
Ditto: End-to-End Application Cloning for Networked Cloud
Services

Mingyu Liang∗
ml2585@cornell.edu
Cornell University

Ithaca, New York, USA

Yu Gan∗
yg397@cornell.edu
Cornell University

Ithaca, New York, USA

Yueying Li
yl3469@cornell.edu
Cornell University

Ithaca, New York, USA

Carlos Torres
cltorres@meta.com

Meta
Menlo Park, California, USA

Abhishek Dhanotia
abhishekd@meta.com

Meta
Menlo Park, California, USA

Mahesh Ketkar
mahesh.c.ketkar@intel.com

Intel
Folsom, California, USA

Christina Delimitrou
delimitrou@csail.mit.edu

MIT
Cambridge, Massachusetts, USA

ABSTRACT
The lack of representative, publicly-available cloud services has
been a recurring problem in the architecture and systems communi-
ties. While open-source benchmarks exist, they do not capture the
full complexity of cloud services. Application cloning is a promising
way to address this, however, prior work is limited to CPU-/cache-
centric, single-node services, operating at user level.

We present Ditto, an automated framework for cloning end-to-
end cloud applications, both monolithic and microservices, which
captures I/O and network activity, as well as kernel operations, in
addition to application logic. Ditto takes a hierarchical approach to
application cloning, starting with capturing the dependency graph
across distributed services, to recreating each tier’s control/data
flow, and finally generating system calls and assembly that mim-
ics the individual applications. Ditto does not reveal the logic of
the original application, facilitating publicly sharing clones of pro-
duction services with hardware vendors, cloud providers, and the
research community.

We show that across a diverse set of single- and multi-tier appli-
cations, Ditto accurately captures their CPU and memory charac-
teristics as well as their high-level performance metrics, is portable
across platforms, and facilitates a wide range of system studies.

CCS CONCEPTS
• Computer systems organization → Cloud computing; n-
tier architectures; • Computing methodologies → Modeling

∗Equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9916-6/23/03. . . $15.00
https://doi.org/10.1145/3575693.3575751

methodologies; • Software and its engineering → Software
reverse engineering; Software performance.

KEYWORDS
cloud computing, architecture, benchmarking and emulation, mi-
croservices, software reverse engineering

ACM Reference Format:
Mingyu Liang, Yu Gan, Yueying Li, Carlos Torres, Abhishek Dhanotia,
Mahesh Ketkar, and Christina Delimitrou. 2023. Ditto: End-to-End Ap-
plication Cloning for Networked Cloud Services. In Proceedings of the
28th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 2 (ASPLOS ’23), March
25–29, 2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3575693.3575751

1 INTRODUCTION
Cloud computing now hosts a large fraction of the world’s compu-
tation, ranging from machine learning workloads to latency-critical
interactive services [23, 24]. Studying these applications is imper-
ative to correctly design the systems that populate future cloud
infrastructures.

There are three approaches to performing studies that re-
quire cloud applications; using real services (production or open-
source) [43, 48, 53, 91, 98, 110], using simulation or trace replay [20,
22, 58, 82, 86, 109], and generating synthetic services that resemble
the original in behavior and characteristics [18, 27, 56, 72, 87, 90].
All three approaches are subject to pitfalls.

Using real production services is, naturally, the most representa-
tive approach. Unfortunately production services are rarely publicly
available, and open-source applications, although useful, often lack
the complexity and update cadence of a real cloud deployment. Stud-
ies that rely on simulation or replaying traces from a production
system offer some representativeness, but are tied to the system
configuration the trace was collected on, and cannot easily general-
ize to arbitrary studies. Finally, generating synthetic benchmarks
offers a middle ground, with the synthetic application capturing
critical features of the original service, but being malleable enough

https://doi.org/10.1145/3575693.3575751
https://doi.org/10.1145/3575693.3575751

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mingyu Liang, Yu Gan, Yueying Li, Carlos Torres, Abhishek Dhanotia, Mahesh Ketkar, and Christina Delimitrou

to adjust to different studies. Unfortunately, most prior work on
synthetic benchmark cloning is limited to CPU-centric, single-tier,
and user-level applications [72, 87, 90].

Only capturing CPU-centric microarchitectural events is not
enough to reproduce the performance and resource characteristics
of cloud applications, which spend a large fraction of their execution
in the networking stack and OS. Moreover, prior work on synthetic
application cloning mostly considers generating assembly code to
mimic metrics like IPC, cache miss rate, and dependency distance,
but overlooks critical higher-level performance metrics, such as
average and tail latency.

We present Ditto, an automated application cloning framework
for end-to-end cloud services, designed for both monolithic ap-
plications and microservices. Ditto is the first system to clone an
application’s behavior across the system stack, including the hard-
ware, I/O, networking layers, and OS. This is critical for cloud
applications which spend a large fraction of their time at kernel
level and the I/O stack [74]. It additionally also targets multi-tier
microservices which span distributed deployments and are gaining
in popularity.

Ditto relies on the following key techniques. First, it captures the
dependency graph across distributed services using distributed trac-
ing [4, 7, 11, 96]. Then, it recreates the high-level control and data
flow inside each service, and, finally, it generates system calls and
user-space assembly to capture the on-CPU and off-CPU behavior.
Ditto operates transparently to the user, with the cloning process
working in an automated fashion, from obtaining a microservice
deployment’s dependency graph to populating each tier with ap-
propriate assembly code and I/O operations. It generalizes across
platforms, deployments, and application configurations, such as
load and thread pool size, without retraining, and the synthetic
applications react to changes similarly to the original ones.

Ditto is beneficial to hardware vendors, cloud providers, and
researchers. Hardware vendors can obtain synthetic versions of
production applications to test new platforms, cloud providers can
specify performance and/or resource specs to hardware vendors
using the synthetic workloads, and researchers can use represen-
tative end-to-end cloud services without the need for production
code access.

We evaluate Ditto across a set of both monolithic applications
and multi-tier microservices and show that it consistently captures
the low- and high-level performance metrics and resource char-
acteristics of the original service. We also validate that synthetic
applications generated with Ditto react the same way as the original
workloads to changes in the input load, platform, resource alloca-
tion, and deployment configuration, including interference from
external workloads and power management. Ditto is open-source
software. 1

2 RELATEDWORK
2.1 CPU and Cloud Benchmarking
The architecture and system community rely heavily on software
benchmarking to learn the performance characteristics of target
applications. Prior studies have found that traditional CPU bench-
mark suites, such as SPEC [32, 55, 99] and MiBench [61], differ
1https://github.com/Mingyu-Liang/Ditto.

significantly from the services running in production clouds [100,
103, 111].

One of the earliest efforts towards modern cloud application
benchmarking was the Cloudstone benchmark [97], which pro-
posed a new interaction-heavy Web 2.0 workload. CloudSuite [48]
further composes a collection of workloads for the evaluation of
scaling-out cloud services. The YCSB suite [37] collects workloads
for database systems, while SPEC Cloud [9] utilizes a subset of
workloads representing real-world use cases found on IaaS clouds.
More recently, uSuite [98] and DeathStarBench [53] focus on bench-
marking cloud microservices, given the increased popularity of this
programming model.

Instead of condensing cloud services to a pre-set group of bench-
marks, Ditto enables generating arbitrary applications that resemble
in features a target service.

2.2 Simulation and Trace Replay
Simulation and trace replay provide another way to estimate ser-
vice performance when hardware or software is inaccessible. Many
microarchitectural simulators, including gem5 [31], Sniper [34] and
ZSim [94], can accurately simulate the CPU performance of a given
binary. BigHouse [82] and 𝜇qsim [109] are queueing-based simu-
lators which quickly estimate high-level performance metrics of
monolithic applications and microservices. While useful when hard-
ware is not available, these simulators still make approximations
about the application behavior, and do not capture all complexi-
ties of a real system. On the other hand, RecPlay [92], iDNA [29],
PinPLay [89], Jalangi [95] log the execution and memory traces,
and reproduce an application’s behavior for debugging and per-
formance analysis. Unfortunately, a lot of prior work has showed
that traces can leak confidential information about production ser-
vices [33, 38, 66], restricting an application owner’s incentive to
publicly share the collected traces. West [22], STM [20], HALO [86]
and Dangwal’s paper [39], for example, analyze the memory access
patterns of an original application, and generate synthetic memory
traces. Although they can constrain the information leakage, they
only target the cache and memory subsystems. Compared to trace-
based techniques, Ditto generates synthetic services that clone the
performance characteristics across the system stack, and can run
both on real systems and microarchitectural simulators.

2.3 Performance Cloning and Synthetic
Benchmarks

Workload cloning is a way to generate synthetic code that mim-
ics real-world applications. Previous studies profile architecture-
independent characteristics of real applications, and generate cor-
responding proxy benchmarks that capture their CPU performance
[26, 56, 73, 87]. PerfProx, for example, generates miniature proxies
which resemble the low-level CPU metrics of real databases [87].
MicroGrad [90] introduces a gradient-based mechanism to gener-
ate workload clones and stress tests. NanoBench [18] generates mi-
crobenchmarks with certain instructions to evaluate undocumented
features of x86 CPUs. In [104], the authors hide the functional se-
mantics of the proprietary applications through code mutation.

However, these systems are not sufficient for performance
cloning in cloud services. First, they only consider performance

Ditto: End-to-End Application Cloning for Networked Cloud Services ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

metrics in user space. Cloud applications spend a large fraction
of their execution at kernel level [43, 48, 53, 74, 77, 99]. Synthetic
benchmarks generated with these tools focus onmatching low-level
performance metrics, e.g., instructions per cycle (IPC) or misses
per kilo instructions (MPKI), which do not always translate to the
high-level metrics cloud applications care about, like tail latency
and throughput [28, 40]. Second, cloud services are often bottle-
necked by off-CPU events, such as context switching or network
or disk I/O, which are not captured in previous work. Finally, cloud
services do not operate like independent processes, having instead
client-server interfaces, which need to be captured by the cloning
framework. This is even more the case for multi-tier microservices,
which can have hundreds of dependent tiers, and are becoming the
norm in many clouds.

3 CLONING ACROSS THE SYSTEM STACK
Application cloning for cloud services is challenging due to the
complexity and heterogeneity of their design, and the various plat-
forms they can be deployed on. Different services can have entirely
different bottlenecks; for example, key-value stores (KVS) require
high CPU performance, high memory and network bandwidth to
retrieve a large amount of data under a strict latency SLO, while
databases are usually bottlenecked by disk I/O bandwidth [36].
Therefore, it is important to consider the performance breakdown
across the system stack to accurately clone the performance of
end-to-end cloud services.

