Locality-Aware Data Replication in the Last-Level Cache

George Kurian, Srinivas Devadas
Massachusetts Institute of Technology

Cambridge, MA USA

{gkurian, devadas} @csail.mit.edu

Abstract

Next generation multicores will process massive data
with varying degree of locality. Harnessing on-chip data
locality to optimize the utilization of cache and network
resources is of fundamental importance. We propose a
locality-aware selective data replication protocol for the
last-level cache (LLC). Our goal is to lower memory access
latency and energy by replicating only high locality cache
lines in the LLC slice of the requesting core, while simul-
taneously keeping the off-chip miss rate low. Our approach
relies on low overhead yet highly accurate in-hardware run-
time classification of data locality at the cache line granu-
larity, and only allows replication for cache lines with high
reuse. Furthermore, our classifier captures the LLC pres-
sure at the existing replica locations and adapts its replica-
tion decision accordingly.

The locality tracking mechanism is decoupled from the
sharer tracking structures that cause scalability concerns in
traditional coherence protocols. Moreover, the complexity
of our protocol is low since no additional coherence states
are created. On a set of parallel benchmarks, our proto-
col reduces the overall energy by 16%, 14%, 13% and 21%
and the completion time by 4%, 9%, 6% and 13% when
compared to the previously proposed Victim Replication,
Adaptive Selective Replication, Reactive-NUCA and Static-
NUCA LLC management schemes.

1 Introduction

Next generation multicore processors and applications
will operate on massive data. A major challenge in fu-
ture multicore processors is the data movement incurred
by conventional cache hierarchies that impacts the off-chip
bandwidth, on-chip memory access latency and energy con-
sumption [7].

A large, monolithic on-chip cache does not scale beyond
a small number of cores, and the only practical option is to
physically distribute memory in pieces so that every core is
near some portion of the cache [5]. In theory this provides
a large amount of aggregate cache capacity and fast pri-
vate memory for each core. Unfortunately, it is difficult to
manage the distributed cache and network resources effec-
tively since they require architectural support for cache co-
herence and consistency under the ubiquitous shared mem-
ory model.

Popular directory-based protocols enable fast local

Omer Khan
University of Connecticut
Storrs, CT USA
khan@uconn.edu

caching to exploit data locality, but scale poorly with in-
creasing core counts [3, 22]. Many recent proposals have
addressed directory scalability in single-chip multicores
using sharer compression techniques or limited directo-
ries [24, 31, 29, 12]. Yet, fast private caches still suffer
from two major problems: (1) due to capacity constraints,
they cannot hold the working set of applications that oper-
ate on massive data, and (2) due to frequent communication
between cores, data is often displaced from them [19]. This
leads to increased network traffic and request rate to the last-
level cache. Since on-chip wires are not scaling at the same
rate as transistors, data movement not only impacts memory
access latency, but also consumes extra power due to the en-
ergy consumption of network and cache resources [16].

Last-level cache (LLC) organizations offer trade-offs be-
tween on-chip data locality and off-chip miss rate. While
private LLC organizations (e.g., [10]) have low hit laten-
cies, their off-chip miss rates are high in applications that
have uneven distributions of working sets or exhibit high
degrees of sharing (due to cache line replication). Shared
LLC organizations (e.g., [1]), on the other hand, lead to
non-uniform cache access (NUCA) [17] that hurts on-chip
locality, but their off-chip miss rates are low since cache
lines are not replicated. Several proposals have explored the
idea of hybrid LLC organizations that attempt to combine
the good characteristics of private and shared LLC organi-
zations [9, 30, 4, 13], These proposals either do not quickly
adapt their policies to dynamic program changes or repli-
cate cache lines without paying attention to their locality.
In addition, some of them significantly complicate coher-
ence and do not scale to large core counts (see Section 5 for
details).

We propose a data replication mechanism for the LLC
that retains the on-chip cache utilization of the shared LLC
while intelligently replicating cache lines close to the re-
questing cores so as to maximize data locality. To achieve
this goal, we propose a low-overhead yet highly accurate in-
hardware locality classifier at the cache line granularity that
only allows the replication of cache lines with high reuse.

1.1 Motivation

The utility of data replication at the LLC can be under-
stood by measuring cache line reuse. Figure 1 plots the
distribution of the number of accesses to cache lines in the
LLC as a function of run-length. Run-length is defined as
the number of accesses to a cache line (at the LLC) from a

Private [1-2] Private [3-9] B Private [210]
Instruction [1-2] Instruction [3-9] M |nstruction [210]
Shared Read-Only [1-2] Shared Read-Only [3-9] M Shared Read-Only [210]

Shared Read-Write [1-2] M Shared Read-Write [3-9] M Shared Read-Write [210]

1oo%II LR Bl .I—=I._
80% =
60% | I II |
40% |

|

0%

X

Figure 1. Distribution of instructions, private data, shared
read-only data, and shared read-write data accesses to the
LLC as a function of run-length. The classification is done
at the cache line granularity.

particular core before a conflicting access by another core
or before it is evicted. Cache line accesses from multiple
cores are conflicting if at least one of them is a write. For
example, in BARNES, over 90% of the accesses to the LLC
occur to shared (read-write) data that has a run-length of
10 or more. Greater the number of accesses with higher
run-length, greater is the benefit of replicating the cache
line in the requester’s LLC slice. Hence, BARNES would
benefit from replicating shared (read-write) data. Similarly,
FACESIM would benefit from replicating instructions and
PATRICIA would benefit from replicating shared (read-only)
data. On the other hand, FLUIDANIMATE and OCEAN-C
would not benefit since most cache lines experience just 1
or 2 accesses to them before a conflicting access or an evic-
tion. For such cases, replication would increase the LL.C
pollution without improving data locality.

Hence, the replication decision should not depend on the
type of data, but rather on its locality. Instructions and
shared-data (both read-only and read-write) can be repli-
cated if they demonstrate good reuse. It is also important to
adapt the replication decision at runtime in case the reuse of
data changes during an application’s execution.

