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ABSTRACT
We initiate a formal study on the concept of learnable obfusca-
tion and aim to answer the following question: is there a type of

data encoding that maintains the “learnability” of encoded samples,

thereby enabling direct model training on transformed data, while

ensuring the privacy of both plaintext and the secret encoding

function? This long-standing open problem has prompted many

efforts to design such an encryption function, for example, Neu-

raCrypt and TransNet. Nonetheless, all existing constructions are

heuristic without formal privacy guarantees, and many successful

reconstruction attacks are known on these constructions assuming

an adversary with substantial prior knowledge.

We present both generic possibility and impossibility results

pertaining to learnable obfuscation. On one hand, we demonstrate

that any non-trivial, property-preserving transformation which

enables effectively learning over encoded samples cannot offer cryp-
tographic computational security in the worst case. On the other

hand, from the lens of information-theoretical security, we devise a

series of new tools to produce provable and useful privacy guaran-

tees from a set of heuristic obfuscation methods, including matrix

masking, data mixing and permutation, through noise perturbation.
Under the framework of PAC Privacy, we show how to quantify the

leakage from the learnable obfuscation built upon obfuscation and

perturbation methods against adversarial inference. Significantly

sharpened utility-privacy tradeoffs are achieved compared to state-

of-the-art accounting methods when measuring privacy against

data reconstruction and membership inference attacks.

CCS CONCEPTS
• Security and privacy→ Privacy-preserving protocols.

KEYWORDS
learnable obfuscation; PAC privacy proof; membership inference;
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1 INTRODUCTION
Over the past few decades, machine learning has experienced

tremendous success in a wide range of applications, spanning from

image classification and natural language processing to personal-

ized recommendation. This impressive advancement, particularly
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in the development of deep learning, has been largely facilitated by

access to expansive, representative datasets and the computational

capabilities to train sophisticated models. As a result, concerns re-

lated to data privacy and implementation efficiency have come to

the forefront, garnering significant attention from the security and

cryptography communities. One critical challenge that has arisen

in cloud and collaborative computing is privately releasing data

and outsourcing a computationally-intensive training task to some

untrusted server. This process is expected to maintain the privacy

of both sensitive data and the resulting trained model, with low

implementation and communication overhead.

From a broad perspective, there exist two principal applications

in the realm of sensitive data publishing and learning. The first

involves training a public model using private data: a user secretly

converts her data into an encoded private version, from which a

model is learned, whose utility or accuracy is defined as its ability to

recognize the original data distribution. This scenario is what (Local)
Differential Privacy ((L)DP) [18, 19] and Instahide [32] consider.

For example, one may publish a set of distorted cat and dog images

that appropriately preserve the privacy of each individual entity;

when the noise is not huge, from the altered data, other people can

still learn a classifier to recognize the unperturbed cat-dog pictures.

It is known that in such a setup, no matter what kind of encoding

protocol is applied, that data privacy must be traded off against

the utility [10]. Similar arguments that “privacy cannot come free

of utility loss” from a lens of (L)DP have also been presented [18,

20]. The obfuscation method introduced in Instahide that claims

freedom from utility compromise has been broken [10], and its

theoretical vulnerability has also been studied [12]. The intuition is

that, if the model trained over the encoded data needs to work well

for the original samples, the transform should ensure substantial

similarity between the raw and encoded data. Besides such stringent

restrictions, it also implicitly suggests that an adversary could have

unlimited access to public data from the original sample domain

[10], since the meanings of labels and the learning task are openly

known to the adversary.

The second important application is to train a secret model from

private data, which is the central focus of this paper. The second

application is a special case of the former application discussed,

with the inclusion of an extra secret key. A user first encodes their

data with the secret key and sends the encoded data to an untrusted

server. The model trained over encoded data is not necessarily

known (possibly encrypted) to the server nor does it need to work

for the original data; only the user who has the key can apply

this model for meaningful prediction. The concept of learnable
obfuscation that we set out to formalize belongs to this category.

https://creativecommons.org/licenses/by/4.0/
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A traditional method to tackle this second application is based on

Fully Homomorphic Encryption (FHE) [21]. FHE offers a universal

framework for computing over encrypted data, where the oper-

ations can subsequently be converted back into plaintext. In the

realm of learning, all training computations can be executed over

encrypted data, while both intermediate computation and finally-

calculated model are encrypted; only the user possessing the key

can decrypt the computed encrypted model. Hence, in scenarios

aiming to learn a secret model, FHE indicates that computational

security does not necessarily conflict with model’s utility or ac-

curacy, since the user can ultimately acquire the same model as

when they train locally. While theoretically this framework allows

for any operation and numerous algorithmic advancements have

been made to optimize performance, state-of-the-art FHE or even

partially homomorphic encryption protocols still carry significant

computational and communication overhead [40, 64], which pre-

cludes their deployment to train deep neural networks on medium-

or large-scale datasets.

To overcome the inherent limitations of FHE, many heuristic ap-

proaches are being explored to design alternative solutions that can

circumvent the costly oblivious computation: FHE programs, speci-

fied in terms of primitive instructions through homomorphism, are

orders of magnitude slower than the corresponding native opera-

tions [24]. In particular for privately-outsourced machine learning,

one ideal scenario is that the computation over encoded data is

not oblivious to the learner/server: it allows one to train a model

directly over encoded data using standard optimization methods,

such as empirical risk minimization (ERM) via stochastic gradient

descent (SGD), thereby approaching the computational overhead as

low as that of a non-private machine learning. From the perspective

of statistical learning, any dataset that sufficiently captures the key

features of the underlying distributions can theoretically facilitate

the creation of a useful model, and importantly, this is not confined

to a specific dataset.

This leads to an interesting question. Can a user, through secret

encoding, transform the original learning dataset into a new one,

potentially in a different domain, satisfying the following: this new

dataset enables statistical learning directly and of ideal utility; but

it is hard for an adversary to relate the transformed dataset to the

original one. To develop useful and lightweight learnable obfus-

cation, one natural idea is to randomly and uniformly transform

the data domain based on some class of functions where certain

topology or locality of datapoints is preserved. Most existing learn-

able obfuscation proposals follow this line and largely rely on (a

combination of) the following three categories of obfuscations.

(a) MatrixMasking (RandomLinear Projection): As demon-

strated by thewell-known Johnson–Lindenstrauss (JL) lemma

[37], a properly-selected random linear operator (e.g., a Gauss-

ian matrix) can produce an efficient embedding for a set

of points in a higher-dimensional space that nearly pre-

serves their pairwise distance. Random linear projection

also plays an important role in compressive sensing and

locality-sensitive hashing [33]. Due to this nice statistical

property and the simple implementation, random linear pro-

jection [41], also named matrix masking in the literature

[16, 51, 66], and its variants, such as a multilayer perceptron

with random weights, are viewed as ideal constructions for

learnable obfuscation, and are adopted by empirical works

such as TransNet [30], NeuraCrypt [62] and Syfer [63].

(b) Data Mixing: Rooted in Mixup [65], a successful data aug-
mentation which considers training a network over mixed

virtual samples, Instahide [32] presents the first attempt to

obfuscate data by considering their random linear interpola-

tion. To be formal, given a set of𝑘 randomly-selected samples

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), · · · , (𝑥𝑘 , 𝑦𝑘 )}, where 𝑥𝑖 is the sample fea-

ture and 𝑦𝑖 is the one-hot-vector label, a random weight

𝝀 = (𝜆1, · · · , 𝜆𝑘 ) is generated where 𝜆𝑖 ≥ 0 and

∑𝑘
𝑖=1

𝜆𝑖 =

1. A virtual sample (𝑥,𝑦) to be released is constructed by

(∑𝑘𝑖=1
𝜆𝑖𝑥𝑖 ,

∑𝑘
𝑖=1

𝜆𝑖𝑦𝑖 ). The idea of datamixing also forms the

foundation of other follow-up privacy-preserving protocols,

such as DP-Instahide [7] and Datamix [42].

(c) Permutation:To obfuscate training data, another strategy
is permutation. Permutation is usually free of utility com-

promise given that most learning algorithms are invariant

to the ordering of training samples fed to the model. The

authors of NeuraCrypt [62] claim a heuristic challenge that,

when matrix masking and permutation are combined, an

adversary who already knows the plaintexts cannot recover

their correspondence to the encoded ciphertext.

We want to mention that data mixing and permutation, as two

sample-wise operations, can be applied to both scenarios of learn-

ing secret and public models. Regrettably, the assurance of semantic

privacy pertaining to any of the aforementioned obfuscation ap-

proaches remains largely unaddressed. In fact, none of these meth-

ods can produce input-independent security: under any (hybrid)

of the obfuscation strategies described above, an adversary could

distinguish the encodings between a dataset composed entirely

of zeroes and an adjacent dataset, formed by zeroes except for

one non-zero datapoint. To our knowledge, among these heuris-

tic operations, only random linear projection is known to yield

(weak) Differential Privacy (DP) guarantees after imposing strong

regularization [6].

The absence of formal tools to quantify privacy leakage has

emerged as a key impediment to research on learnable obfuscation

or even broadly functional (property-preserving) data obfuscation

beyond pure noise perturbation. Consequently, due to the lack

of systematic investigations, the real privacy-preserving capacity

of existing learnable obfuscation constructions can be, not sur-

prisingly, overestimated. For instance, Carlini et al. construct a

similarity-measure based attack which successfully addresses the

identification challenge proposed in NeuraCrypt [11]. In light of

the failures in existing learnable obfuscation proposals and juxta-

posed with the only-known provably secure solution via FHE, a

fundamental question arises: to achieve cryptographic security, is
it necessary to obscure computation over encoded data for a secure
outsourced learning? In particular, given the known impossibility

result that privacy must be traded off against utility to learn a public

model [10], in the special scenario where the user is allowed to

use an additional secret key for a secret model, can a non-trivial

encoding function theoretically achieve perfect privacy and utility,

simultaneously? In this paper, we take a first step to formalize the

concept of learnable obfuscation and set out to answer the following
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three key questions: a) what kind of security can one reasonably

expect from a learnable obfuscation, b) how to design practical

learnable obfuscation, and c) when can such an encoding provide

meaningful provable privacy guarantees? Our contributions are

summarized below.

(1) We formalize the concept of learnable obfuscation, and present

a generic impossibility result to achieve computational se-

curity when a non-trivial model of good encoded accuracy
can be directly trained from encoded data. This suggests

that even if a secret key is allowed in learnable obfuscation,

privacy still needs to be traded off against utility, similar to

the public model scenario.

(2) We then develop a series of new tools to quantify the in-

formation leakage from three long-standing heuristic ob-

fuscations: matrix masking, data mixing, and permutation.

Using PAC Privacy [58] to determine appropriate additive
noise after heuristic obfuscation, we show provable hardness

against generic adversarial inference with a particular fo-

cus on reconstruction and membership attacks. Our results

also provide intuitive explanations on how and why these

obfuscations save privacy from the information theory per-

spective. After proper preprocessing, significantly sharpened

utility-privacy tradeoffs are achievable compared to state-of-

the-art accounting methods against data reconstruction [5]

and membership inference attacks [48, 50]. These tradeoffs

are further improved by adding learnable noise.
(3) We point out the potential applications of learnable obfusca-

tion against reverse engineering attacks. Theoretical studies

are presented under mild assumptions on data distribution.

2 PRELIMINARIES AND RELATEDWORKS
2.1 PAC Learnability
Roughly speaking, we say two distributionsD0 andD1 are learnable

if given access to the sample pairs (𝑥,𝑦), where the feature 𝑥 is

independently drawn from 𝐷0,1 with label 𝑦 ∈ {0, 1} to identify the

source, one can find a model to classify newly-incoming samples as
coming from D0 or D1; the sufficient advantage is usually called a

small test error. In general, two distributions with a large statistical

distance are not necessarily learnable, but learnable distributions

must be distinguishable. To be formal, we introduce Probably Ap-

proximately Correct (PAC) learning theory [54] as follows.

Definition 1 (PAC Learnable). Given datapoint universe X, a
concept class C =

{
ℎ : X → {0, 1}

}
, of target functions (classifiers) is

PAC learnable if there exists a polynomial-time algorithm Alg which
satisfies the following properties. Assume that S = {(𝑥𝑖 , 𝑦𝑖 ), 𝑖 =

1, 2, ..., 𝑛} is a set of 𝑛 samples where 𝑥 [1:𝑛] are i.i.d. generated by an
arbitrary distribution D on X, and 𝑦𝑖 = ℎ(𝑥𝑖 ) for some ℎ ∈ C. Taking
S as the input to Alg, for arbitrary 𝜖 > 0 and 𝛿 ∈ (0, 1), there exists
a function𝑚(𝜖, 𝛿) : (0, 1) × (0, 1) → Z+ such that once 𝑛 ≥ 𝑚(𝜖, 𝛿),
Alg(S) will return a hypothesis ˆℎ ∈ C, with probability at least 1 − 𝛿 ,
Risk( ˆℎ,ℎ,D) ≤ 𝜖 . Here, Risk( ˆℎ,ℎ,D) = Pr𝑥∼D ( ˆℎ(𝑥) ≠ ℎ(𝑥)) denotes
the test error on distribution D, for 𝑥 randomly sampled from D.

PAC learnability basically states that when the data is generated

via some function ℎ belonging to a set C, once we have enough
samples/observations, there exists an efficient learning algorithm

Alg to return some
ˆℎ with high probability such that the test error

Risk( ˆℎ,ℎ,D) of ˆℎ is small. In practice, especially in deep learning, we

usually consider applying a neural network architecture to approx-

imate the concept class C, where learning ˆℎ becomes optimizing

the parameters/weights of the neural network.

2.2 Security and Privacy Definitions
Definition 2 (Computational Security against Chosen–

Plaintext-Attack). For an encoding function F (·, 𝑠𝑘) : X∗ → O,
where 𝑠𝑘 ∈ K is some secret key, we call F computationally se-
cure against Indistinguishability under Chosen-Plaintext-Attack (IND-
CPA) if the following experiment is impossible.

A polynomial-time adversary selects two arbitrary plaintexts 𝑋0

and 𝑋1 from X∗ and sends to the user. The user randomly selects
𝑏 ∈ {0, 1} and a secret key 𝑠𝑘 ∈ K , and sends F (𝑋𝑏 , 𝑠𝑘) back to
the adversary. After observing F (𝑋𝑏 , 𝑠𝑘), the adversary can return a
guess ˆ𝑏 on 𝑏 with non-negligible advantage, i.e., Pr( ˆ𝑏 = 𝑏) ≥ 1

2
+ 𝛿

for some non-negligible 𝛿 in the security parameter.

Computational security resistant to Indistinguishability under Chosen-

Plaintext-Attack (IND-CPA) states that the encoding function satis-

fies input-independent indistinguishability for a computationally-

bounded adversary. Rooted in the same idea of input-independent

indistinguishability, DP offers an information-theoretical way to

define the individual privacy leakage by measuring the divergence

between the likelihoods produced by two adjacent datasets in the

worst case.

Definition 3 ((𝜖, 𝛿) Differential Privacy). Given dataset uni-
verse X∗, we say that two datasets S,S′ ⊆ X∗ are adjacent, de-
noted as S ∼ S′, if S = S′ ∪ 𝑠 or S′ = S ∪ 𝑠 for some ad-
ditional datapoint 𝑠 . A randomized processing function F is said
to be (𝜖, 𝛿)-differentially-private (DP) if for any pair of adjacent
datasets S,S′ and any set 𝑜 in the output space O of F , it holds that
Pr(F (S) ∈ 𝑜) ≤ 𝑒𝜖 · Pr(F (S′) ∈ 𝑜) + 𝛿.

A semantic interpretation of DP is from a hypothesis testing

perspective, where small values of 𝜖 and 𝛿 suggest that either Type

I or Type II error should be large [57]. However, the application of

DP guarantees to tightly depict more generic inference hardness

such as membership inference under arbitrary subsampling rate

[50] or reconstruction attacks, especially when the reconstruction

objective involves interplay between multiple datapoints [25], is

challenging. Moreover, as a worst-case input-independent guar-

antee, the privacy proof of DP can be, in general, NP-hard [61].

Tight DP analyses for many examples of practical data processing

are intractable, such as deep learning [52, 56, 59, 60] (especially

over graphs [46]). Given limited tools, the privacy implication from

many types of randomness remains open in DP. Indeed, it is not

hard to observe that none of the previously mentioned heuristic

obfuscations themselves can produce meaningful DP guarantees

and it is also not clear that even combined with additional noise

mechanisms, what kind of privacy amplification can be produced.

To produce tighter instance-based privacy analysis on possibly

black-box processing functions, a generic framework, termed PAC
Privacy, was proposed [58]. From a statistical inference standpoint,

PAC Privacy describes the information leakage as follows. Given

input data from some distribution and for an arbitrary inference
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task, one can define the optimal a priori success rate (1− 𝛿𝑜 ) before
observing the released output, and the optimal posterior success
rate (1 − 𝛿) thereafter that an adversary can return a satisfied esti-

mation. PAC Privacy presents an automated analysis framework to

quantify the 𝑓 -divergence [45] between two Bernoulli distributions

of parameters 𝛿 and 𝛿𝑜 , respectively. Such difference (posterior ad-

vantage) can then produce a lower bound on the posterior failure

rate 𝛿 given 𝛿𝑜 . A formal definition is given below.

Definition 4 ((𝛿, 𝜌,D) PAC Privacy [58]). For a processing func-
tion F : X∗ → O, some data distribution D, and an inference crite-
rion function 𝜌 (·, ·), we say F satisfies (𝛿, 𝜌,D)-PAC Privacy if the
following experiment is impossible:

A user generates data 𝑋 from distribution D and sends F (𝑋 ) to
an adversary. An informed adversary who knows D and F is asked
to return an estimation 𝑋 on 𝑋 such that with probability at least
(1 − 𝛿), 𝜌 (𝑋,𝑋 ) = 1.

Equivalently, F can be defined as (Δ𝑓 𝛿, 𝜌,D) PAC-advantage
private if the posterior advantage measured in 𝑓 -divergence satisfies

Δ𝑓 𝛿 = D𝑓 (1𝛿 ∥1𝛿𝜌𝑜 ) = 𝛿
𝜌
𝑜 𝑓 (

𝛿

𝛿
𝜌
𝑜

) + (1 − 𝛿𝜌𝑜 ) 𝑓 (
1 − 𝛿

1 − 𝛿𝜌𝑜
),

where (1− 𝛿𝜌𝑜 ) represents the optimal prior success rate, i.e., 1− 𝛿𝜌𝑜 =

arg max𝑋 ′∈X∗ Pr𝑋∼D (𝜌 (𝑋 ′, 𝑋 ) = 1), and 1𝛿 and 1𝛿𝜌𝑜 represent two

Bernoulli distributions of parameters 𝛿 and 𝛿𝜌𝑜 , respectively. Here,D𝑓
is some 𝑓 -divergence.