Application

(Guest) Kernel
File

Systems
Network

Stack
Virtual

Memory
Task

Scheduler
Device Drivers

…

CPU Memory GPU Disk Network

User-level Libraries

Workload Configurations

Colocated Applications

Application Inputs

Application Binary
Deployment Environment

Container Engine

System Calls

Hypervisor & Host Kernel

Figure 1: General system stack for cloud applications [59].
Dashed boxes are optional layers for virtualization.

Figure 1 demonstrates an abstract view of a generic system stack
for a single cloud server [59]. The performance of an application
is determined by factors that range from the application code and
inputs, to the environment it is running on, including containeriza-
tion technology, the hypervisor, server platforms, and any colocated
applications. We briefly describe why these factors matter below.

3.1 Application Inputs
The behavior and performance of cloud applications is significantly
impacted by the service configuration and input load, with the
latter going through well-documented fluctuations [19, 24, 42, 43,
81, 91, 99]. The application’s configuration, although changing less
frequently than load, can substantially alter the execution flow of
an application and impact performance. For instance, configuring a
smaller in-memory cache for a database can cause more disk I/O
accesses, significantly increasing latency.

3.2 Application Codebase and Binary
The application and its linked libraries are intrinsic to its perfor-
mance, regardless of the platform it is deployed on. Modifications
in the application code can alter the control and data flow of a
service, its memory access patterns, and its resource bottlenecks.
This is especially true for new cloud programming frameworks,
like microservices and serverless, where services are updated on a
daily basis.

3.3 Deployment Environment
3.3.1 Containers and Virtual Machines (VMs). Cloud services are
often deployed with containers and/or VMs. These add different
levels of performance overheads, primarily due to the extra I/O
and network layers [47]. Unlike prior work, Ditto faithfully clones
the I/O behaviors of the cloud services, and thus, the synthetic
applications generated by Ditto can be affected by virtualization
the same way as the original services.

3.3.2 OS Kernel. Cloud applications are especially dependent on
OS performance, given that they spent a large fraction of their exe-
cution at kernel level for interrupt handling, I/O requests, memory
management, task scheduling, etc. [25, 53, 74, 76]. Prior work on
application cloning has mostly focused on user-level application
logic; for cloud services overlooking kernel operations leads to
very different performance characteristics compared to the original
application.

3.3.3 CPU-Memory Subsystem. The CPU-memory subsystem is a
dominant factor in cloud application performance, even for services
that spend significant time processing network requests [53, 74, 76].
We follow the top-down analysis methodology in [107] to identify
the key CPU performance metrics that impact the overall IPC and
reproduce them in the synthetic applications, as shown in Figure 2.
Section 4.4 discusses how Ditto accounts for each of these factors
during application generation.

3.3.4 Hardware Devices. Services interact with hardware devices,
including disks, and NICs through system calls. In cloud services
specifically, peripherals can dominate performance, especially when
they experience long queueing delays. We mainly consider the
impact of storage and network devices in our study, as many cloud
services involve I/O and network operations. Ditto can be extended
to clone the behavior of other devices, such as GPUs and hardware
accelerators, which we defer to future work.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mingyu Liang, Yu Gan, Yueying Li, Carlos Torres, Abhishek Dhanotia, Mahesh Ketkar, and Christina Delimitrou

Bad
SpeculationFrontend Bound Retiring Backend Bound

L1
i m

is
s

iT
LB

 m
is

s

B
ra

nc
h

re
st

ee
rs

uo
ps

 d
ec

od
e

B
ra

nc
h

m
is

pr
ed

ic
tio

n

U
se

fu
l u

op
s

L1
d

bo
un

d

L2
 b

ou
nd

L3
 b

ou
nd

P
or

t
ut

ili
za

tio
n

M
em

 b
ou

nd

Lo
ng

-l
at

en
cy

uo

ps

IM IM

BB
, I

M
, I

X

BB
, I

M
, I

XIX IX

DM
, D

D,
 IX

DM
, D

D,
 IX

, I
M

DM
, D

D,
 IX

, I
M

DM
, D

D,
 IX

, I
M

BB
, D

M
, D

D,

IX
, I

M

IX

Figure 2: Top-down analysis of the CPU-memory subsystem
performance [107]. Letters at the bottom show the corre-
sponding analysis in Ditto. IX: Instruction Mix. BB: Branch
Behavior. IM: Instruction Memory Access Pattern. DM: Data
Memory Access Pattern. DD: Data Dependency.

3.4 Multi-Tenancy
Multi-tenancy improves datacenter utilization by deploying mul-
tiple services on the same node. Applications share resources, in-
cluding CPU cores, LLC, and memory, disk I/O, and network band-
width [36, 79]. Resource contention can degrade performance, and
should be accounted for in the application cloning process.

4 END-TO-END CLONING FOR CLOUD
SERVICES

4.1 Overview
Ditto is an application cloning framework for cloud services; it
applies to both single-tier applications and multi-tier microservices.
It generates services that faithfully reproduce the performance,
resource profile, and thread-level control/data flow of the original
workload, decoupling representative system studies from access to
the source code or the binary of production cloud services.

Ditto profiles an application at runtime and extracts key per-
formance and resource metrics using dynamic instrumentation
and runtime emulators (SystemTap [45], Valgrind [85], eBPF [44],
Perf [12], VTune [67], and Intel SDE [68]). Then, it generates a
synthetic service which preserves the performance of the original,
using an entirely distinct code sequence, to avoid revealing the
implementation of the original service.

Figure 3 shows an overview of Ditto’s profiling and generation
process. If the target service consists of a set of microservices, Ditto
first learns their Remote Procedure Call (RPC) dependency graph,
using distributed tracing [4, 7, 11, 96]. This graph is then used to
generate the API interfaces between the different synthetic mi-
croservices. Next, Ditto analyzes the thread and networking model,
e.g., single- or multi-threaded, and synchronous or asynchronous
respectively using kernel-level profiling, and builds the skeleton
of each service. The application skeleton contains empty handlers
which are filled with appropriate functionality in the next step. The
handlers can either be triggered upon receiving requests for worker
threads, or by a timer for background threads.

To generate the synthetic application body, Ditto instruments
the application binary using kernel- and user-space profilers for

different subsystems. Finally, Ditto uses the deviation in perfor-
mance metrics between original and synthetic application to fine
tune the generator. The eventual synthetic service can serve as a
performance and resource proxy for the original service.

Ditto profiles applications in isolation to capture their character-
istics alone; in Section 6.5 we show that in the presence of interfer-
ence, synthetic applications behave the same way as their original
counterparts.

Ditto adheres to the following design principles:
• End-to-end system stack modeling: Cloud services often con-
tain a large fraction of kernel-space operations for network and
disk I/O. Ditto captures the inputs, RPC dependency graph, ap-
plication binary, OS kernel, CPU, memory, disk, networks, and
resource interference.

• Portability: Ditto uses platform-independent features to ensure
that generated services are portable across platforms without
reprofiling. Synthetic applications also faithfully adjust to load
and configuration changes, such as queries per second (QPS),
and scaling, because of the fine-grained network and thread
modeling.

• Abstraction: Ditto does not disclose the implementation of
the original application, only exposing the skeleton and post-
processed performance characteristics to the synthetic bench-
mark user. It replaces the skeleton of an application with a
template, refills the body with artificial instructions and their
operands, and abstracts the memory access patterns away to
avoid side-channel attacks. Application-specific characteristics,
including user-space function calls, memory accesses, and appli-
cation inputs, are also concealed. Thus, the synthetic workload
can be publicly shared, without a user reverse engineering the
implementation of the original service.

• Automation: Ditto automates the profiling and generation pro-
cess. It entirely relies on static and dynamic profiling of the
original application to generate a benchmark. Users are not re-
quired to have expertise in the implementation of a service to
use the framework.

4.2 Microservice Topology
A topology of microservices is a directed acyclic graph (DAG),
where the nodes are microservices and the edges indicate the
dataflow between dependent tiers [52–54, 80]. Ditto leverages the
distributed trace frameworks present in most production deploy-
ments to collect traces of end-to-end requests. The performance
overhead is negligible if the traces are sampled properly [4, 11, 96].
It then automatically extracts the dependency graph between mi-
croservices and uses it as input to the skeleton generator.

4.3 Application Skeleton
We define the application skeleton as the network and thread mod-
els of an application, which determine how it handles remote service
communication, and how tasks are assigned to different threads,
respectively. The application skeleton is a critical design choice for
cloud services facing tight latency constraints [46, 88, 101, 106], as
it directly impacts their performance and scalability.

4.3.1 Network Model. The network model describes how an appli-
cation communicates with other services, acting as a client, server,

Ditto: End-to-End Application Cloning for Networked Cloud Services ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

MicroservicesMicroservicesMicroservices

Microservice Topology

Application Skeleton
Thread Model Network Model

Single-tier
Application

Application Body

System Call

C/C++ level

Instruction Mix

Instruction Memory
Access Pattern

Branch Behavior

Data Memory
Access Pattern

Data Dependency
Assembly level

Fine Tuning

Synthetic
Application

Synthetic
Microservices

Synthetic
Microservices

1 // Main thread
2 void main_loop() {
3 while (!stop) {
4 epoll_wait(listen_fd, events, MAX_EVENTS, -1);
5 int socket_fd = accept(listen_fd, addr, len);
6 init_worker_thread_a(socket_fd);
7 }
8 }
9
10 // Worker thread type A
11 void worker_a_loop() {
12 while (!conn_closed) {
13 epoll_wait(socket_fd, events, MAX_EVENTS, -1);
14 read(socket_fd, buffer, BUFFER_SIZE);
15 // Handler to be generated in next step
16 worker_a_main(req_id);
17 dispatch_to_worker_b(req_id);
18 wait_worker_b();
19 sendmsg(socket_fd, buffer, BUFFER_SIZE);
20 }
21 }
22
23 // Worker thread type B
24 void worker_b_loop() {
25 ...
26 }

1 // Main function of worker A
2 void worker_a_main(req_id) {
3 // Syscalls
4 int fd = open(file, O_RDONLY);
5 int size = read(fd, buffer, BUFFER_SIZE);
6 close(fd);
7
8 // Assembly blocks
9 __asm__ __volatile__ (
10 ...
11);
12
13 // Block for data_size = i & inst_size = j
14 __asm__ __volatile__ (
15 "xor r9, r9\n"
16 ".BLOCK_I_J:\n" // Inner loop
17 "add <X_REG>, <R_REG>\n"
18 "sub <R_REG>, DWORD PTR [r10 + <OFFSET>]\n"
19 "mul QWORD PTR[r10 + <OFFSET>]\n"
20 "mov r11, QWORD PTR [r11]\n" // Ptr chasing
21 "test r8d, <BIT_MASK>\n"
22 "jz .COND_BR_FOO\n"
23 ...
24 "cmp r9, <LOOP_COUNT>\n"
25 "jl .BLOCK_I_J\n"
26);
27
28 __asm__ __volatile__ (
29 ...
30);
31 }

A

B C

D E F

1.0 1.0

0.30.5 0.5 0.7

Figure 3: Overview of Ditto’s synthetic benchmark generation process.

or both. When acting as a client, a service can use synchronous
or asynchronous communication. In synchronous models, threads
block on network I/O (e.g., send(), write()) to await responses.
Asynchronous models are typically event-based with responses
handled by specific threads via callback functions. They are more
complicated, as they involve additional synchronization and state
machine transitions. In return, they avoid long queueing delays by
allowing threads to process new requests and offer better perfor-
mance [101].