1.2 Proposed Idea

We propose a low-overhead yet highly accurate
hardware-only predictive mechanism to track and classify
the reuse of each cache line in the LLC. Our runtime clas-
sifier only allows replicating those cache lines that demon-
strate reuse at the LLC while bypassing replication for oth-
ers. When a cache line replica is evicted or invalidated,
our classifier adapts by adjusting its future replication deci-
sion accordingly. This reuse tracking mechanism is decou-
pled from the sharer tracking structures that cause scalabil-
ity concerns in traditional cache coherence protocols. Our
locality-aware protocol is advantageous because it:

1. Enables lower memory access latency and energy by
selectively replicating cache lines that show high reuse
in the LLC slice of the requesting core.

2. Better exploits the LLC by balancing the off-chip miss
rate and on-chip locality using a classifier that adapts

to the runtime reuse at the granularity of cache lines.

3. Allows coherence complexity almost identical to that
of a traditional non-hierarchical (flat) coherence pro-
tocol since replicas are only allowed to be placed at
the LLC slice of the requesting core. The additional
coherence complexity only arises within a core when
the LLC slice is searched on an L1 cache miss, or
when a cache line in the core’s local cache hierarchy
is evicted/invalidated.

2 Locality-Aware LL.C Data Replication
2.1 Baseline System

The baseline system is a tiled multicore with an electri-
cal 2-D mesh interconnection network as shown in Figure 2.
Each core consists of a compute pipeline, private L1 instruc-
tion and data caches, a physically distributed shared LLC
cache with integrated directory, and a network router. The
coherence is maintained using a MESI protocol. The coher-
ence directory is integrated with the LLC slices by extend-
ing the tag arrays (in-cache directory organization [8, 5])
and tracks the sharing status of the cache lines in the per-
core private L1 caches. The private L1 caches are kept
coherent using the ACKwise limited directory-based coher-
ence protocol [20]. Some cores have a connection to a mem-
ory controller as well.

Even though our protocol can be built on top of both
Static-NUCA and Dynamic-NUCA configurations [17, 13],
we use Reactive-NUCA’s data placement and migration
mechanisms to manage the LLC [13]. Private data is placed
at the LLC slice of the requesting core and shared data is
address interleaved across all LLC slices. Reactive-NUCA
also proposed replicating instructions at a cluster-level (e.g.,
4 cores) using a rotational interleaving mechanism. How-
ever, we do not use this mechanism, but instead build a
locality-aware LLC data replication scheme for all types of
cache lines.

2.2 Protocol Operation

The four essential components of data replication are:
(1) choosing which cache lines to replicate, (2) determining
where to place a replica, (3) how to lookup a replica, and
(4) how to maintain coherence for replicas. We first define
a few terms to facilitate describing our protocol.

1. Home Location: The core where all requests for a
cache line are serialized for maintaining coherence.

2. Replica Sharer: A core that is granted a replica of a
cache line in its LLC slice.

3. Non-Replica Sharer: A core that is NOT granted a
replica of a cache line in its LLC slice.

4. Replica Reuse: The number of times an LLC replica
is accessed before it is invalidated or evicted.

5. Home Reuse: The number of times a cache line is ac-
cessed at the LLC slice in its home location before a
conflicting write or eviction.

6. Replication Threshold (RT): The reuse above or
equal to which a replica is created.

Compute Core
Pipeline 4

N

o

Private L2 Cache g
L1 Caches | (LLCSlice) §
2

Al 2, 3]
Rep& Re;&

Router 4
Ho‘& Home

Figure 2. D - @ are mockup requests showing the
locality-aware LLC replication protocol. The black data
block has high reuse and a local LLC replica is allowed that
services requests from (D) and (2). The low-reuse red data
block is not allowed to be replicated at the LL.C, and the
request from @) that misses in the L1, must access the LLC
slice at its home core. The home core for each data block
can also service local private cache misses (e.g., @).

Home Reuse >= RT XReuse >= RT

o,
Replica

XReuse < RT

Initial

Home Reuse < RT

Figure 3. Each directory entry is extended with replica-
tion mode bits to classify the usefulness of LLC replica-
tion. Each cache line is initialized to non-replica mode with
respect to all cores. Based on the reuse counters (at the
home as well as the replica location) and the parameter RT,
the cores are transitioned between replica and non-replica
modes. Here XReuse is (Replica + Home) Reuse on an in-
validation and Replica Reuse on an eviction.

Note that for a cache line, one core can be a replica sharer
while another can be a non-replica sharer. Our protocol
starts out as a conventional directory protocol and initial-
izes all cores as non-replica sharers of all cache lines (as
shown by Initial in Figure 3). Let us understand the han-
dling of read requests, write requests, evictions, invalida-
tions and downgrades as well as cache replacement policies
under this protocol.

2.2.1 Read Requests

On an L1 cache read miss, the core first looks up its local
LLC slice for a replica. If a replica is found, the cache line
is inserted at the private L1 cache. In addition, a Replica
Reuse counter (as shown in Figure 4) at the LLC directory
entry is incremented. The replica reuse counter is a satu-
rating counter used to capture reuse information. It is ini-
tialized to ‘1’ on replica creation and incremented on every
replica hit.

On the other hand, if a replica is not found, the request is
forwarded to the LLC home location. If the cache line is not
found there, it is either brought in from the off-chip memory
or the underlying coherence protocol takes the necessary ac-
tions to obtain the most recent copy of the cache line. The

ACKWise Replica Mode, Mode,
Pointers (1 ... p) Reuse | Home Reuse, |-

Tag LRU | State
Home Reuse,

Complete Loc;ity List (1..n)

Figure 4. ACKwise,-Complete locality classifier LLC
tag entry. It contains the tag, LRU bits and directory entry.
The directory entry contains the state, ACKwise,, pointers,
a Replica reuse counter as well as Replication mode bits and
Home reuse counters for every core in the system.

directory entry is augmented with additional bits as shown
in Figure 4. These bits include (a) Replication Mode bit and
(b) Home Reuse saturating counter for each core in the sys-
tem. Note that adding several bits for tracking the locality
of each core in the system does not scale with the number
of cores, therefore, we will present a cost-efficient classifier
implementation in Section 2.2.5. The replication mode bit
is used to identify whether a replica is allowed to be created
for the particular core. The home reuse counter is used to
track the number of times the cache line is accessed at the
home location by the particular core. This counter is initial-
ized to ‘0’ and incremented on every hit at the LLC home
location.