The criterion function 𝜌 can be arbitrarily selected depending

on which aspect of sensitive information we want to protect or

make hard to infer. For example, if our privacy concern is about

all bits of a password 𝑋 , we may define 𝜌 (𝑋,𝑋 ) = 1, representing

the adversarial success in the inference task, iff the adversary’s

estimation 𝑋 collides in at least one bit of 𝑋 ; Similarly, for the

sensitive input 𝑋 , if we think a total reconstruction error larger

than𝜓 in an 𝑙𝑝 -norm is safe, then 𝜌 (𝑋,𝑋 ) = 1 iff ∥𝑋 − 𝑋 ∥𝑝 ≤ 𝜓 .
Theorem 1 of [58] presents a way to control the posterior advan-

tage Δ𝑓 𝛿 in Definition 4, where

Δ𝑓 𝛿 = D𝑓
(
1𝛿 ∥1𝛿𝜌𝑜

)
≤ inf

P𝑊
D𝑓

(
P𝑋,F(𝑋 ) ∥P𝑋 ⊗ P𝑊

)
.

(1)

Here, P𝑋,F(𝑋 ) and P𝑋 are the joint distribution and the marginal

distribution of (𝑋, F (𝑋 )) and 𝑋 , respectively; P𝑊 represents the

distribution of an arbitrary random variable𝑊 in the output domain

O of F . In particular, when we select D𝑓 to be the KL-divergence

and P𝑊 = PF(𝑋 ) ,

Δ𝐾𝐿𝛿 = D𝐾𝐿 (1𝛿 ∥1𝛿𝜌𝑜 ) ≤ MI
(
𝑋 ;F (𝑋 )

)
, (2)

where MI(·, ·) represents mutual information and D𝐾𝐿 (1𝛿 ∥1𝛿𝜌𝑜 ) =
𝛿 log( 𝛿

𝛿
𝜌
𝑜

) + (1 − 𝛿) log( 1−𝛿
1−𝛿𝜌𝑜
). Throughout the paper, 𝑙𝑜𝑔 stands

for natural logarithm. Thus, (2) develops a generic way to con-

nect the hardness of arbitrary inference to the well-known mutual

information.

The result in (2) also bridges DP guarantees to arbitrary inference

hardness. From [8], if F satisfies 𝜖-DP, then

MI(𝑋 ;F (𝑋 )) ≤ 0.5𝜖2𝑛2,

if 𝑋 is formed by 𝑛 datapoints. However, black-box PAC Privacy

analysis in many applications can produce much sharpened utility-

privacy tradeoffs compared to existing input-independent worst-

case analysis and can also present formal proofs of empirical verifi-

cation on algorithmic robustness against data reconstruction and

membership inference attacks [5, 48].

Though [58] proposes a theoretical automatic solution to priva-

tize any processing, the overhead required for analyzing random-

ized functions could be very expensive, though polynomial in 𝑑 and

|Θ|, 𝑂 (𝑝𝑜𝑙𝑦 (𝑑, |Θ|)), where 𝑑 is the output dimension of objective

processing F and |Θ| is the total number of the random seeds. To

this end, we present sharpened, explainable and easily-simulatable

bounds in this paper to study random data obfuscation methods.

2.3 Heuristic Obfuscation Operators
In this subsection, we formally define the three main heuristic data

obfuscations that are commonly considered in existing learnable

obfuscation constructions. For notional clarity, in the following we

assume the input dataset 𝑋 is an 𝑛 × 𝑑𝑜 real-number matrix, where

each row represents an individual 𝑑𝑜 -dimensional datapoint.

Matrix Masking: Matrix Masking is an obfuscation function de-

fined as F (𝑋 ) = 𝑋𝑊 , where𝑊 ∈ R𝑑0×𝑑
is some random matrix.

There are also many variants which take the random linear op-

erator as the building block. For example, NeuraCrypt [62] and

TransNet [30] consider the transform function to be an 𝐿-layer

neural network with random weights, where

F (𝑋 ) = 𝜎𝐿 (𝜎𝐿−1 (· · ·𝜎1 (𝑋𝑊1) · · ·𝑊𝐿−1)𝑊𝐿).
Here, 𝜎𝑙 represents the activation function of the 𝑙-th layer.

As for its potential security guarantees, we have two remarks.

First, essentially we apply an identical transform (same secret key)

on each datapoint (each row of 𝑋 ), and this is different from the

classic one-time-padding (independent randomness) on each plain-

text. Indeed, if we apply independent linear transforms on each

datapoint, a much stronger security guarantee is achievable. For

example, if we consider an F where F (𝑋 ) = F (𝑥1, · · · , 𝑥𝑛) =
(𝑥1𝑊1, · · · , 𝑥𝑛𝑊𝑛) and𝑊[1:𝑛] are i.i.d. Gaussian matrices, it is not

hard to observe that F only reveals the 𝑙2-norm of each 𝑥𝑖 . How-

ever, if we independently transform each datapoint, the produced

transformed data could be very hard or even impossible to learn

(imagine a normalized dataset in the above example).

Second, matrix masking is an operator in the real space. This

is different from the classic learning with errors (LWE) problem

in cryptography, where random linear projection combined with

small perturbation could make the inversion computationally hard.

The hardness of LWE comes from a restriction to some integer

ring. Though recent work has generalized LWE to continuous LWE

(mod 1) [26], the modulo operation is necessary in existing hard-

ness proofs. As discussed later in Section 8, the requirement to

preserve the learnability of encoded data essentially makes the re-

duction to standard computational indistinguishability impossible

for learnable obfuscation.

Data Mixing: Data mixing can be viewed as another special linear

operation (left multiplication) on the rows of𝑋 , compared to matrix

masking (right multiplication) on the columns. To be formal, data

mixing can be defined as an encoding function F (𝑋 ) = 𝑀𝑋 , where
𝑀 ∈ R𝑚×𝑛 is a positive random matrix where each row sums to 1.
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For example, Instahide [32] considers 𝑘-mixing which restricts the

Hamming weight of each row of𝑀 to equal 𝑘 , i.e., each produced

virtual sample is formed by 𝑘 datapoints.

Permutation: Permutation is another special linear operation on

the rows of 𝑋 . It can be described as F (𝑋 ) = Π𝑋 , where Π is a

random permutation unitary matrix that swaps the rows of 𝑋 . Intu-

itively, the privacy implication from permutation is weakest; from

either the perspective of computational or information-theoretical

security, permutation itself cannot hide anything meaningful. How-

ever, in the context of data obfuscation for learning, it is generally

free of utility compromise and its privacy amplification combined

with other randomness largely remains an important open problem.

3 LEARNABLE OBFUSCATION
3.1 Definition of learnable obfuscation
With the PAC-learnable definition in Section 2.1, we develop a

formal definition of learnable obfuscation below.

Definition 5 ((C, �̄� [1:3] , 𝜖, 𝜌 (1,2) , 𝛿) learnable obfuscation).
Given a PAC learnable concept class C whose input domain is X, a
learnable obfuscation protocol is expressed by

(
𝑇 (·, 𝜃 ),Alg

)
, where

𝑇 (·, 𝜃 ) =
(
𝑇𝑋 (·, 𝜃𝑋 ),𝑇𝑌 (·, 𝜃𝑌 )

)
, with random seed 𝜃 = (𝜃𝑋 , 𝜃𝑌 ), is a

pair of generic randomized transformations, and 𝑇𝑌 is restricted to
be injective; given 𝜃 , 𝑇 (·, 𝜃 ) : (X,Y) → (X𝑇 ,Y𝑇 ) is deterministic
and transforms a sample with feature 𝑥 ∈ X and label 𝑦 ∈ Y,
to (𝑇𝑋 (𝑥),𝑇𝑌 (𝑦)) ∈ (X𝑇 ,Y𝑇 ); Alg represents a polynomial-time
learning algorithm.

(
𝑇 (·, 𝜃 ),Alg

)
satisfies two properties:

(1) Learnability Preservation: For any ℎ ∈ C and any distri-
bution D, a user generates 𝑋 = {𝑥1, 𝑥2, ..., 𝑥𝑛} where 𝑥𝑖 is i.i.d.
generated from D and constructs a dataset S = {(𝑥𝑖 , 𝑦𝑖 ), 𝑖 =
1, 2, ..., 𝑛} of 𝑛 samples, where 𝑦𝑖 = ℎ(𝑥𝑖 ). The user then gen-
erates a random seed 𝜃 = (𝜃𝑋 , 𝜃𝑌 ) and transforms the sample
set S into a set S𝑇 = {

(
𝑇𝑋 (𝑥𝑖 , 𝜃𝑋 ),𝑇𝑌 (𝑦𝑖 , 𝜃𝑌 )

)
, 𝑖 = 1, 2, ..., 𝑛}

as input to Alg. Once 𝑛 ≥ �̄�1 (𝜖, 𝛿) for some function𝑚1 (𝜖, 𝛿),
Alg(S𝑇 ) can return some function ˆℎ with probability at least
1−𝛿 such thatRisk( ˆℎ,𝑇𝑌 ◦ℎ,𝑇𝑋 (D)) = Pr𝑥∼D [ ˆℎ(𝑇𝑋 (𝑥, 𝜃𝑋 )) ≠
𝑇𝑌 (ℎ(𝑥), 𝜃𝑌 )] ≤ 𝜖 .

(2) For any concept ℎ ∈ C, any distribution D, and the given
inference criterion 𝜌1 and 𝜌2, there exist functions𝑚2 (𝜌1, 𝛿)
and 𝑚3 (𝜌2, 𝛿) such that the following two experiments are
both impossible: A user generates a dataset S = {(𝑥𝑖 , 𝑦𝑖 ), 𝑖 =
1, 2, ..., 𝑛} of 𝑛 samples where 𝑥𝑖 is i.i.d. from D and 𝑦𝑖 = ℎ(𝑥𝑖 ),
and selects a random seed (𝜃𝑋 , 𝜃𝑌 ), and transforms S into
S𝑇 = {(𝑇𝑋 (𝑥𝑖 , 𝜃𝑋 ),𝑇𝑌 (𝑦𝑖 , 𝜃𝑌 )), 𝑖 = 1, 2, ..., 𝑛}. S𝑇 is sent to
an adversary.

(a) (Data Privacy) The adversary is asked to return an estima-
tion 𝑆 on the input 𝑆 . When 𝑛 ≤ �̄�2 (𝜌1, 𝛿), with probability
at least 1 − 𝛿 , 𝜌1 (𝑆, 𝑆) = 1.

(b) (Model Security) The adversary is asked to return an es-
timation 𝑇 on the transform 𝑇 (·, 𝜃 ). When 𝑛 ≤ �̄�3 (𝜌2, 𝛿),
with probability at least 1 − 𝛿 , 𝜌2 (𝑇,𝑇 (·, 𝜃 )) = 1.

We want to mention that the label encoding is not necessary for

a learnable obfuscation, and one can simply generalize Definition

5 to the unsupervised learning setup by only encoding the fea-

tures/instances 𝑥 , and all our following results still apply. The re-

quirements of a learnable obfuscation are mainly twofold: utility

and privacy. First, after applying some randomized transform func-

tion 𝑇 (·, 𝜃 ) on both the features and labels, the transformed data

is still PAC-learnable, which allows one to find or approximate a

new classifier
ˆℎ over the transformed domain by directly looking

at encoded data (𝑇𝑋 (𝑥𝑖 ),𝑇𝑌 (𝑦𝑖 )) in Alg. The returned model
ˆℎ can

achieve good encoded test performance, captured by Risk( ˆℎ,𝑇𝑌 ◦
ℎ,𝑇𝑋 (D)). In general, when a decryption is not needed – unlabeled

samples can be transformed prior to running inference on the en-

coded model – the transformation function 𝑇𝑋 is not necessarily

injective. However, we restrict the label encoding function𝑇𝑌 to be

injective to ensure the transformed learning problem is not trivial.

Besides, we always assume the data distribution D of interest sat-

isfies E𝑥∼𝐷ℎ(𝑥) = 1/|Y| for a |Y|-classification problem to avoid

trivially distinguishing two data distributions from their labels.

Second, on the privacy side, we introduce two criteria 𝜌1 and 𝜌2,

which capture the adversarial inference with respect to the sensi-

tive input data 𝑋 and the transform function 𝑇 , respectively. Once

the amount of released data, captured by the threshold functions

�̄�2 (𝜌1, 𝛿) and �̄�3 (𝜌2, 𝛿), is limited, the adversary cannot produce a

satisfied estimation with high probability (1 − 𝛿). Model security,

such that the transform function 𝑇 itself is also hard to learn, im-

plies provable hardness of reverse engineering. In outsourcing with

learnable obfuscation, the untrusted server has direct access to the

model trained over transformed data. However, if the adversary

cannot efficiently approximate the transform 𝑇 , the model which

recognizes transformed data well cannot be applied to the original

sample domain.

Finally, we must stress that FHE is not a special case of learn-
able obfuscation. The IND-CPA requirement suggests that FHE

cannot satisfy the "(1) Learnability Preservation" requirement in

Definition 5: no efficient learning algorithm can recognize a set of

computationally-indistinguishable ciphertexts and a polynomial-

time algorithm which achieves non-trivial classification accuracy

over computationally-indistinguishable ciphertext (encoded sam-

ples) without knowing the secret key is a successful attack on FHE.

As a concrete example, consider a classification task of labeling

images. One set of images is easily classifiable. The other has ran-

dom labels, and is theoretically impossible to classify. Both sets are

FHE-encrypted and sent to the server. Learnability preservation

requires that the classifiable set be determined by the server to have

(non-negligibly) better encoded accuracy than the random set; this

corresponds to a CPA to break the FHE scheme.

3.2 Adversarial Inference
In the following, we formally introduce several adversarial inference

problems widely-considered in previous works.

For Input Data Privacy: 𝑙𝑝 -norm reconstruction can be defined

as 𝜌1 (𝑋,𝑋 ) = 1 only when ∥𝑋 −𝑋 ∥𝑝 ≤ 𝜓 for some constant𝜓 . The

particular 𝑙2-norm case has been studied in [25, 27], where Fisher

information is used to produce a reconstruction lower bound for a

bias-specified adversary, with recent generalization to the Bayesian

setup [43]. In the following, we formally define the reconstruction

challenge with estimation error measured in 𝑙2-norm.

Definition 6 (Data Reconstruction Challenge). Given a
finite data pool U and some processing mechanism M, let S =
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(𝑠1, 𝑠2, ..., 𝑠𝑁 ) be a set where each datapoint 𝑠𝑖 is i.i.d. uniformly
selected from U, and the adversary is asked to return an ˆS on S
after observingM(S). We sayM satisfies a (1− 𝛿, 𝑟 ) reconstruction
challenge if, for an arbitrary adversary, their success rate to return an
estimation with 𝑙2-norm error smaller than 𝑟 is bounded by (1 − 𝛿),
i.e., PrS←U, ˆS←M(S) (∥S − ˆS∥2 < 𝑟 ) ≤ (1 − 𝛿). In particular, we
sayM satisfies a (1 − 𝛿, 𝑟 ) individual reconstruction challenge if we
instead ask the adversary to only recover a single 𝑠𝑖 datapoint by 𝑠
and PrS←U,𝑠←M(S) (∥𝑠𝑖 − 𝑠 ∥2 < 𝑟 ) ≤ (1 − 𝛿).

The individual reconstruction setup in Definition 6 is adopted in

many reconstruction robust (ReRo) studies [5, 28]. In particular, [5]

shows that ifM satisfies (𝛼, 𝜖)-Rényi Differential Privacy (RDP),

then the posterior success rate (1 − 𝛿) is upper bounded by

1 − 𝛿 ≤
(
(1 − 𝛿𝑜 ) · 𝑒𝜖

) 𝛼−1

𝛼 , (3)

where (1 − 𝛿𝑜 ) is the optimal prior success rate for the adversary

to return a satisfied estimation with 𝑙2-norm error smaller than 𝑟 .

Another important and widely-studied challenge is membership

inference [3, 48]. When the data 𝑋 = {𝑥1, · · · , 𝑥𝑛} is randomly

sampled from a finite set/universe U = {𝑢1, 𝑢2, · · · , 𝑢𝑁 }, a natural
question is whether the adversary can identify the participants of

𝑋 from U. From both an average and a particular individual angle,

we formally define membership inference as follows.

Definition 7 (Membership Inference Challenge). Given a fi-
nite data pool U = {𝑢1, 𝑢2, · · · , 𝑢𝑁 } and some processing mechanism
M,𝑋 is an 𝑛-subset of U randomly selected. The adversary is asked to
return an 𝑛-subset 𝑋 as the membership estimation of 𝑋 after observ-
ingM(𝑋 ). We sayM(𝑋 ) satisfies a (1 − ¯𝛿) average-membership-
inference challenge, if for an arbitrary adversary, E𝑋 [|𝑋 ∩ 𝑋 |] ≤
𝑛(1 − ¯𝛿), i.e., on average an adversary cannot identify more than
𝑛(1 − ¯𝛿) elements of 𝑋 .

As for each individual, we sayM is resistant to (1−𝛿𝑖 ) individual
membership inference for the 𝑖-th datapoint 𝑢𝑖 , if for an arbitrary
adversary, Pr(1𝑢𝑖 ∈𝑋 = 1

𝑢𝑖 ∈�̂� ) ≤ 1 − 𝛿𝑖 . Here, 1𝑢𝑖 ∈𝑋 (1𝑢𝑖 ∈�̂� ) is an
indicator which equals 1 if 𝑢𝑖 is in 𝑋 (𝑋 ).

The individual membership inference challenge in Definition 7

is also widely adopted in many empirical privacy verification or

auditing works, such as membership inference attack (MIA) [9, 48].

For Model Security: As previously mentioned, to preserve the

intellectual property of the data holder, we also expect learnable

obfuscation to resist reverse engineering where the server cannot

apply the model trained from transformed data to do meaningful in-

ference on original data. Thus, we consider the following challenge

to approximate the learnable obfuscation function itself.

