature space to include application features reduces
power consumption for Xapian, Shore, and Silo (the last
two categories in Section III-D). Second, Adrenaline leads to
up to 80% more power consumption comparing to ReTail,
which justifies the need for latency-based prediction. Third,
comparing Gemini and Gemini-LR or ReTail-NN and ReTail,
the difference is negligible. This shows that LR is enough
for latency prediction. Finally, ReTail’s power management
outperforms Gemini’s two-step DVFS.

E. ReTail under Colocation

ReTail manages a single resource, power, for a single LC
application. When multiple applications are colocated on the
same node, one ReTail runtime is installed for each colo-
cated application, managing its core frequency, while resource
managers such as PARTIES [13] can be deployed to manage
other shared resources. Fig. 13 shows the synergy between

0.0
0.5
1.0
1.5
2.0
2.5

N
or

m
. T

ai
l

 L
at

en
cy

QoS target

ReTail
Gemini

0.00
0.05
0.10
0.15
0.20
0.25

R
M

S
E

/Q
oS

0 2 4 6 8 10
Time (second)

1.0
1.2
1.4
1.6
1.8
2.0
2.2

F
re

qu
en

cy
 (

G
H

z)

Fig. 14: Tail latency, prediction accuracy, and core frequency
with time under ReTail and Gemini. Moses first runs alone, and
then is colocated with a batch job starting at 5s.

ReTail and PARTIES. Two LC applications, Moses and Silo,
are colocated on the same node, each running at 50% of their
respective max load. PARTIES first finds a feasible resource
allocation such that both Moses and Silo meet QoS. However,
because PARTIES manages power at application-granularity,
i.e., all application threads are set the same frequency (first
5s in Fig. 13), power consumption is suboptimal. ReTail is
applied over PARTIES during PARTIES’ downsize phase, to
further reduce power consumption. At 5s, the ReTail runtime
is triggered, managing frequency at the request granularity,
leading to more than 30% of power savings.

F. ReTail Overhead

All experiments take all overheads into account, including:
• The time for the frequency predictor to calculate the target

frequency. Since the number of inferences (5µs/inference)
per request varies with queue length, it takes 5-100µs
(average 25µs) to calculate the final frequency per request.

• The time for a new frequency to take effect. Upon a
frequency adjustment, the new frequency value is written
to the frequency MSR [5]. It takes an average of 5µs to
write the register. However, measurement of real-time CPU
frequency via i7z [7] shows that it takes 10-500µs (average
200µs) for the new frequency to take effect.

G. Online Retraining for Model Drift

ReTail continuously monitors the prediction accuracy and
triggers model retraining when model drift is detected (Sec-
tion V-D). To evaluate ReTail’s responsiveness to model drift,

we first run an LC application, Moses at 20% of its max
load for 5s, and then introduce application interference by
colocating Moses with a batch job on the same socket. The
batch job is constructed by mixing compute-intensive and
memory-intensive microbenchmarks [13, 18], 5 threads each.

Fig. 14 shows the real-time tail latency of Moses, the latency
predictor’s accuracy (RMSE/QoS value), and the frequency of
a core running Moses over time. Initially, Moses runs alone
without resource contention, and cores are sparsely boosted
to higher frequencies. At 5s, the batch job arrives, splitting
all cores and LLC cache ways with Moses, each taking
10 cores and 10 cache ways. Due to the reduced resource
allocation, Moses experiences QoS violations, but tail latency
under ReTail quickly recovers after less than 0.5s thanks to
the immediate detection of model drift: at 5s, RMSE/QoS
increases by 15%, triggering model retraining which takes less
than 0.1s. The latency predictor is quickly updated afterwards,
shown in the recovered RMSE/QoS value. Compared to the
first 5s when Moses runs alone, the cores running Moses in
the latter 5s have to spent more time at higher frequencies
to combat the reduced resources. In contrast, Gemini has
longstanding QoS violations. It does not detect and adapt to
environment changes, and even if it does, the large training
overhead prohibits it from reacting as quickly as ReTail.

VIII. CONCLUSION

We have presented ReTail, a QoS-aware power manager
for latency-critical applications using request-level latency
prediction. ReTail systematically selects the features that best
correlate with request latency for a general LC application,
and builds a latency predictor using linear regression. ReTail
achieves an average of 8.9% (up to 35.6%) power savings
compared with the best related work, while meeting QoS.

ACKNOWLEDGEMENTS

This work was supported in part by NSF and the Semi-
conductor Research Corporation (SRC) through the DEEP3M
Center, part of the E2CDA program; and by DARPA and
SRC through the CRISP Center, part of the JUMP program.
Christina Delimitrou was partially supported by a Sloan
Foundation Research Award, a Microsoft Research Faculty
Fellowship, an Intel Rising Star Award, a Google Faculty
Research Award, and NSF grants NeTS CSR-1704742 and
CCF-1846046. The authors wish to thank the COE/CIS/Tech
Information Technology Support Group, in particular Michael
Woodson, for their technical assistance.