If the replication mode bit is set to true, the cache line
is inserted in the requester’s LLC slice and the private L1
cache. Otherwise, the home reuse counter is incremented.
If this counter has reached the Replication Threshold (RT),
the requesting core is “promoted” (the replication mode bit
is set to true) and the cache line is inserted in its LLC slice
and private L1 cache. If the home reuse counter is still less
than RT, a replica is not created. The cache line is only
inserted in the requester’s private L1 cache.

If the LLC home location is at the requesting core, the
read request is handled directly at the LLC home. Even if
the classifier directs to create a replica, the cache line is just
inserted at the private L1 cache.

2.2.2 Write Requests

On an L1 cache write miss for an exclusive copy of a cache
line, the protocol checks the local LLC slice for a replica. If
areplica exists in the Modified(M) or Exclusive(E) state, the
cache line is inserted at the private L1 cache. In addition,
the Replica Reuse counter is incremented.

If a replica is not found or exists in the Shared(S) state,
the request is forwarded to the LLC home location. The di-
rectory invalidates all the LLC replicas and L1 cache copies
of the cache line, thereby maintaining the single-writer
multiple-reader invariant [25]. The acknowledgements re-
ceived are processed as described in Section 2.2.3. After
all such acknowledgements are processed, the Home Reuse
counters of all non-replica sharers other than the writer are
reset to ‘0’. This has to be done since these sharers have not
shown enough reuse to be “promoted”.

If the writer is a non-replica sharer, its home reuse
counter is modified as follows. If the writer is the only
sharer (replica or non-replica), its home reuse counter is
incremented, else it is reset to ‘1’. This enables the repli-

cation of migratory shared data at the writer, while avoiding
it if the replica is likely to be downgraded due to conflicting
requests by other cores.

2.2.3 Evictions and Invalidations

On an invalidation request, both the LLC slice and L1 cache
on a core are probed and invalidated. If a valid cache line
is found in either caches, an acknowledgement is sent to the
LLC home location. In addition, if a valid LLC replica ex-
ists, the replica reuse counter is communicated back with
the acknowledgement. The locality classifier uses this in-
formation along with the home reuse counter to determine
whether the core stays as a replica sharer. If the (replica +
home) reuse is > RT, the core maintains replica status, else
it is demoted to non-replica status (as shown in Figure 3).
The two reuse counters have to be added since this is the to-
tal reuse that the core exhibited for the cache line between
successive writes.

When an L1 cache line is evicted, the LLC replica loca-
tion is probed for the same address. If a replica is found,
the dirty data in the L1 cache line is merged with it, else an
acknowledgement is sent to the LLC home location. How-
ever, when an LLC replica is evicted, the L1 cache is probed
for the same address and invalidated. An acknowledgement
message containing the replica reuse counter is sent back to
the LLC home location. The replica reuse counter is used
by the locality classifier as follows. If the replica reuse is
> RT, the core maintains replica status, else it is demoted
to non-replica status. Only the replica reuse counter has to
be used for this decision since it captures the reuse of the
cache line at the LLC replica location.

After the acknowledgement corresponding to an eviction
or invalidation of the LLC replica is received at the home,
the locality classifier sets the home reuse counter of the cor-
responding core to ‘0’ for the next round of classification.

The eviction of an LLC replica back-invalidates the L1
cache (as described earlier). A possibly more optimal strat-
egy is to maintain the validity of the L1 cache line. This
requires two message types as well as two messages, one
to communicate back the reuse counter on the LLC replica
eviction and another to communicate the acknowledgement
when the L1 cache line is finally invalidated or evicted. We
opted for the back-invalidation for two reasons: (1) to main-
tain the simplicity of the coherence protocol, and (2) the
energy and performance improvements of the more optimal
strategy are negligible since (a) the LLC is more than 4 X
larger than the L1 cache, thereby keeping the probability of
evicted LLC lines having an L1 copy extremely low, and
(2) our LLC replacement policy prioritizes retaining cache
lines that have L1 cache copies.

2.2.4 LLC Replacement Policy

Traditional LL.C replacement policies use the least recently
used (LRU) policy. One reason why this is sub-optimal is
that the LRU information cannot be fully captured at the
LLC because the L1 cache filters out a large fraction of ac-
cesses that hit within it. In order to be cognizant of this, the

CorelD, |+ CorelD,

ACKWise Replica

Tag LRU | State Pointers (1 ... p) Reuse

Mode, Mode,

Home Reuse, || Home Reuse,

Limited Locaﬁty List (1 .. k)
Figure 5. ACKwise,-Limited), locality classifier LLC tag
entry. It contains the tag, LRU bits and directory entry.
The directory entry contains the state, ACKwise,, pointers,
a Replica reuse counter as well as the Limited;, classifier.
The Limitedy, classifier contains a Replication mode bit and
Home reuse counter for a limited number of cores. A ma-
jority vote of the modes of tracked cores is used to classify
new cores as replicas or non-replicas.

replacement policy should prioritize retaining cache lines
that have L1 cache sharers. Some proposals in literature ac-
complish this by sending periodic Temporal Locality Hint
messages from the L1 cache to the LLC [15]. However, this
incurs additional network traffic.

Our replacement policy accomplishes the same using a
much simpler scheme. It first selects cache lines with the
least number of L1 cache copies and then chooses the least
recently used among them. The number of L1 cache copies
is readily available since the directory is integrated within
the LLC tags (“in-cache” directory). This reduces back in-
validations to a negligible amount and outperforms the LRU
policy (cf. Section 4.2).

2.2.5 Limited Locality Classifier Optimization

The classifier described earlier which keeps track of locality
information for all the cores in the directory entry is termed
the Complete locality classifier. It has a storage overhead of
30% (calculated in Section 2.4) at 64 cores and over 5x at
1024 cores. In order to mitigate this overhead, we develop
a classifier that maintains locality information for a limited
number of cores and classifies the other cores as replica or
non-replica sharers based on this information.

