
LibPreemptible: Enabling Fast, Adaptive, and
Hardware-Assisted User-Space Scheduling

Yueying Li
Cornell University

Ithaca, NY

Nikita Lazarev
Massachusetts Institute of Technology

Cambridge, MA

David Koufaty
Intel Labs

Hillsboro, OR

Tenny Yin
Cornell University

Ithaca, NY

Andy Anderson
Intel Labs

Hillsboro, OR

Zhiru Zhang
Cornell University

Ithaca, NY

G. Edward Suh
Cornell University

Ithaca, NY

Kostis Kaffes
Columbia University

New York, NY

Christina Delimitrou
Massachusetts Institute of Technology

Cambridge, MA

Abstract—Modern cloud applications are prone to high tail
latencies since their requests typically follow highly-dispersive
distributions. Prior work has proposed both OS- and system-
level solutions to reduce tail latencies for microsecond-scale
workloads through better scheduling. Unfortunately, existing
approaches like customized dataplane OSes, require significant
OS changes, experience scalability limitations, or do not reach
the full performance capabilities hardware offers. We propose
LibPreemptible, a preemptive user-level threading library that
is flexible, lightweight, and scalable. LibPreemptible is based
on three key techniques: 1) a fast and lightweight hardware
mechanism for delivery of timed interrupts, 2) a general-purpose
user-level scheduling interface, and 3) an API for users to
express adaptive scheduling policies tailored to the needs of their
applications. Compared to the prior state-of-the-art scheduling
system Shinjuku, our system achieves significant tail latency
and throughput improvements for various workloads without the
need to modify the kernel. We also demonstrate the flexibility of
LibPreemptible across scheduling policies for real applications
experiencing varying load levels and characteristics.

I. INTRODUCTION

A large portion of the world’s computation is now hosted
on either public or private cloud infrastructures. This has
brought on several changes to the way cloud applications are
designed, including moving away from monolithic services
to inter-dependent microservices and event-driven serverless
frameworks [21], [36]–[38], [61], [63]. These software design
approaches enable high concurrency of fine-grained tasks, with
thousands of user requests executing at any point in time.
The fine-grained nature of these tasks also allows them to
be coscheduled on the same physical host, which facilitates
multi-tenancy and improves the cloud’s resource efficiency. At
the same time, applications must meet service-level objectives
(SLOs), often defined in terms of tail latency.

Furthermore, datacenter suffers from massive thread over-
subscription. We observe serious thread over-subscription
consistently from recent Google traces [58] across widely-
used applications, where more than 50 threads on average
or sometimes around 500 threads can be scheduled to each
core (Table I). To achieve higher CPU efficiency and low tail
latency, one necessary precondition is fine-grained, scalable,
adaptive, and low-overhead preemptive scheduling.

App (code name) # of threads # of cores Threads/core
charlie 4842 10 484
delta 300 4 75

merced 5470 110 50
whiskey 1352 8 169

TABLE I: Datacenter thread oversubscription from four widely
used applications in Google [58].

Preemption enables more fine-grained resource sharing
among workloads and requests. Without preemptions, short
requests can get stuck behind long requests, causing head-
of-line (HoL) blocking. The lack of fine-grained preemptions
results in prior work experiencing high latencies under long-
tailed request service time [22], [27], [29], [49], [56].

Unfortunately, past proposals for preemptive scheduling
are not suitable for microsecond-scale workloads running
on exisiting cloud platform, for the following reasons. 1)
Preemptive user level threads based on regular interrupts still
incur high overheads during user- and kernel- level context
switches [10], [24]; if the minimum time slice is 5ms and there
are 200 threads on average per core, the scheduler cycle will be
increased to 1 seconds, significantly increasing tail latency. 2)
Optimizing preemption overhead, like Shinjuku [44]’s usage of
Posted IPI can reduce the time slice; however, assigning the
programmable interrupt controllers (APICs) to their runtime
introduces security concerns for a shared cloud environment.
Similarly, using APICs limits the approach’s scalability, as it
only supports a small number of logical cores.

An alternative scheduling approach to achieving low la-
tency scheduling without preemption is by using request-
specific knowledge. However, such information is difficult
to obtain beforehand. Additionally, the duration of these
requests’ execution time has no upper bounds. This makes it
challenging to apply rules, such as SRPT (Shortest Remaining
Processing Time [40]) or any other rules that give priority to
short requests, especially when operating at the microsecond
scale [28].

We propose LibPreemptible, a hardware-assisted user-level
threading library that enables fine-grained, configurable, and
scalable preemptions in the cloud. LibPreemptible is built on
top of user interrupt (UINTR), a new hardware capability in

0

2000

4000
Cy

cle
s

HW based (UINTR) SW based (Signal)

A B C D E
Workloads

0.0

0.5

1.0

1.5

No
rm

al
ize

d
Ti

m
e

Execution Preemption

Fig. 1: Left: Performance gap between software- and hardware-based IPC delivery. Right: Normalized overhead of preemption
w.r.t lean execution time for different microsecond-scale workloads running on Shinjuku (ranked by workload dispersion).

the Intel Xeon Scalable Processor codenamed Sapphire Rapids
(SPR). UINTR is a low-overhead communication mechanism
that allows application threads to directly send each other
interrupts bypassing the kernel. However, native UINTR is
not a good fit for dynamic workloads without knowledge
of request service times. We leverage UINTR to design a
user-level threading library that enables configurable and fine-
grained periodic interrupts, and adjusts scheduling timeslices
on the fly using statistical tests. LibPreemptible also introduces
fast and accurate user timers, which can be used by a wide
range of applications to easily build customizable scheduling
policies.

We evaluate LibPreemptible via microbenchmarks, as well
as synthetic and real applications widely used in private
and public clouds today. We show that it achieves better
performance, scalability, isolation, and flexibility compared
to prior work. The tail latency with LibPreemptible is 10×
better compared to Shinjuku [44], the previous state-of-the-
art system, across various workloads. In an environment
where applications time-share CPU cores, where a latency-
critical application shares resources with a best-effort (BE)
compression workload, LibPreemptible achieves on average
10% higher throughput for the BE job, while maintaining the
same 99% tail latency SLO for the latency-critical application.

LibPreemptible’s main contributions are:

• First paper to leverage a new hardware mechanism (UINTR)
for fine-grained user-level interrupts, that scales much better
than previous solutions and faster than traditional interrupts’
millisecond timescales [24].

• Designing a new abstraction with user-level timers with
fine-grained deadlines, called LibUtimer, accounting for the
diverse needs of different microsecond-scale applications
with a wide spectrum of scheduling policies.

• Running entirely outside the kernel and only requiring a
kernel modification to regularly enable UINTR [14]. Ap-
plications using LibPreemptible can coexist with traditional
applications and common cloud system software / hardware
stacks with only a few lines of code change.

This paper focuses not only on just putting UINTR into
use, but more on how we should build new abstractions

and delegate scheduling decisions to user-level applications,
offering adaptive policies that best meet their needs.

II. MOTIVATION

Below we demonstrate the characteristics of cloud work-
loads that motivate the need for a preemptive user-level thread-
ing library that operates adaptively, at microsecond scale.

A. The Need for a µs-scale Preemption Mechanism

Previous work has demonstrated that preemption in user
space is key to achieve low tail latency [44], [54]. Synchronous
mechanism offers relatively low latency, but are not practical
as they require the worker thread to be idle (for example,
blocked in the kernel waiting for an eventfd, or polling or
mwaiting on shared memory). Preemption requires the ability
to asynchronously receive an event during execution of a user-
level thread to trigger the context switch.

There are two approaches to deliver asynchronous events to
drive preemptions; however, the overhead, lack of precision,
modifications and security concerns often overshadow the
benefit on performance.

One approach to delivering the asynchronous event is to
use signals [10], [24], [62]. Typically, a thread creates a
kernel timer at a specific future time and the kernel delivers
a signal to the thread when the timer expires. In some cases,
threads additionally communicate using signals to propagate
the preemption event to other threads. However, a kernel timer
is susceptible to kernel jittering and the signal overhead is
significant and scales poorly as the number of threads increases
due to signal contention (Section V-B). These reasons limit
the applicability of this approach, and result in relatively large
preemption timers, as in the case of the Go programming lan-
guage [10], which recently introduced preemption to prevent
starvation at a 10ms granularity.

Another approach is to use native interrupts, which provide
a low latency mechanism for inter-processor communication
(IPC). However, interrupts are restricted to kernel software
due to its privileged nature, so it’s challenging to use them
directly within application threads. Furthermore, using inter-
rupts would require system calls at sender threads and signals
at the receiver threads. Prior works, such as Shinjuku [44],

0.5 1.0
Load

0

200

400

600

800

99
%

 Ta
il

La
te

nc
y

(u
s) Bimodal

0us
10us
20us

50us
500us
1000us

0.5 1.0
Load

0

200

400

600

800

99
%

 Ta
il

La
te

nc
y

(u
s) Exponential

0us
2us
5us

10us
100us

Fig. 2: Tail latency with different preemption quanta on bimodal (left) and exponential (right) workloads. Bimodal: 99.5% of
requests are short (10us) and 0.5% are long (1000us). Exponential: mean as 10us. The preemption overhead, including sender
and receiver cost, is about 1us across all settings.

have circumvented this overhead at the sender by mapping
the physical APIC to the sender, which is untenable in the
public cloud environment. Receiving events in user space
still requires kernel-mediation (for example, to notify workers
threads of the interrupt using signals) 1.