Definition 8 ((𝜓, 𝜏) Statistical Encoding Distance). In the
same setup as Definition 5 where the data feature 𝑥𝑖 is i.i.d. in dis-
tribution D, the adversary proposes a function 𝑇𝑋 as an estima-
tion of 𝑇𝑋 (·, 𝜃𝑋 ) where 𝜌2 (𝑇𝑋 ,𝑇𝑋 (·, 𝜃𝑋 )) = 1 if Pr𝑥∼D

(
∥𝑇𝑋 (𝑥) −

𝑇𝑋 (𝑥, 𝜃𝑋 )∥2 < 𝜓
)
≥ 1 − 𝜏 .

For sufficiently large values of 𝜓 and 𝜏 , a failure of matching

Definition 8 implies that the adversary will be unable to effectively

transform the original data feature to the target domain using their

approximate transform: for a large 𝜏 fraction of data to infer, there

is an encoded error larger than𝜓 in the adversarially-constructed

(approximately transformed) data when applying the model.

3.3 A Construction
We combine the three main heuristic obfuscations, matrix mask-

ing, data mixing and permutations together, along with generic

perturbations, and formally describe a construction of learnable ob-

fuscation as Algorithm 1. As a concrete example, Algorithm 1 also

depicts the workflow to apply learnable obfuscation. At a high level,

the process involves the following steps. First, the user encodes

the data using the obfuscations on both the features and labels of

the data, then adds noise to the obfuscated features, resulting in an

encoded version S𝑇 . This encoded data is then sent to an untrusted

server, along with the specification of the network architecture to

train. Second, the server proceeds to train over the encoded data

S𝑇 and returns a model N𝑇 to the user. Finally, to predict some

newly incoming feature 𝑥𝑞 , the user appliesN𝑇 on the transformed

version of 𝑥𝑞 and decodes the outputted label.

While we adopt PAC learning theory to formally define learn-

ability and learnable obfuscation, in practical scenarios, we do not

always have a clear picture of the underlying concept set assumed

in a PAC model. Consequently, it is not feasible to find a hypothesis

by distinguishing every concept candidate. State-of-the-art machine

learning methods often rely on selecting appropriate neural net-

works depending on the data types and optimizing their parameters

to approach the true concept. For instance, the Convolutional Neu-

ral Network (CNN) [38] has proven effective in image processing,

while the Transformer network [55] excels in Natural Language

Processing (NLP). Thus, when designing practical learnable obfus-

cation, one needs to also take the training method into account and

find a suitable network capable of efficiently handling the trans-

formed learning task. In Algorithm 1, we focus on matrix masking

on the entire feature domain, which is generally well-suited for

training fully-connected networks. However, in more complex tasks

involving image or NLP data, it becomes important to preserve cer-

tain internal locality of nearby pixels or segments. Besides, more

powerful network architectures like Transformer networks may

be necessary to achieve better performance. To accommodate ad-

vanced data structures and network architectures, Algorithm 1 can

be generalized by splitting the entire feature representation into

multiple blocks and applying independent matrix masking on each

one. Similar ideas have been explored in [62].

We stress that Algorithm 1 is not equivalent to previous heuristic
proposals, such as Instahide and NeuraCrypt, as we always consider

an additional noise perturbation 𝐵. As detailed in Section 7.1, all

our usable provable guarantees require sufficient noise 𝐵; without

proper preprocessing and perturbation, we cannot provide mean-

ingful privacy guarantees for these existing noise-free proposals

[30, 32, 62]. One of our key contributions is to determine how much

noise can be saved with additional data obfuscation.

4 BARRIER TO LEARNABLE OBFUSCATION
In this section, we show the generic barrier to a learnable obfusca-

tion with computational security if it also enables one to efficiently

find a model to classify encoded data.
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Algorithm 1 A Framework for Constructions and Applications of

Learnable Obfuscation

Input: A data pool U = {𝑢1, · · · , 𝑢𝑁 } with associated labels

V = {𝑣1, · · · , 𝑣𝑁 }; a random training dataset of features 𝑋 =

{𝑥1, · · · , 𝑥𝑛}, 𝑥𝑖 ∈ R𝑑0
of 𝑛 elements with corresponding labels

𝑌 = {𝑦1, 𝑦2, · · · , 𝑦𝑛}, where𝑦𝑖 ∈ {11, 12, · · · , 1𝑐 } for 𝑐 classes and
1𝑙 represents a 𝑐-dimensional one-hot vector with non-zero entry

𝑙 ; masking matrix distribution P𝑊 ; mixing matrix distribution

P𝑀 ; perturbation distribution P𝐵 ; output dimension 𝑑 ; number

of mixed data𝑚, and an neural network model N .

Phase 1 - Learnable Obfuscation Encoding
1: Generate a random masking matrix𝑊 ∈ R𝑑0×𝑑

from P𝑊 ,𝑀 ∈
R𝑚×𝑛 from P𝑀 , a random permutation matrix Π1 ∈ R𝑚×𝑚 , a

permutation matrix Π2 ∈ R𝑐×𝑐 and noise 𝐵 from P𝐵 .
2: 𝑇𝑋 (𝑋 ) = Π1𝑀𝑋𝑊 + 𝐵, and 𝑇𝑌 (𝑌 ) = Π1𝑀𝑌Π2.

Phase 2 - Private Outsourcing Training
1: User sends the transformed version of training sample set S𝑇 ={

𝑇𝑋 (𝑋 ),𝑇𝑌 (𝑌 )
}
and the network structure of N to a server.

2: The server trains the networkN overS𝑇 , and sends the trained
model N𝑇 back to the user.

Phase 3 - Application for Inference
1: User can predict incoming data 𝑥𝑞 using the model N𝑇 by first

encoding 𝑥𝑞 to 𝑥𝑞𝑊 and returning the output N𝑇 (𝑥𝑞𝑊 ) · Π−1

2
.

4.1 Intuition
Learnable obfuscation enjoys much freedom in selecting obfusca-

tion to preserve learnability, which can make the meaning of the

transformed task totally oblivious to the adversary. However, as

an efficiency tradeoff compared to FHE, we allow the adversary

to have direct access to the trained model N𝑇 . This theoretically
enables the adversary to approximately estimate the encoded accu-
racy, Risk( ˆℎ,𝑇𝑌 ◦ ℎ,𝑇𝑋 (D)), even if he does not have additional

knowledge: given the encoded data, the adversary can always ran-

domly split it into two parts, one for training and one for test. As

elaborated later in Section 8, despite the practical success of ma-

chine learning, provable hardness of many learning problems also

coexists. Even in practice, the learning performances of different

datasets vary a lot. For example, the 10-classification problem of

training a CNN over CIFAR10, formed by colorful images of ani-

mals and vehicles, is much harder than that on MNIST, comprised

of samples of handwriting digits. When one trains Resnet18 [29]

on the MNIST and CIFAR10 datasets respectively, the accuracy of

MNIST can be almost 100%, while it is only about 93% on CIFAR10.

Therefore, given a limited number of samples, it is difficult to

overcome such fundamental hardness by simply transforming data

before learning from it, meaning that if we request worst-case

computational data security, a necessary condition is the difference

between the encoded accuracy of any model the adversary could

train from different transformed data should be negligible. Other-

wise, the adversary can distinguish the participation of hardcore
samples, that are hard to classify, in the input set, when the encoded

accuracy drops handling this more challenging data.

4.2 Impossibility Result
The following result captures the above ideas and shows that any

learnable obfuscation, such that the transformed learning task is

non-trivial, cannot simultaneously be IND-CPA-secure.

Theorem 1 (Impossibility Result). Suppose there exists a learnable
obfuscation 𝑇 (·, 𝜃 ) =

(
𝑇𝑋 (·, 𝜃𝑋 ),𝑇𝑌 (·, 𝜃𝑌 )

)
, where both 𝑇𝑋 and 𝑇𝑌

are injective, and satisfy the learnability preservation in Definition 5
with respect to a PAC learnable concept set C = {ℎ0, ℎ1}. Specifically,
there exists an efficient algorithm Alg such that for some data distri-
bution D0, E𝑥∼D0

[ℎ0 (𝑥)] = 0.5, when one inputs the encoded version
S𝑇 of a dataset S = {(𝑥𝑖 , ℎ0 (𝑥𝑖 )), 𝑖 = 1, 2, · · · , 𝑛}, where 𝑥𝑖 is i.i.d.
from 𝐷0, to Alg, once 𝑛 ≥ 𝑚0, Alg can return some ˆℎ, with probabil-
ity at least 3/4, whose encoding accuracy Risk( ˆℎ,𝑇𝑌 ◦ ℎ,𝑇𝑋 (𝐷)) =
Pr𝑥∼D0

[
ˆℎ(𝑇𝑋 (𝑥), 𝜃𝑋 ) ≠ 𝑇𝑌 (ℎ(𝑥), 𝜃𝑌 )

]
≤ 1/2−𝜆, for some constant

𝜆 > 0. Then, the following claim must be true:
An adversary can find some PAC learnable concept set ˜C = {ℎ0, ˜ℎ1,

· · · , ˜ℎ2
𝜈 }, for 𝜈 ≥ 9(16 log 9/𝜆2)2, and construct a distribution D1

such that E𝑥∼D1
E𝑗 [ ˜ℎ 𝑗 (𝑥)] = 0.5, where 𝑗 is randomly selected from

{1, 2, · · · , 2𝜈 }. The adversary sends the two distributions D0 and D1,
and ˜C to the user. The user randomly selects 𝑗 from {1, 2, · · · , 2𝜈 }
and generates two datasets 𝑆0 and 𝑆1, each of 𝑛 =𝑚0 + 16 log 9/𝜆2

samples. The features of 𝑆0 and 𝑆1 are i.i.d. generated from D0 and
D1, whose labels are determined by ℎ0 and ˜ℎ 𝑗 , respectively. The user
then generates a random bit 𝑏 ∈ {0, 1} and seed 𝜃 , encodes 𝑆𝑏 into
𝑇 (𝑆𝑏 , 𝜃 ), and sends𝑇 (𝑆𝑏 , 𝜃 ) back to the adversary. The adversary can
return ˆ𝑏 ∈ {0, 1} such that Pr( ˆ𝑏 = 𝑏) ≥ 2/3.

The proof of Theorem 1 can be found in Appendix A which shows

that if there exists some learnable obfuscation such that, for some

concept set C, it enables one to train a model with non-trivial,

encoded accuracy, captured by 0.5 + 𝜆, then it generally cannot

resist a CPA. The adversary can accordingly construct a provably

more challenging concept set
˜C compared to C, provided the same

number of training samples. Consequently, the adversary can dis-

tinguish the encoded dataset labelled via concepts in C or
˜C with

constant advantage. In Theorem 1, we restrict 𝑇 to be injective to

avoid the trivial cases, where, for example, one may simply select

𝑇𝑋 = ℎ and the encoded data trivially reduces to the label set and

there is no need for the server to conduct any additional training.

4.3 Implications
The implications of Theorem 1 are twofold. First, to achieve com-

putational IND-CPA-security, either we need to put stronger re-

strictions on the plaintext that the adversary can select for the

distinguishing challenge, since we cannot afford the worst-case

indistinguishability on arbitrary learnable data or, as a necessary

requirement, we have to prohibit the adversary’s access to the

trained model computed over encoded data, which, unfortunately,

is beyond the current learnable obfuscation framework (but can be

expensively secured by FHE).

Given a new technique, we can check the learnability and privacy

requirements of learnable obfuscation: 1) Can the server efficiently

classify the encoded samples in the transformed learning task with

non-trivial accuracy? 2) Are the data privacy and model security

properties satisfied? Suppose that we can find an efficient algorithm

to classify transformed data with non-trivial accuracy to satisfy
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Property 1. Then, theoretically, we can use the techniques in Section

5 to determine minimal additive noise to satisfy Property 2, and

obtain a learnable obfuscation scheme.

The bottom line is that there does not exist a universal and

secure learnable obfuscation that works for arbitrary learning tasks.

Therefore, if we want to develop efficient obfuscation that does not

require adaptively learning from input data, a systematic study on

the underlying information-theoretic privacy leakage is demanded.

As a final remark, we want to stress that both our proof techniques

and the impossibility result in Theorem 1 are different from those

in prior works that focus on privately learning a public model [10].

5 DATA PAC PRIVACY OF LEARNABLE
OBFUSCATION

Given the impossibility results in Section 4, we must consider the

utility-privacy tradeoff for learnable obfuscation in general. More

importantly, we need to find efficient ways to practically quantify

the leakage. In this section, from the angle of PAC Privacy, we

present a series of new tools to produce tight and easily-simulatable

bounds for Algorithm 1. In particular, to provide a clearer picture of

how data mixing and permutation augment the privacy guarantee,

we begin with the privacy analysis of matrix masking only and then

show the sharpened bound combined with the other obfuscations

in Algorithm 1. For simplicity, in the following, we assume U is

formed by samples from 𝑐 categories, each of 𝑁0 = 𝑁 /𝑐 datapoints.
A normalized 𝑛-subset 𝑋 is formed by 𝑛 elements, where we select

𝑛0 = 𝑛/𝑐 many samples from each category of U. Therefore, the
corresponding label set is always constant andwe only need to focus

on the privacy leakage from the encoded feature. We use N(𝜇, Σ)
to represent a Gaussian distribution of mean 𝜇 and (co)variance Σ.

5.1 PAC Privacy of Matrix Masking
From (2), we know the posterior advantage of arbitrary adversarial

inference measured in KL-divergence can be bounded by the mu-

tual information. When our release is in a form 𝑋𝑊 +𝐵, obfuscated
by matrix masking𝑊 and noise perturbation 𝐵, the mutual infor-

mationMI(𝑋 ;𝑋𝑊 + 𝐵) that captures arbitrary inference regarding

the entire set 𝑋 has the following bound.

Theorem 2 (Inference Regarding Entire Set 𝑋 ). When𝑊 ∈ R𝑑0×𝑑

and 𝐵 ∈ R𝑛×𝑑 are two independent random matrices, where each
entry of𝑊 is i.i.d. N(0, 1) and each column of 𝐵 is i.i.d. in some
multivariate Gaussian distribution N(0, Σ𝐵) for some non-singular
covariance Σ𝐵 , then for 𝑋 of 𝑛 data points randomly generated,

MI(𝑋 ;𝑋𝑊 + 𝐵) ≤ 𝑑
2

min

{
E𝑋,𝑋 ′

[
Tr(Σ−1

𝑋,𝐵Σ𝑋 ′,𝐵) − 𝑛
]︸                             ︷︷                             ︸ ↦→ (𝐼 ),

log det(E𝑋 [𝑰𝑛 + Σ−1

𝐵 Σ𝑋 ]) − E𝑋
[

log det(𝑰𝑛 + Σ−1

𝐵 Σ𝑋 )
]︸                                                                    ︷︷                                                                    ︸ ↦→ (𝐼 𝐼 )},

(4)

where Σ𝑋 = 𝑋𝑋𝑇 , Σ𝑋,𝐵 = 𝑋𝑋𝑇 + Σ𝐵 , and 𝑋 ′ is distributed indepen-
dently and identically as 𝑋 . det(·) represents determinant and Tr(·)
represents the trace of a matrix.

Specifically, if our concern is only the membership of a particular

𝑢𝑖 from the data pool U, i.e., whether 𝑢𝑖 is selected in 𝑋 , it suffices

to considerMI(1𝑢𝑖 ;𝑋𝑊 + 𝐵) and we have the following result:

Theorem 3 (Inference Regarding Membership of 𝑢𝑖 ). With the
same setup as Theorem 2, let 𝑋 be a normalized 𝑛-subset randomly
selected from the data pool U = {𝑢1, 𝑢2, · · · , 𝑢𝑁 }, then for 𝑞 = 𝑛/𝑁 ,
MI(1𝑢𝑖 ;𝑋𝑊 + 𝐵) can be upper bounded by (5). Here, 1𝑢𝑖 is an indi-
cator which represents the participation of 𝑢𝑖 in 𝑋 ; 𝑋𝑖 is a normalized
random 𝑛-subset with 𝑢𝑖 from U, and 𝑋−𝑖 is a normalized random
𝑛-subset without 𝑢𝑖 from U\𝑢𝑖 .

MI(1𝑢𝑖 ;𝑋𝑊 + 𝐵) ≤
𝑑

2

min

{
𝑞(1 − 𝑞)

(
E𝑋𝑖 ,𝑋−𝑖

[
Tr(Σ−1

𝑋𝑖 ,𝐵
Σ𝑋−𝑖 ,𝐵) + Tr(Σ

−1

𝑋−𝑖 ,𝐵
Σ𝑋𝑖 ,𝐵) − 2𝑛

] )
↦→ (𝐼 ),

𝑞 log det
(
E𝑋𝑖 [𝑰𝑛 + Σ

−1

𝐵 Σ𝑋𝑖 ]
)
+ (1 − 𝑞) log det

(
E𝑋−𝑖 [𝑰𝑛 + Σ

−1

𝐵 Σ𝑋−𝑖 ]
)

− E𝑋
[

log det(𝑰𝑛 + Σ−1

𝐵 Σ𝑋 )
]
↦→ (𝐼 𝐼 )

}
.

(5)

The proofs of Theorem 2 and Theorem 3 can be found in Appendix

C and D, respectively. We interpret the bounds in (4) and (5) below.

First, given that each entry of masking matrix𝑊 is i.i.d. gener-

ated from GaussianN(0, 1), the distribution of each column of 𝑋𝑊

is also i.i.d., and given the selection of 𝑋 , it is actually some mul-

tivariate Gaussian N(0, 𝑋𝑋𝑇 ). Thus, for a 𝑑-dimensional release,

where𝑊 ∈ R𝑑0×𝑑
, the leakage measured in mutual information in

(4) and (5) linearly scales with 𝑑 , matching the intuition. Second,

the distribution of 𝑋𝑊 is essentially a Gaussian mixture across

the random selections (samplings) of 𝑋 . Thus, if we adopt the KL-

divergence expression of mutual information, the objective upper

bound is essentially reduced to studying the KL-divergence be-

tween two Gaussian mixtures. In (4) and (5), we give two kinds

of upper bounds based on two different ideas. The Type (I) bound

applies the convexity of KL-divergence and converts the objective

to the average pairwise KL-divergence between different Gaussian

components. The Type (II) bound relies on the perturbation 𝐵 and

uses the Gaussian KL-divergence decomposition trick in [58].