The locality information for each core consists of (1) the
core ID, (2) the replication mode bit and (3) the home reuse
counter. The classifier that maintains a list of this informa-
tion for a limited number of cores (k) is termed the Limited,,
classifier. Figure 5 shows the information that is tracked by
this classifier. The sharer list of the ACKwise limited direc-
tory entry cannot be reused for tracking locality information
because of its different functionality. While the hardware
pointers of ACKwise are used to maintain coherence, the
limited locality list serves to classify cores as replica or non-
replica sharers. Decoupling in this manner also enables the
locality-aware protocol to be implemented efficiently on top
of other scalable directory organizations. We now describe
the working of the limited locality classifier.

At startup, all entries in the limited locality list are free
and this is denoted by marking all core IDs’ as Invalid.
When a core makes a request to the home location, the di-
rectory first checks if the core is already being tracked by
the limited locality list. If so, the actions described previ-
ously are carried out. Else, the directory checks if a free

entry exists. If it does exist, it allocates the entry to the core
and the same actions are carried out.

Otherwise, the directory checks if a currently tracked
core can be replaced. An ideal candidate for replacement is
a core that is currently not using the cache line. Such a core
is termed an inactive sharer and should ideally relinquish its
entry to a core in need of it. A replica core becomes inac-
tive on an LLC invalidation or an eviction. A non-replica
core becomes inactive on a write by another core. If such
a replacement candidate exists, its entry is allocated to the
requesting core. The initial replication mode of the core
is obtained by taking a majority vote of the modes of the
tracked cores. This is done so as to start off the requester in
its most probable mode.

Finally, if no replacement candidate exists, the mode for
the requesting core is obtained by taking a majority vote of
the modes of all the tracked cores. The limited locality list
is left unchanged.

The storage overhead for the Limited,, classifier is di-
rectly proportional to the number of cores (k) for which lo-
cality information is tracked. In Section 4.3, we evaluate the
storage and accuracy tradeoffs for the Limited;, classifier.
Based on our observations, we pick the Limiteds classifier.

2.3 Discussion

2.3.1 Replica Creation Strategy

In the protocol described earlier, replicas are created in all
valid cache states. A simpler strategy is to create an LLC
replica only in the Shared cache state. This enables instruc-
tions, shared read-only and shared read-write data that ex-
hibit high read run-length to be replicated so as to serve
multiple read requests from within the local LLC slice.
However, migratory shared data cannot be replicated with
this simpler strategy because both read and write requests
are made to it in an interleaved manner. Such data patterns
can be efficiently handled only if the replica is created in the
Exclusive or Modified state. Benchmarks that exhibit both
the above access patterns are observed in our evaluation (cf.
Section 4.1).

2.3.2 Coherence Complexity

The local LLC slice is always looked up on an L1 cache
miss or eviction. Additionally, both the L1 cache and LLC
slice is probed on every asynchronous coherence request
(i.e., invalidate, downgrade, flush or write-back). This is
needed because the directory only has a single pointer to
track the local cache hierarchy of each core. This method
also allows the coherence complexity to be similar to that
of a non-hierarchical (flat) coherence protocol.

To avoid the latency and energy overhead of searching
the LLC replica, one may want to optimize the handling
of asynchronous requests, or decide intelligently whether to
lookup the local LLC slice on a cache miss or eviction. In
order to enable such optimizations, additional sharer track-
ing bits are needed at the directory and L1 cache. Moreover,
additional network message types are needed to relay coher-
ence information between the LLC home and other actors.

In order to evaluate whether this additional coherence
complexity is worthwhile, we compared our protocol to a
dynamic oracle that has perfect information about whether
a cache line is present in the local LLC slice. The dynamic
oracle avoids all unnecessary LLC lookups. The completion
time and energy difference when compared to the dynamic
oracle was less than 1%. Hence, in the interest of avoiding
the additional complexity, the LLC replica is always looked
up for the above coherence requests.

2.3.3 Classifier Organization

The classifier for the locality-aware protocol is organized
using an in-cache structure, i.e., the replication mode bits
and home reuse counters are maintained for all cache lines
in the LLC. However, this is a not an essential requirement.
The classifier is logically decoupled from the directory and
could be implemented using a sparse organization.

The storage overhead for the in-cache organization is
calculated in Section 2.4. The performance and energy
overhead for this organization is small because: (1) The
classifier lookup incurs a relatively small energy and latency
penalty when compared to the data array lookup of the LLC
slice and communication over the network (justified in our
results). (2) Only a single tag lookup is needed for accessing
the classifier and LLC data. In a sparse organization, a sep-
arate lookup is required for the classifier and the LLC data.
Even though these lookups could be performed in parallel
with no latency overhead, the energy expended to lookup
two CAM structures needs to be paid.

2.3.4 Cluster-Level Replication

In the locality-aware protocol, the location where a replica
is placed is always the LLC slice of the requesting core. An
additional method by which one could explore the trade-off
between LLC hit latency and LLC miss rate is by replicat-
ing at a cluster-level. A cluster is defined as a group of
neighboring cores where there is at most one replica for a
cache line. Increasing the size of a cluster would increase
LLC hit latency and decrease LLC miss rate, and decreasing
the cluster size would have the opposite effect. The optimal
replication algorithm would optimize the cluster size so as
to maximize the performance and energy benefit.

We explored the clustering under our protocol after mak-
ing the appropriate changes. The changes include (1) block-
ing at the replica location (the core in the cluster where a
replica could be found) before forwarding the request to the
home location so that multiple cores on the same cluster do
not have outstanding requests to the LLC home location,
(2) additional coherence message types for communication
between the requester, replica and home cores, and (3) hier-
archical invalidation and downgrade of the replica and the
L1 caches that it tracks. We do not explain all the details
here to save space. Cluster-level replication was not found
to be beneficial in the evaluated 64-core system, for the fol-
lowing reasons (see Section 4.4 for details).