We profiled the overall CPU time spent in preemption
vs. execution (normalized to execution time) with the time
quantum chosen to offer the best tail latency for various
latency-critical workloads running on baseline system [44].
It can be observed that preemption overhead is significant,
especially for micro-second scale workloads with high disper-
sion (Figure 1 Right). Figure 1 Left shows the gap between
software-based IPC using signals, and hardware-assisted IPC
using UINTR. While previous software based optimizations
achieve performance benefits compared to regular interrupts,
there is still a gap to the latency of delivering and handling
an interrupt with hardware.

B. The Need for Adaptive Preemption

Datacenter workloads have a wide variation in request pro-
cessing times, especially at the microsecond level. Factors such
as high load, imbalanced requests, low CPU processing speed
due to interference, saturation, rate limiting, etc as well as high
cache miss ratios due to skewed key distributions, and more,
can cause high tail latencies in systems like Memcached [9].

Imbalanced request times can lead to head-of-line (HoL)
blocking where short requests are blocked by longer ones,
making adaptive scheduling policies necessary. The tail-
optimal scheduling policy changes with the request service
time distribution. To arrive at the best policy, we need to
adapt to the workload. For example, in heavy-tailed workloads,
c-FCFS (centralized first come first serve) scheduler with
preemption is better than PS (processor sharing), while the
throughput depends on the length of the time quantum. A
time quantum that is too long causes HoL (Head of Line)

1Other interrupt optimizations explored in Shinjuku (to avoid VM exits
at sender) in a virtualized environment are becoming irrelevant as hardware
vendors introduce support for inter-processor interrupts (IPI) virtualization [8].

issues, while one that is too short results in a decrease in
CPU efficiency.

Figure 2 illustrates the importance of adaptive preemptive
scheduling policies. With two typical service time distributions
running on 16 cores and different preemption quanta2, lower
preemption quanta give better tail latency in heavy-tailed
workloads (e.g. bimodal, until the time quantum becomes too
small), wheras higher time quanta give better tail-latency for
light tailed workloads such as exponential workloads. The tail-
optimal scheduling policy varies with the request service time
distribution [66].

While aggressive preemptive scheduling can help reduce
tail latency in highly dispersive workloads, it’s not always
necessary under lower loads or lighter tailed workloads.

Current scheduling primitives (including OS or user-level
green threads) do not expose such decisions to users for the
following reasons. First, it was believed that delegating the
scheduling decisions to kernel is sufficient, because of the
privileged nature of kernel. However, with the tighter demand
on workload latency, the traditional linux kernel is no longer
a final rescue. Second, even if the application developers have
the intention to do so, there is no lightweight mechanism to
achieve this due to user-kernel context switching overhead.

III. USER INTERRUPT, LIMITATION AND DESIGN

We first discuss the background of user interrupt, the chal-
lenges of using them, and design objectives of LibPreemptible,
then present how we arrive at the right abstraction for fine-
grained user-level interrupt delivery which the library is built
upon, and finally show a framework for building application-
specific adaptive request schedulers based on LibPreemptible.

A. User Interrupts

The kernel is used in almost all instances of communica-
tion across privilege boundaries, and it includes notification
mechanisms based on hardware interrupts, signals, pipes, files,

20us time quantum means no preemption.

3

Interrupt
vector X

Interrupt
vector Y UINTR

Target Table

0 UITTE for Int Y

1 UITTE for Int X

Receiver Task A
IA32_UIPD

UPID A

Receiver Task B
IA32_UIPD

UPID B

Sender Task C

IA32_UITT

SendUIPI 0
SendUIPI 1

➁➀

➂

v

Sender

Receiver

vKernel

Register
handler

➀

➂

Fig. 3: User Interrupt overview. The mechanism can be de-
composed into two phases, setup phase and delivery phase.
In the setup phase, 1) receivers set up UPID and register the
handler, and return uintr fd to the sender; 2) senders use
uintr fd to allocate UITTE and get the UIPI index. In the
delivery phase, 3) senders call SENDUIPI.

etc. The only exception is when applications use memory for
communication, which requires the receiver to poll, resulting
in resource inefficiency.

User interrupt is a new hardware capability that delivers low
overhead preemption without kernel mediation. User interrupts
avoid transitions through the kernel, by enabling the possibility
of sending and handling hardware interrupts directly in non-
privileged applications in the user space [17]. While their
setup requires kernel enabling, in runtime, delivery of a user
interrupt to a running thread results in nearly the same latency
as that of a regular interrupt. User interrupt also works with
inter-processor interrupt virtualization, which allows guest
software to send and receive UINTR without the cost of a
VM Exit.

The interrupt delivery happens in three steps (Figure 3):
1) Each receiver stores interrupt information in a memory
location defined by User Posted Interrupt Descriptor (UPID).
2) Each sender requires a table targeting receivers. The per-
thread User Interrupt Target Table (UITT) contains the target
UPID and interrupt vectors to deliver. User interrupts have 64
interrupt vectors per thread. 3) SENDUIPI takes an index to
the UITT table to deliver an interrupt, and the UPID holds
all the information necessary to post the request and send a
notification to the CPU. The CPU control flow can be modified
by a user interrupt, also called user interrupt delivery. It can be
triggered by either the processor state or the state of memory
data structures, managed by the processor and OS.

If the receiver is runnable, the UPID records the request
and suppresses the notification. If blocked, the UPID uses an
ordinary interrupt to unblock the receiver and inject the user
interrupt.

// Sender API
// Receive FD via inheritance or UNIX domain sockets
uipi_handle = uintr_register_sender(uintr_fd,flags);
int uintr_unregister_sender(uintr_fd, flags);
// x86 Instruction
void _senduipi(uipi_handle);
// Receiver API
// Register User Interrupt Handler
int uintr_register_handler(handler_func, flags);
int uintr_unregister_handler(flags);
// Create an fd representing the vector - priority
uintr_fd = uintr_create_fd(vector, flags);
void __attribute__ ((interrupt))

u_handler(struct __uintr_frame
*frame, unsigned long vector) {
write(STDOUT_FILENO, "User Interrupt!\n", 16);
uintr_received = 1;

}

Fig. 4: Native UINTR API.

B. Challenges and Abstractions for Preemption

To fully realize the benefit of hardware support for user-level
interrupts, we design LibPreemptible, a scheduling library that
achieves programming flexibility and dynamic time sharing
built on top of UINTR. Native User interrupt (including
unmodified UINTR instruction set architecture, and kernel
APIs, shown in Figure 4) is not a good fit for micro-second
scale scheduling for modern datacenter applications.

• First, the lack of exposure to application-level info makes
it hard to dynamically change interrupt decisions based on
runtime application characteristics. This requires defining
an appropriate interface for users to express application
requirements.

• Second, UINTR employs the security model of eventFD,
which may cause DoS across untrusted processes. This
requires defining an appropriate protocol to communicate
scheduling decisions across untrusting processes without
violating their respective constraints.

Based on these challenges, we discuss how to arrive at the
right abstraction. Realizing fine-grained and adaptive preemp-
tion is challenging. OS threads are the natural choice due to the
OS support for preemption and a rich set of functionality: per-
thread signal masks, CPU affinity, etc. However, their benefits
are limited when optimizing tail latency due to multiple rea-
sons, most notably 1 granularity of kernel context switching
(in ms-scale), 2 overhead of the context switch and 3
limited information about an application’s characteristics that
the OS can use towards scheduling.

Ideally, the right abstraction should satisfy four require-
ments. First, for each request, it should allow the scheduler to
express latency requirements as deadlines, which allows the
preemption or cancellation of some long requests to release
resources when otherwise SLO will be violated. Second, to
allow the scheduler to make wise decisions, the abstraction
should enable the user-level runtime to record past request
information in a generic form. Third, it needs to express
application-specific deadlines, to allow the scheduler to adjust
to different loads and QoS constraints. Finally, the abstraction

4

Application (multi-threading)

New protocol: Fine-grained deadlines

User-level runtime: Context Manager, Queues

LibPreemptible API (IV.C)

LibUtimer (III.E)

Timers: 64 byte-aligned address, precise deadline

Scheduler (III.F)

User Interrupt

Quantum Control

Fire interrupt

QoS

adjust timer

Stats

Process 1 Process N

Fig. 5: LibPreemptible can be decomposed into three components: Scheduler, LibPreemptible API, and LibUtimer.

should defend against untrusted applications, e.g., they cannot
preempt other applications based on how their timers are
compiled.

To achieve the above requirements, we propose and build
LibPreemptible, a user-level library with lightweight API and
runtime support that can flexibly schedule microsecond-level
requests. With 3us minimum time slice, it introduces accurate
and fine-grained deadlines based on user-level threads. The
key problem is to support fine-grained deadline abstraction
for the dynamic and unknown workloads. To effectively tackle
the challenge, we propose LibUtimer, a controllable user-level
timer that implements fast and hardware-assisted preemptive
timers in user space. Due to the applications’ dynamic na-
ture—both in terms of request service time and various loads,
an online algorithm is proposed to achieve near-tail-optimal
scheduling.