It is worthwhile noting that both the Type (I) and (II) bounds

in (4) and (5) enjoy a simple form, expressed by the expectation

over the random sampling of 𝑋 . This forms the foundation of a

simulatable privacy guarantee for any particular dataset and noise

selection. As shown later in Section 5.3, all the terms in the Type

(I) and (II) bounds can be globally bounded, and thus the objective

mutual information can be estimated with confidence by simply em-

pirically averaging the simulated values. Another comment about

(5) in Theorem 3 is that 𝑞 = 𝑛/𝑁 captures the sampling rate that

a particular datapoint 𝑢𝑖 is selected in 𝑋 . Thus, for the Gaussian

mixture of 𝑋𝑊 + 𝐵, we may consider the two subcases: (i) 𝑢𝑖 is not

in 𝑋 captured by 𝑋−𝑖𝑊 + 𝐵 for an 𝑛-subset 𝑋−𝑖 randomly selected

from U\𝑢𝑖 ; and (ii) 𝑢𝑖 is in 𝑋 , denoted by 𝑋𝑖 . Analogous to the

privacy amplification from sampling in DP [4], the term 𝑞(1−𝑞) in
(5) can be viewed similarly in the context of individual PAC Privacy.

With the bounds of mutual information, by (2), we are then able

to control the posterior advantage measured in KL-divergence for

arbitrary inference 𝜌 , such as reconstruction hardness. In the follow-
ing corollary, we focus on the membership challenge in Definition

7, and connectMI(𝑋 ;𝑋𝑊 + 𝐵), associated with the entire input set

𝑋 , to the average membership inference hardness
¯𝛿 .

Corollary 1 (Membership Inference Hardness). For an arbitrary
processing mechanismM and a normalized 𝑛-random-subset 𝑋 from



Formal Privacy Proof of Data Encoding CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

the 𝑁 -universe U, the adversary’s posterior success rate to identify
the participation of some 𝑢𝑖 ∈ U is upper bounded by (1 − 𝛿𝑖 ) where,
for sampling rate 𝑞 = 𝑛/𝑁 and 1 − 𝛿0 = max{𝑞, 1 − 𝑞},

(1 − 𝛿𝑖 ) log( 1 − 𝛿𝑖
1 − 𝛿0

) + 𝛿𝑖 log( 𝛿𝑖
𝛿0

) ≤ MI(1𝑢𝑖 ,M(𝑋 )). (6)

Moreover, the average failure rate ¯𝛿 in Definition 7 satisfies

1 − ¯𝛿 ≤
𝑛∑
𝑗=1

(
MI(𝑋 ;M(𝑋 )) + log 2

)
/𝑛

− log

∑𝑛
𝑙=𝑗

∑
{𝑝 [1:𝑐 ] }=𝑙

∏𝑐
𝑧=1

( (𝑛0

𝑝𝑧

) ( 𝑛0

𝑛0−𝑝𝑧
)
/
(𝑁0

𝑛0

) ) ,
where {𝑝 [1:𝑐 ] }=𝑙 represents all sets of non-negative integers {𝑝1, 𝑝2,

· · · , 𝑝𝑐 } such that
∑𝑐
𝑧=1

𝑝𝑧 = 𝑙 .

The proof of Corollary 1 can be found in Appendix B. Combining

Corollary 1 with Theorems 2 and 3, to provably prevent adversarial

inference, one can theoretically add large enough noise 𝐵, until

the mutual information bounds in (4) and (5) are small enough to

produce satisfied posterior failure rate 𝛿 . However, there is still

a gap between (4) and (5) and the application of matrix masking

being practically usable. For example, consider privately releasing

CIFAR10 data, where we randomly sample an𝑛 = 1, 000 subset from

the entire training set pool of 𝑁 = 50, 000 datapoints. Assume the

features of CIFAR10 have been properly embedded and normalized,

with details given in Section 7.1. We select the output dimension𝑑 =

500 and the noise Σ𝐵 = 0.2·𝑰 . Through (5), on averageMI(1𝑢𝑖 , 𝑋𝑊 +
𝐵) can only be bounded by 48.5, which cannot produce any useful

bound on the membership challenge (𝛿𝑖 ). Or, correspondingly, if one

wantsMI(1𝑢𝑖 , 𝑋𝑊 + 𝐵) ≤ 0.3, where Corollary 1 can then ensure

the posterior success rate (1 − 𝛿𝑖 ) to identify 𝑢𝑖 ’s membership is

upper bounded by 0.2, then one needs to select Σ𝐵 noise that is 17.7

times larger than the expected norm of transformed features!

In fact, this is not (fully) because the bounds (4) and (5) could be

loose, but mainly because matrix masking itself leaks a lot when

encoding typical data. On one hand, the power of practical data is

not uniformly distributed across the entire space, and in most cases

𝑋𝑋𝑇 is close to being singular. Therefore, even a small change to

𝑋 could bring a significant modification to the produced Gauss-

ian distribution N(0, 𝑋𝑋𝑇 ), let alone two randomly generated 𝑋

and 𝑋 ′, which typically share limited common elements for small

𝑞 = 𝑛
𝑁
. This allows the adversary to easily distinguish them from

their encodings. Even worse, the matrix masking encoding of two

adjacent datasets that only differ in one datapoint could be very

different. Imagine two different selections 𝑋0 = {𝑢1, 𝑢2, · · · , 𝑢𝑛}
and 𝑋 ′

0
= {𝑢2, · · · , 𝑢𝑛, 𝑢𝑛+1} which only differ in one datapoint.

Intuitively, if the difference between 𝑢𝑖 and 𝑢𝑛+1, ∥𝑢1 − 𝑢𝑛+1∥, is
close to 0, we should expect that it is impossible to distinguish the

encodings of 𝑋0 and 𝑋 ′
0
. However, this is not achievable via only

matrix masking and the distribution of𝑋0𝑊 and𝑋 ′
0
𝑊 could differ a

lot: due to the different ordering, the corresponding covariance ma-

trices Σ𝑋0
= 𝑋0𝑋

𝑇
0
and Σ𝑋 ′

0

= 𝑋 ′
0
𝑋𝑇

0
are not identical and Σ𝑋0

· Σ−1

𝑋 ′
0

could be far away from being an identity matrix even if 𝑢1 = 𝑢𝑛+1.
To this end, we consider applying data mixing and permutation to

address the challenges from ill condition and ordering.

5.2 Privacy Enhancement from Data Mixing
and Permutation

We proceed to further incorporate data mixing into obfuscation. As

before, to simplify the analysis, we fix the labels of mixed data to be

constant in the following artificial way. To generate a total of𝑚 =

𝑐2𝑚0 mixed samples, for any 𝑖, 𝑗 ∈ [1 : 𝑐], we consider randomly

selecting samples from the 𝑖-th and the 𝑗-th class to produce𝑚0

many mixed samples. To be specific, for 𝑋 which contains 𝑛0 = 𝑛/𝑐
many samples from each class, each (𝑖, 𝑗)-class-𝑘-mixed sample is
the average of 𝑘-randomly-selected samples in 𝑋 with label 𝑖 and

𝑘-randomly-selected samples in 𝑋 with label 𝑗 . We produce 𝑚0

many (𝑖, 𝑗)-class-𝑘-mixed samples for each pair (𝑖, 𝑗) and for such a

mixing matrix𝑀 , it is not hard to see that the encoded label set𝑀𝑌

is constant, uniformly formed by𝑚 up-to-two-hot vectors. Thus,

we still only need to consider the privacy leakage from the feature

side. With larger 𝑘 , each (𝑖, 𝑗)-class-𝑘-mixed sample approaches

the average of the data population from the 𝑖-th and 𝑗-th class. As

shown soon in Theorems 4 and 5, after imposing mixing matrix𝑀

on 𝑋 , the corresponding mutual information bound is similar to (4)

and (5), where the only difference is that 𝑋 becomes𝑀𝑋 .

To simultaneously address the unnecessary instability from dif-

ferent orderings, we further impose permutationΠ on𝑀𝑋𝑊 , which

becomes Π𝑀𝑋𝑊 . This allows us to take all the permuted scenarios

into account. In particular, for the upper bound on the individual

privacy in (8), we only need to consider the divergence of the closest
pair, i.e., (𝑢𝑖 , 𝑋 ) and (𝑢 𝑗 , 𝑋 ), differing in one datapoint and identi-

cally ordered for some common part �̃� . We formally present the

improved versions of Theorems 2 and 3 below.

Theorem 4 (Improved Theorem 2 with Data Mixing and Permu-

tation). In the same setup as Theorem 2, with further random data
mixing matrix𝑀 and permutation matrix Π,MI(𝑋 ;Π𝑀𝑋𝑊 + 𝐵)
is upper bounded by

𝑑

2

min

{
EΠ,𝑀,�̃� ,�̃� ′

[
Tr(Σ−1

�̃� ,𝐵
Σ
�̃� ′,𝐵) −𝑚

]︸                                    ︷︷                                    ︸ ↦→ (𝐼 ), (7)

log det(EΠ,�̃� [𝑰𝑚 + Σ
−1

𝐵 Σ
�̃�
]) − EΠ,�̃�

[
log det(𝑰𝑚 + Σ−1

𝐵 Σ
�̃�
)
]︸                                                                          ︷︷                                                                          ︸ ↦→ (𝐼 𝐼 )},

where �̃� = Π𝑀𝑋 and �̃� ′ = Π𝑀𝑋 ′ where 𝑋 ′ is independently and
identically distributed as 𝑋 , respectively.

Theorem 5 (Inference Regarding Membership of 𝑢𝑖 ). With the
same setup as Theorems 3 and 4, under additional data mixing and
permutation,MI(1𝑢𝑖 ;Π𝑀𝑋𝑊 + 𝐵) can be upper bounded by (8).
Here, 𝑋𝑖

𝑐∼ 𝑋−𝑖 denotes a pair of closest adjacent matrices in a
form 𝑋𝑖 = {𝑢𝑖 , 𝑋 } and 𝑋−𝑖 = {𝑢 𝑗 , 𝑋 } for 𝑖 ≠ 𝑗 : 𝑋𝑖 and 𝑋−𝑖 are
adjacent 𝑛 × 𝑑0 matrices only differing in the first row; �̃�𝑖 = Π𝑀𝑋𝑖 ,
�̃�−𝑖 = Π𝑀𝑋−𝑖 and �̃� = Π𝑀𝑋 .

MI(1𝑢𝑖 ;Π𝑀𝑋𝑊 + 𝐵) ≤
𝑑

2

min

{
𝑞(1 − 𝑞) ·

(
E
Π,𝑀,𝑋𝑖

𝑐∼𝑋−𝑖
[

Tr(Σ−1

Π𝑀𝑋𝑖 ,𝐵
ΣΠ𝑀𝑋−𝑖 ,𝐵) + Tr(Σ

−1

Π𝑀𝑋−𝑖 ,𝐵
ΣΠ𝑀𝑋𝑖 ,𝐵) − 2𝑚

] )
↦→ (𝐼 ),

EΠ
[
𝑞 log det(E

�̃�𝑖
[𝑰𝑚 + Σ−1

𝐵 Σ
�̃�𝑖
]) + (1 − 𝑞) log det(E

�̃�−𝑖
[𝑰𝑚 + Σ−1

𝐵 Σ
�̃�−𝑖
])

− E
�̃�

[
log det(𝑰𝑚 + Σ−1

𝐵 Σ
�̃�
)
] ]
↦→ (𝐼 𝐼 )

}
.

(8)



CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Hanshen Xiao, G. Edward Suh, and Srinivas Devadas

The proofs of Theorems 4 and 5 can be found in Appendix E and F,

respectively. Comparing (7) and (8) with (4) and (5), respectively, it

is noted that each possible selection of 𝑋 is now augmented with

additional randomness from data mixing and permutation. Specifi-

cally for individual privacy captured by the Type (I) upper bound

in (8), we only need to compare the divergence of encoded data

from the closest adjacent datasets 𝑋𝑖
𝑐∼ 𝑋−𝑖 in the same ordering

under the samemixing matrix and the same permutation. As shown

later in Fig. 1 of Section 7.1, such privacy enhancement is signifi-

cant when handling practical data. We also observe that Type (II)

bounds usually outperform Type (I) in (7); which is contrary to the

individual privacy case (8).

5.3 Simulation with Confidence
In this subsection, we show how to produce a high-confidence pri-

vacy guarantee via simulations. For simplicity, we consider adding

isotropic noise, where each entry of the Gaussian noise 𝐵 is i.i.d.

in a form N(0, 𝜎2). Based on Corollary 1, the remaining problem

is to determine proper 𝜎 to produce satisfied mutual information

using the upper bounds (7) and (8), described in Theorems 4 and

5. Qualitatively, it is not hard to observe that the bounds always

decrease with increasing 𝜎 . Therefore, once we can ensure a high-

confidence estimation on the privacy guarantee produced by given

noise scale 𝜎 , via binary search, we can determine the optimal 𝜎

for desired security parameters.

In both (7) and (8), once the noise covariance Σ𝐵 is given, the

upper bound simply becomes the sum of several expectation terms

over the randomness of 𝑋 . Therefore, on each term, if we can show

a high-probability bound of the approximation error within the

empirical averages from substantially many samplings on𝑋 , then by

a union boundwe can show a high-confidence privacy guarantee for

given noise covariance Σ𝐵 . We take the Type (I) bound in (8) as an

example and describe this framework as Algorithm 2 in Appendix

I. Let E𝐿 be the empirical average of the simulated values across

𝐿 independent samplings on 𝑋 , then the parameters of estimated

variance 𝜂 for confidence bound (1 − 𝛾) are selected as follows.

Theorem 6 (Simulation Complexity). Suppose the data pool U is
bounded such that ∥𝑢𝑖 ∥2 ≤ 1 for any 𝑢𝑖 ∈ U. Then, in Algorithm
2, which estimates the Type (I) upper bound in (8) by the empirical
average from 𝐿 independent trials, to ensure with high confidence
(1 − 𝛾) the objective mutual informationMI(1𝑢𝑖 ;Π𝑀𝑋𝑊 + 𝐵) ≤
E𝐿 + 𝜂, the estimated variance 𝜂 can be selected as

𝜂 ≥ 𝑑𝑞(1 − 𝑞)√
2𝐿

{√
log( 2

𝛾
)
(
𝑚(1 +

√
𝑚

𝜎2
)
)}
. (9)

Similarly, in the same setup for Type (II) upper bounds, it suffices to
select 𝜂 as,

𝜂 ≥ 𝑑
2

{
log(1 + 𝑚(

√
𝑚 + 𝛼)𝛼
𝜎2𝑚

) +

√
2 log( 3

𝛾 )
𝐿

(
𝑚 log(1 +

√
𝑚

𝜎2
)
)}
,

(10)

where 𝛼 =

√
32 log( 6𝑚𝛾 ) (1 +

√
𝑚

𝜎2
)2/𝐿. Moreover, after replacing

𝑞(1 − 𝑞) by 1 in (9), (9) and (10) also work for the Type (I) and
(II) upper bounds of (7) in Theorem 4.

The proof of Theorem 6 can be found in Appendix G. Theo-

retically, to produce a (1 − 𝛾) confidence estimate, we need 𝐿 =

�̃� (𝑚4𝑑2
log(1/𝛾)). However, we need to point out Theorem 6 does

not put additional assumptions on the dataset U except for a very

weak global 𝑙2-norm bound. The analysis in (9) and (10) can be

significantly sharpened with mild nonsingularity of mixed samples

𝑀𝑋 and, in practice, the empirical averages of (7) and (8) converge

fast, where hundreds of simulation trials are usually sufficient, as

shown later in Fig. 2 of Section 7.1.

5.4 Learnable Noise from Public Data
We now point out that it is not necessary to fix the noise 𝐵 to be

isotropic, but instead we can construct learnable (fake) noise. As-
sume some public set (𝑋𝑝𝑢𝑏 , 𝑌𝑝𝑢𝑏 ) is in the same format as the

sensitive set (𝑋,𝑌 ). Consider the following construction Π𝑀𝑋𝑊1 +
𝑀0𝑋𝑝𝑢𝑏𝑊2 for independent masking matrices𝑊1 and𝑊2 on the

features with some fixed mixing matrix𝑀0. Accordingly, to produce

useful labels given that 𝑋𝑝𝑢𝑏𝑊2 forms an independent transformed

set, we consider the concatenation [Π𝑀𝑌,𝑀0𝑌𝑝𝑢𝑏 ]. As an example,

if both (𝑋,𝑌 ) and (𝑋𝑝𝑢𝑏 , 𝑌𝑝𝑢𝑏 ) are for some 10-classification prob-

lems, where both𝑌 and𝑌𝑝𝑢𝑏 are formed by one-hot 10-dimensional

vectors, the labels of composite Π𝑀𝑋𝑊1 +𝑀0𝑋𝑝𝑢𝑏𝑊2 are vectors

of dimension 20, by simply concatenating Π𝑀𝑌 and𝑀0𝑌𝑝𝑢𝑏 . Con-

sequently, the model N𝑇 trained over such transformed data needs

to recognize 10 × 10 composite classes.

To apply such modelN𝑇 for prediction on some newly-incoming

sample 𝑥𝑞 , instead of inputting 𝑥𝑞𝑊1 solely, wewill generate 𝑥𝑞𝑊1+
𝑥𝑝𝑢𝑏𝑊2 under multiple selections of 𝑥𝑝𝑢𝑏 ∈ 𝑋𝑝𝑢𝑏 , and determine

the prediction based on majority voting (ensemble) of N𝑇 (𝑥𝑞𝑊1 +
𝑥𝑝𝑢𝑏𝑊2). From a privacy standpoint, the upper bounds in both (7)

and (8) still work for such a construction, where the only difference

is that the noise covariance Σ𝐵 now becomes Σ𝑀0𝑋𝑝𝑢𝑏 ,𝐵 . In Section

7.1, we will show when the distribution of𝑋 is concentrated around

𝑋𝑝𝑢𝑏 , i.e., sensitive data is close to public data, then such learnable
noise can efficiently replace random noise and produce a sharpened

utility-privacy tradeoff.

6 HARDNESS OF REVERSE ENGINEERING
We present results on provable hardness of reverse engineering.

Specifically, we state the problem as follows. Given some data dis-

tribution 𝑥 ∼ D and the release of 𝑋𝑊 + 𝐵, for an independent

Gaussian masking matrix𝑊 with each entry inN(0, 1), we wish to

characterize the hardness that the adversary can return a function

𝑓𝑎𝑑𝑣 satisfying (𝜓, 𝜏) statistical encoding distance (Definition 8):

Pr

𝑥∼D

(
∥𝑥𝑊 − 𝑓𝑎𝑑𝑣 (𝑥)∥2 < 𝜓

)
≥ 1 − 𝜏 . (11)

Clearly, the hardness must count on D, where in the extreme case if

D is degenerate such that Pr𝑥∼D (𝑥 = 0) = 1, the problem becomes

trivial to the adversary. In the following, we set E𝑥∼D [𝑥] = 0 with
additional two assumptions on D.