On the server side, there are three common options for the net-
work model: blocking, non-blocking, and I/O multiplexing [102]. In
all three models, threads await requests through system calls (e.g.,
recv(), read(), epoll()). In contrast to the other two models, the
non-blocking model needs to periodically call the I/O interfaces
to look for new requests, which can waste CPU time at low loads.
In both blocking and I/O multiplexing models, threads block on
system calls, although I/O multiplexing allows monitoring mul-
tiple sockets via a single system call (e.g., select() or epoll()).
I/O multiplexing is the most commonly-used in services like Mem-
cached, Redis, and NGINX, since they support many concurrent
connections, and I/O multiplexing reduces the required threads.

Ditto uses SystemTap [45] to profile the network model by prob-
ing kernel-space functions and data structures. It acquires key at-
tributes of sockets, and monitors network-related system calls,
gathering the distribution of their types, arguments, and call fre-
quency. Ditto then chooses one out of several network models that
combine the different design choices described above, with socket
options and network message parameters set based on profiling.

4.3.2 Thread Model. Cloud services rely on multithreading for
asynchronous networking, disk I/O, and parallel processing [111].
The thread model describes how tasks are scheduled to and handled

by various threads. Ditto uses SystemTap to profile the functional-
ity, lifecycle, and trigger points of threads by experimenting with
different connections, QPS, and execution times. First, it combines
network and user-space call stack analysis to cluster threads with
similar functionalities. We build a call graph for each thread, use
tree-edit distance [30] to measure the similarity between threads,
and cluster threads with similar call graphs using agglomerative
clustering [83], since the number of clusters is unknown in ad-
vance. Second, we categorize each thread cluster into short- and
long-lived threads by probing clone() and context switches. Short-
lived threads are usually spawned and terminated frequently, while
long-lived threads are spawned at initialization, waiting for tasks
to arrive. Finally, thread functions can be triggered by both kernel-
and user-space events, including reads and writes to sockets, timers,
signals, user-space locks, and condition variables. Wemonitor event
notification functions in kernel space and common user-level li-
braries, such as libpthread and libc++, and analyze the relation-
ship between them and thread spawning or wakeup to identify
trigger points.

4.4 Application Body
The application body corresponds to the workload-specific work,
consisting of kernel-space functions, via system calls and user-
level functions. While assembly-level profiling for kernel-space
functions is unnecessary, since they can be cloned by imitating the
system calls themselves, it is critical to clone user-space functions
at assembly level to capture the low-level usage of CPU resources.

Application performance is also significantly impacted by fac-
tors like instruction mix, and memory (data and instruction) ac-
cess patterns, branch behavior, and data dependencies. Ditto uses
these platform-independent features to ensure that the generated

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mingyu Liang, Yu Gan, Yueying Li, Carlos Torres, Abhishek Dhanotia, Mahesh Ketkar, and Christina Delimitrou

synthetic applications can be ported to other platforms without
reprofiling.

4.4.1 System Calls. Applications use system calls to perform priv-
ileged operations in the OS kernel. Besides network handling and
spawning new threads, cloud applications can make system calls
to access file descriptors, allocate memory space, or synchronize
on shared memory. Capturing the system call characteristics is
critical to clone the kernel-level CPU and un-core metrics. Prior
performance cloning studies either do not profile system call char-
acteristics [72, 90], or only profile the total number of kernel-level
instructions [87]. To accurately capture kernel-level characteris-
tics, Ditto profiles the distribution of system calls, including their
counts and arguments with SystemTap. For example, MongoDB
calls pread() to read a database file from disk. During system call
profiling, Ditto captures the flags of fd and the distribution of
count and offset, to accurately clone key metrics, such as disk
latency, utilization, and page cache miss rates.

4.4.2 Instruction Mix. The instruction mix in Ditto captures the
distribution of x86 assembly instructions at runtime in the original
service, and reproduces it faithfully in the synthetic benchmark.
Previous studies categorize x86 assembly instructions into integer
arithmetic, integer multiplication, integer division, floating-point
operations, SIMD operations, loads, stores, and control instruc-
tions [72, 87, 90]. They then generate the synthetic benchmark
using a representative instruction from each category.

However, this categorization is too coarse-grained and does not
capture the characteristics of modern CPU microarchitectures. The
x86 ISA, for instance, contains assembly instructions with different
uops, port usages, and execution cycles. For example, the CRC32
(r64, r64) instruction, which implements the checksum function,
takes three cycles and can only be executed via port 1 on Skylake
CPUs, while other integer arithmetic instructions usually take one
cycle on any of the ports 0, 1, 5, and 6 [17, 60]. Instructions with
REP/REPZ/REPNZ (repeat string operations) or LOCK prefixes can
take tens of cycles or more, depending on the repeat count, or the
cache/RAM configuration [51].

Ditto uses Intel SDE [68] to collect the dynamic count of each
x86 instruction using Intel x86 Encoder Decoder (XED) Iforms [35].
It then clusters x86 assembly instructions by functionality (data
movement, arithmetic/logic, control-flow, lock-prefixed, and re-
peat string operations), operands (general-purpose registers, x87
floating-point registers, XMM registers, and memory), and ALU
usage [17] using hierarchical clustering, so that each cluster has
similar hardware resource requirements. Ditto also profiles the av-
erage number of dynamic instructions per request, and the repeat
counts of each REP-prefixed instruction. During the generation
phase, Ditto randomly samples the next instruction from the in-
struction mix distribution. Registers and memory addresses are
assigned after data memory access profiling (Section 4.4.4).

4.4.3 Branch Behavior. Branch prediction accuracy, which is de-
termined by both the branch behavior of the application and the
branch predictors, is critical in modern out-of-order CPUs [60, 78].
Prior studies observe that branch taken ratios and transition rates
(frequency a branch switches between taken and not-taken) impact
the branch prediction accuracy and misprediction penalty [50, 64].

Branches with extremely high taken or not-taken ratios, even if
their patterns are completely random, have fewer mispredictions,
since the majority of executions are in one direction. Similarly,
branches with low transition rates are easier to predict. We also
find that instruction locality and the number of static branch in-
structions significantly contribute to the branch prediction accuracy,
especially for applications with large binaries.

Based on these observations, Ditto profiles the distribution of
branch taken/not-taken rates and transition rates across all con-
ditional branch instructions, and together with the instruction
memory access pattern analysis it accurately clones the branch
misprediction behavior of the target application. We quantize the
taken/not-taken rates and transition rates in log scale, from 2−1
to 2−10. During the generation phase, Ditto samples a taken/not-
taken rate and transition rate from the profiled distribution for each
conditional branch instruction.

Lines 21-22 in the right code snippet in Figure 3 show how Ditto
generates conditional branch instructions with profiled taken/not-
taken rates and transition rates. <BIT_MASK> is a binary mask pre-
computed during the generation phase, which contains𝑀 ones in
the highest bits and 𝑁 zeros in the lowest bits. 2−𝑀 is the taken/not-
taken rate, and 2−𝑁 is the transition rate. The ZF flag, which deter-
mines the branch direction of jz or jnz, will change periodically
according to the bitmask in the test instruction.

4.4.4 Data Memory Access Pattern. The memory access pattern is a
dominant characteristic of an application, as it impacts the backend
of the CPU and memory subsystem. Since operands in arithmetic
instructions in synthetic benchmarks are randomly generated, they
cannot calculate meaningful memory addresses at runtime. Thus,
memory addresses or offsets need to be pre-calculated in the gener-
ation phase and hard-coded in the synthetic application binaries.
Previous studies [20, 22, 86] capture memory access patterns us-
ing the stack distance, reuse distance, and stride pattern profiles.
However, they need 10 to 20 million memory traces to accurately
represent target memory access patterns because of the sparsity of
the memory address space, and the multimodality in memory ac-
cesses [63]. Preserving the original access patterns requires millions
of hard-coded memory instructions, which significantly interferes
with other performance characteristics. Moreover, directly replicat-
ing the target memory access pattern introduces security concerns,
since previous studies showed that memory access patterns reveal
confidential information about the service [57, 66, 71].