C. Design Goals

As a general purpose user-level threading library, the de-
sign of LibPreemptible should achieve four goals: enabling
lightweight and fine-grained scheduling decisions, scalability,
separation of mechanism and policy, and compatibility. We
elaborate the goals as follows.

• Enabling lightweight and fine-grained preemption: the
library should provide efficient task preemption mechanisms
to allow the schedulers built on top to make scheduling
decisions with time quanta in the order of microseconds;

• Scalability: the overhead of the preemption mechanisms
should grow sub-linearly with the number of threads in the
application;

• Separation of mechanism and policy: the design of LibPre-
emptible, which provides mechanisms, should be decoupled
from the design of the scheduling policies. On the other
side, the application developers should be able to express
the policies on top with the minimal API provided by the
library;

• Compatibility: as a standalone user-space library running on
commodity servers, LibPreemptible should be compatible
with various common cloud system software stacks.

D. Design Overview

LibPreemptible provides an API and runtime support for
application developers to design efficient latency-critical re-
quest processing systems with custom scheduling policies. The
library provides interfaces and APIs that are generalizable
across application requirements. Figure 5 shows how differ-
ent components interact with each other and with UINTR.
LibPreemptible takes the scheduler’s decisions on time quan-
tum to adjust the deadlines (Quantum Control). The queues
from LibPreemptible provide statistics of past requests (Stats).
LibUtimer adjust timers and fire user interrupt to preempt
worker threads.

In particular, Figure 6 represents how the data structures
of LibPreemptible interact with each other. In the scheduler
layer, for each request, LibPreemptible defines Function thread
(Tn) consisting of the request Context (C) and the Deadline
(D). The context encapsulates each request’s state (e.g., stack,
instruction pointer, etc.) at any point in time. In our cur-
rent implementation, the context is based on the lightweight
fcontext. The deadline represents the total time slice given
for the requests by the scheduler according to the current

5

Stat collector
(µ, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦!! ,	
𝑙𝑎𝑡𝑒𝑛𝑐𝑦"# , 𝑄𝑙𝑒𝑛

…)

Running list

Free
 list
P

Scheduling
Policy #1

Core Core

Scheduler

LibPreemptible

LibUTimer

Tn
{context,
deadline}

Tn
{context,
deadline}

Core

P

P

User Space

UINTR

Fig. 6: A logical view of an adaptive request scheduler built upon LibPreemptible.

policy. When the deadline is reached, LibPreemptible preempts
the request by storing the context in the preempted list (also
defined as a part of the application) and returning control to
the scheduler for the next scheduling decision.

LibPreemptible is based on another library, called LibU-
timer. LibUtimer implements an accurate user-space timer
that periodically fires preemption signals to all active requests
when the corresponding deadlines are reached. The process
of delivering these signals is crucial to the performance,
scalability, and portability of the library.

E. Preemption Timer

We use UINTR to build an efficient, fast, and scalable
preemption timer library LibUtimer.

A simple solution for preemption is to use kernel timers.
Kernel timer comes with significant performance costs, mostly
due to the kernel overheads of setting up the timer using
system calls, and the signal delivery. System call overheads
can be reduced by making a single system call with a periodic
timer when the preemption interval is static. However, this
approach does not work when the timer is dynamic or must be
adjusted due to yields. Signals have a significant performance
overhead that worsens as the contention in the kernel increases
due to timer alignment; for example, when timers are created
right after thread creation (creation-time). Prior work [62] tried
to reduce this overhead by spreading the timers along the timer
interval (staggered) or via a single kernel timer and signals to
communicate the timer event to other threads (chaining).

However, these approaches are impractical for the fine-
grained and dynamic timers needed to reduce tail latency, as
we will show in Section V-B. They show poor scalability,
as there is no sufficient spacing between timer events to
reduce kernel contention, as the thread count increases [62].
The overhead of these timers would offset the benefit of the
scheduler in terms of tail latency.

These shortcomings motivate a dedicated user-timer library
based on UINTR that scales to a large number of applica-
tions issuing concurrent interrupts, reducing context switching
overhead, and enabling latency-critical applications to meet
their SLOs. LibUtimer is able to achieve 3us minimum time
slice for scheduling, much lower than any other kernel timers.
This fine-grained time unit enables a new design dimension for
preemptive online scheduling. The API is described in detail
in Section IV-A.

F. User-Level Scheduler

LibPreemptible exposes an API for users to easily integrate
application-specific scheduling policies.

The scheduler is responsible for scheduling incoming re-
quests across available worker threads. The scheduler is trig-
gered either by the preemption signal from the UINTR, which
is controlled by the deadline in the LibPreemptible library or
when a new request arrives. It then makes the next scheduling
decision based on the set of metrics (Stats) collected from
the previous requests over a given time window, typically 10s
(including the request load µ, median and tail latencies, the
length of the local queues Qlen). The statistics are used to
control QoS by changing the deadline or time quantum for
each request individually.

In this example, we use a two-level scheduling mechanism
to achieve adaptive QoS control with scheduling (Figure 6).
Each worker thread is associated with a local queue of requests
to be executed. The local scheduler acts in the following
situations: 1) when it sees an incoming request on the queue,
2) or when a function got timed-out/preempted. Local queues
for each worker manage execution of functions in a FIFO
order. Preempted long-running functions go into the global
“running list” together with their context. Finished functions
go into the global “free list” and the contexts are reused. A

6

centralized running and free context list, which the scheduler
maintains, help with better load balancing.

Furthermore, we can adaptively control the time quantum
based on past latency distributions and real-time load. Algo-
rithm 1 shows a time quantum controller that manages the
change of user-level scheduler dynamically3 (which is demon-
strated in section V-C). During high load, the preemption
interval becomes lower, ensuring timely and precise interrupt
delivery to the right application thread. We set the period for
the routine of changing time quanta as 10 sec, Lhigh as 90%
of max load, and Llow as 10% of max load. The tail index
(0 ≤ α < 2) is considered as a heavy tail distribution [26].
The UINTR and LibUtimer enable a minimum time quantum
of 3 microseconds, a level that previous mechanisms couldn’t
attain due to issues with jitter. It ensures microsecond-scale
tail latency. In practice, the hyperparameters can be adapted
to different workloads from tracking past request data with our
API.

Algorithm 1 Adaptive Time Quantum Controller
1: Input: past [Qlen, median and tail latencies], incoming load (µ)
2: Hyperparameters: Lhigh, Llow, k1, k2, k3, Qthreshold

3: Hyperparameters: Tmin, Tmax

4: Function: f (fitting tail index with past statistics)
5: TQ← current time quantum
6: Tail index (α) ← f(past [median and tail latencies])
7: if µ > Lhigh then
8: TQ← min{TQ− k1, Tmin}
9: end if

10: if [Qlen > Qthreshold or tail index (α) falls in heavy tail distribution]
then

11: TQ← min{TQ− k2, Tmin}
12: end if
13: if µ < Llow then
14: TQ← max{TQ+ k3, Tmax}
15: end if
16: Output: updated time quantum (TQ) =0

IV. IMPLEMENTATION

LibPreemptible is implemented in C, and can be deployed
on existing applications with an additional dozen of lines of
code (including setting deadlines when launching user level
threads, arming / disarming timers, etc.), and compiled with a
standard toolchain, such as gcc.

A. LibUtimer

LibUtimer implements fast, hardware-assisted preemptive
timers in user space. The user interrupt delivers the preemption
notification that will be used to trigger scheduling operations
if needed. To deliver the user interrupt, LibUtimer requires
that each thread registers a memory location where the time
of its next preemption interrupt is located. We refer to this as
the deadline address, and it is required to be allocated in a
dedicated, naturally aligned 64 byte location to avoid false

3For heavy tail identification and definition of tail index on line 7 in
the algorithm, please refer to the methodology [25], [26]. We use a similar
statistical test to determine the direction of changing quanta, that can easily
be implemented and enforced with our API under dynamic workloads. A
feedback controller can also be integrated with our API.

sharing. The deadline specifies the value of the timestamp
counter (TSC) when the thread wants its next preemption
interrupt. LibUtimer polls on the TSC, and sends a user
interrupt to a thread when the TSC reaches its deadline.

The key interfaces exposed by LibUtimer are as follow:
1) utimer init: This function creates a pool of timer

threads, normally a single thread. This thread will use the
RDTSC instruction to check the current value of the TSC
and eventually send a user interrupt using the SENDUIPI
instruction. It does so by periodically inspecting the value
of the TSC and comparing it to the registered deadlines.

2) utimer register: This function is called by applica-
tion threads to specify the memory address of the deadline.
It hides the low-level interactions with the kernel [14] to
register the interrupt handler, create a file descriptor in the
context of the application thread, etc.

3) utimer arm deadline: This function performs a
memory write to set the deadline with the new time to
fire the next preemption interrupt.

A timed interrupt fires periodically, causing our signal
handler to be invoked, which in turn fires the user interrupt.
Furthermore, for application with large thread counts and
request for higher number of timers, we can opt in and use
timing wheel techniques [64].