Assumption 1. For any unit 𝑧 ∈ R𝑑0 , ∥𝑧∥2 = 1, the variance of 𝑥
after projection satisfies E[⟨𝑥, 𝑧⟩2] ≥ 𝜅2, for some parameter 𝜅.

Assumption 1 characterizes the variance of 𝑥 , which will play the

key role in lower bounding the adversarial inference error, captured

by 𝜓 . We expect that the projection of 𝑥 along every direction in
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R𝑑0
is of sufficient energy (variance) 𝜅2

. We want to mention this

is a mild assumption for machine learning tasks invariant to data

rotation. One may consider uniformly applying a random rotation

over the data source 𝑥 . This can ensure the power of 𝑥 along any

particular direction to be identically the average of that across all

directions. After a random rotation, for any fixed 𝑥 and unit vector

𝑧, E𝑥 [⟨𝑥, 𝑧⟩2] = E𝑥,𝑧′ [⟨𝑥, 𝑧′⟩2] for a random unit vector 𝑧′.

Assumption 2. For any 𝑧 ∈ R𝑑 in any fixed distribution 𝐷𝑧 over
the sphere ∥𝑧∥ = 1, ⟨𝑧, 𝑥⟩ is of a subGaussian tail such that for some
constant 𝐾 , Pr𝑧,𝑥 ( |⟨𝑧, 𝑥⟩| ≥ 𝑡) ≤ 2𝑒−𝑡

2/𝐾2

.

In Assumption 2, we assume concentration of the data source

𝑥 , which enables us to derive high-probability bounds 𝜏 on the

estimation error. Roughly speaking, we assume that after applying

a Lipschitz-1 linear function on 𝑥 , it is of a subGaussian tail. As-

sumption 2 is only used to produce a high probability requirement

𝜏 in (11), and is unnecessary if one only cares about the expected

error E𝑥∼D [∥𝑊𝑥 − 𝑓𝑎𝑑𝑣 (𝑥)∥]. Together, Assumptions 1 and 2 form

the foundation of the following inference hardness result.

Theorem 7. For any data distribution D satisfying Assumptions 1
and 2, when 𝑑 = 𝑑0, after the observation of 𝑋𝑊 + 𝐵, the posterior
success rate (1−𝛿), that an adversary returns a function 𝑓𝑎𝑑𝑣 matching
(𝜓, 𝜏)-distance in (11), satisfies

1 − 𝛿 ≤
MI(𝑋 ;𝑋𝑊 + 𝐵) + 𝑑0

2
E𝑋 log(det(𝑰 + 𝑋𝑋𝑇

𝜎2
)) + log(2)

(𝑑2

0
− 𝛽2)2/(4𝑑2

0
)

,

(12)

where 𝛽2 = 𝑑2−2𝑑0

√
𝑡 ,𝜓 =

√
𝜅2𝛽2−𝑡

2
, 𝜏 = 1−𝑒−𝑡2/(𝐶𝐾4𝛽4 )

2
, for a freely

selectable parameter 𝑡 and constant 𝐶 .

The proof of Theorem 7 can be found in Appendix H. In Theorem 6,

we have already shown the simulatable upper bounds of the terms

in the numerator of (12). Asymptotically, when 𝛽 = Θ(𝑑0), and thus
𝜓 = Θ(𝑑0) for some 𝜏 ∈ (0, 0.5), the denominator of (12), which

captures the upper bound of log(1/(1−𝛿𝑜 )) for the optimal a priori
success rate (1 − 𝛿𝑜 ) is Θ(𝑑0). When the numerator is constant, it

suggests that the adversarial posterior success rate to find an 𝑓𝑎𝑑𝑣
that is (𝜓, 𝜏)-close to𝑊 according to Eqn. 11, is up to 𝑂 (1/𝑑0).

7 EXPERIMENTS
7.1 Reconstruction Robustness
We present experiments to illustrate the practicality of our analysis.

We consider applying Algorithm 1 to obfuscate the CIFAR10 dataset,

with a total of 50, 000 training samples, and the untrusted server

trains a 3-layer fully-connected network on transformed data. Prior

to applying the obfuscations, we preprocess the data. We embed

(uniformly transform) images using a ResNet-50 network pretrained

on ImageNet [52] and normalize the 𝑙2-norm of each image to 1.

Such preprocessing is necessary to reduce the ill condition of raw

data matrices: without it, in the same setup from raw data, mutual

information bounds computed using Theorems 2-5 can be 1, 000×
larger than those from normalized and embedded data

1
, which are

reported below. We cannot show meaningful privacy guarantees for

existing learnable obfuscation proposals, e.g., NeuraCrypt [62], that

1
We also observe that many other embedding methods can help the stability, for

example, BERT [15] for language/text data.

Figure 1: Logarithm of Mutual Information Bounds Com-
puted from Theorems 2-3 (matrix masking only) and 4 -5
(matrix masking+mixing+permutation).

.

Figure 2: Logarithm of the standard deviation of empirical
mean estimator for Theorems 4 and 5.

.

handle raw image data directly, free of additional noise perturbation

𝐵, but have questionable security [11].

In the following, we assume that each entry of the (normal-

ized) masking matrix𝑊 ∈ R𝑑0×𝑑
and noise 𝐵 ∈ R𝑚×𝑑 are i.i.d. in

N(0, 1/𝑑) andN(0, 𝜎2), respectively, such that the 𝑙2 norm of each

transformed image is close to 1. From our observation, for matrix-

masked data, there usually exists a critical point for the selection of

output dimension 𝑑 , which is around 500 in our CIFAR10 example:

when 𝑑 ≥ 500, the accuracy improves slowly as 𝑑 further increases;

when 𝑑 ≤ 500, the accuracy drops sharply as 𝑑 decreases. To this

end, we fix 𝑑 = 500 in all reported experiments.

In Fig. 1 (a) and (b), we first record themutual information bounds

presented in Theorems 2-5 under various selections of mixing pa-

rameter 𝑘 and noise scale 𝜎 for a randomly-selected normalized

𝑛-subset 𝑋 . As explained at the end of Section 5.1, data mixing

and permutation mitigates the problems from the ill condition and

different orderings of 𝑋 , and the sharpened bounds from Theorems

4 and 5 can be 10× smaller compared to those obtained from Theo-

rems 2 and 3 whenwe only apply matrix masking. In Fig. 2, we show

the convergence rate of the estimations of the bounds in Theorems

4 and 5 in different scenarios. We record the standard deviation of

the empirical mean estimator provided 𝐿 independent samplings.

From Fig. 2, for practical data, one may achieve 10
−3

variation of

individual mutual information estimation for 𝐿 in a scale of hun-

dreds. In all the following privacy guarantees reported in Tables 3

and 5, we run the simulations until the variation of produced mean

estimation for the objective bound is less than 10
−3
.

We proceed to interpret the privacy guarantee in semantic con-

texts of an individual reconstruction challenge (Definition 6) and a

membership inference challenge (Definition 7), with a clear com-

parison to existing privacy accounting methods [5, 50]. To match
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(𝑛,𝑚,𝑘)\𝜎 0 0.02 0.03 0.04 0.05

(1K,2K,5) 83.4 82.3 (0.40,0) 81.8 (0.56,0) 80.9 (0.63,0) 80.1 (0.67,0)

(1K,4K,5) 84.5 83.7 (0.21,0) 83.0 (0.43,0) 82.6 (0.54,0) 81.8 (0.60, 0)

(1K,4K,10) 82.8 82.4 (0.54,0) 82.1 (0.65,0) 81.6 (0.69, 0.08) 81.4 (0.73,0.56)

(2K,4K,10) 84.3 82.9 (0.39,0) 82.6 (0.56,0) 82.0 (0.63,0.08) 81.8 (0.67, 0.56)

(2K,6K,15) 84.4 83.1 (0.56,0) 82.6 (0.66,0.15) 82.4 (0.71, 0.63) 82.0 (0.74,0.69)

(4K,6K,15) 84.9 84.0 (0.49,0) 83.6 (0.61,0.15) 83.3 (0.67,0.63) 82.6 (0.71,0.69)

Table 1: Test Accuracy (%) (Posterior Reconstruction Failure
Probability 𝛿 for 𝑙2-norm estimation error smaller than 0.75

ensured by Theorem 4, and ensured by RDP accounting [5])
over encoded preprocessed CIFAR10 data via Algorithm 1.

the i.i.d. generation setup in Definition 6 and [5], we consider a set

S = {𝑠1, 𝑠2, · · · , 𝑠𝑁 }, 𝑁 = 50, 000, where each 𝑠𝑖 is i.i.d. uniformly

selected from the embedded CIFAR10 dataset, and𝑋 is a normalized

subset of size 𝑛 of S, as our training data, which we obfuscate by

applying Algorithm 1. We focus on an adversarial reconstruction

task as estimating a single individual 𝑠𝑖 with error in 𝑙2-norm ≤
0.75. Given the random sampling setup, the corresponding optimal

prior success rate is (1 − 𝛿𝑜 ) = 0.16. In Table 1, we record the

performance of the trained model over obfuscated 𝑋 via Algorithm

1 in various setups, where 𝑘 captures the mix number as defined

in Section 5.2. For each case, we perform 5 independent trials on

sampling (𝑋,𝑊 ,𝑀) and noise 𝐵, and report the median test accu-

racy. The accuracy loss caused by obfuscation (matrix masking and

mixing only) varies between 2-3%. As a benchmark, if the entire em-

bedded, untransformed CIFAR10 without additional noise is used

for non-private training, the same fully-connected network can

achieve 94.5% accuracy. The first number in each pair of brackets

is the lower bound on the failure rate ensured by Theorem 4 for an

adversary to return a satisfied reconstruction with error ≤ 0.75.

We also compare the results using [5] which applies RDP ac-

counting (3) to analyze the reconstruction robustness of Algorithm

1 on S. We implement Poisson subsampling to produce 𝑋 to sim-

ulate the (𝑖, 𝑗)-class-𝑘-mixing on images from each pair of (𝑖, 𝑗)
classes, where each individual in each class will be independently

selected at a rate
𝑘

𝑁 /10
. Thus, we can apply the parallel composition

of subsampled Gaussian mechanisms [52] to determine the RDP

parameters (3), where the sensitivity of each released mixed data is

1/𝐾 . We want to stress that the RDP accounting can only apply to

the noise and subsampling, rather than the additional obfuscations

as analyzed in Theorems 2-5. Given the same noise 𝜎 , the perfor-

mance of such differentially-private releasing is very slightly worse

than (<0.5%) that of Algorithm 1, mainly because of the variation

by Poisson sampling. For brevity, we omit these results.

In comparison, our results produce much tighter privacy analysis

against individual reconstruction. From Table 1, in many scenar-

ios, [5] via RDP accounting cannot provide meaningful guaran-

tees, where the adversary’s failure rate can only be trivially lower

bounded by 0. 𝑘 , 𝑛 and the total number of released mixed samples

𝑚 show the following utility-privacy tradeoff. A larger 𝑚 and 𝑛

with a smaller 𝑘 can ease the transformed learning task; but simul-

taneously, a smaller 𝑛 (subsampling rate) produces a larger privacy

amplification. Alternately, a larger 𝑘 , which implies more intensive

mixing, and a smaller𝑚 can form a smaller and more stable 𝑀𝑋

training dataset with less leakage. We have similar observations in

Table 3 in Section 7.2 when we consider membership inference.

(𝑛,𝑚,𝑘)\𝜎 0 0.02 0.03 0.04 0.05

(1K,2K,5) 84.2 83.8 (0.59) 83.6 (0.67) 83.2 (0.71) 82.5 (0.74)

(1K,4K,5) 85.0 84.3 (0.45) 84.0 (0.59) 83.6 (0.66) 83.3 (0.70)

(1K,4K,10) 84.4 83.6 (0.61) 83.2 (0.70) 82.5 (0.74) 81.9 (0.76)

(2K,4K,10) 84.9 84.3 (0.50) 84.0 (0.63) 83.5 (0.68) 83.3 (0.72)

(2K,6K,10) 85.2 84.7 (0.61) 84.3 (0.69) 84.2 (0.73) 83.6 (0.76)

(4K,6K,10) 85.7 85.1 (0.55) 84.5 (0.65) 84.2 (0.70) 83.6 (0.73)

Table 2: Test Accuracy (%) (and Posterior Reconstruction
Failure Probability 𝛿 ensured by Theorem 4) over encoded
preprocessed CIFAR10 data with Learnable Noise.

In Table 2, we further incorporate learnable fake noise (Sec-

tion 5.4) into Algorithm 1. We randomly select 1,000 samples from

CIFAR10 to form a public set 𝑋𝑝𝑢𝑏 and replace the isotropic Gauss-

ian 𝐵 by 𝑀0𝑋𝑝𝑢𝑏𝑊2 + 𝐵 for some fixed 𝑘-mixing matrix 𝑀0 and

an independent Gaussian matrix𝑊2. Equivalently, we now add

an anisotropic Gaussian noise of covariance Σ𝑀0𝑋𝑝𝑢𝑏 ,𝐵 . Besides,

we also use the augmented inference method of Section 5.4. For

each test data, we apply the model on its mixed versions with 100

randomly selected public samples from 𝑋𝑝𝑢𝑏 . Comparing Table 2

with Table 1, in the same setup (including 𝜎 = 0), the additional

learnable noise𝑀0𝑋𝑝𝑢𝑏𝑊2 significantly amplifies the privacy, and

performance improves. This is because we also learn over 𝑋𝑝𝑢𝑏𝑊2,

since the trained classifier handles composite 10 × 10 classification,

and the transformed classes have strong correlation.

7.2 Membership Inference
In this section, we study the provable robustness of Algorithm 1

against membership inference, and conduct amembership inference

attack as a means to validate our theory and implementation. Our

theory provides upper bounds, and the attack provides a lower

bound on adversarial success rate.

We adopt the data generation setup described in Definition 7,

where U is still the embedded CIFAR10 of 𝑁 = 50, 000 datapoints

and 𝑋 is a random normalized subset of size 𝑛 of U. This is slightly
different from the i.i.d. uniform generation in Section 7.1 to match

the data reconstruction setup. But, in both cases. the produced 𝑋 is

roughly a random 𝑛 normalized subset of U.
To have a fair comparison with [50], we also focus on the positive

identification accuracy rate: [50] (and references therein) considers

a probabilistic adversary, who, given the observationM(𝑋 ), returns
𝑋 in the following distribution,

P(𝑋 = 𝑋0) = P(𝑋 = 𝑋0 |𝑀 (𝑋 ) = 𝑜), (13)

and defines the positive accuracy Pr(1𝑢𝑖 ∈𝑋 = 1
𝑢𝑖 ∈�̂� = 1) = (1 −

𝛿𝑖 ). To our knowledge, [50] presents the best-known posterior

success rate for a generic subsampling rate, which shows that if a

processing mechanismM satisfies 𝜖0-DP, the posterior failure rate

𝛿𝑖 to positively correctly identify the membership of an individual

is lower bounded by

(1 − 𝑞)𝑒−𝜖0

𝑞 + (1 − 𝑞)𝑒−𝜖0

. (14)

In our case, 𝑞 = 𝑛/𝑁 is the rate that an individual gets sampled in

𝑋 , and the optimal failure rate of above-described positive identifi-

cation one may expect is (1 − 𝑞).
We select the first 100 samples in the CIFAR10 set as our objec-

tives. In Table 3, we record the performance of the trained model
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over obfuscated data via Algorithm 1 in various setups. For each

case, we perform 5 independent trials on sampling (𝑋,𝑊 ,𝑀) and
noise 𝐵, and report the median test accuracy. It is not surprising

that the performance reported in Table 3 is almost identical to that

in Table 1 given the similarity of produced 𝑋 , as explained earlier.

Similar to Table 1, the first number in each pair of brackets is the

lower bound on the failure rate ensured by Theorem 5 and Corollary

1 that the adversary can positively identify the membership of the

100 target datapoints. Elaborating, given the mutual information

bound from (8), we correspondingly calculate the lower bounds of

each 𝛿𝑖 and report the smallest one.

We also compare the results using [50] to apply DP auditing

to analyze Algorithm 1 on the same preprocessed data 𝑋 . The

second number in each pair of brackets of Table 3 captures this. It

can be seen when 𝜖0 is large, (14) is close to 𝑒−𝜖0/𝑞, which decays

exponentially and (14) can only produce usable guarantees when

𝜖0 is some small constant 𝑂 (log(1/𝑞)). This explains why the DP

lower bounds in Table 5 vary heavily and are only meaningful given

large enough noise 𝜎 , the number of sampled samples 𝑛, and mixing

parameter 𝑘 to ensure small enough sensitivity. In comparison, our

results produce much tighter instance-based privacy analysis.

(𝑛,𝑚,𝑘)\𝜎 0 0.03 0.04 0.05

(1K,2K,5) 83.4 81.7 (0.30,3.10
−3

) 80.9 (0.61,0.01) 80.2 (0.70,0.03)

(1K,4K,5) 84.5 83.2 (0.14,3.10
−7

) 82.6 (0.28,3.10
−6

) 81.6 (0.57,4.10
−5

)

(1K,4K,10) 82.8 82.1 (0.33,5.10
−12

) 81.8 (0.62,2.10
−6

) 81.3 (0.68,6.10
−3

)

(2K,4K,10) 84.3 82.5 (0.18,7.10
−5

) 82.0 (0.45,0.05) 81.7 (0.67,0.11)

(2K,6K,15) 84.4 82.8 (0.37,6.10
−4

) 82.5 (0.59,0.03) 81.9 (0.68,0.14)

(4K,6K,15) 84.9 83.7 (0.09,0.05) 83.3 (0.23,0.08) 82.8 (0.36,0.27)

Table 3: Test Accuracy (%) (and Posterior Membership Posi-
tive Identification Failure Probability ensured byTheorem5,
and ensured by Differential Privacy [50]) over encoded pre-
processed CIFAR10 data via Algorithm 1.

(𝑛,𝑚,𝑘)\𝜎 0.03 0.04 0.05

(1K,2K,5) (0.44, 0.30) (0.78, 0.61) (0.84, 0.70)

(1K,4K,5) (0.19, 0.14) (0.50, 0.28) (0.73, 0.57)

(1K,4K,10) (0.45, 0.33) (0.78, 0.62) (0.79, 0.68)

(2K,4K,10) (0.34, 0.18) (0.65, 0.45) (0.74, 0.67)

(2K,6K,15) (0.55, 0.37) (0.81, 0.59) (0.87, 0.68)

(4K,6K,15) (0.36, 0.09) (0.60, 0.23) (0.71, 0.36)

Table 4: Posterior Membership Positive Identification Fail-
ure Probability by Empirical Estimation, and ensured by
Theorem 5 over encoded preprocessed CIFAR10 data via Al-
gorithm 1.