Instead, Ditto uses profiling of the memory working set to syn-
thesize appropriate data memory access patterns without incurring
high instructionmisses or leaking application context. We construct
a sequence of memory accesses for working sets with different sizes,
from 64 bytes (one cache line) to the maximum memory size allo-
cated to the target application, increasing by a factor of two. Each
memory access only reads or writes the first data in a cache line to
ensure that a new cache line is loaded, assuming the most common
write-allocate policy. We use Valgrind [85] to compute the distribu-
tion of memory accesses with different working set sizes, which can
be efficiently simulated as “cache hits” for different “cache sizes”.
Each “cache size” only needs to be simulated once during profiling.
We calculate the number of memory accesses in a working set of 2𝑖
bytes as follows:

Ditto: End-to-End Application Cloning for Networked Cloud Services ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

𝐴𝑑 (2𝑖) =
{
𝐻𝑑 (2𝑖) if 2𝑖 = 64 bytes
𝐻𝑑 (2𝑖) − 𝐻𝑑 (2𝑖−1) otherwise

, (1)

where 𝐴𝑑 (2𝑖) is the number of memory accesses for a working
set of 2𝑖 bytes in generated code, and𝐻𝑑 (2𝑖) is the number of cache
hits in a 2𝑖 -byte cache in the original application. The synthetic
working set-based memory access pattern is illustrated in Figure 4,
with the number of memory accesses for each working set equal
that of the profiled distribution. Since the memory accesses are
limited to the working set size, it is guaranteed that𝐴𝑑 (2𝑖) accesses
will contribute to𝐴𝑑 (2𝑖) hits when cache size ≥ 2𝑖 bytes. Assuming
a least-recently-used (LRU) cache replacement policy or its pseudo-
LRU variant, commonly used in recent Intel processors [18, 105],
since we iterate through cache lines in a working set sequentially,
there must be previous memory accesses which evict this cache line
when cache size < 2𝑖 bytes. Therefore, every memory access of a
2𝑖 -byte working set ends up with a miss when cache size < 2𝑖 bytes.
The statement is true for anymemory hierarchy and cache inclusion
policy because of the sequential access pattern within each working
set. Therefore, even if applications are profiled with a single-level
cache, the results can be applied to any number of cache levels and
inclusion policies. Applications are profiled with an 8-way cache for
working sets < 1MB and a 16-way cache for working sets ≥ 1MB,
which are close to the typical values of modern CPUs. There is an
average 1.9% error in the cache miss rate when cache associativity
changes across all examined applications. We allocate an array
for memory accesses in the heap when the synthetic application is
initialized, and store the base address in a register (for example, r10).
Ditto generates the address offsets for each memory instruction,
which can access [r10 + <OFFSET>] at runtime.

0x0 0x40 0x80 0x100 0x200 0x400

64B

128B

256B

512B

1024B

…

……

A(64) accesses

A(128) accesses

A(256) accesses

A(512) accesses

A(1024) accesses

Figure 4: Working-set-based data memory access generation.
Except for the 64-byte working set, the memory accesses of
2𝑖 -byte working set start at address 2𝑖−1 and loop iteratively
within the working set.

Coherence misses also contribute to cache miss rates in multi-
threaded applications. Coherence misses happen when cache lines
containing shared data are invalidated by another core. To accu-
rately clone cache behavior with multi-threading, we use Intel SDE
to profile the ratio between private data accesses and shared data
accesses, and generate memory accesses accordingly.

Modern CPUs implement hardware prefetching mechanisms
to improve cache performance. Hardware prefetchers detect load
instructions with regular strides, sequences of consecutive cache
line accesses and adjacent cache line accesses, to load data into
caches before they are needed [84]. To clone the performance impact
of cache prefetching, we calculate the ratio of regular to irregular

memory access patterns from the runtime memory trace and use
this ratio to control the number of regular memory access sequences
in the synthetic applications.
4.4.5 Instruction Memory Access Pattern. Instruction memory ac-
cess patterns significantly impact CPU frontend and backend per-
formance, as they determine the L1i, L2, L3 cache misses and branch
mispredictions. Replicating the original application’s instruction
memory access pattern is not possible with a synthetic benchmark
because the execution flow is usually controlled by the computa-
tion’s output at runtime.

Therefore, Ditto synthesizes instruction memory access patterns
with a similar approach to that of Section 4.4.4. We profile the i-
cache hits of the original application with different i-cache sizes
using Valgrind. Then, we calculate the distribution of dynamic
executions in an instruction memory working set of 2𝑗 bytes as
follows, assuming the cache line size is 64 bytes, and the average
instruction size is 4 bytes:

𝐸𝑖 (2𝑗) =
{
16 ∗

[
𝐻𝑖 (2𝑗) − 𝐻𝑖 (2𝑗−1)

]
if 2𝑗 > 64 bytes

𝐻𝑖 (2𝑁) −∑2𝑁
𝑗=9 𝐸𝑖 (2𝑗) if 2𝑗 = 64 bytes

, (2)

where 𝐸𝑖 (2𝑗) is the number of instruction executions with a
working set of 2𝑗 bytes in the synthetic code, 2𝑁 is the max in-
struction working set size, 𝐻𝑖 (2𝑗) is the number of i-cache hits
on a 2𝑗 -byte i-cache in the original application, and the number
of instructions in a cache line is 16 (64B cacheline / 4B inst size).
After profiling the distribution of i-cache accesses with different in-
struction working sets, Ditto generates static assembly instruction
blocks, shown in lines 14-26 in the right code snippet of Fig. 3.

The number of instructions per block matches the instruction
working set size, and the loop iteration number is determined by
the distribution.
4.4.6 Data Dependencies. Data dependencies are another inher-
ent characteristic of an application that impact performance. Data
dependencies can flow through registers or memory locations, limit-
ing the number of simultaneous instructions issued to an execution
unit (instruction-level parallelism, or ILP), and the number of out-
standing memory requests (memory-level parallelism, or MLP) [65].

Ditto uses the distribution of data dependency distances to quan-
tify data flows through registers. We measure the read after write
(RAW), write after read (WAR), and write after write (WAW) data
dependency distance from the dynamic control flow graph (DCFG)
generated using Intel SDE [69]. The dependency distance is quan-
tized into 11 bins, increasing exponentially from 1 to 1024, since
a larger dependency distance does not impact the ILP, due to the
limited size of the reorder buffer. When generating the synthetic
code, we reserve several registers for recording the loop counters
and data memory addresses, and use the rest of general-purpose
and SIMD registers to clone the data dependency characteristics. To
assign registers for each instruction, Ditto samples a (RAW, WAR,
WAW) distance tuple from the profiled distributions, and chooses
an available register with the closest distance values. Data depen-
dencies through registers can also impact MLP if the register values
determine memory locations. Such behavior cannot be captured
since the synthetic application never writes to a reserved register
with the memory base address. To address this, we replace a frac-
tion of memory reads with pointer chasing reads (mov r11, QWORD
PTR [r11]); determined by the MLP measured with Perf.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mingyu Liang, Yu Gan, Yueying Li, Carlos Torres, Abhishek Dhanotia, Mahesh Ketkar, and Christina Delimitrou

Data dependencies through memory locations are much more
difficult to profile with DCFG since memory addresses are often
calculated at runtime. However, they are partially determined by
data access patterns that Ditto already profiles (Section 4.4.4). A
program with a shorter memory dependency distance can be mod-
eled with a smaller working set because the probability that the
cache line is evicted by other instructions in between is lower.

4.5 Fine Tuning
Finally, Ditto implements fine tuning to calibrate the output of pre-
vious steps, due to inaccuracies introduced by the instrumentation
tools. For example, application body profiling does not consider
the interaction between user-space and kernel-space functions and
the correlation between the application skeleton and body; thus
the actual d-cache and i-cache miss rates are often higher than the
profiled results. Ditto iteratively runs the synthetic application on a
specific platform, computes the errors between target and synthetic
service, adjusts the inputs to the generator accordingly, and regen-
erates the synthetic application. Although there are many knobs
to tune, most of them are orthogonal with each other. We have
characterized the correlation across knobs, and derived the small
groups of parameters that need to be jointly tuned (e.g., branch
taken/transition rate and i-cache pattern because they all influence
branch prediction). Since relationships between knobs and perfor-
mance are mostly linear, we use a feedback-based heuristic to tune
knobs within a group. Fine tuning uses performance counters for
calibration. It usually takes within ten iterations to reach over 95%
accuracy, incurring low overhead since each iteration only takes a
couple tens of seconds. Since Ditto captures performance charac-
teristics well with platform-independent data, this fine tuning does
not compromise the generality of the synthetic service, as shown
in Section 6.2.2.

5 IMPLEMENTATION
Ditto implements several analyzers and code generators to capture
the microservice topology, application skeleton, and application
body. If the target service is a graph of microservices, the microser-
vice topology analyzer leverages distributed tracing systems, like
Jaeger [4], to obtain RPC call graphs and call statistics. For both
microservices and single-tier applications, the application skeleton
analyzer then deploys SystemTap to profile network- and thread-
related functions and data structures in kernel space, and identify
the network and thread models used.

The skeleton generator creates a synthetic application skeleton
using either a TCP- or RPC-based network interface, leaving the
body of each thread’s handler to the application body generator.
The latter runs SystemTap to profile system calls, and uses Intel
SDE and Valgrind to capture the platform-independent features
of binaries, such as instruction mix and working set size distribu-
tion, etc. The generator creates handlers according to these features
using POSIX APIs in libc and inline assembly in C code. The assem-
bly code contains tens to hundreds of instruction blocks looping
iteratively with different instruction and working set sizes. Finally
the fine tuner runs the synthetic application, collects performance
data from Perf, eBPF and VTune on the deviation between origi-
nal and synthetic workloads, and calibrates the input data for the
application body generator accordingly.

Ditto is implemented primarily in Python and C in about 16,000
lines of code. It supports C/C++ applications, the Apache Thrift [1]
and gRPC [3] RPC frameworks, and x86 ISAs, which are commonly
used in cloud environments. It can be extended to more languages,
frameworks, and ISAs, by leveraging compatible profiling tools.
Ditto can generate applications that run on a single machine or con-
tainerized microservices that run on multiple nodes, using Docker
Swarm or Kubernetes. The runtime profilers and emulators, includ-
ing SystemTap, Intel SDE, and Valgrind, can introduce overheads to
the original application during profiling. This overhead only occurs
once, and does not affect the accuracy of the platform-independent
features collected during profiling.

To generate a clone, cloud providers only need to specify a rep-
resentative input for their service. Ditto automatically instruments
the application at runtime, collecting profiling statistics and feeding
them to the code generator, followed by the fine-tuning process.
Ditto does not require reprofiling if the input change does not affect
the application body, such as changes in QPS or number of connec-
tions. Inevitably, if a new input exercises an entirely new code path
or memory access pattern, this will need to be profiled to create a
new clone. The synthesized binaries can run directly on hardware,
execution-driven simulators like gem5 [31] and ZSim [94], or their
traces can be fed to trace-driven simulators like Ramulator [75].

6 EVALUATION
6.1 Methodology
6.1.1 Platforms. We validate Ditto on a heterogeneous cluster,
with three types of servers, whose specs are in Table 1. All servers
run x86 ISA, but differ in the CPU and memory architectures, and
their storage and network.

Table 1: Server platform specifications.