B. Context Management

We customize the fcontext library [1] for context manage-
ment. The context structure consists of a machine-specific
representation of the saved state, the signal mask, a pointer
to the context stack, and a pointer to the context that will be
resumed when this context finishes execution. The dispatcher
allocates context objects and stack space for each request from
a global memory pool; an application can define the size of this
pool. When scheduler launches a function, a relevant context
is attached to it. It is freed when the function related with
the context completes execution and is returned to the pool of
global contexts. When a function gets preempted, the context
will be put into a global wait list.

Context can be reused by other requests once a function
finished execution. The free contexts are maintained in a global
free list. We further optimize the context switching overhead
as done in Shinjuku [44].

C. Adaptive User-controlled API

LibPreemtible exposes a simple API that allows the creation
and immediate execution of a function until the function
completes, or its time slice has been reached. In either case,
control is returned to the scheduler, which then can decide
which function to resume.

The key interface exposed by LibPreemptible is as follow:
1) fn launch: This function is used to create a preemtible

function. Its execution begins immediately, and control
is returned to the caller when the function completes
or a timeout (the time slice) is reached. State for the
preemptible function is allocated by the caller, and saved
upon preemption.

7

for (i = 0; i < N; i++) {
// launch a preemptible function
// and run it until the timeout
fn_launch(my_function, &fn_args[i],

&functions[i], timeout_us);
// queue it for later execution if uncompleted
if (!fn_completed(&functions[i]))

enqueue(run_queue, &functions[i]);
}

// round-robin scheduler
while (!empty(run_queue)) {

// resume the function at the top of the queue
f = dequeue(run_queue);
fn_resume(f, timeout_us);
// queue it for later execution if uncompleted
if (!fn_completed(f))

enqueue(run_queue, f);
}

Fig. 7: LibPreemptible example of a simple round-robin sched-
uler running N static user-level threads.

2) fn resume: This function resumes execution of a pre-
emptible function. As with fn launch, control is re-
turned to the caller when the function completes or a
timeout is reached.

3) fn completed: This function checks the status of a
preemptible function and indicates its completion before
the timeout expired, so that a reschedule is unnecessary.

When requests are scheduled, each runs on top of a
lightweight preemptible function. When the request exceeds
its timeout, its state is saved, including the registers and PC,
and control returns to the worker thread. The worker thread can
implement a custom scheduling policy, incorporating factors,
such as the request’s wait and execution time, and account for
an application’s SLO. Figure 7 shows a simple example of a
round-robin scheduler using the LibPreemptible API.

V. EVALUATION

LibPreemptible can be used by any datacenter applications
written in C/C++. We deploy the system on an Intel Xeon
Scalable Processor codenamed Sapphire Rapids with UINTR
support (the network stack is DPDK or kernel TCP, and
all machines run on Linux kernel version 5.15.0-rc1+ with
turbo-boost disabled and fixed frequency scaling at 1.7GHz).
The server has 56 CPUs, 112 hyperthreads and 2 sockets.
Hyperthreading is enabled unless noted. For older CPUs,
LibPreemptible will fall back to standard interrupts. Below
we answer the following questions:
• Does LibPreemptible outperform prior preemptible schedul-

ing techniques in terms of latency and throughput?
• Can LibPreemptible be deployed with third-party applica-

tions out-of-the-box?
• What is the overhead of LibPreemptible?
• Does adaptively setting the preemption quantum optimize

performance and latency in a colocation environment?

A. Performance Comparison

We first compare LibPreemptible to Shinjuku [44] and Li-
binger [24], the most recent related work for preemption-based

scheduling system. We first compare the three systems on
synthetic loads, then on real workload. The synthetic workload
is a server application where requests perform dummy work
that we can control to emulate any target distribution of service
times.

We experiment with several types of workloads with pois-
son arrival rates. These distributions are selected to match
workloads found in object stores and databases that mix
simple GET/PUT requests with complex range or relational
queries [49], [54]. A. Heavy tailed; 1) a bimodal workload
with 99.5% 0.5us and 0.5% 500us requests, and 2) a bimodal
workload with 99.5% 5us and 0.5% 500us requests. B. Lighter
tailed; an exponential workload with mean request time of
5us. C. Dynamic; a workload with first half as heavy tailed
(A1) and second half as lighter tailed (B), representing a
distribution shift in client request patterns.

We experimented with different worker numbers. To ensure
a fair comparison and the benefit even at the cost of one
timer core, the experiments present 1 network thread, 5 worker
threads for Shinjuku and Libinger, and 1 network thread, 4
worker threads (+1 timer thread) for LibPreemptible, running
for 2 minutes.

Figure 8 shows the comparison of median (left) and tail
(right) latency and throughput for the three systems. Under
high load, the median and tail latencies with LibPreemptible
are ∼ 10× better than Shinjuku. The maximum throughput is
measured by bounding 99% tail latency by 200x the average
latency in a stable system. Shinjuku needs to do careful
profiling to select the right time quanta to achieve the desired
throughput. LibPreemptible achieves better throughputs while
dynamically adjusting the quanta under different workloads,
as shown in Figure 8 (right), 22% higher than Shinjuku under
workload A1, and 33% higher than Shinjuku under C.

To separate the benefit from the new hardware, we disabled
UINTR in LibUtimer (orange line), which makes the library
run on ordinary timed interrupts. As we will show later,
because the interrupt-based timer’s granularity is much worse,
and the overhead of timer delivery is also larger, the tail latency
under higher load becomes worse by more than 5x.

To evaluate the benefit of policy and deadline abstraction,
Figure 9 shows how adaptive time quanta reduce SLO vio-
lations (as 50us) in workload C. The analysis to trigger the
change in time quantum is only called every 10 sec and it
is off the critical path, so it does not hurt the tail latency.
Under lower load and low dispersion in service time, the time
quantum is set to a higher value, consuming fewer CPU cycles
for preemption.

B. LibPreemptible Analysis

LibPreemptible deployment overhead: We now measure the
overhead of LibPreemptible for a simple gRPC server that
uses no preemption by default. There are different threading
models and configurations provided by the gRPC interface. We
choose a thread pool threading model with blocking to ensure a
low-latency baseline. LibPreemptible can also be incorporated
on other threading models like Single Process Event-Driven

8

0.2 0.4 0.6 0.8
Load

100
101
102
103
104
105

50
%

 L
at

en
cy

 (u
s)

LibPreemptible LibPreemptible (w/o LibUTimer) Shinjuku Libinger

0.2 0.4 0.6 0.8
Load

99
%

 L
at

en
cy

 (u
s)

Workload A(1/2) B C
Shinjuku 0.9 / 0.50 0.70 0.51
Libinger 0.35 / 0.23 0.12 NA

LibPreemptible 1.1 / 0.75 0.78 0.68

Fig. 8: Left: Median and tail latency under different throughput for a bimodal workload (0.5% 500 us, 99.5% 0.5 us). X axis
is normalized with respect to the max load. Right: Tail latency bounded throughput (MRPS).

0 20 40 60 80 100
time (s)

0

10

20

30

SL
O

vi
ol

at
io

n
(%

) 10us Fixed 500us Fixed Dynamic

Fig. 9: Dynamic LibUtimer is better at adapting to a dis-
tribution shift (Workload C), resulting in much fewer SLO
violations. The latter half of the workload exhibits a higher
average service time so the SLO violation rate is higher under
a static policy.

10 Tns 20 Tns 30 Tns
Number of Threads (Tns)

0.0

0.5

1.0

Ov
er

he
ad

 (%
)

20% Max QPS 50% Max QPS 90% Max QPS

Fig. 10: End-to-end percentage overhead impact on 99% tail
latency (Overhead %= p99libfunc−p99

p99) across different loads
with different numbers of user-level threads per kernel thread
(Tn) compared to no preemption.

(SPED) [12] architecture which operates on asynchronous
ready sockets.

We use a modified version of the open loop wrk2 [5]
workload generator to generate requests with exponential
service time. We measure the latency distributions at different
QPS levels, with different numbers of user-level threads and
kernel-level threads. We first fix the number of worker threads
and measure the overhead of LibPreemptible with different
numbers of user-level threads and user contexts at 20% -
90% of peak throughput, in terms of percentage degradation
on p99 latency. As shown in the Figure 10, when the QPS
is 20% - 80% of max load, the latency difference caused
by LibPreemptible is negligible (below 1%) as the number
of thread contexts increases, showing that hardware-assisted

interrupt delivery scales well on larger systems.
We also study how the tail latency behaves under different

loads. When the load is around 89% of max, we observe
around 1.2% tail latency overhead, due to the higher number of
requests per thread that are preempted per unit of time. Over-
head increases sublinearly for higher loads and is minimal. The
deployment overhead for LibPreemptible is also minimal: in
our real workload setups, we deployed LibPreemptible in just
1 week (Sec V-C), which also included familiarizing ourselves
with MICA and Zlib’s original threading library. All the
changes needed to integrate LibPreemptible are at user-level,
while for Libinger and Shinjuku, we need to either customize
the kernel or customize the glibc library. The code needed is
only 3% of the original application code (excluding library
code) to integrate LibPreemptible. The following tables show
the additional time and code needed for integration (Table II
and III).