We have focused on relatively small 𝑞 mainly because we want

large failure probability (≤ 1−𝑞), and also because our results could
be significantly improved in the high 𝑞 regime: the rate that an

individual gets involved in the mixed version𝑀𝑋 could be smaller

than 𝑞, i.e., that it gets selected in 𝑋 .

In Table 4, we provide empirical estimations of the positive iden-

tification rate, as the first number in the brackets, which are de-

termined by a concrete attack, inspired by [9], which we describe

below. Given the output (release) 𝑜 = Π𝑀𝑋𝑊 + 𝐵, the noisy ob-

fuscated samples, the adversary randomly selects 100 subsets of

U, 𝑋+
1
, · · · , 𝑋+

100
, where each subset is formed by 𝑛 datapoints and

includes the objective datapoint 𝑢0 under membership inference

concern. The adversary also randomly and independently selects

the obfuscations Π+
𝑖
, 𝑀+

𝑖
,𝑊 +

𝑖
, for 𝑖 = 1, 2, · · · , 100. Similarly, the

adversary randomly and independently selects 𝑋−
𝑖
,Π−
𝑖
, 𝑀−

𝑖
,𝑊 −

𝑖
,

for 𝑖 = 1, 2, · · · , 100, where each 𝑋−
𝑖
is an 𝑛-subset of U, excluding

the objective datapoint 𝑢0 under membership inference concern.

The adversary then estimates the likelihood that 𝑜 is produced by

some 𝑋 with or without 𝑢0 by
1

100
·∑100

𝑖=1
P
(
Π+
𝑖
𝑀+
𝑖
𝑋+
𝑖
𝑊 +
𝑖
+ 𝐵′ = 𝑜

)
and

1

100
· ∑100

𝑖=1
P
(
Π−
𝑖
𝑀−
𝑖
𝑋−
𝑖
𝑊 −
𝑖
+ 𝐵′ = 𝑜

)
, respectively, where 𝐵′

is the Gaussian noise in the same distribution as 𝐵. The adversary

then, based on the estimated likelihoods, determines the member-

ship guess defined in (13) and we report their average failure rate.

As expected, the empirical estimation from a specific attack only

provides an upper bound on the adversary’s failure rate, while our

results from PAC Privacy provide a provable lower bound.

(𝑛,𝑚,𝑘)\𝜎 0 0.03 0.04 0.05

(1K,2K,5) 84.2 83.5 (0.53) 83.0 (0.74) 82.6 (0.83)

(1K,4K,5) 85.0 84.1 (0.36) 83.8 (0.58) 83.4 (0.66)

(1K,4K,10) 84.4 83.1 (0.71) 82.7 (0.73) 82.2 (0.84)

(2K,4K,10) 84.9 84.2 (0.43) 83.7 (0.64) 83.4 (0.77)

(2K,6K,10) 85.2 84.5 (0.34) 84.1 (0.54) 83.7 (0.67)

(4K,6K,10) 85.7 84.8 (0.24) 84.3 (0.48) 83.9 (0.61)

Table 5: Test Accuracy (%) (and Posterior Membership Posi-
tive Identification Failure Probability ensured by Theorem
5) over encoded preprocessed CIFAR10 data with Learnable
Noise.

Similarly, in Table 5, we further incorporate learnable fake noise

(Section 5.4) into Algorithm 1. Identically, we randomly select 1,000

samples from CIFAR10 to form a public set 𝑋𝑝𝑢𝑏 and replace the

isotropic Gaussian 𝐵 by 𝑀0𝑋𝑝𝑢𝑏𝑊2 + 𝐵 for some fixed 𝑘-mixing

matrix𝑀0 and an independent Gaussian matrix𝑊2. Equivalently,

we now add an anisotropic Gaussian noise of covariance Σ𝑀0𝑋𝑝𝑢𝑏 ,𝐵 .

We also use the augmented inference method of Section 5.4. For

each test data, we apply the model on its mixed versions with 100

randomly selected public samples from 𝑋𝑝𝑢𝑏 . Comparing Table

5 with Table 3, in the same setup, the additional learnable noise

𝑀0𝑋𝑝𝑢𝑏𝑊2 significantly amplifies the privacy, and meanwhile the

performance is even better.

8 ADDITIONAL RELATEDWORK
We elaborate on the fundamental differences between learnable

obfuscation and classic cryptographic and DP primitives.

Property-preserving Encryption: To support efficient searching

over encrypted data, property-preserving encryption represents

a line of work aimed at generating ciphertexts that maintain the

necessary information and features of plaintexts while preventing

adversaries from distinguishing other features with a significant

advantage. There exist various examples in this field, such as order-

preserving encryption (OPE) [2] and searchable encryption [35, 49].

However, cryptanalysis and overhead requirements for property-

preserving encryption are still under investigation, and certain

impossibility results have been discovered. For instance, it has

been proven [39, 44] that no efficient construction exists for OPE,

or alternatively, the ciphertext needs to be exponentially larger

than the plaintext to achieve ideal security while only exposing
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the plaintext’s ordering. As mentioned before, most applications

of learnable obfuscation do not necessarily require a decryption

paradigm: the user only needs to encode the sample via the learnable

obfuscation function and then can apply the model trained on the

transformed domain. However, despite this appealing freedom,

we have demonstrated that it remains generally impossible for

learnable obfuscation to achieve cryptographic security, which

advances the understanding of this framework. On the other side,

our results for measuring leakage from an information-theoretic

perspective point out a new possible way to measure privacy and

can be employed to study the leakage of other property-preserving

encryption as well.

Hardness Results of Learning: Despite the empirical success of

machine learning, there exists a significant body of research focused

on studying the impossibility results of learning certain classes of

functions, particularly those computed by neural networks. Surpris-

ingly, in the worst-case scenario of data distribution, even learning

a two-layer fully-connected network can be computationally chal-

lenging. An active area of research in this field revolves around the

hardness of learning intersections of halfspaces [36]. For example,

Klivans and Sherstov [36], based on the hardness assumption of the

shortest vector problem, proved that learning 𝑝𝑜𝑙𝑦 (𝑑) halfspaces
is hard. This number was further improved to Ω(log(𝑑)) based on

the RSAT assumption [13]. Those results suggest that a two-layer

network with Ω(log(𝑑)) many hidden neurons with Relu activa-

tion functions could be hard to learn in general, which is still true

even when the network’s weights are well-behaved in normal or

uniform distributions [14]. Other related hardness results regarding

statistical query models or gradient-descent-based methods can be

found in [22], [47]. Though with a different motivation, it raises an

interesting question as to whether the hardness of learnable obfus-

cation could count on those impossibility results. Unfortunately,

there are two main obstacles to straightforward application in their

current forms. In general, to show that learning is impossible, those

hardness results mostly reduce to proving that there exists certain
data distribution 𝑥 ∼ D or some neural network function 𝑓 (·) such
that 𝑓 (𝑥) is computationally indistinguishable. On one hand, ex-

isting works only support a worst-case hardness, while we need

a more generic leakage quantification for private data from prac-

tical distributions. On the other hand, prior constructions with a

reduction to computational indistinguishability also suggest that

no further meaningful learning can be applied to transformed data,

and thus we need different techniques for learnable obfuscation.

Private Synthetic Data Release and Differential Privacy: Our
primary focus in this paper is on formalizing the privacy leakage

from straightforward heuristic obfuscation techniques that main-

tain topology of input data. However, there is another promising

approach for privately releasing synthetic learnable data, which

involves the use of generative models. Generative AI techniques,

such as Generative Adversarial Network (GAN) [23] and Diffusion

models [31], have achieved remarkable success in the many fields.

If we can ensure that the generative model trained on sensitive data

is already private, then the synthetic data generated afterwards, as

much as needed, becomes a postprocessing step that does not in-

troduce additional privacy risks. Nonetheless, this approach differs

in a key aspect from the main motivations of learnable obfusca-

tion. Training state-of-the-art generative models is computationally

intensive, even without privacy restrictions. An ideal learnable ob-

fuscation scheme is expected to efficiently transform the input data

without needing to learn from it. DP-SGD enables private training

of a model, that can be subsequently released with privacy guaran-

tees on training data, but besides the heavy computational overhead

of training, heavy utility loss is incurred [17]. So far, to efficiently

release data with a provable privacy guarantee, pure noise pertur-
bation characterized by LDP is still the most general and popular

approach. However, as a more challenging problem, LDP [18] also

heavily suffers from the curse of dimensionality and strict impossi-

bility results are known for its applications in the high-dimensional

(𝑛 ≪ 𝑑) scenarios [18].

9 CONCLUSION
In this paper, we formalized the concept of learnable obfuscation

and developed a series of new tools to show a provable information-

theoretic privacy guarantee of three important heuristic obfuscation

methods. Our impossibility results and a successful example (after

appropriate data preprocessing) can be used to guide the search

of other efficient transformations for learnable obfuscation con-

struction. Our developed tools and results open new possibilities to

produce privacy enhancement by exploiting different randomness

besides independent isotropic noise, and present an innovative re-

search direction to study general property-preserving encryption

from an information-theoretic angle.
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A PROOF OF THEOREM 1
We first show the construction of the PAC learnable concept class

˜C.
Without loss of generality, suppose the feature domainX = X𝑎∪X𝑏 ,
where X𝑎 and X𝑏 are disjoint and X𝑏 = {𝑥𝑏,1, · · · , 𝑥𝑏,𝜈 } of 𝜈 ele-

ments. Now, for the given PAC learnable concept class C = {ℎ0, ℎ1},
we assumeℎ1,2 is defined onX𝑎 to {0, 1}. Now, we construct ˜C based

on C. First, withinX𝑎 , for each 𝑗 = 1, 2, · · · , 2𝜈 , and any 𝑥 ∈ X𝑎 , we
set

˜ℎ 𝑗 (𝑥) = ℎ1 (𝑥). As for the evaluation over X𝑏 , let {𝒛1, 𝒛2, ..., 𝒛2
𝜈 }

be the set which contains all the selections of 𝜈-dimensional bi-

nary vectors {0, 1}𝜈 . Then, for each 𝑗 ∈ {1, 2, · · · , 2𝜈 }, we set

{ ˜ℎ 𝑗 (𝑥𝑏,1), · · · , ˜ℎ 𝑗 (𝑥𝑏,2𝜈 )} = 𝒛 𝑗 . In addition, given the distribution

D0 defined on X𝑎 , we define D1 in a mixture form D1 = 𝑝 ·
D0 + (1 − 𝑝) · UX𝑏 for some constant 𝑝 to determined, and UX𝑏
is a uniform distribution over X𝑏 . It is not hard to verify that

E𝑥∼D1
E𝑗 [ℎ 𝑗 (𝑥)] = 𝑝E𝑥∼D0

[ℎ0 (𝑥)] + (1− 𝑝)E𝑥∼D1
E𝑗 [ ˜ℎ 𝑗 (𝑥)] = 0.5

for randomly-selected 𝑗 ∈ {1, 2, · · · , 2𝜈 }.
X𝑏 captures the hardcore samples to the learning problem

˜C.
Given that the labelling is fully random over X𝑏 , one can only

memorize rather than learn it. The encoded version of samples

from X𝑏 also behaves as the hardcore data in the transformed

learning task. However, given 𝜈 is finite and the samples from X𝑎
are learnable based on the assumption of C, ˜C still satisfies PAC

learnability: once the number of 𝑛 (the size of training set 𝑆) is

sufficiently large (≫ 𝑣), where most samples in X𝑏 have been

included in 𝑆 , we can achieve arbitrarily high accuracy. Through

this construction, we can theoretically show
˜C is a more challenging

problem compared to C, which forms the foundation of the proof.

Next, we describe the distinguishing attack. For the transformed

dataset𝑇 (𝑆𝑏 , 𝜃 ) returned by the user, the adversary randomly splits

it into two parts, denoted by 𝑆1

𝑏,𝑇
and 𝑆2

𝑏,𝑇
: 𝑆1

𝑏,𝑇
contains 𝑚0 en-

coded samples and 𝑆2

𝑏,𝑇
contains the remaining (𝑛 − 𝑚0) ones.

The adversary then applies Alg on the first part 𝑆1

𝑏,𝑇
, and tests the

returned model
ˆℎ on 𝑆2

𝑏,𝑇
. In the case of 𝑏 = 0, based on the as-

sumption, with probability at least 3/4, Alg(𝑆1

0,𝑇
) will return some

ˆℎ such that Pr𝑥∼D0

[
ˆℎ(𝑇𝑋 (𝑥), 𝜃𝑋 ) = 𝑇𝑌 (ℎ(𝑥), 𝜃𝑌 )

]
≥ 0.5 + 𝜆. From

the Hoeffding inequality, for such an
ˆℎ, it is of probability at least

1− 𝑒−2𝑡2 (𝑛−𝑚0)
that the test accuracy on the (𝑛 −𝑚0) i.i.d. samples

of 𝑆2

0,𝑇
is no less than 0.5+𝜆− 𝑡 for any 𝑡 > 0. When we set 𝑡 = 𝜆/2,

conditional on Pr𝑥∼D0

[
ˆℎ(𝑇𝑋 (𝑥), 𝜃𝑋 ) = 𝑇𝑌 (ℎ(𝑥), 𝜃𝑌 )

]
≥ 0.5+𝜆, the

test accuracy of
ˆℎ on 𝑆2

0,𝑇
is no less than 0.5 + 𝜆/2 with probability

at least 1 − 𝑒−𝜆2/2· (𝑛−𝑚0)
.

When 𝑏 = 1, still by the Hoeffding inequality, we know that with

probability 1 − 𝑒−2𝑡2 (𝑛−𝑚0)
, a fraction at least 𝜂 = (1 − 𝑝) − 𝑡 of

samples in 𝑆2

1,𝑇
are from X𝑏 with random labels. Therefore, for any

fixed algorithm Alg, when we apply the
ˆℎ returned by Alg(𝑆1

1,𝑇
)

on 𝑆2

1,𝑇
, it cannot predict those random labels better than random

guessing. To be formal, given𝑚′ elements with random labelling,

with probability at least (1 − 𝑒−2𝑡 ′2𝑚′), any fixed algorithm cannot

predict (0.5 + 𝑡 ′) fraction of their labels correctly. Therefore, even

if the returned model has perfect accuracy on samples from X𝑎 ,
with probability at least 1 − 𝑒−2𝑡2 (𝑛−𝑚0) − 𝑒−2𝑡 ′2 (1−𝑝−𝑡 ) (𝑛−𝑚0) , the

empirical test accuracy on 𝑆2

2,𝑇
is at most 1 − (1 − 𝑝 − 𝑡) (0.5 − 𝑡 ′).

If we select 𝑡 = 𝑝 = 𝜆/4 and 𝑡 ′ = 𝜆/4, then with probability at least

1− 𝑒−(𝑛−𝑚0)𝜆2/8 − 𝑒−(1−𝜆/2)𝜆2 (𝑛−𝑚0)/8, the empirical test accuracy

on 𝑆2

2,𝑇
is no bigger than 0.5+𝜆/2. Finally, it is noted that when one

generates 𝑛 i.i.d. samples from D1, the probability that the elements

selected from X𝑏 are all distinct is lower bounded by (1 − 𝑛/𝜈)𝑛 .
By a union bound, we have the theorem proposed.

B PROOF OF COROLLARY 1
(6) immediately follows from (2), given that with a random guessing

on 𝑋 , the probability that one can positively identify the participa-

tion of an individual is𝑞 = 𝑛/𝑁 . As for
¯𝛿 , let 𝛿 ≥ 𝑗 represent the poste-

rior chance that the adversary can correctly identify at least 𝑗 mem-

berships of selected 𝑋 . Let 𝛿
≥ 𝑗
𝑜 be the optimal a priori success rate

before observingM(𝑋 ). Given the normalized sampling strategy,

where we randomly select 𝑛0 samples from each class, it is not hard

to verify that 1 − 𝛿 ≥ 𝑗𝑜 =
∑𝑛
𝑙=𝑗

∑
{𝑝 [1:𝑐 ] }=𝑙

∏𝑐
𝑧=1

( (𝑛0

𝑝𝑧

) ( 𝑛0

𝑛0−𝑝𝑧
)
/
(𝑁0

𝑛0

) )
.

Now, by (2), we have

D𝐾𝐿 (1𝛿≥ 𝑗 ∥1𝛿≥ 𝑗𝑜 ) = 𝛿
≥ 𝑗

log( 𝛿
≥ 𝑗

𝛿
≥ 𝑗
𝑜

) + (1 − 𝛿 ≥ 𝑗 ) log( 1 − 𝛿
≥ 𝑗

1 − 𝛿 ≥ 𝑗𝑜
)

≥ −(1 − 𝛿 ≥ 𝑗 ) log(1 − 𝛿 ≥ 𝑗𝑜 ) − log(2) − 𝛿 ≥ 𝑗 log(𝛿 ≥ 𝑗𝑜 ),

where we use the fact that −𝛿 ≥ 𝑗 log𝛿 ≥ 𝑗 − (1−𝛿 ≥ 𝑗 ) log(1−𝛿 ≥ 𝑗 ) ≤
log(2). Therefore, given 𝛿 ≥ 𝑗 log(𝛿 ≥ 𝑗𝑜 ) ≤ 0, combining with (2),

1 − 𝛿 ≥ 𝑗 ≤ MI(𝑋 ;M(𝑋 )) + log(2)
− log(1 − 𝛿 ≥ 𝑗𝑜 )

. (15)

Now, by Fubini’s theorem on expectation, we know that the ex-

pected number of memberships that an adversary can recover in 𝑋

equals

∑𝑛
𝑗=1
(1−𝛿 ≥ 𝑗 ), which is upper bounded by (15). Substituting

the expression of 𝛿
≥ 𝑗
𝑜 , the claim follows.

C PROOF OF THEOREM 2
We first prove the following fact:

MI(𝑋 ;𝑋𝑊 + 𝐵) = E𝑋
[
D𝐾𝐿 (P𝑋𝑊 +𝐵 ∥P𝐵 |𝑋 )

]
− D𝐾𝐿 (P𝑋𝑊 +𝐵 ∥P𝐵).