Platform A Platform B Platform C
CPU model Gold 6152 E5-2660 v3 E3-1240 v5

Base Frequency 2.10GHz 2.60GHz 3.50GHz
CPU cores 22 10 4
CPU family Skylake Haswell Skylake
Sockets 2 2 1
L1i/L1d 32KB/32KB 32KB/32KB 32KB/32KB

L2 1MB 256KB 256KB
LLC 30.25MB 25MB 8MB
RAM 192GB@2666 128GB@2400 32GB@2133
Disk 1TB SSD 2TB HDD 1TB HDD

Network 10Gbe 1Gbe 1Gbe

6.1.2 Applications and Workload Generators.

• Memcached: Memcached [49] is a distributed low-latency, key-
value store for in-memory caching. We build Memcached 1.6.9
from source, deployed with four worker threads, and load it with
10K items, each with a 30B key and a 4KB value. It is driven by
an open-loop version of the mutated workload generator [13].

• NGINX: NGINX [6] is a high-performance web server and is the
most commonly-deployed technology in Docker [15]. We build
NGINX 1.20.0 from source and configure it with one worker pro-
cess. For NGINX, we use tcpkali [14] to generate HTTP requests.

• MongoDB: MongoDB [5] is an open-sourced cross-platform
NoSQL database. We use MongoDB 4.4.4 and set up a dataset

Ditto: End-to-End Application Cloning for Networked Cloud Services ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0 100k
200k

300k

0

0.5

1

1.5

0 10k
20k

30k
40k

0

0.5

1

1.5

2

0 500 1000
0

0.5

1

1.5

2

0 20k 40k
0

0.1

0.2

0.3

0.4

0 500
1000

1500

0

5

10

15

0 500
1000

1500

0

0.5

1

1.5

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 1 2 3 4
IPC

Branch
L1i

L1d

L2

LLC
Net BW

012345
IPC

Branch

L1i

L1d

L2

LLC
Net BW

Disk BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.4
0.8
1.2
1.6

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch

L1i

L1d

L2

LLC
Net BW

Disk BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.5
1 1.5
2 2.5

IPC

Branch

L1i

L1d

L2

LLC
Net BW

Disk BW

0 0.5
1 1.5
2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.4
0.8
1.2
1.6

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.4
0.8
1.2
1.6

Actual Synthetic Actual avg Synthetic avg Actual p95 Synthetic p95 Actual p99 Synthetic p99

Memcached NGINX MongoDB Redis TextService SocialGraphService

QPS QPS QPS QPS QPS QPS

La
te

nc
y

(m
s)

Lo
w

 L
oa

d
M

ed
iu

m
 L

oa
d

H
ig

h
Lo

ad

Figure 5: CPU performance metrics (IPC, branch mispredictions, L1i, L1d, L2 and LLC miss rates), network bandwidth, disk
bandwidth (MongoDB only) and service latency under varying load across six services. CPU metrics are normalized to each
original application’s metrics under medium load. Network and disk bandwidth are, by exception, normalized to each original
application’s bandwidth under current load, because their magnitudes change significantly, and would obscure the figure’s
shape.

of 40GB with one million records. To load MongoDB, we use
YCSB [37] with all read operations, following a uniform distribu-
tion.

• Redis: Redis [8] is a fast, single-threaded, in-memory data store
used as a database, cache, and message broker. We build Redis
6.2.6 from source, disable its persistent storage, and load a dataset
with 100K records. We use YCSB as the load generator.

• Social Network: Social Network is a microservice topology
from DeathStarBench [53], consisting of 20+ individual services.
We compose its social graph with the socfb-Reed98 Facebook
dataset [93], which contains 962 users and 18.8K follow rela-
tionships. We also modify the wrk2 [2] workload generator to
open-loop and use it as the client. The Social Network is deployed
with one replica per microservice, both locally and on a cluster
using Docker containers.

For all synthetic applications, we use the same load generator as
the original application, sending dummy requests with the same
traffic distribution. The number of threads of MongoDB and Social
Network microservices changes dynamically with the number of
concurrent connections, up to a few tens under our load settings.

200 500 1000 1500 2000
QPS

0
5

10
15
20
25
30
35
40

La
te

nc
y

(m
s)

Actual p50
Synth. p50
Actual p95
Synth. p95
Actual p99
Synth. p99

Figure 6: End-to-end latency for the Social Network.

6.2 Validation
6.2.1 Validation on Varying Loads. Figure 5 shows CPU, network
and disk performance metrics, and latency for six applications un-
der different QPS in platform A. In addition to the four single-tier
applications, we also show resource characteristics for TextService
and SocialGraphService, two of the Social Network’s tiers, which

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mingyu Liang, Yu Gan, Yueying Li, Carlos Torres, Abhishek Dhanotia, Mahesh Ketkar, and Christina Delimitrou

A B C
0

0.1

0.2

0.3

A B C
0

0.2

0.4

0.6

A B C
0

5

10

15

20

A B C
0

0.05

0.1

0.15

A B C
0

2

4

6

A B C
0

0.2

0.4

0.6

0.8

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch

L1i

L1d

L2

LLC
Net BW

Disk BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 1 2 3
IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 3 6 912
IPC

Branch

L1i

L1d

L2

LLC
Net BW

Disk BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 2 4 6
IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 2 4 6
IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 2 4 6

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 2 4 6
IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 3 6 912
IPC

Branch

L1i

L1d

L2

LLC
Net BW

Disk BW

0 0.3
0.6
0.9
1.2

IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 2 4 6 8
IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 1 2 3 4
IPC

Branch
L1i

L1d

L2

LLC
Net BW

0 1 2 3 4

Actual Synthetic Actual avg Synthetic avg Actual p95 Synthetic p95 Actual p99 Synthetic p99

Memcached NGINX MongoDB Redis TextService SocialGraphService

QPS QPS QPS QPS QPS QPS

La
te

nc
y

(m
s)

Pl
at

fo
rm

 A
Pl

at
fo

rm
 B

Pl
at

fo
rm

 C

Figure 7: CPU metrics (IPC, branch misprediction, L1i, L1d, L2 and LLC misses), network BW, disk BW (MongoDB only) and
latencies across platforms. CPU metrics are normalized to each original service on Platform A.

are representative of the other tiers of the service. TextService man-
ages the text users add to composed posts, and SocialGraphService
manages follow relationships between users. We do not show each
tier due to space constraints, but have validated that the results
are similar for them. All applications are generated using profiling
data under medium load; Ditto has not profiled any other load. We
increase the load until the single-tier application or bottleneck tier
in the microservice topology saturates in one or more resources
(e.g., disk I/O for MongoDB and CPU for the other applications).
Since we use a close-loop workload generator for MongoDB and
Redis, which only allows one outstanding request per connection,
the latency does not increase significantly at high load. While the
end-to-end latency of Social Network increases at high load, the la-
tency of TextService and SocialGraphService only increases slightly,
since they are not bottleneck tiers.

The upper three rows show IPC, branch misprediction, L1i, L1d,
L2, LLC miss rates, and network and disk I/O bandwidth under low,
medium, and high load, with average errors across all applications
being 4.1%, 9.9%, 7.1%, 5.1%, 6.9%, 12.1%, 0.1%, 0.1%, respectively.
This indicates that Ditto accurately clones the overall hardware
performance metrics. Memcached and NGINX have low IPC under
low load because of high branch misprediction, and L1i and L2

misses, while SocialGraphService has high IPC due to fewer LLC
misses. At high load, Memcached and Redis have similar metrics to
medium load, however the other four applications exhibit different
degrees of L2, LLC misses variation. The results illustrate that
applications can have very different characteristics under different
loads, which are accurately captured by Ditto in their synthetic
counterparts. The network and disk bandwidth also conform to the
original by faithfully reproducing the system calls. We only show
disk bandwidth for MongoDB since other services do not involve
disk I/O. The bottom line plot shows the average, 95th, and 99th
percentile latencies, which also match the originals, with the p99
diverging at high load, due to the queueing behavior in the network
stack at saturation.

Fig. 6 shows the end-to-end latency of original and synthetic
Social Network when every individual microservice is replaced
with a synthetic one.

6.2.2 Validation on Varying Platforms. We also validate the CPU,
network and disk metrics and service latency as we vary the hosted
platforms. Each application is profiled only on Platform A, and
validated on Platforms A, B and C. Figure 7 shows that the syn-
thetic benchmarks react to platform changes in a similar way to

Ditto: End-to-End Application Cloning for Networked Cloud Services ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

Mem
cached

Nginx MongoDB Redis Text
Service

SocialGraph
Service

0.0

0.5

1.0

1.5

2.0

CP
I

A
A

A

A A

A

S
S

S

S S

S

Retiring Front-end Bad speculation Back-end

Figure 8: Cycles breakdown. (A: actual, S: synthetic)

the original applications. More specifically, all six applications have
different degrees of L2 cache miss increases on Platforms B and C,
due to their smaller L2 cache sizes. Applications running on Plat-
form B, which is an older CPU generation, have consistently lower
IPC. When running all microservices of the Social Network on the
small-scale Platform C server, the high degree of interference re-
sults in high LLCmiss rates for TextService and SocialGraphService,
both original and synthetic. Network and disk I/O bandwidths are
identical across platforms, since the amount of data transferred is
independent of the platform. The line plots at the bottom show the
latency on the three platforms, where the synthetic always matches
the original. All applications experience the highest latency on
Platform B because it has the lowest IPC. The latency of MongoDB
is significantly lower on Platform A because it benefits from the
low random access latency of SSDs. In general, the fact that the syn-
thetic applications react to platform changes the same way as the
original, without reprofiling, shows that Ditto accurately captures
critical, platform-independent features that impact performance.

6.3 CPU Top-down Analysis
Figure 8 shows the cycles per instruction (CPI) top-down analysis
of the original and synthetic applications. Ditto accurately captures
the cycle breakdown of the original applications. Many prior studies
have showed that cloud services diverge from traditional scientific
CPU benchmarks like SPEC CPU by having significant fractions of
front-end stalls, due to large code footprints and frequent context
switches between user and kernel mode [53, 101, 111]. Our synthetic
benchmarks show similar bottlenecks to the original applications,
and can be used as proxies for microarchitectural optimizations.

6.4 Decomposition of Ditto’s Accuracy
In Fig. 9, we use MongoDB as an example to show Ditto’s accuracy,
as the framework incorporates more information. We start with a
version of Ditto that only generates the thread model and network
interfaces skeleton, but an empty request handling body. From
A to B, we inject the system calls with arguments drawn from
the distribution of the original application, which increases the
kernel-level instructions and disk I/Os. In C, we add user-level
instructions (add rax, rax) to match the total instruction count,
but not their specific mix. From C to D, user-level instructions are
generated based on the profiled mix. We assume the highest branch
taken/transition rate, strongest data dependencies, and all memory
operations accessing the smallest working sets. We observe an IPC

0.0

0.4

0.8

1.2

IP
C

target IPC

0.0
0.5
1.0
1.5
2.0
2.5

In
st

ru
ct

io
ns

1e9

target instructions

0.5
1.5
2.5
3.5
4.5
5.5

Cy
cle

s

1e9

target cycles

A:Skeleton

B:Syscall

C:#insts

D:Inst. mix

E:Branch

F:I-mem

G:D-mem

H:Data dep.