1. Using clustering increases network serialization de-
lays since multiple locations now need to be

searched/invalidated on an L1 cache miss.

2. Cache lines with low degree of sharing do not benefit
because clustering just increases the LLC hit latency
without reducing the LLC miss rate.

3. The added coherence complexity of clustering in-
creased our design and verification time significantly.

2.4 Overheads
2.4.1 Storage

The locality-aware protocol requires extra bits at the LLC
tag arrays to track locality information. Each LLC direc-
tory entry requires 2 bits for the replica reuse counter (as-
suming an optimal RT of 3). The Limiteds classifier tracks
the locality information for three cores. Tracking one core
requires 2 bits for the home reuse counter, 1 bit to store the
replication mode and 6 bits to store the core ID (for a 64-
core processor). Hence, the Limiteds classifier requires an
additional 27 (= 3 x 9) bits of storage per LLC directory
entry. The Complete classifier, on the other hand, requires
192 (= 64 x 3) bits of storage.

All the following calculations are for one core but they
are applicable for the entire processor since all the cores are
identical. The sizes of the per-core L1 and LLC caches used
in our system are shown in Table 1. The storage overhead

: <io 2X256
of the replica reuse bit is 435¢* = 1K B. The storage over-

head of the Limiteds classifier is 22238 = 13.5K B. For

the complete classifier, it is 122X25¢ — 96K B. Now, the
storage overhead of the ACKwisey protocol in this proces-
soris 12K B (assuming 6 bits per ACKwise pointer) and that
for a Full Map protocol is 32K B. Adding up all the storage
components, the Limiteds classifier with ACKwise, proto-
col uses slightly less storage than the Full Map protocol
and 4.5% more storage than the baseline ACKwise, pro-
tocol. The Complete classifier with the ACKwise, protocol
uses 30% more storage than the baseline ACKwise, proto-
col.

24.2 LLC Tag & Directory Accesses

Updating the replica reuse counter in the local LLC slice
requires a read-modify-write operation on each replica hit.
However, since the replica reuse counter (being 2 bits) is
stored in the LLC tag array that needs to be written on each
LLC lookup to update the LRU counters, our protocol does
not add any additional tag accesses.

At the home location, the lookup/update of the lo-
cality information is performed concurrently with the
lookup/update of the sharer list for a cache line. However,
the lookup/update of the directory is now more expensive
since it includes both sharer list and the locality informa-
tion. This additional expense is accounted in our evaluation.

2.4.3 Network Traffic

The locality-aware protocol communicates the replica reuse
counter to the LLC home along with the acknowledgment
for an invalidation or an eviction. This is accomplished

Architectural Parameter Value

Number of Cores 64 @ 1 GHz
Compute Pipeline per Core In-Order, Single-Issue
Processor Word Size 64 bits

Memory Subsystem

16 KB, 4-way Assoc., 1 cycle
32 KB, 4-way Assoc., 1 cycle
256 KB, 8-way Assoc.,

2 cycle tag, 4 cycle data
Inclusive, R-NUCA [13]
Invalidation-based MESI,
ACKwisey [20]

8 controllers, 5 GBps/cntlr,
75 ns latency

Electrical 2-D Mesh with XY Routing
Hop Latency 2 cycles (1-router, 1-link)
Flit Width 64 bits
Header (Src, Dest, Addr, MsgType) 1 flit
Cache Line Length 8 flits (512 bits)

L1-I Cache per core
L1-D Cache per core
L2 Cache (LLC) per core

Directory Protocol

DRAM Num., Bandwidth, Latency

Locality-Aware LLC Data Replication

Replication Threshold RT=3
Classifier Limiteds

Table 1. Architectural parameters used for evaluation

without creating additional network flits. For a 48-bit phys-
ical address and 64-bit flit size, an invalidation message re-
quires 42 bits for the physical cache line address, 12 bits for
the sender and receiver core IDs and 2 bits for the replica
reuse counter. The remaining 8 bits suffice for storing the
message type.

3 Evaluation Methodology

We evaluate a 64-core multicore. The default architec-
tural parameters used for evaluation are shown in Table 1.

3.1 Performance Models

All experiments are performed using the core, cache hi-
erarchy, coherence protocol, memory system and on-chip
interconnection network models implemented within the
Graphite [23] multicore simulator. All the mechanisms and
protocol overheads discussed in Section 2 are modeled. The
Graphite simulator requires the memory system (including
the cache hierarchy) to be functionally correct to complete
simulation. This is a good test that all our cache coherence
protocols are working correctly given that we have run 21
benchmarks to completion.

The electrical mesh interconnection network uses
XY routing. Since modern network-on-chip routers are
pipelined [1 1], and 2- or even 1-cycle per hop router laten-
cies [18] have been demonstrated, we model a 2-cycle per
hop delay. In addition to the fixed per-hop latency, network
link contention delays are also modeled.

3.2 Energy Models

For dynamic energy evaluations of on-chip electrical net-
work routers and links, we use the DSENT [26] tool. The
dynamic energy estimates for the L1-I, L1-D and L2 (with
integrated directory) caches as well as DRAM are obtained
using McPAT/CACTI [21, 27]. The energy evaluation is

performed at the 11 nm technology node to account for fu-
ture scaling trends. As clock frequencies are relatively slow,
high threshold transistors are assumed for lower leakage.

3.3 Baseline LLC Management Schemes

We model four baseline multicore systems that assume
private L1 caches managed using the ACKwise, protocol.

1. The Static-NUCA baseline address interleaves all
cache lines among the LLC slices.

2. The Reactive-NUCA [13] baseline places private data
at the requester’s LLC slice, replicates instructions in
one LLC slice per cluster of 4 cores using rotational
interleaving, and address interleaves shared data in a
single LLC slice.

3. The Victim Replication (VR) [30] baseline uses the
requester’s local LLC slice as a victim cache for data
that is evicted from the L1 cache. The evicted victims
are placed in the local LLC slice only if a line is found
that is either invalid, a replica itself or has no sharers
in the L1 cache.