Time needed MICA Zlib RPC

LibPreemptible 4 hours 3 hours 7 hours
Shinjuku NA NA 11 hours
Libinger 9 hours 8 hours 12 hours

TABLE II: Time spent on integration by a researcher with no
prior knowledge of either of the three frameworks.

Code needed MICA/Zlib RPC

LibPreemptible 3% 4%
Libinger NA 7%

TABLE III: Additional code percentage. Since Shinjuku has a
high percentage of kernel code we did not include it.

avg (us) min (us) std (us) rate (msg/s)
signal 15.325 3.584 3.478 63493

mq 10.468 8.960 2.017 95093
pipe 17.761 10.240 4.304 56151

eventFD 29.688 2.816 13.612 33629
uintrFd 0.734 0.512 0.698 857009
uintrFd 2.393 2.048 0.212 409734

(blocked)

TABLE IV: Overhead of different IPC mechanisms.

9

101 102 103

threads

100

101

102

103

Se
rv

ice
 T

im
es

 (u
s)

Per-thread (LibUtimer)
Per-thread (creation-time)
Per-thread (aligned)
Per-process (chain)

Fig. 11: Scalability of timer delivery overhead.

0 1000 2000 3000 4000
0

50

100

Ti
m

er
 g

ra
nu

la
rit

y
(u

s)

100us Kernel Timer
100us LibUTimer

20us Kernel Timer
20us LibUtimer

Fig. 12: Precision of LibUtimer. X axis shows number of
samples.

Microbenchmarking: We now compare the interrupt delivery
overhead for LibPreemptible to other IPC or event nofication
mechanisms in Table IV. We adapt the microbenchmark
suite [7], and use 1M ping-pong IPC notifications with mes-
sage size=1B. The user interrupt (averaged between blocked
and running) has 10× better average latency compared to
the fastest IPC mechanism (message queue). This enables us
to deliver fine-grained interrupts to user code. Moreover, the
delivery overhead has smaller variance, even when the receiver
is blocked.
Scalability and overhead of LibUtimer: We consider two
approaches to implementing preemption timers in LibUtimer:
per-thread and per-process. With a per-thread timer, every
thread has its own OS timer. With a per-process timer, all
threads in the process share the same OS timer: one thread
receives the signal and forwards it to other threads. Figure 11
shows the timer interrupt delivery overhead with 1000 inter-
rupts on multiple threads, with interval between timer interrupt
as 100us.

• Per-thread (creation-time): A naı̈ve implementation of a
per-thread timer in which the timer of each thread is set
independently (e.g., on thread creation) does not scale well
on systems with large core counts. In Linux, calling a signal
handler involves taking a lock in the kernel, thus causing
lock contention when multiple signals are issued at the
same time. Figure 11 shows that the superlinearity is likely

because of the lock contention, taking as much as 100 us
for large core counts.

• Per-thread (aligned): The timer interrupts across the differ-
ent threads are explicitly aligned to reduce contention in the
kernel lock. This approach significantly reduces the timer
interrupt overhead, especially for higher thread counts, by
almost 10× with 32 threads. However, it comes at a cost
- the precision of the timer is impeded due to the delay of
the issued interrupt.

• Per-process (chain): Shiina et al. proposed a new optimiza-
tion to per-process timers, called “chained signals” [62]. The
thread receiving interrupts handles the signal and then issues
a signal to at most one other thread.

• Per-thread (user-timer/LibUtimer): LibUtimer achieves
the best scalability across thread counts.
Moreover, compared with the scalability limitations of ear-

lier approach used by Shinjuku (since the APIC supports only
a limited number of logical processors), LibUtimer are able to
scale to more tenants using more logical processors by design.
LibUtimer precision and power cost: Finally, we study
and justify the timer thread overhead: As a justification of
dedicating a core for timer threads, we measure the cost is
about 1.2 Watts for the first core because UMWAIT can save
energy for busy polling. With each additional core, the power
cost is minimal. Besides, we also use stress-ng [13] to
inject some contentions, and even with kernel activities (IRQ-
affinity, TLB shootdowns, overcommitment), we observed that
the timer preciseness will not be significantly impacted. In
Figure 12, we measure the jittering of LibUtimer timer with
background activities, when our target quanta is 100us and
20us. It shows the time between setting up a periodic kernel
timer vs LibUtimer with 26 threads and visualizes the time
(y-axis) between calls to the handler for 5000 consecutive
samples (x-axis). Kernel timer’s granularity cannot go down
to 20us (which is why we see a line around 60us) and shows
high variations, and LibUtimer can consistently give precise
timer (average relative error for timer delivery is around 1%
for 5000 samples).

C. LibPreemptible in Real Workload Scenarios

To improve resource management and enable efficient CPU
utilization, latency critical (LC) jobs can be time-sharing CPU
resources with other applications, often best effort (BE), and
use preemption to reclaim resources. This reclaimation must
happen adaptively in micro-second scale to ensure low tail
latency when needed. Achieving this in practice is challenging,
especially for the jobs with µs- and sub-µs- SLO requirements,
due to relatively large overhead of preemption in current
systems. With LibPreemptible, this overhead is dramatically
reduced; this can allow low-latency LC jobs to meet their SLO
even when aggressively sharing resources with BE tasks.

1) Experiment Setup: We use the MICA [49] KVS system
as the LC work in this experiment due to its sub-µs scale
execution time for small requests. As the co-located BE
processing, we use data compression based on zlib [16]. We
run MICA under 5/95 SET/GET request distribution with the

10

App Params Latency
50%, 99%

MICA

EREW mode
{k, v} = {16, 64}B

SET/GET = 5/95
zipf w/ skewness 0.99

1us, 7 us

zlib data size = 25 kB 100us, 250 us

TABLE V: Workloads for the co-location experiment.

skewness at 0.99. We use the default zipfian generator from the
original MICA work. This yields a median request processing
time of 1us. As the compression workload, we run zlib engines
against 25 kB of raw data where median latency is 100 us.
Table V summarizes the configuration of the datasets used
for both workloads, and shows the median and tail request
latencies when running them individually, without co-location,
and on a single core.

The request generator issues uniformly distributed BE and
LC requests with 2% and 98% rates respectively with both
constant and bursty QPS. The dispatch thread is connected
(over dispatch queue) to worker threads via our user-space
request scheduler based on LibPreemptible. We showcase two
different scheduling policies, to demonstrate how adaptability
in the time quantum helps with achieving the best of both
worlds for LC’s SLO and BE’s throughput.

2) Scheduling policy #1, FCFS with preemption, constant
preemption interval: Here the scheduler picks up the first
request from the dispatch queue and runs it in the worker
thread with the static and constant time quantum of 30 us. If
the request runs for a longer time period, it gets preempted
and pushed into the long queue. Then the scheduler picks
up the next element from the dispatch queue thereby giving
preemptive priority to shorter jobs. If the dispatch queue is
empty, the scheduler resumes previously preempted requests
from the long queue via fn resume() calls. The results of
the experiment are shown in Figure 13 (left).

As Figure 13 (left) shows, our preemptive scheduler brings
the 99th tail latency of the LE job (LC-Lib) down 3.2×−4.4×
times compared to non-preemptive execution (LC-Base). With
the preemption interval of 30 us, the scheduler brings the tail
latency of MICA KVS requests down to 33 us under 55 kRPS.
When the preemption interval is set to 5 us (Figure 13, right),
the scheduler brings the 99th tail latency of MICA requests
down to 8 us, which is 18.5× lower than non-preemptive
execution under the same load and co-location environment.
However, the preemption interval of 30 us results in 30%
increase of the BE job latency, and the overhead reaches 2.2×
when using very low intervals of 5 us.

3) Scheduling policy #2, FCFS with preemption, dynamic
preemption interval: One of the key benefits of the LibPre-
emptible API is the ability to dynamically set the preemption
interval on a per-request basis. The ability to change the time
quantum in runtime allows us to build an adaptive scheduling
policy that would adjust preemption in interval depending on
the current request rate. In this experiment, we modify the

previous policy by adding two new components in the system:
the QPS monitor, and the controller of the preemption interval.

According to this policy, the scheduler monitors the current
QPS rate of incoming requests and sets the preemption interval
in the worker threads according to the load. We test the
policy with a spiky load generator that periodically issues
bursty traffic (Figure 14). We allow the controller to set the
preemption interval to values between 10 and 50 us, and our
workload QPS changes from 40 to 110 kRPS.

Figure 14 (left) shows that a preemption interval of 50 us
reduces the average latency of the LC job from 14 us to
10 us, under the QPS spikes. It does not affect the latency
of the co-located BE job significantly when load is low, and
only marginally during spikes. When using lower preemption
intervals of 10 us (middle), we achieve a reduction of the
LC average latency down to 3 us – 5× lower than when
running without LibPreemptible, however the latency penalty
for the BE job is relatively higher. While complete avoidance
of the latency penalty of the BE job is impossible due to
preemptions, the overhead can be reduced when the load is
low by setting the preemption interval to a higher value during
these periods. Figure 14 (right) shows performance with our
adaptive time quantum scheduler. The average latency of the
LC job remain low during the time of the experiment, while
the negative impact on the BE jobs during periods of low
load is minimized. These results justify the need for adaptive,
low-overhead preemption when the workload is spiky, and
showcase the corresponding scheduler that can be build with
LibPreemptible.

