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1 Dynamic Contact-Impact Solver

Implicit time stepping method At each time step our implicit
contact method must jointly satisfy the discrete equations of motion
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to convergence with an iterative solver.

Modified Newton-Raphson with frictional contact To con-
struct our solver we first consider time-stepping without contact
forces. At each time step we seek a displacement update δt+1 sat-
isfying
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Ignoring ∂D
∂q we set
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and have ∇f ' H. In the following we will reserve superscripting
with indexing t for time step increments and superscripting with
indexing i for iteration increments. Modified Newton-Raphson then
approximates the linearization of f, at iterate i, around δi as

f(δi+1) ' f(δi) + H(δi)(δi+1 − δi). (9)

1x ⊥ y is the complementarity condition xiyi = 0, ∀i.

We then find the improved estimate of displacement δi+1 by line
search on the descent direction

δi − H(δi)−1f(δi). (10)

With contact, at each Newton iterate we are now solving for up-
dated triples of both displacement and boundary contact and fric-
tion forces, (δ, α, β). Applying the same modified linearization of
(1) about δi−1 then gives
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at each Newton iterate, the linearized contacting system we want to
solve is then

H(δi−1)δi = r(δi−1) + h2

2
Nα+ h2

2
Tβ,

0 ≤ λ ⊥ NT δi+1 ≥ 0,

min
β
{βTTT ( 2

h
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or, equivalently

0 ≤ λ ⊥h
2

2
NTH(δi−1)−1Nα

+ NTH(δi−1)−1[r(δi−1) + h2

2
Tβ
]
≥ 0,

min
β
{βTTT ( 2

h
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Inner-loop solve of Newton steps To solve each Newton step
we first backsolve to get
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The solution then simplifies a bit further to finding
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We then solve the Newton step Gauss-Seidel fashion. Each Gauss-
Seidel pass iteratively holds all unknowns except for forces at a
single contact k ∈ C fixed. We solve for the forces at k, update
them and then move on to the next k + 1 ∈ C. We run multi-
ple Gauss-Seidel passes through the system until convergence is
reached satisfying (16).
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Substituting in (16) we then solve the single-point frictional-contact
problem at contact k. This is just the small, three-dimensional prob-
lem to find (ᾱi+1
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We then update to (ᾱi+1
k , β̄i+1

k ) and move on to contact k + 1.

On convergence of this inner Gauss-Seidel iteration to optimal
(α∗, β∗) we update to the next Newton step displacement estimate
to

δi = r̃ + h2
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2
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We form the new needed quantities for the next Newton step in
(15) and then solve the next Newton step with Gauss-Seidel. On
convergence of the outer Newton iteration to satisfying (1), (3), and
(4) we then perform the Impact projection in (5) described below
and then move to the next time step.

Impact model solve To solve the BBI impact projection step in
(5) we can reuse the already computed final compliant term from
the last iterate in (15). In dual form our BBI impact projection is
equivalent to solving the system

0 ≤ λ ⊥NT Ñλ+ Ñ
T

c ≥ 0, (20)

and applying a final velocity update

vt+1 ← 1

h
(c + Ñλ), (21)

with c given from (5). We solve the linear-complementarity prob-
lem in (20) with projected Gauss-Seidel.

2 SE(3) Projections

During free-flight motion we can project each body’s FE state to a
fitted rigid body model equipped with rotational R ∈ SO(3) and
translational t ∈ IR3 degrees of freedom. Per body we choose co-
ordinates so thatR rotates from principal-axis–aligned body frame
to world frame and t gives the location of center of mass. Corre-
sponding angular and linear momenta are π, l ∈ IR3, with diagonal
inertia tensor I and mass m. Nodal positions of material points xi
during rigid motion are then xti = tt +Rt(x0

i − t0). We set cor-
responding momenta to (pT1 , ...,p

T
n )T = Mvt ∈ IR3n, stack nodal

vertices as Q = (x1, ...,xn) ∈ IR3×n and then project to rigid

state with
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(22)