4. The Adaptive Selective Replication (ASR) [4] also
replicates cache lines in the requester’s local LLC slice
on an L1 eviction. However, it only allows LLC repli-
cation for cache lines that are classified as shared read-
only. ASR pays attention to the LLC pressure by bas-
ing its replication decision on per-core hardware mon-
itoring circuits that quantify the replication effective-
ness based on the benefit (lower LLC hit latency) and
cost (higher LLC miss latency) of replication. We do
not model the hardware monitoring circuits or the dy-
namic adaptation of replication levels. Instead, we run
ASR at five different replication levels (0, 0.25, 0.5,
0.75, 1) and choose the one with the lowest energy-
delay product for each benchmark.

3.4 Evaluation Metrics

Each multithreaded benchmark is run to completion us-
ing the input sets from Table 2. We measure the energy
consumption of the memory system including the on-chip
caches, DRAM and the network. We also measure the com-
pletion time, i.e., the time in the parallel region of the
benchmark. This includes the compute latency, the mem-
ory access latency, and the synchronization latency. The
memory access latency is further broken down into:

1. L1 to LLC replica latency is the time spent by the L1
cache miss request to the LLC replica location and the
corresponding reply from the LLC replica including
time spent accessing the LLC.

2. L1 to LLC home latency is the time spent by the
L1 cache miss request to the LLC home location and
the corresponding reply from the LLC home including
time spent in the network and first access to the LLC.

3. LLC home waiting time is the queueing delay at
the LLC home incurred because requests to the same
cache line must be serialized to ensure memory con-
sistency.

Application Problem Size

SPLASH-2 [28]
RADIX 4M integers, radix 1024
FFT 4M complex data points
LU-C, LU-NC 1024 x 1024 matrix
OCEAN-C 2050 x 2050 ocean
OCEAN-NC 1026 x 1026 ocean
CHOLESKY tk29.0
BARNES 64K particles
WATER-NSQUARED 512 molecules
RAYTRACE car
VOLREND head

PARSEC [0]

BLACKSCHOLES 65,536 options
SWAPTIONS 64 swaptions, 20,000 sims.
STREAMCLUSTER 8192 points per block, 1 block
DEDUP 31 MB data
FERRET 256 queries, 34,973 images
BODYTRACK 4 frames, 4000 particles
FACESIM 1 frame, 372,126 tetrahedrons
FLUIDANIMATE 5 frames, 300,000 particles
Others: Parallel MI-Bench [14], UHPC Graph benchmark [2]
PATRICIA 5000 IP address queries
CONNECTED-COMPONENTS | Graph with 218 nodes

Table 2. Problem sizes for our parallel benchmarks.

4. LLC home to sharers latency is the round-trip time
needed to invalidate sharers and receive their acknowl-
edgments. This also includes time spent requesting
and receiving synchronous write-backs.

5. LLC home to off-chip memory latency is the time
spent accessing memory including the time spent com-
municating with the memory controller and the queue-
ing delay incurred due to finite off-chip bandwidth.

One of the important memory system metrics we track
to evaluate our protocol are the various cache miss types.
They are as follows:

1. LLC replica hits are L1 cache misses that hit at the
LLC replica location.

2. LLC home hits are L1 cache misses that hit at the
LLC home location when routed directly to it or LLC
replica misses that hit at the LLC home location.

3. Off-chip misses are L1 cache misses that are sent to
DRAM because the cache line is not present on-chip.

4 Results
4.1 Comparison of Replication Schemes

Figures 6 and 7 plot the energy and completion time
breakdown for the replication schemes evaluated. The RT-1,
RT-3 and RT-8 bars correspond to the locality-aware scheme
with replication thresholds of 1, 3 and 8 respectively.

The energy and completion time trends can be under-
stood based on the following 3 factors: (1) the type of data
accessed at the LLC (instruction, private data, shared read-
only data and shared read-write data), (2) reuse run-length

L1-D Cache M L2 Cache (LLC) Directory B Network Router Network Link ® DRAM

B |1-| Cache

o 814 81y
- LY - e w
- LY z T-14 @
-5V S ¥sy g
- A 2 ¥A s
- VONNY T NNy <
o VONN-S VINNS
1 = 8Ly 81y
ow €LY 3 €1y g
om T 2 T-1Y IS
m SV i~ Uy S
o A 2 ¥A]
o VONNY VINN-¥
m YONN-S VINN-S
81y
m €18 <
z T-14 g
o ¥y £
w ¥A g
VONN-Y
VINN-S
81y
B [s
= T-14 z
= ¥sv g
8 A s
o
VINN-¥
VINN-S
81y
o e S
z T-14 &
3 gsY =
S ¥A o
YonN-yg ©
VONNS
- 8Ly 81y
m £y « €1y —
w1y g T-1Y o
m ¥SY z ¥sY «
- A @ A =
- VONN-Y VINN-¥
m VONN-S VINN-S
R 81y
w €LY z €14 o
n T-LY g T-14 3
u ¥SV I} usy o
1 YA S UA e
¥ VONN-¥ VONN-Y
® YONNS VINNS
81y 81y “
€14 €1y 3
T-1¥ g T-1Y g
SV 3 USY <
A A =
VINN-4 VNN &
VINN-S VINN-S
81y 814 .
€14 €14 =
T-14 Q T-14 z
¥svY 2 sy g
¥A 4A 2
VONN-Y VONNY ™
VONN-S VINNS
81y 8-y -
€14 €1y K
T-1Y & T-1Y 2
¥V & ¥y e
A ¥A =
VONN-Y vonNy ¥
VINN-S VINN-S
¥ 81y 81y
¥ €1y €1y 3
¥ Ty E] T-148 2
1 usY < ¥sy S
"B “ A 3
¥ VONNY VONN-Y4
1 VONNS VINNS
o
aou) ASsau3 ou) ASsau3

Figure 6. Energy breakdown for the LLC replication schemes evaluated. Results are normalized to that of S-NUCA. Note that

Average and not Geometric-Mean is plotted here.