VI. RELATED WORK

We now discuss prior proposals for scheduling for reducing
tail latency and improving CPU efficiency, and quantify our
differences.

Dataplane Operating Systems: A dataplane OS improves
throughput and/or latency by separating its control and data
planes. Initially, the systems that target microsecond-level
workloads, such as Chronos [46], IX [22], and Arrakis [55],
choose to statically pin threads to cores, and offload load
balancing to the NIC hardware, thus eliminating the associated
scheduling overheads. This approach works well for homoge-
neous workloads, however, it can introduce higher latencies for
complex workloads with varying execution times, e.g., key-
value stores [31], [49]. ZygOS [56] shows that load-balancing
through work stealing among the pinned threads is necessary
even at these timescales. Shinjuku [44] demonstrates that it
is feasible to implement more complex scheduling policies
without significant overheads by re-purposing low-overhead
preemption mechanisms normally used by VMs. These ap-
proaches require significant changes to the OS, and typically
support specific types of applications, which are not scalable
and do not coexist with common cloud system software stacks.
LibPreemptible performs better than Shinjuku while operating
safely on top of the Linux kernel. Our work will complement
existing dataplane OSes and hardware offloading techniques.

11

18 kRPS 25 kRPS 32 kRPS 55 kRPS
Load

0

200

400

99
th

 la
te

nc
y

(u
s)

LC-Base BE-Base LC-Lib BE-Lib

inf 50 30 20 10 5
Preemption Interval (us)

101

102

103

99
th

 la
te

nc
y

(u
s)

LC BE

Fig. 13: Tail latency of co-located LC and BE jobs with LibPreemptible based preemptive scheduler with fixed time quantum
of 30us (left) and with variable time quantum over fixed QPS of 55kRPS (right).

50

100

Th
ro

ug
hp

ut
,

 k
RP

S

2
6

10
14

LC
 la

te
nc

y,

 u
s

w/o preempt.
with preempt.

0 1 2 3 4 5 6 7 8 9
Time, s

100
115
130
145

BE
 la

te
nc

y,

 u
s

w/o preempt.
with preempt.

50

100

2
6

10
14 w/o preempt.

with preempt.

0 1 2 3 4 5 6 7 8 9
Time, s

100
115
130
145 w/o preempt.

with preempt.

50

100

2
6

10
14 w/o preempt.

with preempt.

0 1 2 3 4 5 6 7 8 9
Time, s

100
115
130
145

w/o preempt.
with preempt.

Fig. 14: Average latency of LC and BE jobs over time with a constant preemption interval of 50 us (left), 10us (middle), and
with the dynamic policy (right); the top plot shows measured QPS of the bursty load in the dispatch thread, the middle and
the bottom - average latency of LC and BE jobs respectively over the 10 s timeframe.

User-level Threading: There is a significant body of work
on co-operative userspace thread libraries starting from Adya
et al. [18] who proposes the concept of userspace threading
with automatic stack management. Capriccio [65] introduces
optimizations to improve scalability and scheduling, optimiz-
ing stack allocation while identifying some of the pitfalls
of non-preemptive scheduling. Inspired by scheduler activa-
tions [19], Arachne [57] makes userspace threading core-aware
and thread creation faster. Psyche [51] introduces first-class
user-level threads that delivers software interrupts. Commer-
cial languages and libraries, such as Go [6], folly::Fibers [4],
Boost fibers, uThreads [11], and C++ coroutines [2]), have
adopted many of these optimizations.

Libturquoise [24] is the first attempt to create a general-
purpose user-level threading library using regular timer in-
terrupts as the preemption mechanism, and mainly focusing
on handling shared state and non-reentrant code. Shiina et
al. [62] improves upon libturquoise via chained per-process
timers and general-purpose, kernel-level thread switching.
LibPreemptible leverages hardware support to minimize the
preemption overhead of user interrupts, and facilitates the
development of custom user-level scheduling policies.

Scheduling Policies: Based on the fact that First-Come-
First-Serve (FCFS) scheduling has been shown [66] to be

context switch

signal delivery

signal delivery

~10 us ~us

timer interval~us

total = ~10 us

Libinger and similar

application

context switch

posted interrupt
~us

timer interval~us

~100 ns

total = ~us

Shinjuku and similar

privileged app

context switch

user interrupt
~us

timer interval~us

~10ns

LibPreemptible

total = ~us

application

app
library
kernel

interrupt delivery
~10 us

total = ~100 us to ~ms*

Linux Kernel

application

~100 us
to ~ms

context switch

timer interval

Fig. 15: Comparison of LibPreemptible to prior work.

tail-optimal for light-tailed homogeneous tasks, many older
systems did hash-based load balancing on the network inter-
face card (NIC) using receive side scaling (RSS) and running
requests to completion [22], [49], [55]. To handle imbalance
between workers, newer systems enhance RSS to take into
account end-host load (RSS++ [20], eRSS [59]), employ

12

work-stealing (ZygOS [56], Shenango [54], Caladan [34],
BWS [30], Elfen [67], Li at al. [48]), or use techniques, such as
join-idle-Queue [50] or join-bounded-shortest-queue [47]. To
accommodate highly-variable workloads, Shinjuku [44] takes
a different approach by implementing centralized preemptive
scheduling in a dedicated core, while Bertogna et al. [23]
attempt to find the optimal preemption points. Persephone [29]
leverages application-specific knowledge to reserve cores for
short requests and avoid preemption altogether. Other pro-
posals employ custom hardware with centralized scheduling
(Mind the Gap [42], nanoPU [43], RPCValet [27]), priority
queues (ExpressLane [53]), or fast context switching [41].

Recently, McClure et al. [52] show that the trade-offs
between load balancing and core allocation are not easy
to navigate even without considering request reordering and
preemptive policies. It has generated a renewed interest in cus-
tomizable and application-specific scheduling. Zhao et al. [68]
focus on scalable, adaptive, SLO-aware scheduling systems
by combining the effectiveness of SLO-aware migration pol-
icy and a hardware-based mechanism for short-lived RPCs.
SKQ [69] makes event scheduling on top of the Linux kernel
configurable. Ford et al. [32], Slite [35], and ghOSt [42]
offload kernel thread scheduling decisions to userspace while
Syrup [45] allows users to deploy custom scheduling functions
throughout the stack safely. LibPreemptible does not require
additional hardware, simplifies the specification and deploy-
ment of custom thread scheduling policies, providing complete
flexibility in how preemption is employed.

Finally, LibPreemptible is orthogonal to and can benefit ex-
isting work which dynamically allocates CPU cores like [34],
to schedulers that focus on microsecond-scale reallocation
of resources, like Caladan [34] and Shenango [54], and to
systems which use kernel bypass techniques, like DPDK [3].
Figure 15 shows how LibPreemptible differs from prior work.

VII. DISCUSSION

A. Native User Interrupts Security Discussion

The security model for native User Interrupts is designed
with a focus on trusted and cooperating processes. Note that
the model allows any sender with access to uintr fd to
generate the associated interrupt vector for the receiver task
that created the fd. This could potentially lead to issues with
untrusted processes launching a Denial of Service attack.

The potential for a DoS attack by generating a storm
of user interrupts is a valid concern. The fact that a user
interrupt handler is invoked with interrupts disabled, but upon
execution of uiret, interrupts get enabled by the hardware,
could indeed lead to the handler being invoked before normal
execution can resume.

LibPreemptible only allows timer threads to send preemp-
tion, which is under the same security domain. The quan-
tum is also controlled by trusted application process. So
LibPreemptible reduce the attack surface compared with native
UINTR.

B. Attack Surface under LibPreemptible

Security of interrupt-handling is critical, especially in real
cloud environments. Shinjuku uses inter-process interrupts
(IPIs) directly, rather than Linux signals for preemption to
reduce overhead, because it executes in privilege ring 0. To
minimize the preemption overhead, it maps the local APIC
for each application core to the same address space as the
dispatcher. Because the APIC is directly mapped to ring 3
in Shinjuku, both the Shinjuku runtime and application must
be trusted. Direct APIC access enables buggy or malicious
code to flood the system with IPIs, creating a DoS attack
vector against all cores. LibPreemptible avoids this exposure
through the use of User Interrupts. While User Interrupts may
be sent directly without kernel intervention, allowing low-
latency signaling, they may only be sent to targets configured
in the kernel-maintained User Interrupt Target Table (UITT).
In LibPreemptible, the only configured vectors are between
the timer cores and worker applications. Buggy runtime code
can at most degrade application performance within a single
runtime.

C. Other Use Cases and Future Work

Other use cases for Libpreemptible include traffic shap-
ing [60], scheduling in 5G [33], and real-time DNN serv-
ing [39]. The accuracy of these timed actions is crucial to
the performance of these real-time applications. Concurrent
DNN serving with lightweight micro-second scale preemption
on CPU can also improve the throughput and latency. LibPre-
emptible can provide a precise and lightweight solution to
these use cases.