I:Tune

0.6
0.8
1.0
1.2
1.4

p9
9

(m
s)

target latency

Figure 9: Evolution of IPC, instructions, cycles, and p99 la-
tency for MongoDB as we add sophistication to Ditto.

decrease from 1.11 to 1.02 due to memory instructions incurring
additional cycles in the backend. From D to E, we clone the branch
behaviors following the profiled branch taken and transition rates.
The branch misprediction rate drops from 1.95% to 1.47% but has a
negligible impact on IPC. In step F, we synthesize the instruction
memory accesses, which causes more i-cache misses (from 1.3% to
7.3%) and branch mispredictions (from 1.47% to 4.56%, as discussed
in Sec. 4.4.3), and significantly lowers the IPC. From F to G, we
synthesize the data memory access pattern by accessing different
sizes of private and shared working sets. The IPC further decreases
as the L1d miss rate rises from 17% to 24%. In H, we mimic data
dependencies by reassigning registers for each instruction, which
clones the ILP and MLP characteristics and slightly lowers the
IPC. From H to I, we perform the fine tuning, which calibrates
instruction and data access patterns, lowers the IPC from 0.6 to
0.51, and further improves accuracy. This shows that, even if not
every aspect in Ditto is equally important, they are all required to
accurately clone complex cloud services.

6.5 Case Study: Interference Analysis
Figure 10 shows that synthetic applications react to resource inter-
ference in a similar way to their original counterparts, even though
we only profile the original application in isolation. We show the
analysis on NGINX, but the results are similar for other services. We
use a set of stress benchmarks to generate interference in different
resources. We use stress-ng [10] to generate hyperthreading (HT),
L1d, and L2 interference by co-locating the applications and mi-
crobenchmarks on different logical cores of the same physical core.
The synthetic application captures the IPC and latency degradation
caused by memory contention. When generating L2 interference,

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mingyu Liang, Yu Gan, Yueying Li, Carlos Torres, Abhishek Dhanotia, Mahesh Ketkar, and Christina Delimitrou

0.0

0.5

1.0

IP
C

0.0
1.0
2.0
3.0
4.0
5.0

p9
9

(m
s)

0
2
4
6
8

10

L1
i M

iss
 (%

)

0
3
6
9

12

Lid
 M

iss
 (%

)

0
2
4
6
8

10

L2
 M

iss
 (%

)

Orig. HT L1d L2 LLC Net0
20
40
60
80

LL
C

M
iss

 (%
)

Actual Synthetic

Figure 10: Interference impact on NGINX.

besides the L2 miss rate increase, the synthetic workload also cap-
tures the LLC miss rate change in the original service due to an
increase in the LLC accesses with constant misses.

We also use iBench [41] to generate LLC interference on the
shared socket, and the result shows the synthetic application cap-
tures the IPC drop in the original service. Finally, we use iperf3 [16]
to compete with the service for network bandwidth, and the latency
of synthetic application successfully matches the original service.

6.6 Case Study: CPU Core and Frequency
Scaling

Fig. 11 shows using Ditto to evaluate power management in Mem-
cached with CPU core and frequency scaling. Each cell represents
the p99 latency under a given number of cores and frequency. We
set the QoS as 1ms and cells with marks mean that QoS cannot be
satisfied for that configuration. Memcached cannot meet the QoS
at low frequency even with the maximum number of cores, which
prohibits aggressive power management. Synthetic Memcached
accurately captures the latency variation of Memcached under dif-
ferent settings. This similarity indicates that cloud providers can
use synthetic applications to determine whether power manage-
ment is beneficial for a service, without needing access its source
code.

7 DISCUSSION
7.1 Suitable and Unsuitable Use Cases
Ditto’s main contribution is cloning an end-to-end application
across the system stack. This makes it more suitable for architecture-
, OS-, application-, and cluster-level studies, including scalability,

4 6 8 10 12 14 16
#Cores

1.1
1.3
1.5
1.7
1.9
2.1Fr

eq
ue

nc
y

(G
Hz

) X
X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X

X
X
X

X
X
X

Actual

4 6 8 10 12 14 16
#Cores

X
X
X
X
X
X

X
X
X
X
X

X
X
X
X
X

X
X
X
X

X
X
X
X

X
X
X

X
X
X

Synthetic

0.2ms
0.4ms
0.6ms
0.8ms
1ms
>1ms

Figure 11: 99th percentile latency of actual and synthetic
Memcached under varying CPU frequency core count.

networking, threading, interference, and power management. It can
also be used for certain microarchitecture studies, as we showed
when changing memory hierarchies across platforms.

However, to enable fast, automated, and obfuscated cloning, our
method abstracts away the original individual instructions and
memory accesses. Thus, it is less accurate for microarchitecture
studies that rely on exact application implementation rather than
their statistical performance patterns. For instance, studying the
memory access patterns to improve hardware prefetchers would
not be a good fit for Ditto. There is a fundamental trade-off between
the granularity at which information is captured in one subsystem,
and the overall performance accuracy.

7.2 Confidentiality
Although Ditto cannot guarantee zero information leakage, as it
may expose the RPC graph, and statistics of some hardware coun-
ters, many software companies do not consider these sensitive
data. For example, Alibaba, has open-sourced their production RPC
traces [80], Facebook shared the kernel-level cycles breakdown
of its production workloads [99], and Google open-sourced their
workload traces via DynamoRIO [21]. Additionally, the application
skeleton, while may reflect the original workflow to some extent,
is chosen and adapted from the network and threading models that
have been extensively studied and used [46, 101, 108]. As the actual
logic, functionality and per-access memory patterns are concealed,
inferring useful proprietary information would be very difficult.

For collaboration with hardware vendors, sharing the propri-
etary code under NDA is of course a more straightforward way, but
most cloud providers would not share the binaries related to their
core business regardless of NDA agreements. Other solutions like
internal evaluation of prototypes can be time-consuming and inac-
curate since the prototype is usually immature, and cloud providers
need to adapt their workloads for each new prototype.

7.3 Application Phases
Previous studies observe execution phases in SPEC CPU benchmark
applications [62, 70]. To verify whether program phases exists in
the evaluated cloud services, we collect time series of CPU metrics
spanning 600 seconds, with sampling frequencies ranging from one
second to ten seconds. We do not observe regular program phases
with such sampling granularity. There may be program phases
in the execution of individual requests, which range from tens of

Ditto: End-to-End Application Cloning for Networked Cloud Services ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

microseconds to tens of milliseconds. Nevertheless, they rarely
manifest across requests, unless caused by load fluctuations, which
Ditto captures. As the service processes hundreds of requests per
second, the overall program phases are averaged across concurrent
requests.

7.4 Multi-tenancy and Virtualization
We demonstrate Ditto’s accuracy in local, virtualized, and multi-
tenant deployments in Sections 6.2 and 6.5. Although we do not
directly model contention and hypervisor events, the behavior of
synthetic and target applications under multi-tenancy and virtu-
alization is similar. In Ditto, the synthetic application clones the
interference sensitivity by matching the target application’s re-
source usage patterns. The performance overhead of virtualization
comes primarily from network and disk I/O, nested paging, VM
scheduling, and OS interactions [47]. Cloning the network and
thread models, system calls and memory accesses ensures that
synthetic and original applications experience similar overheads.

7.5 Limitations and Future Work
Ditto currently only supports C/C++ applications compiled for x86
ISA, as it relies on instrumentation tools designed for C/C++ and
x86. However, Ditto does not depend on any language- or ISA-
specific features, and can be easily adapted to other languages and
ISAs.

Cloning for specialized hardware, such as GPUs, FPGAs, and
smartNICs is also gaining in importance. Due to their radically
different ISAs and computing paradigms, we leave extending Ditto
for them to future work.

8 CONCLUSION
We presented Ditto, an accurate cloning framework for end-to-end
monolithic services and microservices. Ditto captures the activity
of an application across the system stack, including kernel and
network events, and accurately reproduces its characteristics, de-
coupling representative cloud studies from access to production
code.

ACKNOWLEDGMENTS
We sincerely thank Ramesh Illikkal, Yanqi Zhang, Nikita Lazarev,
Zhuangzhuang Zhou, Daniel Sanchez, and the anonymous review-
ers for their feedback on earlier versions of this manuscript. This
work was in part supported by an NSF CAREER Award CCF-
1846046, NSF grant NeTS CSR-1704742, an Intel Research Award,
an Intel Faculty Rising Star Award, a Sloan Research Fellowship, a
Microsoft Research Fellowship, a Facebook Research Faculty Award,
and a John and Norma Balen Sesquisentennial Faculty Fellowship.

REFERENCES
[1] Apache thrift. https://thrift.apache.org.
[2] giltene/wrk2. https://github.com/giltene/wrk2.
[3] grpc: A high performance open-source universal rpc framework. https://grpc.io/.
[4] Jaeger: open source, end-to-end distributed tracing. https://www.jaegertracing.

io/.
[5] Mongodb. https://www.mongodb.com.
[6] Nginx. https://nginx.org/en.
[7] Opentracing. https://opentracing.io/.
[8] Redis. https://redis.io.
[9] SPEC Cloud® IaaS 2018.

[10] stress-ng. https://wiki.ubuntu.com/Kernel/Reference/stress-ng.
[11] Zipkin. http://zipkin.io.
[12] perf: Linux profiling with performance counters, 2015.
[13] Mutated: A high-performance and very accurate load-generator for stressing

servers and measuring their latency behaviour under load, 2016.
[14] tcpkali: A high performance tcp and websocket load generator and sink, 2017.
[15] 8 surprising facts about real docker adoption, 2018.
[16] iperf3: A tcp, udp, and sctp network bandwidth measurement tool, 2021.
[17] Andreas Abel and Jan Reineke. Uops.info: Characterizing latency, throughput,

and port usage of instructions on intel microarchitectures. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’19, page 673–686, New York, NY,
USA, 2019. Association for Computing Machinery.

[18] Andreas Abel and Jan Reineke. nanobench: A low-overhead tool for running
microbenchmarks on x86 systems. In 2020 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), August 2020.