LLC-Home--Waiting

B [1-To-LLC-Home
B Synchronization

L1-To-LLC-Replica

B Compute

LLC-Home-To-OffChip

B LLC-Home-To-Sharers

8-14
k]
11y
HSY

A
VONN-Y
VONN-S

VOLREND

8-14
k]
T-1d
HSY

VONN-Y
VONN-S

RAYTRACE

AVERAGE

e 8-1Y

CONCOMP

WATER-NSQ

|
7]
<

PATRICIA

1
=
ke

)
1
«
>

OCEAN-NC

FACESIM

OCEAN-C

| ll,l,l T IJf.J_IJ

BODYTRACK

BARNES

FERRET

CHOLESKY

DEDUP

8-14

VONN-4
VONN-S

LU-NC

STREAMCLUS.

8-14

FFT

FLUIDANIM.

SWAPTIONS

RADIX

e \/ON-Y

BLACKSCH.

< N O

> S o o
(pazijewuou)

awi] uopajdwo)

(pazijewuou)
awi] uonajdwo)

Figure 7. Completion Time breakdown for the LLC replication schemes evaluated. Results are normalized to that of S-NUCA.

Note that Average and not Geometric-Mean is plotted here.

B OffChip-Misses

LLC-Home-Hits

B | L C-Replica-Hits

VOLREND
NENNENN NRNNQIN

RAYTRACE

‘ AVERAGE

CONCOMP

PATRICIA

WATER-NSQ
PR R

OCEAN-NC
THnnpn

FACESIM

o
7
<

OCEAN-C

BARNES

CHOLESKY

-
b
o
=

I 7
a
o
j=t=

il

-
b
ot
&

BODYTRACK

FERRET

DEDUP

LU-NC

w814

STREAMCLUS.

FFT

FLUIDANIM.

SWAPTIONS

RADIX

BLACKSCH.

(pazijew.ou)
umopsjeaig
SSIIN 9Y2€) T1

-
——
-
T

BN

oo o

00T

100%

(pazijewuou)
umopyeaig
SSIIN 3y2ed T1

Figure 8. L1 Cache Miss Type breakdown for the LLC replication schemes evaluated.

at the LLC, and (3) working set size of the benchmark. Fig-
ure 8, which plots how L1 cache misses are handled by the
LLC is also instrumental in understanding these trends.

Many benchmarks (e.g., BARNES) have a working set
that fits within the LLC even if replication is done on ev-
ery L1 cache miss. Hence, all locality-aware schemes (R7-
1, RT-3 and RT-8) perform well both in energy and per-
formance. In our experiments, we observe that BARNES
exhibits a high reuse of cache lines at the LLC through
accesses directed at shared read-write data. S-NUCA, R-
NUCA and ASR do not replicate shared read-write data and
hence do not observe any benefits with BARNES.

VR observes some benefits since it locally replicates
read-write data. However, it exhibits higher L2 cache (LLC)
energy than the other schemes for two reasons. (1) Its (al-
most) blind process of creating replicas on all evictions re-
sults in the pollution of the LL.C, leading to less space for
useful replicas and LLC home lines. This is evident from
lower replica hit rate for VR when compared to our locality-
aware protocol. (2) The exclusive relationship between the
L1 cache and the local LLC slice in VR causes a line to be
always written back on an eviction even if the line is clean.
This is because a replica hit always causes the line in the
LLC slice to be invalidated and inserted into the L1 cache.
Hence, in the common case where replication is useful, each
hit at the LLC location effectively incurs both a read and a
write at the LLC. And a write expends 1.2 more energy
than a read. The first factor leads to higher network en-
ergy and completion time as well. This explains why VR
performs worse than the locality-aware protocol. Similar
trends in VR performance and energy exist in the WATER-
NSQ, PATRICIA, BODYTRACK, FACESIM, STREAMCLUS-
TER and BLACKSCHOLES benchmarks.

BODYTRACK and FACESIM are similar to BARNES ex-
cept that their LLC accesses have a greater fraction of in-
structions and/or shared read-only data. The accesses to
shared read-write data are again mostly reads with only a
few writes. R-NUCA shows significant benefits since it
replicates instructions. ASR shows even higher energy and
performance benefits since it replicates both instructions
and shared read-only data. The locality-aware protocol also
shows the same benefits since it replicates all classes of
cache lines, provided they exhibit reuse in accordance with
the replication thresholds. VR shows higher LLC energy
for the same reasons as in BARNES. ASR and our locality-
aware protocol allow the LLC slice at the replica location
to be inclusive of the L1 cache, and hence, do not have the
same drawback as VR. VR, however, does not have a perfor-
mance overhead because the evictions are not on the critical
path of the processor pipeline.

Note that BODYTRACK, FACESIM and RAYTRACE are
the only three among the evaluated benchmarks that have a
significant L1-I cache MPKI (misses per thousand instruc-
tions). All other benchmarks have an extremely low L1-
I MPKI (< 0.5) and hence R-NUCA’s replication mecha-
nism is not effective in most cases. Even in the above 3

benchmarks, R-NUCA does not place instructions in the lo-
cal LLC slice but replicates them at a cluster level, hence
the serialization delays to transfer the cache lines over the
network still need to be paid.

BLACKSCHOLES, on the other hand, exhibits a large
number of LLC accesses to private data and a small num-
ber to shared read-only data. Since R-NUCA places private
data in its local LLC slice, it obtains performance and en-
ergy improvements over S-NUCA. However, the improve-
ments obtained are limited since false sharing is exhibited
at the page-level, i.e., multiple cores privately access non-
overlapping cache lines in a page. Since R-NUCA’s clas-
sification mechanism operates at a page-level, it is not able
to locally place all truly private lines. The locality-aware
protocol obtains improvements over R-NUCA by replicat-
ing these cache lines. ASR only replicates shared read-only
cache lines and identifies these lines by using a per cache-
line sticky Shared bit. Hence, ASR follows the same trends
as S-NUCA. DEDUP almost exclusively accesses private
data (without any false sharing) and hence, performs op-
timally with R-NUCA.