(16)

Let 𝑍 = 𝑋𝑊 + 𝐵 for simplicity, from the definition of mutual

information, we have

MI(𝑋 ;𝑋𝑊 + 𝐵) = D𝐾𝐿 (P𝑋,𝑋𝑊 +𝐵 ∥P𝑋P𝑋𝑊 +𝐵)

=

∫
𝑋0,𝑍0

P(𝑋 = 𝑋0, 𝑍 = 𝑍0) log

P(𝑍 = 𝑍0 |𝑋 = 𝑋0)P(𝑍 = 𝑍0 |𝑋 = 0)
P(𝑍 = 𝑍0 |𝑋 = 0)P(𝑍 = 𝑍0)

=
( ∫
D𝐾𝐿 (P𝑋0𝑊 +𝐵 ∥P𝐵)P(𝑋 = 𝑋0) 𝑑𝑋0

)
− D𝐾𝐿 (P𝑋𝑊 +𝐵 ∥P𝐵) .

(17)

When 𝑊 ∈ R𝑑0×𝑑
and 𝐵 ∈ R𝑛×𝑑 are two independent Gauss-

ian random matrices, where each entry of𝑊 is i.i.d. N(0, 1) and
each column of 𝐵 is i.i.d. in some multivariate Gaussian distribu-

tion N(0, Σ𝐵) for some non-singular covariance Σ𝐵 , then each

column of 𝑋0𝑊 + 𝐵 is i.i.d. in N(0, 𝑋0𝑋
𝑇
0
+ Σ𝐵). Therefore, if we

reshape 𝑋0𝑊 + 𝐵 into a 1 × 𝑛𝑑 vector, it is still a multivariate

Gaussian whose covariance matrix is in a 𝑑-block-diagonal form,

Diag(𝑋0𝑋
𝑇
0
+Σ𝐵, · · · , 𝑋0𝑋

𝑇
0
+Σ𝐵), denoted by Diag(𝑋0𝑋

𝑇
0
+Σ𝐵, 𝑑).
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Therefore, by the KL-divergence between multivariate Gaussian,

D𝐾𝐿
(
P𝑋𝑊 +𝐵 ∥P𝐵 |𝑋 = 𝑋0)

= D𝐾𝐿 (N (0,Diag(𝑋0𝑋
𝑇
0
+ Σ𝐵, 𝑑))∥N (0,Diag(Σ𝐵, 𝑑))

)
=
𝑑

2

{
Tr

(
Σ−1

𝐵 𝑋0𝑋
𝑇
0
)
)
− log det

(
𝑰𝑛 + Σ−1

𝐵 𝑋0𝑋
𝑇
0
)
)}
.

(18)

Now, we turn to handle the other term D𝐾𝐿 (P𝑋𝑊 +𝐵 ∥P𝐵). It is
noted that we have the following identity [58],

D𝐾𝐿 (P𝑋𝑊 +𝐵 ∥P𝐵)
= D𝐾𝐿 (P𝑋𝑊 +𝐵 ∥PGau(𝑋𝑊 +𝐵) ) + D𝐾𝐿 (PGau(𝑋𝑊 +𝐵) ∥P𝐵).

(19)

Here, Gau(𝑎) represents a Gaussian distribition of the same mean

and covariance as that of 𝑎. Thus, by (16), we have

MI(𝑋 ;𝑋𝑊 + 𝐵)
= E𝑋

[
D𝐾𝐿 (P𝑋𝑊 +𝐵 ∥P𝐵 |𝑋 )

]
− D𝐾𝐿 (P𝑋𝑊 +𝐵 ∥PGau(𝑋𝑊 +𝐵) ) − D𝐾𝐿 (PGau(𝑋𝑊 +𝐵) ∥P𝐵)

≤ E𝑋
[
D𝐾𝐿 (P𝑋𝑊 +𝐵 ∥P𝐵 |𝑋 )

]
− D𝐾𝐿 (PGau(𝑋𝑊 +𝐵) ∥𝑃𝐵)

=
𝑑

2

{
E𝑋

[
Tr(Σ−1

𝐵 𝑋𝑋
𝑇 ) − log det(𝑰𝑛 + Σ−1

𝐵 𝑋𝑋
𝑇 )

]
−
(
Tr(E𝑋 [Σ−1

𝐵 𝑋𝑋
𝑇 ]) − log det(E𝑋 [𝑰𝑛 + Σ−1

𝐵 𝑋𝑋
𝑇 ])

)}
=
𝑑

2

{
log det(E𝑋 [𝑰 + Σ−1

𝐵 𝑋𝑋
𝑇 ]) − E𝑋

[
log det(𝑰 + Σ−1

𝐵 𝑋𝑋
𝑇 )

]}
.

(20)

(20) provides the Type (II) upper bound in (4). In the following, we

show the Type (I) bound. It is noted that in (17), we can replace P𝐵
with an arbitrary distribution. If we select P𝑋𝑊 +𝐵 instead, since

KL-divergence is non-negative, we have that

MI(𝑋 ;𝑋𝑊 + 𝐵) ≤
∫
𝑋0

D𝐾𝐿 (P𝑋0𝑊 +𝐵 ∥P𝑋𝑊 +𝐵)P(𝑋 = 𝑋0) . (21)

On the other hand, P𝑋𝑊 +𝐵 is indeed a Gaussian mixture which

can be written as

∑
𝑋 P(𝑋 )N (0, 𝑋𝑋𝑇 + Σ𝐵) .We can also rewrite

P𝑋0𝑊 +𝐵 as

∑
𝑋 P(𝑋 )N (0, 𝑋0𝑋

𝑇
0
+Σ𝐵). For simplicity, we useG𝐵 (𝑋 )

to represent the distribution N(0, 𝑋𝑋𝑇 + Σ𝐵) for any given 𝑋 .

Therefore, due to the convexity of KL-divergence, D𝐾𝐿 (𝜆P1 + (1 −
𝜆)P2∥𝜆Q1 + (1 − 𝜆)Q2) ≤ 𝜆D𝐾𝐿 (P1∥Q1) + (1 − 𝜆)D𝐾𝐿 (P2∥Q2),
and

MI(𝑋 ;𝑋𝑊 + 𝐵) ≤ E𝑋E𝑋 ′D𝐾𝐿
(
G𝐵 (𝑋 )∥G𝐵 (𝑋 ′)

)
, (22)

where 𝑋 ′ is distributed the same as 𝑋 . Substituting the expression

of KL-divergence between two Gaussians, (22) produces the Type

(I) upper bound.

D PROOF OF THEOREM 3
With a similar reasoning as (17), we have

MI(1𝑢𝑖 ;𝑋𝑊 + 𝐵) = D𝐾𝐿 (P𝑋,𝑋𝑊 +𝐵 ∥P𝑋 ⊗ P𝑋𝑊 +𝐵)
= E1𝑢𝑖D𝐾𝐿 (P𝑋𝑊 +𝐵 ∥P𝐵 |1𝑢𝑖 ) − D𝐾𝐿 (P𝑋𝑊 +𝐵 ∥P𝐵) .

(23)

It is noted that the covariance of𝑋𝑊 can still bewritten as𝑞E𝑋𝑖𝑋𝑖𝑋
𝑇
𝑖

+(1 − 𝑞)E𝑋−𝑖𝑋−𝑖𝑋𝑇−𝑖 , where 𝑋𝑖 is a random set containing 𝑢𝑖 and

𝑋−𝑖 is a random set without 𝑢𝑖 , for 𝑞 = 𝑛/𝑁 equalling the sam-

pling rate. Therefore, when we apply the same trick to introduce

Gau(𝑋𝑊 + 𝐵), the trace terms in (20) still cancel out, where

MI(1𝑢𝑖 ;𝑋𝑊 + 𝐵) ≤ 𝑞E𝑋𝑖
[
D𝐾𝐿 (P𝑋𝑖𝑊 +𝐵 ∥P𝐵 |𝑋𝑖 )

]
+ (1 − 𝑞)E𝑋−𝑖

[
D𝐾𝐿 (P𝑋−𝑖𝑊 +𝐵 ∥P𝐵 |𝑋−𝑖 )

]
− D𝐾𝐿 (P𝑋𝑊 +𝐵 ∥PGau(𝑋𝑊 +𝐵) )

=
𝑑

2

{
𝑞E𝑋𝑖

[
Tr(Σ−1

𝐵 𝑋𝑖𝑋
𝑇
𝑖 ) − log det(𝑰𝑛 + Σ−1

𝐵 𝑋𝑋
𝑇 )

]
+ (1 − 𝑞)E𝑋−𝑖

[
Tr(Σ−1

𝐵 𝑋−𝑖𝑋
𝑇
−𝑖 ) − log det(𝑰𝑛 + Σ−1

𝐵 𝑋−𝑖𝑋
𝑇
−𝑖 )

]
−
(
Tr(E𝑋 [Σ−1

𝐵 𝑋𝑋
𝑇 ]) − log det(E𝑋 [𝑰𝑛 + Σ−1

𝐵 𝑋𝑋
𝑇 ])

)}
,

(24)

which can be further written as

𝑑

2

{
log det(E𝑋 [𝑰 + Σ−1

𝐵 𝑋𝑋
𝑇 ]) − 𝑞E𝑋𝑖

[
log det(𝑰 + Σ−1

𝐵 𝑋𝑖𝑋
𝑇
𝑖 )

]
− (1 − 𝑞)E𝑋−𝑖

[
log det(𝑰 + Σ−1

𝐵 𝑋𝑋
𝑇 )

]}
,

(25)

which produces the Type (II) bound in (5). As for Type (I), stemming

from (21), given that P𝑋𝑊 +𝐵 = 𝑞E𝑋𝑖G𝐵 (𝑋𝑖 ) + (1−𝑞)E𝑋−𝑖G𝐵 (𝑋−𝑖 ),
by the convexity of KL-divergence,

MI(1𝑢𝑖 ;𝑋𝑊 + 𝐵)
≤ 𝑞

(
D𝐾𝐿

(
E𝑋𝑖G𝐵 (𝑋𝑖 )∥𝑞E𝑋𝑖G𝐵 (𝑋𝑖 ) + (1 − 𝑞)E𝑋−𝑖G𝐵 (𝑋−𝑖 )

)
+ (1 − 𝑞)

(
D𝐾𝐿

(
E𝑋−𝑖G𝐵 (𝑋−𝑖 )∥𝑞E𝑋𝑖G𝐵 (𝑋𝑖 ) + (1 − 𝑞)E𝑋−𝑖G𝐵 (𝑋−𝑖 )

)
≤ 𝑞(1 − 𝑞)E𝑋𝑖E𝑋−𝑖

(
D𝐾𝐿

(
G𝐵 (𝑋𝑖 )∥G𝐵 (𝑋−𝑖 ))

)
+ 𝑞(1 − 𝑞)E𝑋−𝑖E𝑋𝑖

(
D𝐾𝐿

(
G𝐵 (𝑋−𝑖 )∥G𝐵 (𝑋𝑖 )

)
,

(26)

which produces the Type (I) bound in (5).

E PROOF OF THEOREM 4
In the scenario when we further incorporate data mixing and per-

mutation, where the encoded data becomes Π𝑀𝑋𝑊 + 𝐵, for any
given 𝑋 = 𝑋0, 𝑀 = 𝑀0 and Π = Π0, Π0𝑀0𝑋0𝑊 + 𝐵 is a multivari-

ate Gaussian in a form PΠ0𝑀𝑋0𝑊 = G𝐵 (Π0𝑀0𝑋0).Without loss of

generality, we restrict Π to only permute the elements within each

category locally. It is noted that for 𝑀 ′ and Π′ i.i.d. to 𝑀 and Π,
respectively,

MI(𝑋 ;Π𝑀𝑋𝑊 + 𝐵)
= E𝑀,Π

[
D𝐾𝐿 (P𝑋,Π𝑀𝑋𝑊 +𝐵 ∥P𝑋PΠ′𝑀′𝑋𝑊 +𝐵 |𝑀,Π)

]
= E𝑀,Π,𝑋D𝐾𝐿 (PΠ𝑀𝑋𝑊 +𝐵 ∥P𝐵 |𝑀,Π, 𝑋 ) − D𝐾𝐿 (PΠ𝑀𝑋𝑊 +𝐵 ∥P𝐵)
= E𝑀,Π,𝑋D𝐾𝐿 (G𝐵 (Π𝑀𝑋 )∥P𝐵 |𝑀,Π, 𝑋 )

− D𝐾𝐿 (EΠ,𝑀,𝑋G𝐵 (Π𝑀𝑋 )∥P𝐵).
(27)

With a similar reasoning as (20), (27) is upper bounded by

EΠ,𝑀,𝑋
[
D𝐾𝐿 (EΠ,𝑀G𝐵 (Π𝑀𝑋 )∥P𝐵 |𝑋,𝑀,Π)

]
− D𝐾𝐿 (PGau(Π𝑀𝑋𝑊 +𝐵) ∥𝑃𝐵)

=
𝑑

2

{
EΠ,𝑀,𝑋

[
Tr(Σ−1

𝐵 (Π𝑀𝑋 ) (Π𝑀𝑋 )
𝑇 )

− log det(𝑰 + Σ−1

𝐵 (Π𝑀𝑋 ) (Π𝑀𝑋 )
𝑇 )

]
−
(
Tr(EΠ,𝑀,𝑋 [Σ−1

𝐵 (Π𝑀𝑋 ) (Π𝑀𝑋 )
𝑇 ])

− log det(E𝑋,Π,𝑀 [𝑰𝑛 + Σ−1

𝐵 (Π𝑀𝑋 ) (Π𝑀𝑋 )
𝑇 ])

)}
=
𝑑

2

{
log det(EΠ,𝑀,𝑋 [𝑰 + Σ−1

𝐵 (Π𝑀𝑋 ) (Π𝑀𝑋 )
𝑇 ])

− EΠ,𝑀,𝑋
[

log det(𝑰 + Σ−1

𝐵 (Π𝑀𝑋 ) (Π𝑀𝑋 )
𝑇 )

]}
,

(28)

which produces the Type (II) upper bound in (7).
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With the same idea, stemming from (21)

MI(𝑋 ;Π𝑀𝑋𝑊 + 𝐵)

≤
∫
𝑋0

D𝐾𝐿 (PΠ𝑀𝑋0𝑊 +𝐵 ∥PΠ𝑀𝑋𝑊 +𝐵)P(𝑋 = 𝑋0)

≤ E𝑀,Π
[ ∫
𝑋0

D𝐾𝐿 (G𝐵 (Π𝑀𝑋0)∥E𝑋G𝐵 (Π𝑀𝑋 ))P(𝑋 = 𝑋0)
]

≤ EΠ,𝑀,𝑋,𝑋 ′D𝐾𝐿
(
G𝐵 (Π𝑀𝑋 )∥G𝐵 (Π𝑀𝑋 ′)

)
,

(29)

where we apply the convexity of KL-divergence above. (29) pro-

duces the Type (I) bound in (7).

F PROOF OF THEOREM 5
The proof of the Type (II) bound in (8) is straightforward by com-

bining the reasoning in the proof of Theorem 3 and 4. We focus on

the Type (I) bound in (8) in the following.

MI(1𝑢𝑖 ;Π𝑀𝑋𝑊 + 𝐵) ≤ 𝑞D𝐾𝐿
(
EΠ,𝑀,𝑋𝑖G𝐵 (Π𝑀𝑋𝑖 )

∥𝑞EΠ,𝑀,𝑋𝑖G𝐵 (Π𝑀𝑋𝑖 ) + (1 − 𝑞)EΠ,𝑀,𝑋−𝑖G𝐵 (Π𝑀𝑋−𝑖 )
)

+ (1 − 𝑞)D𝐾𝐿
(
EΠ,𝑀,𝑋−𝑖G𝐵 (Π𝑀𝑋−𝑖 )

∥𝑞EΠ,𝑀,𝑋𝑖G𝐵 (Π𝑀𝑋𝑖 ) + (1 − 𝑞)EΠ,𝑀,𝑋−𝑖G𝐵 (Π𝑀𝑋−𝑖 )
)

≤ 𝑞(1 − 𝑞)D𝐾𝐿
(
EΠ,𝑀,𝑋𝑖G𝐵 (Π𝑀𝑋𝑖 )∥EΠ,𝑀,𝑋−𝑖G𝐵 (Π𝑀𝑋−𝑖 )

)
+ 𝑞(1 − 𝑞)D𝐾𝐿

(
EΠ,𝑀,𝑋−𝑖G𝐵 (Π𝑀𝑋−𝑖 )∥EΠ,𝑀,𝑋𝑖G𝐵 (Π𝑀𝑋𝑖 )

)
.

(30)

Thus, we can consider the following pairing. For any selection

of 𝑋𝑖 , we consider 𝑋−𝑖 where 𝑋𝑖 and 𝑋−𝑖 only differ in the one

datapoint, i.e., 𝑢𝑖 . For given 𝑋𝑖 and 𝑋−𝑖 , given any selection of data

mixing𝑀𝑖 and permutation Π𝑖 , there exists a bijection (𝑀𝑖 ,Π𝑖 ) ↔
(𝑀−𝑖 ,Π−𝑖 ) such that Π𝑖𝑀𝑖𝑋𝑖 and Π−𝑖𝑀−𝑖𝑋−𝑖 are identical if we

replace 𝑢𝑖 in 𝑋𝑖 by the differing datapoint in 𝑋−𝑖 . This is equivalent
to modelling that the closest pair𝑋𝑖

𝑐∼ 𝑋−𝑖 ∈ R𝑛×𝑑0
are neighboring,

which differ in the first row (𝑋𝑖 ’s first row is 𝑢𝑖 and 𝑋−𝑖 ’s first row
is the differing datapoint), while 𝑋𝑖 and 𝑋−𝑖 share the identical

second to the 𝑛-th rows. We then apply the identical data mixing𝑀

and permutation Π and let �̃�𝑖 = Π𝑀𝑋𝑖 ∼ �̃�−𝑖 = Π𝑀𝑋−𝑖 . Moreover,

it is noted that such pairing is symmetric where each selection 𝑋𝑖
can produce (𝑁 − 𝑛) many closest pairs. Since the total number(𝑁−1

𝑛

)
of different selections of 𝑋−𝑖 is (𝑁 − 𝑛)/𝑛 times than that(𝑁−1

𝑛−1

)
of different selections of 𝑋𝑖 , we can virtually duplicate 𝑋−𝑖 𝑛

times and consider the virtual Gaussian mixture distribution.