REFERENCES
[1] “Apache lucene,” https://lucene.apache.org.
[2] “Coefficient of determination,” https://en.wikipedia.org/wiki/

Coefficient of determination.
[3] “Correlation ratio wikipedia,” https://en.wikipedia.org/wiki/Correlation

ratio.
[4] “Cpu energy meter,” https://github.com/sosy-lab/cpu-energy-meter.
[5] “Cpu frequency scaling,” https://wiki.archlinux.org/index.php/CPU

frequency scaling.
[6] “El pas,” https://elpais.com/.
[7] “i7z: Frequency reporting tool for linux,” https://github.com/ajaiantilal/

i7z.

[8] “Linux taskset,” https://linux.die.net/man/1/taskset.
[9] “Multiple correlation wikipedia,” https://en.wikipedia.org/wiki/

Multiple correlation.
[10] “Pearson correlation coefficient wikipedia,” https://en.wikipedia.org/

wiki/Pearson correlation coefficient.
[11] A. Acero, Acoustical and environmental robustness in automatic speech

recognition. Springer Science & Business Media, 2012, vol. 201.
[12] L. A. Barroso, U. Hölzle, and P. Ranganathan, “The datacenter as a

computer: Designing warehouse-scale machines,” Synthesis Lectures on
Computer Architecture, vol. 13, no. 3, pp. i–189, 2018.

[13] S. Chen, C. Delimitrou, and J. F. Martı́nez, “PARTIES: QoS-aware
resource partitioning for multiple interactive services,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2019.

[14] S. Chen, S. GalOn, C. Delimitrou, S. Manne, and J. F. Martı́nez, “Work-
load characterization of interactive cloud services on big and small server
platforms,” in International Symposium on Workload Characterization
(IISWC), 2017.

[15] R. Cochran, C. Hankendi, A. K. Coskun, and S. Reda, “Pack & cap:
adaptive dvfs and thread packing under power caps,” in 44th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2011.

[16] T. P. P. Council, “TPC-C benchmark, revision 5.11,” 2010.
[17] J. Dean and L. A. Barroso, “The tail at scale,” Communications of the

ACM, vol. 56, no. 2, pp. 74–80, 2013.
[18] C. Delimitrou and C. Kozyrakis, “iBench: Quantifying interference

for datacenter workloads,” in 2013 IEEE International Symposium on
Workload Characterization (IISWC). Portland, OR, September 2013.

[19] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and
qos-aware cluster management,” in Proceedings of the Nineteenth
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2014.

[20] C. Delimitrou and C. Kozyrakis, “Bolt: I Know What You Did Last Sum-
mer... In The Cloud,” in Proceedings of the Twenty Second International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), April 2017.

[21] L. Deng, “The mnist database of handwritten digit images for machine
learning research [best of the web],” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 141–142, 2012.

[22] A. S. Goldberger, “Classical linear regression,” Econometric theory, pp.
156–212, 1964.

[23] M. E. Haque, Y. He, S. Elnikety, T. D. Nguyen, R. Bianchini, and
K. S. McKinley, “Exploiting heterogeneity for tail latency and en-
ergy efficiency,” in 50th International Symposium on Microarchitecture
(MICRO), 2017.

[24] C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch,
J. Mars, L. Tang, and R. G. Dreslinski, “Adrenaline: Pinpointing and
reining in tail queries with quick voltage boosting,” in IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), 2015.

[25] E. İpek, O. Mutlu, J. F. Martı́nez, and R. Caruana, “Self-
optimizing memory controllers: A reinforcement learning approach,” in
International Symposium on Computer Architecture (ISCA), 2008.

[26] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi,
“An analysis of efficient multi-core global power management policies:
Maximizing performance for a given power budget,” in 39th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2006.

[27] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to
statistical learning. Springer, 2013, vol. 112.

[28] M. Jeon, S. Kim, S.-w. Hwang, Y. He, S. Elnikety, A. L. Cox, and
S. Rixner, “Predictive parallelization: Taming tail latencies in web
search,” in 37th international ACM SIGIR conference on Research &
development in information retrieval, 2014.

[29] H. Kasture, D. B. Bartolini, N. Beckmann, and D. Sanchez, “Rubik:
Fast analytical power management for latency-critical systems,” in
48th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2015.

[30] H. Kasture and D. Sanchez, “Tailbench: a benchmark suite and evalua-
tion methodology for latency-critical applications,” in IEEE International
Symposium on Workload Characterization (IISWC), 2016.

[31] S. Kim, Y. He, S.-w. Hwang, S. Elnikety, and S. Choi, “Delayed-
dynamic-selective (dds) prediction for reducing extreme tail latency
in web search,” in Proceedings of the Eighth ACM International

https://lucene.apache.org
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Coefficient_of_determination
https://en.wikipedia.org/wiki/Correlation_ratio
https://en.wikipedia.org/wiki/Correlation_ratio
https://github.com/sosy-lab/cpu-energy-meter
https://wiki.archlinux.org/index.php/CPU_frequency_scaling
https://wiki.archlinux.org/index.php/CPU_frequency_scaling
https://elpais.com/
https://github.com/ajaiantilal/i7z
https://github.com/ajaiantilal/i7z
https://linux.die.net/man/1/taskset
https://en.wikipedia.org/wiki/Multiple_correlation
https://en.wikipedia.org/wiki/Multiple_correlation
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Conference on Web Search and Data Mining, 2015.
[32] J. Leverich and C. Kozyrakis, “Reconciling high server utilization and

sub-millisecond quality-of-service,” in Proceedings of the 9th European
Conference on Computer Systems, 2014.