[19] Dan Ardelean, Amer Diwan, and Chandra Erdman. Performance analysis of
cloud applications. In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 405–417, Renton, WA, April 2018. USENIX
Association.

[20] Amro Awad and Yan Solihin. Stm: Cloning the spatial and temporal memory
access behavior. In 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA), pages 237–247, 2014.

[21] Grant Ayers, Nayana Prasad Nagendra, David I. August, Hyoun Kyu Cho, Svilen
Kanev, Christos Kozyrakis, Trivikram Krishnamurthy, Heiner Litz, Tipp Mose-
ley, and Parthasarathy Ranganathan. Asmdb: Understanding and mitigating
front-end stalls in warehouse-scale computers. In International Symposium on
Computer Architecture (ISCA), 2019.

[22] Ganesh Balakrishnan and Yan Solihin. West: Cloning data cache behavior using
stochastic traces. In IEEE International Symposium on High-Performance Comp
Architecture, pages 1–12, 2012.

[23] Luiz Barroso. Warehouse-scale computing: Entering the teenage decade. In
Proceedings of the 38th Intl. symposium on Computer architecture, San Jose, CA,
2011.

[24] Luiz Barroso and Urs Hoelzle. The Datacenter as a Computer: An Introduction to
the Design of Warehouse-Scale Machines. MC Publishers, 2009.

[25] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ranganathan.
Attack of the killer microseconds. Commun. ACM, 60(4):48–54, March 2017.

[26] Robert H Bell Jr and Lizy K John. Improved automatic testcase synthesis for
performance model validation. In Proceedings of the 19th annual international
conference on Supercomputing, pages 111–120, 2005.

[27] Ramon Bertran, Alper Buyuktosunoglu, Meeta S. Gupta, Marc Gonzalez, and
Pradip Bose. Systematic energy characterization of cmp/smt processor systems
via automated micro-benchmarks. In 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 199–211, 2012.

[28] Betsy Beyer, Chris Jones, Jennifer Petoff, and Niall Richard Murphy. Site relia-
bility engineering: How Google runs production systems. " O’Reilly Media, Inc.",
2016.

[29] Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Edwards, Ron Murray,
Milenko Drinić, Darek Mihočka, and Joe Chau. Framework for instruction-level
tracing and analysis of program executions. In Proceedings of the 2nd Interna-
tional Conference on Virtual Execution Environments, VEE ’06, page 154–163,
New York, NY, USA, 2006. Association for Computing Machinery.

[30] Philip Bille. A survey on tree edit distance and related problems. Theoretical
computer science, 337(1-3):217–239, 2005.

[31] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, aug 2011.

[32] James Bucek, Klaus-Dieter Lange, and Jóakim v. Kistowski. Spec cpu2017:
Next-generation compute benchmark. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, ICPE ’18, page 41–42, New
York, NY, USA, 2018. Association for Computing Machinery.

[33] Gerardo Canfora and Massimiliano Di Penta. New frontiers of reverse engi-
neering. In Future of Software Engineering (FOSE’07), pages 326–341. IEEE,
2007.

[34] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the
level of abstraction for scalable and accurate parallel multi-core simulation. In
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11, New York, NY, USA, 2011. Association
for Computing Machinery.

[35] Mark Charney. X86 encoder decoder user guide, 2019.
[36] Shuang Chen, Christina Delimitrou, and Jose F. Martinez. PARTIES: QoS-Aware

Resource Partitioning for Multiple Interactive Services. In Proceedings of the
Twenty Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), April 2019.

https://thrift.apache.org
https://github.com/giltene/wrk2
https://grpc.io/
https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://www.mongodb.com
https://nginx.org/en
https://opentracing.io/
https://redis.io
https://wiki.ubuntu.com/Kernel/Reference/stress-ng
http://zipkin.io

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Mingyu Liang, Yu Gan, Yueying Li, Carlos Torres, Abhishek Dhanotia, Mahesh Ketkar, and Christina Delimitrou

[37] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. Benchmarking Cloud Serving Systems with YCSB. 2010.

[38] Weidong Cui, Marcus Peinado, Karl Chen, Helen J. Wang, and Luis Irun-Briz.
Tupni: Automatic reverse engineering of input formats. In Proceedings of the
15th ACM Conference on Computer and Communications Security, CCS ’08, page
391–402, New York, NY, USA, 2008. Association for Computing Machinery.

[39] Deeksha Dangwal, Weilong Cui, Joseph McMahan, and Timothy Sherwood.
Safer program behavior sharing through trace wringing. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 1059–1072, 2019.

[40] Jeffrey Dean and Luiz Andre Barroso. The tail at scale. In CACM, Vol. 56 No. 2.
[41] Christina Delimitrou and Christos Kozyrakis. iBench: Quantifying Interfer-

ence for Datacenter Workloads. In Proceedings of the 2013 IEEE International
Symposium on Workload Characterization (IISWC). Portland, OR, September
2013.

[42] Christina Delimitrou and Christos Kozyrakis. Quality-of-Service-Aware Sched-
uling in Heterogeneous Datacenters with Paragon. In IEEE Micro Special Issue
on Top Picks from the Computer Architecture Conferences. May/June 2014.

[43] Christina Delimitrou and Christos Kozyrakis. Quasar: Resource-Efficient and
QoS-Aware Cluster Management. In Proceedings of the Nineteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). Salt Lake City, UT, USA, 2014.

[44] eBPF Foundation. ebpf, 2021.
[45] Frank C. Eigler, Vara Prasad, Will Cohen, Hien Nguyen, Martin Hunt, Jim

Keniston, and Brad Chen. Architecture of systemtap: a linux trace/probe tool,
2005.

[46] Qi Fan and Qingyang Wang. Performance comparison of web servers with
different architectures: A case study using high concurrency workload. In 2015
Third IEEE Workshop on Hot Topics in Web Systems and Technologies (HotWeb),
pages 37–42. IEEE, 2015.

[47] Wes Felter, Alexandre Ferreira, Ram Rajamony, and Juan Rubio. An updated
performance comparison of virtual machines and linux containers. In 2015
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS), pages 171–172, 2015.

[48] Michael Ferdman, Almutaz Adileh, and et al. Clearing the clouds: A study of
emerging scale-out workloads on modern hardware. In Proc. of ASPLOS. London,
England, UK, 2012.

[49] Brad Fitzpatrick. Distributed caching with memcached. In Linux Journal, Volume
2004, Issue 124, 2004.

[50] Agner Fog. The microarchitecture of intel, amd and via cpus an optimization
guide for assembly programmers and compiler makers.

[51] Agner Fog et al. Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for intel, amd and via cpus. Copenhagen
University College of Engineering, 93:110, 2011.

[52] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delimitrou. Sage:
Practical and scalable ml-driven performance debugging in microservices. In
Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS 2021, page 135–151,
New York, NY, USA, 2021. Association for Computing Machinery.

[53] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayantara
Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, Kelvin Hu,
Meghna Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine
Leung, Siyuan Wang, Leon Zaruvinsky, Mateo Espinosa, Rick Lin, Zhongling
Liu, Jake Padilla, and Christina Delimitrou. An Open-Source Benchmark Suite
for Microservices and Their Hardware-Software Implications for Cloud and
Edge Systems. In Proceedings of the Twenty Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), April 2019.

[54] Yu Gan, Yanqi Zhang, Kelvin Hu, Yuan He, Meghna Pancholi, Dailun Cheng,
and Christina Delimitrou. Seer: Leveraging Big Data to Navigate the Complex-
ity of Performance Debugging in Cloud Microservices. In Proceedings of the
Twenty Fourth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), April 2019.

[55] Karthik Ganesan, Jungho Jo, and Lizy K. John. Synthesizing memory-level paral-
lelism aware miniature clones for SPEC CPU2006 and implantBench workloads.
ISPASS 2010 - IEEE International Symposium on Performance Analysis of Systems
and Software, pages 33–44, 2010.

[56] Karthik Ganesan and Lizy Kurian John. Automatic generation of miniatur-
ized synthetic proxies for target applications to efficiently design multicore
processors. IEEE Transactions on Computers, 63(4):833–846, 2014.

[57] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation on
oblivious rams. Journal of the ACM (JACM), 43(3):431–473, 1996.

[58] Tarun Goyal, Ajit Singh, and Aakanksha Agrawal. Cloudsim: simulator for cloud
computing infrastructure and modeling. Procedia Engineering, 38:3566–3572,
2012.

[59] Brendan Gregg. Systems performance: enterprise and the cloud. Pearson Educa-
tion, 2014.

[60] Part Guide. Intel® 64 and ia-32 architectures software developer’s manual.
Volume 3B: System programming Guide, Part, 2(11), 2011.

[61] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown.
Mibench: A free, commercially representative embedded benchmark suite. In
Proceedings of the Fourth Annual IEEE International Workshop on Workload
Characterization. WWC-4 (Cat. No.01EX538), pages 3–14, 2001.

[62] Greg Hamerly, Erez Perelman, Jeremy Lau, and Brad Calder. Simpoint 3.0:
Faster and more flexible program phase analysis. Journal of Instruction Level
Parallelism, 7(4):1–28, 2005.

[63] Milad Hashemi, Kevin Swersky, Jamie Smith, Grant Ayers, Heiner Litz, Jichuan
Chang, Christos Kozyrakis, and Parthasarathy Ranganathan. Learning memory
access patterns. In Jennifer Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 1919–1928. PMLR, 10–15 Jul 2018.

[64] M. Haungs, P. Sallee, and M. Farrens. Branch transition rate: a new metric for
improved branch classification analysis. In Proceedings Sixth International Sym-
posium on High-Performance Computer Architecture. HPCA-6 (Cat. No.PR00550),
pages 241–250, 2000.

[65] John L. Hennessy and David A. Patterson. Computer Architecture, Fourth Edition:
A Quantitative Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 2006.

[66] Weizhe Hua, Zhiru Zhang, and G. Edward Suh. Reverse engineering convolu-
tional neural networks through side-channel information leaks. In 2018 55th
ACM/ESDA/IEEE Design Automation Conference (DAC), pages 1–6, 2018.

[67] Intel. Intel vtune amplifier. https://www.intel.com/content/www/us/en/
developer/tools/oneapi/vtune-profiler.html, year = 2021,.

[68] Intel. Intel software development emulator, 2012.
[69] Intel. Dynamic control-flow graph generation with pinplay, 2015.
[70] Canturk Isci, Alper Buyuktosunoglu, and Margaret Martonosi. Long-term

workload phases: Duration predictions and applications to dvfs. Ieee Micro,
25(5):39–51, 2005.