With this more fine-grained pairing and the convexity of KL-

divergence, (30) is further bounded by

MI(1𝑢𝑖 ;Π𝑀𝑋𝑊 + 𝐵)
≤ 𝑞(1 − 𝑞)E

Π,𝑀,𝑋𝑖
𝑐∼𝑋−𝑖

{
D𝐾𝐿

(
G𝐵 (Π𝑀𝑋𝑖 )∥G𝐵 (Π𝑀𝑋−𝑖 )

)
+ D𝐾𝐿

(
G𝐵 (Π𝑀𝑋−𝑖 )∥G𝐵 (Π𝑀𝑋𝑖 )

)}
.

(31)

(31) produces the Type (I) bound in (8).

G PROOF OF THEOREM 6
Before we start, we first introduce several important matrix in-

equalities. First, for any matrix𝐴 ∈ R𝑚×𝑑0
, ∥𝐴𝐴𝑇 ∥2, i.e., the largest

eigenvalue of 𝐴𝐴𝑇 , is upper bounded by

∥𝐴𝐴𝑇 ∥2 ≤
√
𝑚∥𝐴𝐴𝑇 ∥∞, (32)

where ∥𝐴𝐴𝑇 ∥∞ is the largest entry of 𝐴𝐴𝑇 in absolute value. In

the following, we introduce Von Neumann’s trace inequality. For
two 𝑚 ×𝑚 positive semidefinite matrices 𝐴𝐴𝑇 and 𝑅𝑅𝑇 , whose

eigenvalues are {𝑒𝐴,1 ≥ · · · ≥ 𝑒𝐴,𝑚} and {𝑒𝑅,1 ≥ · · · ≥ 𝑒𝑅,𝑚}, in a

non-ascending order, respectively,

𝑚∑
𝑗=1

𝑒𝐴,𝑗𝑒𝐵,𝑚−𝑗 ≤ Tr(𝐴𝐴𝑇 · 𝐵𝐵𝑇 ) ≤
𝑚∑
𝑗=1

𝑒𝐴,𝑗𝑒𝐵,𝑗 . (33)

Finally, we will also use the following fact about determinant per-

turbation [34]. For two𝑚 ×𝑚 matrices 𝐶 and 𝐸,

|det(𝐶) − det(𝐶 + 𝐸) | ≤ 𝑚max{∥𝐶 ∥2, ∥𝐶 + 𝐸∥2}∥𝐸∥2 . (34)

Now, we are ready to prove the theorem. Given that ∥𝑢𝑖 ∥2 ≤ 1,

we have that after data mixing, the 𝑙2 norm of each row of 𝑀𝑋

for any subsampled 𝑋 and mixing matrix 𝑀 is still bounded by

1, and therefore for any permutation Π, ∥Π𝑀𝑋 (Π𝑀𝑋 )𝑇 ∥∞ ≤ 1.

On one hand, given that Σ𝐵 = 𝜎2𝑰𝑚 , we have that the largest

eigenvalue of ΣΠ𝑀𝑋𝑖 ,𝐵 is upper bounded by ∥Π𝑀𝑋𝑖 (Π𝑀𝑋𝑖 )𝑇 ∥2 +
𝜎2 ≤

√
𝑚 + 𝜎2

by (32). On the other hand, due to the form of

a positive-definite matrix, the smallest eigenvalue of ΣΠ𝑀𝑋𝑖 ,𝐵 is

lower bounded by 𝜎2
. Therefore, we have a global upper bound

of log(det(ΣΠ𝑀𝑋𝑖 ,𝐵Σ−1

Π𝑀𝑋−𝑖 ,𝐵
)) ≤ 𝑚 log(

√
𝑚+𝜎2

𝜎2
). In the following,

we consider the upper bound of Tr(Σ−1

Π𝑀𝑋𝑖 ,𝐵
ΣΠ𝑀𝑋−𝑖 ,𝐵) .

With similar reasoning and (33),

Tr(Σ−1

Π𝑀𝑋𝑖 ,𝐵
ΣΠ𝑀𝑋−𝑖 ,𝐵) ≤

1

𝜎2
Tr(ΣΠ𝑀𝑋−𝑖 ,𝐵) ≤ 𝑚(

√
𝑚 + 𝜎2)/𝜎2 .

Given the global upper bound, the remaining step is to apply

a high-probability concentration inequality to describe the con-

fidence interval. With the help of the Hoeffding bound, for i.i.d.

numbers 𝑧1, 𝑧2, · · · , 𝑧𝐿 where 𝑧 𝑗 ∈ [𝑎, 𝑏] and the mean E[𝑧 𝑗 ] = 𝜇,

Pr(𝜇 −
𝐿∑
𝑗=1

𝑧 𝑗/𝐿 ≥ 𝜖) ≤ 𝑒
− 2𝜖2𝐿

(𝑏−𝑎)2 . (35)

By substituting the distribution range of each term to estimate,

and applying a union bound on the failure rates, we obtain the

high-confidence bound claimed.

Similarly, for the Type (II) upper bound, first given that ∥𝑰𝑚 +
Σ−1

𝐵
Σ
�̃�
∥2 ≤ 1 +

√
𝑚/𝜎2

, log det(𝑰𝑚 + Σ−1

𝐵
Σ
�̃�
) ≤ 𝑚 log(1 +

√
𝑚/𝜎2).

The more tricky part is the high-probability bound with respect to

the estimation error of log det(E
�̃�𝑖
[𝑰𝑚 +Σ−1

𝐵

∑
�̃�𝑖
]). Fortunately, let

𝐸 be the error from the empirical estimation on E
�̃�𝑖
[𝑰𝑚 +Σ−1

𝐵

∑
�̃�𝑖
],

by (34), we have that |det(E
�̃�𝑖
[𝑰𝑚 + Σ−1

𝐵

∑
�̃�𝑖
]) − det(E

�̃�𝑖
[𝑰𝑚 +

Σ−1

𝐵

∑
�̃�𝑖
] + 𝐸) | ≤ 𝑚(

√
𝑚 + ∥𝐸∥2)∥𝐸∥2 . On the other hand, we can

apply the Matrix Hoeffding Inequality [53]: if 𝐴1𝐴
𝑇
1
, · · · , 𝐴𝑇𝐴𝑇𝑇 are

i.i.d. zero-mean𝑚 ×𝑚 matrices, such that ∥𝐴 𝑗𝐴𝑇𝑗 ∥ ≤ 𝑠
2
and the

mean is 𝜇, then

Pr(∥
𝐿∑
𝑗=1

𝐴 𝑗𝐴
𝑇
𝑗 /𝑇 − 𝜇∥ ≥ 𝜖) ≤ 2𝑚 · 𝑒−

𝜖2𝐿

8𝑠2 . (36)

Therefore, in the context of estimation error𝐸 forE
�̃�𝑖
[𝑰𝑚+Σ−1

𝐵

∑
�̃�𝑖
],

by (36) and ∥𝑰𝑚 + Σ−1

𝐵

∑
�̃�𝑖
∥ ≤ 1 +

√
𝑚/𝜎2

, we have that after 𝐿

trials, Pr(∥𝐸∥ ≥ 𝜖) ≤ 2𝑚 · 𝑒−
𝜖2𝐿

32(1+
√
𝑚/𝜎2 )2 , and the claim follows.
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Algorithm 2 Privacy Guarantee in High-Confidence

1: Input: A labelled data pool U = {𝑢1, · · · , 𝑢𝑁 }with associated

labels V = {𝑣1, · · · , 𝑣𝑁 }; sampled dataset size 𝑛; objective 𝑢𝑖 ;

noise covariance Σ𝐵 = 𝜎2 · 𝑰𝑚 ; simulation complexity 𝐿; esti-

mated variance 𝜂.

2: Independently sample 𝐿 many normalized 𝑛 feature sets

𝑋𝑖,1, 𝑋𝑖,2 · · · , 𝑋𝑖,𝐿 all containing 𝑢𝑖 .

3: For each𝑋𝑖, 𝑗 , 𝑗 = 1, 2, · · · , 𝐿, randomly sample𝑢𝑙 fromU, which
has an identical label as𝑢𝑖 , but is not included in𝑋𝑖, 𝑗 . Preserving

the same ordering, replace 𝑢𝑖 in 𝑋𝑖, 𝑗 with 𝑢𝑙 , which produces

𝑋−𝑖, 𝑗 .
4: Independently generate 𝐿 masking matrices {𝑀1, · · · , 𝑀𝐿} and
𝐿 permutation matrices Π1, · · · ,Π𝐿 .

5: Compute the following

𝑄1 =
∑𝐿
𝑗=1

Tr(Σ−1

Π 𝑗𝑀𝑗𝑋𝑖,𝑗 ,𝐵
ΣΠ 𝑗𝑀𝑗𝑋−𝑖,𝑗 ,𝐵),

𝑄2 =
∑𝐿
𝑗=1

Tr(Σ−1

Π 𝑗𝑀𝑗𝑋−𝑖,𝑗 ,𝐵
ΣΠ 𝑗𝑀𝑗𝑋𝑖,𝑗 ,𝐵) .

6: Output: E𝐿 = 1

𝐿
· 𝑞 (𝑞−1)

2
(𝑄1 +𝑄2 − 2𝑚).
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We first introduce the following useful lemma that will help us

develop the lower bound of the distance between 𝑋𝑊1 and 𝑋𝑊2

for different matrix maskings.

Lemma1 (Hanson–Wright inequality [1]). Let 𝑠 ∈ R𝑑0 be a random
vector, which satisfies E[𝑥] = 0 and Assumption 2, then for a matrix
𝐴 ∈ R𝑑0×𝑑0 and any 𝑡 ≥ 0,

Pr( |𝑠𝐴𝑠𝑇 − E[𝑠𝐴𝑠𝑇 ] | > 𝑡) ≤ 2𝑒
− 1

𝐶
min{ 𝑡2

𝐾4 ∥𝐴∥2
𝐹

, 𝑡

𝐾2 ∥𝐴∥2
𝐹

}
, (37)

for some constant 𝐶 . Here, ∥𝐴∥ is the operator norm of 𝐴 and ∥𝐴∥𝐹
is the Frobenius norm of 𝐴.

It is noted thatE[𝑥𝐴𝑥𝑇 ] = E[∥𝑥𝑊 ∥2] ≥ 𝜅2∥𝑊 ∥2
𝐹
, fromAssump-

tion 1. Here, ∥𝑊 ∥𝐹 is the Frobenius norm of𝑊 , where ∥𝑊 ∥𝐹 =√∑𝑑0

𝑖=1

∑𝑑0

𝑗=1
𝑊 2 (𝑖, 𝑗) . By Lemma 1, if we take 𝐴 =𝑊𝑊𝑇

into (37),

(37) becomes

Pr

𝑥
(∥𝑥𝑊 ∥2 < 𝜅2∥𝑊 ∥2𝐹 − 𝑡) ≤ 𝑒

− 𝑡2

𝐶𝐾4 ∥𝑊𝑊𝑇 ∥2
𝐹 . (38)

Let 𝑓𝑎𝑑𝑣 denote the adversary’s response. With a similar reasoning

as the proof of Corollary 1, we consider the indicator 𝜌2 (𝑓𝑎𝑑𝑣,𝑊 )
which equals 1 if the adversary successfully approximates the true

transformation𝑊 such that Pr𝑥 (∥𝑥𝑊 − 𝑓𝑎𝑑𝑣 (𝑥)∥ < 𝜓 ) ≥ 1 − 𝜏 .
Then, the corresponding posterior success rate (1 − 𝛿) is upper
bounded by

1 − 𝛿 ≤ MI(𝑊 ;𝑋𝑊 + 𝐵) + log(2)
log(1/(1 − 𝛿𝑜 ))

, (39)

where (1−𝛿𝑜 ) is the optimal a priori success rate. As forMI(𝑊 ;𝑋𝑊 +
𝐵), it is noted that

MI(𝑋,𝑊 ;𝑋𝑊 + 𝐵) =MI(𝑊 ;𝑋𝑊 + 𝐵) +MI(𝑋 ;𝑋𝑊 + 𝐵 |𝑊 )
=MI(𝑋 ;𝑋𝑊 + 𝐵) +MI(𝑊 ;𝑋𝑊 + 𝐵 |𝑋 ) .

(40)

Therefore,MI(𝑊 ;𝑋𝑊 + 𝐵) = MI(𝑋 ;𝑋𝑊 + 𝐵) + H (𝑋𝑊 +
𝐵 |𝑋 )−H (𝑋𝑊 +𝐵 |𝑊 ), whereH represents entropy. SinceH(𝑋𝑊 +
𝐵 |𝑊 ) ≤ H (𝑋𝑊 +𝐵 |𝑋,𝑊 ) = H(𝐵), where conditioning will not in-
crease entropy, we have thatMI(𝑊 ;𝑋𝑊 +𝐵) ≤ MI(𝑋 ;𝑋𝑊 +𝐵)+
𝑑0

2
E𝑋 log(det(𝑰 + 𝑋𝑋𝑇

𝜎2
)). Here, it is noted that 𝑋𝑊 +𝐵 conditional

on 𝑋 is a Gaussian matrix, where each column is i.i.d. multivariate

Gaussian N(0, 𝑋𝑋𝑇 + 𝜎2 · 𝑰 ).
In the following, we consider a packing set of𝑊 to upper bound

the a priori success rate (1 − 𝛿𝑜 ).
Lemma 2. For any two matrices𝑊0 and𝑊 ′

0
, if Pr𝑥

(
∥𝑥𝑊0−𝑥𝑊 ′

0
∥ <

2𝜓0

)
< 1 − 2𝜏0, then for an arbitrary function 𝑓 (·), at most one of

the following can hold,

Pr

𝑥∼D

(
∥𝑥𝑊0 − 𝑓 (𝑥)∥ < 𝜓0

)
≥ 1 − 𝜏0,

Pr

𝑥∼D

(
∥𝑥𝑊 ′

0
− 𝑓 (𝑥)∥ < 𝜓0

)
≥ 1 − 𝜏0 .

(41)

The proof is straightforward. If both the above inequalities are

true, where the function 𝑓 (·) approximates both𝑊0 and𝑊
′

0
well,

then we have,

Pr(∥𝑥𝑊0 − 𝑓 (𝑥)∥ < 𝜓0 ∧ ∥𝑥𝑊 ′0 − 𝑓 (𝑥)∥ < 𝜓0)
≤ Pr(∥𝑥𝑊0 − 𝑥𝑊 ′0 ∥ < 2𝜓0).

(42)

On the other hand, with a union bound,

Pr

(
∥𝑥𝑊0 − 𝑓 (𝑥)∥ < 𝜓0 ∧ ∥𝑥𝑊 ′0 − 𝑓 (𝑥)∥ < 𝜓

)
≥ Pr(∥𝑥𝑊0 − 𝑓 (𝑥)∥ < 𝜓0) + Pr(∥𝑥𝑊 ′

0
− 𝑓 (𝑥)∥ < 𝜓0) − 1

≥ 1 − 2𝜏0 .

(43)

This contradicts the assumption Pr𝑥 (∥𝑥𝑊0 − 𝑥𝑊 ′
0
∥ < 2𝜓0) < 1 −

2𝜏0, and the lemma is proved. Thus, for any adversary-proposing

function 𝑓𝑎𝑑𝑣 (·), without loss of generality, we assume that there

exists some𝑊 ′
0
such that Pr𝑥

(
∥𝑥𝑊 ′

0
− 𝑓𝑎𝑑𝑣 (𝑥)∥ < 𝜓

)
≥ 1−𝜏 . Then,

for any𝑊0 ∈ R𝑑0×𝑑0
such that ∥𝑊0 −𝑊 ′

0
∥2
𝐹
= 𝛽2

by Lemma 1, we

have

Pr(∥𝑥 (𝑊0 −𝑊 ′0 )∥
2 < 𝜅2𝛽2 − 𝑡) ≤ 𝑒−

𝑡

𝐶𝐾4𝛽4 . (44)

Here, we use the fact that ∥(𝑊0−𝑊 ′
0
) (𝑊0−𝑊 ′

0
)𝑇 ∥2

𝐹
≤ ∥𝑊0−𝑊 ′

0
∥4
𝐹
.

Thus, we may select𝜓 =
√
𝜅2𝛽2 − 𝑡/2, 𝜏 = (1− 𝑒−

𝑡2

𝐶𝐾4𝛽4 )/2. On the

other hand, it also suggests that the optimal rate (1−𝛿𝑜 ) is actually
upper bounded by Pr𝑤 (𝑊 ∈ B𝐹 (𝛽)), where B𝐹 (𝛽) represents
a ball in R𝑑0×𝑑0

of radius 𝛽 in Frobenius norm centered at zero,

enjoying the maximal probability density for a Gaussian. It is noted

that the probability Pr𝑤 (𝑊 ∈ B𝐹 (𝛽)) essentially equals Pr(𝑥 ≤
𝑑2 − (𝑑2 − 𝛽2)), for a 𝑑2

-degree Chi-square random variable 𝑥 ,

which can be further upper bounded by 𝑒−( (𝑑
2−𝛽2)/(2𝑑))2 .. Thus,

log(1/𝛿0) ≤ ( 𝑑
2−𝛽2

2𝑑
)2, and the theorem follows by combining (39)

and (40).

I ALGORITHM FOR HIGH-CONFIDENCE
SIMULATION

We take the Type (I) bound in (8) as an example. Algorithm 2 is used

to estimate the objective mutual information with high confidence.


	Abstract
	1 Introduction
	2 Preliminaries and Related Works
	2.1 PAC Learnability
	2.2 Security and Privacy Definitions
	2.3 Heuristic Obfuscation Operators

	3 learnable obfuscation
	3.1 Definition of learnable obfuscation
	3.2 Adversarial Inference
	3.3 A Construction

	4 Barrier to Learnable Obfuscation
	4.1 Intuition
	4.2 Impossibility Result
	4.3 Implications

	5 Data PAC Privacy of learnable obfuscation
	5.1 PAC Privacy of Matrix Masking
	5.2 Privacy Enhancement from Data Mixing and Permutation
	5.3 Simulation with Confidence
	5.4 Learnable Noise from Public Data

	6 Hardness of Reverse Engineering
	7 Experiments
	7.1 Reconstruction Robustness
	7.2 Membership Inference

	8 Additional Related Work
	9 Conclusion
	References
	A Proof of Theorem 1
	B Proof of Corollary 1
	C Proof of Theorem 2
	D Proof of Theorem 3
	E Proof of Theorem 4
	F Proof of Theorem 5
	G Proof of Theorem 6
	H Proof of Theorem 7
	I Algorithm for High-Confidence Simulation