Additionally, while our evaluation uses a dedicated core
to generate timer events using the UINTR capability, it is
relatively easy to offload this capability directly to hardware.
In fact, hardware vendors are exploring supporting this type of
capability using a dedicated hardware timer that can deliver
an interrupt directly to the application [15]. This hardware
offloading approach will improve performance/watt at the cost
of area of the chip.

VIII. CONCLUSIONS

We propose LibPreemptible, a hardware-assisted library for
user-level scheduling. Our primitives achieve flexibility, good
performance, and scalability at the same time. LibPreemptible
leverages user-level interrupts, and its abstraction delegates
scheduling decisions to applications and provides an interface
that supports dynamic policies. Compared with prior systems
it showed significantly better performance and scalability.
LibPreemptible is compatible across application types and
requires no changes to the existing OS kernels, making it
easy to be deployed in cloud settings. This work can both
highlight the benefits of hardware-assisted user-level schedul-
ing and motivate follow-up work that improves the generality
of dynamic application-aware scheduling policies.

13

IX. ACKNOWLEDGEMENTS

We sincerely thank Qizhe Cai, Chris De Sa, Sihang Liu,
Kevin Tang, Yang Zhou, Sol Boucher, Tom Anderson, Ken
Birman, Mengjia Yan, Xuehai Qian for their feedback. We
thank the colleagues in SSR group in Intel Labs (especially
Rajesh Sankaran and James Tsai) for the support. This work
was supported in part by NSF CAREER Award CCF-1846046,
SRC ACE center funding, and an Intel Research Award.

REFERENCES

[1] Boost c++ libraries. https://www.boost.org/.
[2] Coroutines. https://en.cppreference.com/w/cpp/language/coroutines.
[3] Dpdk/dpdk: Data plane development kit. https://github.com/DPDK/

dpdk.
[4] folly/readme.md at main · facebook/folly. https://github.com/facebook/

folly/blob/main/folly/fibers/README.md.
[5] giltene/wrk2: A constant throughput, correct latency recording variant

of wrk. https://github.com/giltene/wrk2.
[6] The go programming language specification - the go programming

language. https://go.dev/ref/spec.
[7] Ipc benchmark. https://github.com/goldsborough/ipc-bench.
[8] Ipi virtualization support for vm [lwn.net]. https://lwn.net/Articles/

863190/.
[9] memcached - a distributed memory object caching system. https:

//memcached.org/.
[10] Proposal: Non-cooperative goroutine preemption. https:

//go.googlesource.com/proposal/+/master/design/24543-non-
cooperative-preemption.md.

[11] samanbarghi/uthreads: A concurrent user-level thread library imple-
mented in c++. https://github.com/samanbarghi/uThreads.

[12] Single-process event-driven. https://www.usenix.org/legacy/
publications/library/proceedings/usenix99/full papers/pai/pai html/
node7.html.

[13] stress-ng. https://wiki.ubuntu.com/Kernel/Reference/stress-ng.
[14] Uintr kernel patch. https://lore.kernel.org/lkml/20210913200132.

3396598-7-sohil.mehta@intel.com/.
[15] User timer directly programmed by application. https://patents.justia.

com/patent/20220147393.
[16] Zlib compression. https://zlib.net/.
[17] Intel ® architecture instruction set extensions and future features pro-

gramming reference. 2021.
[18] Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky, and

John R. Douceur. Cooperative task management without manual stack
management. In Proceedings of the General Track of the Annual
Conference on USENIX Annual Technical Conference, ATC ’02, pages
289–302. USENIX Association, 2002.

[19] Thomas E Anderson, Brian N Bershad, Edward D Lazowska, and
Henry M Levy. Scheduler activations: Effective kernel support for the
user-level management of parallelism. ACM Transactions on Computer
Systems, 10:53–79, 1992.

[20] Tom Barbette, Georgios P Katsikas, Gerald Q Maguire Jr, and Dejan
Kostić. Rss++ load and state-aware receive side scaling. In Proceedings
of the 15th international conference on emerging networking experi-
ments and technologies, pages 318–333, 2019.

[21] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy Ran-
ganathan. Attack of the killer microseconds. Commun. ACM,
60(4):48–54, mar 2017.

[22] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. Ix: A protected dataplane operating
system for high throughput and low latency ix: A protected dataplane
operating system for high throughput and low latency. 2014.

[23] Marko Bertogna, Orges Xhani, Mauro Marinoni, Francesco Esposito,
and Giorgio Buttazzo. Optimal selection of preemption points to
minimize preemption overhead. Proceedings - Euromicro Conference
on Real-Time Systems, pages 217–227, 2011.

[24] Sol Boucher, Anuj Kalia, David G Andersen, and Michael Kaminsky.
Lightweight preemptible functions.

[25] Mark E. Crovella. Performance evaluation with heavy tailed distri-
butions. https://www.cs.bu.edu/faculty/crovella/paper-archive/tools00-
perfeval-ht.pdf, 2000. (Accessed on 04/09/2023).

[26] Mark E Crovella, Murad S Taqqu, et al. Estimating the heavy tail
index from scaling properties. Methodology and computing in applied
probability, 1(1):55–79, 1999.

[27] Alexandros Daglis, Mark Sutherland, and Babak Falsafi. Rpcvalet: Ni-
driven tail-aware balancing of µs-scale rpcs. In Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 35–48, 2019.

[28] Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-aware
scheduling for heterogeneous datacenters. SIGPLAN Not., 48(4):77–88,
mar 2013.

[29] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias,
Boon Thau Loo, Linh Thi Xuan Phan, and Irene Zhang. When idling is
ideal: Optimizing tail-latency for heavy-tailed datacenter workloads with
perséphone. SOSP 2021 - Proceedings of the 28th ACM Symposium on
Operating Systems Principles, 17:621–637, 10 2021.

[30] Xiaoning Ding, Kaibo Wang, Phillip B. Gibbons, and Xiaodong Zhang.
Bws: Balanced work stealing for time-sharing multicores. In Pro-
ceedings of the 7th ACM European Conference on Computer Systems,
EuroSys ’12, page 365–378, New York, NY, USA, 2012. Association
for Computing Machinery.

[31] Pekka Enberg, Ashwin Rao, and Sasu Tarkoma. The impact of thread-
per-core architecture on application tail latency. In 2019 ACM/IEEE
Symposium on Architectures for Networking and Communications Sys-
tems (ANCS), pages 1–8. IEEE, 2019.

[32] Bryan Ford and Sai Susarla. Cpu inheritance scheduling. 2nd USENIX
Symposium on Operating Systems Design and Implementation, OSDI
1996, 1996.

[33] Xenofon Foukas and Bozidar Radunovic. Concordia: Teaching the 5g
vran to share compute. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, SIGCOMM ’21, page 580–596, New York, NY, USA,
2021. Association for Computing Machinery.

[34] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay.
Caladan: Mitigating interference at microsecond timescales. 2020.

[35] Phani Kishore Gadepalli, Runyu Pan, and Gabriel Parmer. Slite: Os
support for near zero-cost, configurable scheduling. In 2020 IEEE Real-
Time and Embedded Technology and Applications Symposium (RTAS),
pages 160–173. IEEE, 2020.

[36] Yu Gan, Mingyu Liang, Sundar Dev, David Lo, and Christina Delim-
itrou. Sage: Practical and scalable ml-driven performance debugging in
microservices. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2021, page 135–151, New York, NY, USA, 2021.
Association for Computing Machinery.

[37] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris
Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky,
Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina
Delimitrou. An open-source benchmark suite for microservices and their
hardware-software implications for cloud & edge systems. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
’19, page 3–18, New York, NY, USA, 2019. Association for Computing
Machinery.

[38] Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna
Pancholi, and Christina Delimitrou. Seer: Leveraging big data to navi-
gate the complexity of performance debugging in cloud microservices.
In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
ASPLOS ’19, page 19–33, New York, NY, USA, 2019. Association for
Computing Machinery.

[39] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen.
Microsecond-scale preemption for concurrent GPU-accelerated DNN
inferences. In 16th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 22), pages 539–558, Carlsbad, CA, July
2022. USENIX Association.

[40] Mor Harchol-Balter, Nikhil Bansal, and Bianca Schroeder. Implemen-
tation of srpt scheduling in web servers. Technical report, CARNEGIE-
MELLON UNIV PITTSBURGH PA SCHOOL OF COMPUTER SCI-
ENCE, 2000.

[41] Jack Tigar Humphries, Kostis Kaffes, David Mazires, and Christos
Kozyrakis. A case against (most) context switches; a case against (most)
context switches.