[33] J. Li, N. K. Sharma, D. R. Ports, and S. D. Gribble, “Tales of the tail:
Hardware, os, and application-level sources of tail latency,” in the 2014
ACM Symposium on Cloud Computing (SoCC), 2014.

[34] D. Lo, L. Cheng, R. Govindaraju, L. A. Barroso, and C. Kozyrakis, “To-
wards energy proportionality for large-scale latency-critical workloads,”
in 41st International Symposium on Computer Architecture (ISCA),
2014.

[35] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan, and C. Kozyrakis,
“Heracles: Improving resource efficiency at scale,” in Proceedings of
the 42nd Annual International Symposium on Computer Architecture
(ISCA), 2015.

[36] C. Macdonald, N. Tonellotto, and I. Ounis, “Learning to predict re-
sponse times for online query scheduling,” in Proceedings of the 35th
international ACM SIGIR conference on Research and development in
information retrieval (SIGIR), 2012.

[37] D. T. Marr, F. Binns, D. L. Hill, G. Hinton, D. A. Koufaty, J. A.
Miller, and M. Upton, “Hyper-threading technology architecture and
microarchitecture.” Intel Technology Journal, vol. 6, no. 1, 2002.

[38] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L. Soffa, “Bubble-up:
increasing utilization in modern warehouse scale computers via sensible
co-locations,” in Proceedings of the 44th IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2011.

[39] D. Meisner, C. M. Sadler, L. A. Barroso, W.-D. Weber, and T. F.
Wenisch, “Power management of online data-intensive services,” in
38th Annual International Symposium on Computer architecture (ISCA),
2011.

[40] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” arXiv preprint
arXiv:1912.01703, 2019.

[41] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“Cryptdb: Protecting confidentiality with encrypted query processing,”
in Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, ser. SOSP ’11. New York, NY, USA: Association
for Computing Machinery, 2011, p. 85100.

[42] N. Samadric, “Tbd,” in Proceedings of the 54th IEEE/ACM International
Symposium on Microarchitecture, 2021.

[43] H. Sasaki, S. Imamura, and K. Inoue, “Coordinated power-performance
optimization in manycores,” in 22nd International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2013.

[44] W. Shang, M. Nagappan, and A. E. Hassan, “Studying the relationship
between logging characteristics and the code quality of platform soft-
ware,” Empirical Software Engineering, vol. 20, no. 1, pp. 1–27, 2015.

[45] P. Siva and T. Xiang, “Weakly supervised object detector learning with
model drift detection,” in 2011 International Conference on Computer
Vision (ICCV), 2011.

[46] A. Sriraman and A. Dhanotia, “Accelerometer: Understanding ac-
celeration opportunities for data center overheads at hyperscale,”
in Proceedings of the Twenty-Fifth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ser. ASPLOS ’20. New York, NY, USA: Association for
Computing Machinery, 2020, p. 733750.

[47] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar, “Exploring the
feasibility of fully homomorphic encryption,” IEEE Transactions on
Computers, vol. 64, no. 3, pp. 698–706, 2015.

[48] S. Wright, “Correlation and causation,” J. agric. Res., vol. 20, pp. 557–
580, 1921.

[49] H. Yang, A. Breslow, J. Mars, and L. Tang, “Bubble-flux: precise
online QoS management for increased utilization in warehouse scale
computers,” in Proceedings of the 40th International Symposium on
Computer Architecture (ISCA), 2013.

[50] D. Yuan, S. Park, and Y. Zhou, “Characterizing logging practices in
open-source software,” in the 34th International Conference on Software
Engineering (ICSE), 2012.

[51] L. Zhou, L. N. Bhuyan, and K. K. Ramakrishnan, “Gemini: Learning to
manage cpu power for latency-critical search engines,” in Proceedings
of the 53rd IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2020.

	Introduction
	Related Work
	The Latency Impact of Request Features
	Service Time Distribution
	Correlation with Request Features
	Request length
	Request type

	Correlation with Application Features
	Xapian
	NEW_ORDER in Shore and Silo
	STOCK_LEVEL in Shore and Silo
	Timeliness of application features

	Summary

	Feature Selection
	Input of Feature Selection
	Input Features
	Input Requests

	Feature Selection
	Discussion

	Latency Prediction
	Prediction Model
	Prediction Model of Numerical Features
	Training Dataset
	Model Retraining
	Live Inference

	Runtime Power Management
	Feature Extraction
	Frequency Predictor
	Latency Monitor
	Putting It All Together

	Evaluation
	Methodology
	Power Consumption
	QoS Awareness
	ReTail Decomposition
	ReTail under Colocation
	ReTail Overhead
	Online Retraining for Model Drift

	Conclusion