[71] Tara Merin John, Syed Kamran Haider, Hamza Omar, and Marten van Dijk.
Connecting the dots: Privacy leakage via write-access patterns to the main
memory. IEEE Transactions on Dependable and Secure Computing, 17(2):436–442,
2020.

[72] Ajay Joshi, Lieven Eeckhout, Robert H. Bell, and Lizy John. Performance cloning:
A technique for disseminating proprietary applications as benchmarks. In 2006
IEEE International Symposium on Workload Characterization, pages 105–115,
2006.

[73] Ajay Joshi, Lieven Eeckhout, Robert H. Bell, and Lizy K. John. Distilling the
essence of proprietary workloads into miniature benchmarks. ACM Trans.
Archit. Code Optim., 5(2), September 2008.

[74] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan,
Tipp Moseley, Gu-Yeon Wei, and David Brooks. Profiling a warehouse-scale
computer. SIGARCH Comput. Archit. News, 43(3S):158–169, June 2015.

[75] Yoongu Kim, Weikun Yang, and Onur Mutlu. Ramulator: A fast and extensible
dram simulator. IEEE Computer architecture letters, 15(1):45–49, 2015.

[76] Nikita Lazarev, Shaojie Xiang, Neil Adit, Zhiru Zhang, and Christina Delim-
itrou. Dagger: Efficient and fast rpcs in cloud microservices with near-memory
reconfigurable nics. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
ASPLOS 2021, page 36–51, New York, NY, USA, 2021. Association for Computing
Machinery.

[77] Jacob Leverich and Christos Kozyrakis. Reconciling high server utilization and
sub-millisecond quality-of-service. In Proc. of EuroSys. 2014.

[78] Chit-Kwan Lin and Stephen J. Tarsa. Branch prediction is not a solved problem:
Measurements, opportunities, and future directions. In 2019 IEEE International
Symposium on Workload Characterization (IISWC), pages 228–238, 2019.

[79] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and
Christos Kozyrakis. Heracles: Improving resource efficiency at scale. In Proc.
of the 42Nd Annual International Symposium on Computer Architecture (ISCA).
Portland, OR, 2015.

[80] Shutian Luo, Huanle Xu, Chengzhi Lu, Kejiang Ye, Guoyao Xu, Liping Zhang,
Yu Ding, Jian He, and Chengzhong Xu. Characterizing microservice dependency
and performance: Alibaba trace analysis. In Proceedings of the ACM Sympo-
sium on Cloud Computing, SoCC ’21, page 412–426, New York, NY, USA, 2021.
Association for Computing Machinery.

[81] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-DietrichWeber,
and Thomas F.Wenisch. Powermanagement of online data-intensive services. In
Proceedings of the 38th annual international symposium on Computer architecture,
pages 319–330, 2011.

[82] David Meisner, Junjie Wu, and Thomas F. Wenisch. Bighouse: A simulation
infrastructure for data center systems. In 2012 IEEE International Symposium on
Performance Analysis of Systems Software, pages 35–45, 2012.

[83] Fionn Murtagh and Pedro Contreras. Algorithms for hierarchical clustering: an
overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,
2(1):86–97, 2012.

[84] Intel® 64 and ia-32 architectures optimization reference manual. February 2022.

https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html

Ditto: End-to-End Application Cloning for Networked Cloud Services ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[85] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. ACM Sigplan notices, 42(6):89–100, 2007.

[86] Reena Panda and Lizy K. John. Halo: A hierarchical memory access locality
modeling technique for memory system explorations. In Proceedings of the 2018
International Conference on Supercomputing, ICS ’18, page 118–128, New York,
NY, USA, 2018. Association for Computing Machinery.

[87] Reena Panda and Lizy Kurian John. Proxy benchmarks for emerging big-data
workloads. In 2017 26th International Conference on Parallel Architectures and
Compilation Techniques (PACT), pages 105–116, 2017.

[88] David Pariag, Tim Brecht, Ashif Harji, Peter Buhr, Amol Shukla, and David R
Cheriton. Comparing the performance of web server architectures. ACM SIGOPS
Operating Systems Review, 41(3):231–243, 2007.

[89] Harish Patil, Cristiano Pereira, Mack Stallcup, Gregory Lueck, and James Cownie.
Pinplay: A framework for deterministic replay and reproducible analysis of
parallel programs. In Proceedings of the 8th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO ’10, page 2–11, New
York, NY, USA, 2010. Association for Computing Machinery.

[90] G. Ravi, R. Bertran, P. Bose, and M. Lipasti. Micrograd: A centralized framework
for workload cloning and stress testing. In 2021 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), pages 70–72, Los
Alamitos, CA, USA, mar 2021. IEEE Computer Society.

[91] Charles Reiss, Alexey Tumanov, Gregory Ganger, Randy Katz, and Michael
Kozych. Heterogeneity and dynamicity of clouds at scale: Google trace analysis.
In Proceedings of SOCC. 2012.

[92] Michiel Ronsse and Koen De Bosschere. Recplay: A fully integrated practical
record/replay system. ACM Trans. Comput. Syst., 17(2):133–152, may 1999.

[93] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with
interactive graph analytics and visualization. In AAAI, 2015.

[94] Daniel Sanchez and Christos Kozyrakis. Zsim: Fast and accurate microarchitec-
tural simulation of thousand-core systems. In Proceedings of the 40th Annual
International Symposium on Computer Architecture, ISCA ’13, page 475–486,
New York, NY, USA, 2013. Association for Computing Machinery.

[95] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. Jalangi:
A selective record-replay and dynamic analysis framework for javascript. In
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineer-
ing, ESEC/FSE 2013, page 488–498, New York, NY, USA, 2013. Association for
Computing Machinery.

[96] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. Dapper, a
large-scale distributed systems tracing infrastructure. Technical report, Google,
Inc., 2010.

[97] Will Sobel, Shanti Subramanyam, Akara Sucharitakul, Jimmy Nguyen, Hubert
Wong, Arthur Klepchukov, Sheetal Patil, Armando Fox, and David Patterson.
Cloudstone: Multi-platform, multi-language benchmark and measurement tools
for web 2.0. In Proc. of CCA, volume 8, page 228, 2008.

[98] A. Sriraman and T. F. Wenisch. 𝜇 suite: A benchmark suite for microservices.
In 2018 IEEE International Symposium on Workload Characterization (IISWC),
pages 1–12, 2018.

[99] Akshitha Sriraman and Abhishek Dhanotia. Accelerometer: Understanding
acceleration opportunities for data center overheads at hyperscale. In Proceed-
ings of the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’20, page 733–750,
New York, NY, USA, 2020. Association for Computing Machinery.

[100] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F. Wenisch. Softsku:
Optimizing server architectures formicroservice diversity@scale. In Proceedings
of the 46th International Symposium on Computer Architecture, ISCA ’19, page
513–526, New York, NY, USA, 2019. Association for Computing Machinery.

[101] Akshitha Sriraman and Thomas F. Wenisch. µtune: Auto-tuned threading for
OLDI microservices. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), pages 177–194, Carlsbad, CA, October 2018.
USENIX Association.

[102] W Richard Stevens and Thomas Narten. Unix network programming. ACM
SIGCOMM Computer Communication Review, 20(2):8–9, 1990.

[103] Takanori Ueda, Takuya Nakaike, and Moriyoshi Ohara. Workload characteriza-
tion for microservices. In Proc. of IISWC. 2016.

[104] Luk Van Ertvelde and Lieven Eeckhout. Dispersing proprietary applications
as benchmarks through code mutation. In Proceedings of the 13th international
conference on Architectural support for programming languages and operating
systems, pages 201–210, 2008.

[105] Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf. Cachequery: Learning
replacement policies from hardware caches. In Proceedings of the 41st ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2020, page 519–532, New York, NY, USA, 2020. Association for Computing
Machinery.

[106] Qingyang Wang, Chien-An Lai, Yasuhiko Kanemasa, Shungeng Zhang, and
Calton Pu. A study of long-tail latency in n-tier systems: Rpc vs. asynchronous
invocations. In 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS), pages 207–217. IEEE, 2017.

[107] Ahmad Yasin. A top-down method for performance analysis and counters
architecture. In 2014 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 35–44, 2014.

[108] Shungeng Zhang, Qingyang Wang, Yasuhiko Kanemasa, Huasong Shan, and Lit-
ing Hu. The impact of event processing flow on asynchronous server efficiency.
IEEE Transactions on Parallel and Distributed Systems, 31(3):565–579, 2019.

[109] Yanqi Zhang, Yu Gan, and Christina Delimitrou. µqsim: Enabling accurate and
scalable simulation for interactive microservices. In 2019 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS), pages
212–222, 2019.

[110] Yanqi Zhang, Iñigo Goiri, Gohar Irfan Chaudhry, Rodrigo Fonseca, Sameh
Elnikety, Christina Delimitrou, and Ricardo Bianchini. Faster and cheaper
serverless computing on harvested resources. In Proceedings of the 28th ACM
Symposium on Operating Systems Principles (SOSP), October 2021.

[111] Yuhao Zhu, Daniel Richins, Matthew Halpern, and Vijay Janapa Reddi. Microar-
chitectural implications of event-driven server-side web applications. In Proc.
of MICRO, 2015.

Received 2022-07-07; accepted 2022-09-22

	Abstract
	1 Introduction
	2 Related Work
	2.1 CPU and Cloud Benchmarking
	2.2 Simulation and Trace Replay
	2.3 Performance Cloning and Synthetic Benchmarks

	3 Cloning Across the System Stack
	3.1 Application Inputs
	3.2 Application Codebase and Binary
	3.3 Deployment Environment
	3.4 Multi-Tenancy

	4 End-to-End Cloning for Cloud Services
	4.1 Overview
	4.2 Microservice Topology
	4.3 Application Skeleton
	4.4 Application Body
	4.5 Fine Tuning

	5 Implementation
	6 Evaluation
	6.1 Methodology
	6.2 Validation
	6.3 CPU Top-down Analysis
	6.4 Decomposition of Ditto's Accuracy
	6.5 Case Study: Interference Analysis
	6.6 Case Study: CPU Core and Frequency Scaling

	7 Discussion
	7.1 Suitable and Unsuitable Use Cases
	7.2 Confidentiality
	7.3 Application Phases
	7.4 Multi-tenancy and Virtualization
	7.5 Limitations and Future Work

	8 Conclusion
	Acknowledgments
	References