14

https://www.boost.org/
https://en.cppreference.com/w/cpp/language/coroutines
https://github.com/DPDK/dpdk
https://github.com/DPDK/dpdk
https://github.com/facebook/folly/blob/main/folly/fibers/README.md
https://github.com/facebook/folly/blob/main/folly/fibers/README.md
https://github.com/giltene/wrk2
https://go.dev/ref/spec
https://github.com/goldsborough/ipc-bench
https://lwn.net/Articles/863190/
https://lwn.net/Articles/863190/
https://memcached.org/
https://memcached.org/
https://go.googlesource.com/proposal/+/master/design/24543-non-cooperative-preemption.md
https://go.googlesource.com/proposal/+/master/design/24543-non-cooperative-preemption.md
https://go.googlesource.com/proposal/+/master/design/24543-non-cooperative-preemption.md
https://github.com/samanbarghi/uThreads
https://www.usenix.org/legacy/publications/library/proceedings/usenix99/full_papers/pai/pai_html/node7.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix99/full_papers/pai/pai_html/node7.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix99/full_papers/pai/pai_html/node7.html
https://wiki.ubuntu.com/Kernel/Reference/stress-ng
https://lore.kernel.org/lkml/20210913200132.3396598-7-sohil.mehta@intel.com/
https://lore.kernel.org/lkml/20210913200132.3396598-7-sohil.mehta@intel.com/
https://patents.justia.com/patent/20220147393
https://patents.justia.com/patent/20220147393
https://zlib.net/
https://www.cs.bu.edu/faculty/crovella/paper-archive/tools00-perfeval-ht.pdf
https://www.cs.bu.edu/faculty/crovella/paper-archive/tools00-perfeval-ht.pdf

[42] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir Weisse, Barret
Rhoden, Josh Don, Luigi Rizzo, Oleg Rombakh, Paul Turner, and
Christos Kozyrakis. Ghost: Fast and flexible user-space delegation of
linux scheduling. SOSP 2021 - Proceedings of the 28th ACM Symposium
on Operating Systems Principles, pages 588–604, 10 2021.

[43] Stephen Ibanez, Alex Mallery, Serhat Arslan, Theo Jepsen, Muhammad
Shahbaz, Changhoon Kim, and Nick McKeown. The nanopu: A
nanosecond network stack for datacenters. In 15th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 21), pages
239–256. USENIX Association, July 2021.

[44] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, David Mazires,
Christos Kozyrakis, Adam Belay, and David Mazı̀ Eres. Shinjuku: Pre-
emptive scheduling for µsecond-scale tail latency shinjuku: Preemptive
scheduling for µsecond-scale tail latency.

[45] Kostis Kaffes, Jack Tigar Humphries, David Mazires, and Christos
Kozyrakis. Syrup: User-defined scheduling across the stack. SOSP
2021 - Proceedings of the 28th ACM Symposium on Operating Systems
Principles, pages 605–620, 10 2021.

[46] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M. Voelker,
and Amin Vahdat. Chronos: Predictable low latency for data center
applications. Proceedings of the 3rd ACM Symposium on Cloud
Computing, SoCC 2012, 2012.

[47] Marios Kogias, George Prekas, Adrien Ghosn, Jonas Fietz, and Edouard
Bugnion. R2P2: Making RPCs first-class datacenter citizens. In 2019
USENIX Annual Technical Conference (USENIX ATC 19), pages 863–
880, Renton, WA, July 2019. USENIX Association.

[48] Jing Li, Kunal Agrawal, Sameh Elnikety, Yuxiong He, I. Ting Angelina
Lee, Chenyang Lu, and Kathryn S. McKinley. Work stealing for
interactive services to meet target latency. Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPOPP, 12-16-March-2016, 2 2016.

[49] Hyeontaek Lim, Dongsu Han, David G Andersen, and Michael Kamin-
sky. Mica: A holistic approach to fast in-memory key-value storage
mica: A holistic approach to fast in-memory key-value storage. 2014.

[50] Yi Lu, Qiaomin Xie, Gabriel Kliot, Alan Geller, James R. Larus, and
Albert Greenberg. Join-idle-queue: A novel load balancing algorithm for
dynamically scalable web services. Performance Evaluation, 68:1056–
1071, 11 2011.

[51] Brian D. Marsh, Michael L. Scott, Thomas J. LeBlanc, and Evangelos P.
Markatos. First-class user-level threads. SIGOPS Oper. Syst. Rev.,
25(5):110–121, sep 1991.

[52] Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia Ratnasamy.
Efficient scheduling policies for Microsecond-Scale tasks. In 19th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 22), pages 1–18, Renton, WA, April 2022. USENIX Association.

[53] Amirhossein Mirhosseini, Brendan L. West, Geoffrey W. Blake, and
Thomas F. Wenisch. Express-lane scheduling and multithreading to
minimize the tail latency of microservices. Proceedings - 2019 IEEE
International Conference on Autonomic Computing, ICAC 2019, pages
194–199, 2019.

[54] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. Shenango: Achieving high cpu efficiency for latency-
sensitive datacenter workloads shenango: Achieving high cpu efficiency
for latency-sensitive datacenter workloads. 2019.

[55] Simon Peter, Jialin Li, Irene Zhang, Dan R.K. Ports, Doug Woos, Arvind
Krishnamurthy, Thomas Anderson, and Timothy Roscoe. Arrakis: The

operating system is the control plane. ACM Transactions on Computer
Systems, 33, 11 2015.

[56] George Prekas, Marios Kogias, and Edouard Bugnion. Zygos: Achieving
low tail latency for microsecond-scale networked tasks. SOSP 2017
- Proceedings of the 26th ACM Symposium on Operating Systems
Principles, pages 325–341, 10 2017.

[57] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ouster-
hout. Arachne: Core-aware thread management. In 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), pages 145–160, Carlsbad, CA, 2018. USENIX Association.

[58] Parthasarathy Ranganathan and Victor Lee. Advancing systems research
with open-source google workload traces. https://dynamorio.org/google
workload traces.html, 2011. Accessed on April 15, 2023.

[59] Alexander Rucker, Muhammad Shahbaz, Tushar Swamy, and Kunle
Olukotun. Elastic rss: Co-scheduling packets and cores using pro-
grammable nics. In Proceedings of the 3rd Asia-Pacific Workshop on
Networking 2019, APNet ’19, page 71–77, New York, NY, USA, 2019.
Association for Computing Machinery.

[60] Ahmed Saeed, Nandita Dukkipati, Valas Valancius, Terry Lam, Carlo
Contavalli, and Amin Vahdat. Carousel: Scalable traffic shaping at end-
hosts. In ACM SIGCOMM 2017, 2017.

[61] Mohammad Shahrad, Rodrigo Fonseca, Inigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. Serverless in the wild: Character-
izing and optimizing the serverless workload at a large cloud provider. In
2020 USENIX Annual Technical Conference (USENIX ATC 20), pages
205–218. USENIX Association, July 2020.

[62] Shumpei Shiina, Shintaro Iwasaki, Kenjiro Taura, and Pavan Balaji.
Lightweight preemptive user-level threads. Proceedings of the ACM
SIGPLAN Symposium on Principles and Practice of Parallel Program-
ming, PPOPP, 1:374–388, 2 2021.

[63] Akshitha Sriraman and Thomas F. Wenisch. µTune: Auto-Tuned
threading for OLDI microservices. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18), pages 177–
194, Carlsbad, CA, October 2018. USENIX Association.

[64] George Varghese and Tony Lauck. Hashed and hierarchical timing
wheels: Data structures for the efficient implementation of a timer
facility. In Proceedings of the eleventh ACM Symposium on Operating
systems principles, pages 25–38, 1987.

[65] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric
Brewer. Capriccio: Scalable threads for internet services. In Proceedings
of the Nineteenth ACM Symposium on Operating Systems Principles,
SOSP ’03, pages 268–281, Bolton Landing, NY, USA, 2003. ACM.

[66] Adam Wierman and Bert Zwart. Is tail-optimal scheduling possible?
Operations Research, 60:1249–1257, 9 2012.

[67] Xi Yang, Stephen M Blackburn, and Kathryn S Mckinley. Elfen schedul-
ing: Fine-grain principled borrowing from latency-critical workloads
using simultaneous multithreading. page 309.

[68] Jiechen Zhao, Iris Uwizeyimana, Karthik Ganesan, Mark C Jeffrey,
and Natalie Enright Jerger. Altocumulus: Scalable scheduling for
nanosecond-scale remote procedure calls. In 2022 55th IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 423–
440. IEEE, 2022.

[69] Siyao Zhao, Haoyu Gu, and Ali José Mashtizadeh. SKQ: Event
scheduling for optimizing tail latency in a traditional OS kernel. In
2021 USENIX Annual Technical Conference (USENIX ATC 21), pages
759–772. USENIX Association, July 2021.

15

https://dynamorio.org/google_workload_traces.html
https://dynamorio.org/google_workload_traces.html

	Introduction
	Motivation
	The Need for a s-scale Preemption Mechanism
	The Need for Adaptive Preemption

	User Interrupt, Limitation and Design
	User Interrupts
	Challenges and Abstractions for Preemption
	Design Goals
	Design Overview
	Preemption Timer
	User-Level Scheduler

	Implementation
	LibUtimer
	Context Management
	Adaptive User-controlled API

	Evaluation
	Performance Comparison
	LibPreemptible Analysis
	LibPreemptible in Real Workload Scenarios
	Experiment Setup
	Scheduling policy #1, FCFS with preemption, constant preemption interval
	Scheduling policy #2, FCFS with preemption, dynamic preemption interval

	Related Work
	Discussion
	Native User Interrupts Security Discussion
	Attack Surface under LibPreemptible
	Other Use Cases and Future Work

	Conclusions
	Acknowledgements
	References