We then timestep rigid body state forward through free-flight with
DMV [Moser and Veselov 1991], an energy–momentum preserving
rigid-body integrator, until the next collision is reached. Upon col-
lision we again need to model elastic behavior and so project back
to closest FE state with nodal positions and velocities

xti ← tt +Rt(x0
i − t0),

vti ← 1
m
lt −Rt(x0

i − t0)× (I−1πt).
(23)

Comparing the output trajectories between the full FEM simulation
and our hybrid projection trajectory we find a tight match through-
out.In our Design Supplemental we show the trajectories obtained
from full FEM and the hybrid for our jumping-over example. Both
simulations are initialized to the same configuration and terminate
at first impact. Here the jumper traces out an approximately 20cm
long trajectory while the two simulated trajectories differ in the
L∞-norm by 0.63 mm for the linear trajectory, i.e., center of mass,
and 0.02 radians in rotational pose over the trajectory.

3 Static Contact Solver

Loading model We observe in experiment that initial loading
processes are effectively quasistatic, with no-slip at contacts. We
then model the loading phase with a custom static solver that finds
equilibrium state subject to satisfying no-penetration contact con-
straints p ≥ 0 and an assumption of infinite (no-slip) friction. We
solve for a δ that gives the constrained equilibrium system maxi-
mizing frictional work

F (q0 + δ) + Nα+ Tβ + Fload = 0,

0 ≤ α ⊥ p(q0 + δ) ≥ 0,

α ⊥ TT δ, ∀k ∈ C.

(24)

Static solver Our static solver applies a direct solution approach
to compute nodal positions q subject to external loads Fext with
infinite-friction (no-slip) unilateral breaking contact. At each itera-
tion step i, we initialize a Newton-Raphson search direction δi

K(qi)δi = Fext − F(qi).

subject to Dirichlet boundary conditions fixing a set of previously
identified active contacting boundary vertices identified in the prior
iterate. At each iteration we apply a projected line search. We first
analyze the depth-component of all the previously identified active
contacting points qj . If qj penetrates an obstacle, we half the step
size of the search direction until the penetration depth for that point
is less than 10−2 × dx where dx is characteristic rest element size
in our discretization. After applying the line search, we then update
the set of active contacting vertices as follows and take the next it-
erate step. Initially, all vertices touching an obstacle boundary are
treated as fixed vertices. We then update the active set of contacting
vertices by examining force consistency on all vertices currently



contacting the boundary. If the force on a contacting boundary ver-
tex opposes the contacting normal direction, we free it by removing
it from the active set; if a contacting boundary vertex was previ-
ously free and is now penetrating, we project it back to the contact
boundary surface and add it to the active set. We run this solve to
convergence satisfying equilibrium in (24).

We verify our static solver with respect to full dynamic FEM sim-
ulation modeling loading with frictional contact. We find that the
relative geometric difference between solutions is 0.2% (Hausdorff
distance) while the relative difference between internal energies is
0.4%, with an overall 15X speedup gain from the static solver over
the dynamic FEM loading simulation.

4 Stiffness Consistent Mass Matrix

We assemble our full mass matrix from element mass matrices.
Within each element e, we integrate

Me =

∫
Ωe

8∑
i=1

ρeNi(ξ)N
T
i (ξ)dΩ

using 2-point Gauss quadrature. Here Nis are the tri-linear shape
functions used for our FE calculations including stress computa-
tion. Thus the mass matrix is stiffness-consistent and consistently
captures both linear and angular momentum of the system.

5 Constraint assembly

For each contact k ∈ C, the relative acceleration between material
points xi and xj (at contact k) can be expressed via the map Γk :
q̇ → ẋi − ẋj . If y ∈ IR3 is a force applied to point xi, and an
equal but opposite force is applied to point xj , ΓTk y is the resulting
generalized force applied to the contacting system. For contact k,
the map Γk is the sparse matrix with non-zero entries corresponding
to nodes participating in the contacting vertex or vertices. For nodal
vertex-boundary contact, a single identity entry corresponding to
the node’s DoFs is sufficient. For vertex-quadrilateral contacts, we
compute the signed identity entries for the five participating face
node DoFs weighted by the bilinear weights of the contacting points
in the face quadrilateral.
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