Benchmarks such as RADIX, FFT, LU-C, OCEAN-C,
FLUIDANIMATE and CONCOMP do not benefit from repli-
cation and hence the baseline R-NUCA performs opti-
mally. R-NUCA does better than S-NUCA because these
benchmarks have significant accesses to thread-private data.
ASR, being built on top of S-NUCA, shows the same trends
as S-NUCA. VR, on the other hand, shows higher LLC en-
ergy because of the same reasons outlined earlier. VR’s
replication of private data in its local LLC slice is also not
as effective as R-NUCA’s policy of placing private data lo-
cally, especially in OCEAN-C, FLUIDANIMATE and CON-
COMP whose working sets do not fit in the LLC.

The locality-aware protocol benefits from the optimiza-
tions in R-NUCA and tracks its performance and energy
consumption. For the locality-aware protocol, an RT of 3
dominates an RT of 1 in FLUIDANIMATE because it demon-
strates significant off-chip miss rates (as evident from its
energy and completion time breakdowns) and hence, it is
essential to balance on-chip locality with off-chip miss rate
to achieve the best energy consumption and performance.
While an RT of 1 replicates on every L1 cache miss, an RT
of 3 replicates only if a reuse > 3 is demonstrated. Us-
ing an RT of 3 reduces the off-chip miss rate in FLUIDAN-
IMATE and provides the best performance and energy con-
sumption. Using an RT of 3 also provides the maximum
benefit in benchmarks such as OCEAN-C and OCEAN-NC.

As RT increases, the off-chip miss rate decreases but the
LLC hit latency increases. For example, with an RT of
8, STREAMCLUSTER shows an increased completion time
and network energy caused by repeated fetches of the cache
line over the network. An RT of 3 would bring the cache
line into the local LLC slice sooner, avoiding the unnec-
essary network traffic and its performance and energy im-
pact. This is evident from the smaller “L1-To-LLC-Home”
component of the completion time breakdown graph and

the higher number of replica hits when using an RT of 3.
We explored all values of RT between 1 & 8 and found that
they provide no additional insight beyond the data points
discussed here.

Lu-NC exhibits migratory shared data. Such data ex-
hibits exclusive use (both read and write accesses) by a
unique core over a period of time before being handed to
its next accessor. Replication of migratory shared data re-
quires creation of a replica in an Exclusive coherence state.
The locality-aware protocol makes LLC replicas for such
data when sufficient reuse is detected. Since ASR does not
replicate shared read-write data, it cannot show benefit for
benchmarks with migratory shared data. VR, on the other
hand, (almost) blindly replicates on all L1 evictions and per-
forms on par with the locality-aware protocol for LU-NC.

To summarize, the locality-aware protocol provides bet-
ter energy consumption and performance than the other
LLC data management schemes. It is important to balance
the on-chip data locality and off-chip miss rate and overall,
an RT of 3 achieves the best trade-off. It is also important to
replicate all types of data and selective replication of certain
types of data by R-NUCA (instructions) and ASR (instruc-
tions, shared read-only data) leads to sub-optimal energy
and performance. Overall, the locality-aware protocol has
a 16%, 14%, 13% and 21% lower energy and a 4%, 9%,
6% and 13% lower completion time compared to VR, ASR,
R-NUCA and S-NUCA respectively.

4.2 LLC Replacement Policy

As discussed earlier in Section 2.2.4, we propose to use
a modified-LRU replacement policy for the LLC. It first se-
lects cache lines with the least number of sharers and then
chooses the least recently used among them. This replace-
ment policy improves energy consumption over the tradi-
tional LRU policy by 15% and 5%, and lowers completion
time by 5% and 2% in the BLACKSCHOLES and FACESIM
benchmarks respectively. In all other benchmarks this re-
placement policy tracks the LRU policy.

4.3 Limited Locality Classifier

Figure 9 plots the energy and completion time of the
benchmarks with the Limited;, classifier when k is varied as
(1, 3,5, 7, 64). k =64 corresponds to the Complete classi-
fier. The results are normalized to that of the Complete clas-
sifier. The benchmarks that are not shown are identical to
DEDUP, i.e., the completion time and energy stay constant
as k varies. The experiments are run with the best RT value
of 3 obtained in Section 4.1. We observe that the completion
time and energy of the Limiteds classifier never exceeds by
more than 2% the completion time and energy consumption
of the Complete classifier except for STREAMCLUSTER.

With STREAMCLUSTER, the Limiteds classifier starts off
new sharers incorrectly in non-replica mode because of the
limited number of cores available for taking the majority
vote. This results in increased communication between the
L1 cache and LLC home location, leading to higher com-
pletion time and network energy. The Limited; classifier,

k= k= k=7 N k=64

S
&

iy

cooo
ONBPOOEFLN

o e(, ¢ gg, é’c & o & Q‘yo
W N ol ’\ &
&o ¥ $;\‘V & O

A
&
Q&
&

SRS ¢ & o & Q
0\ \’, \‘;,% v@ v% qf) /\be \3& S s & ~N &.,\@ (}@ @@
& éé&“ OIS éy‘“ C & s

&
£ 3
&

Energy (normalized)

s

<

Qé“@‘“
S

In

Completion Time
(normalized)
cooo
ONPOORLN

&
Figure 9. Energy and Completion Time for the Limitedy,
classifier as a function of number of tracked sharers (k). The
results are normalized to that of the Complete (= Limitede.)
classifier.

however, performs as well as the complete classifier, but
incurs an additional 9K B storage overhead per core when
compared to the Limiteds classifier. From the previous sec-
tion, we observe that the Limiteds classifier performs better
than all the other baselines for STREAMCLUSTER. Hence,
to trade-off the storage overhead of our classifier with the
energy and completion time improvements, we chose k = 3
as the default for the limited classifier.

The Limited; classifier is more unstable than the other
classifiers. While it performs better than the Complete
classifier for LU-NC, it performs worse for the BARNES
and STREAMCLUSTER benchmarks. The better energy con-
sumption in LU-NC is due to the fact that the Limited; clas-
sifier starts off new sharers in replica mode as soon as the
first sharer acquires replica status. On the other hand, the
Complete classifier has to learn the mode independently for
each sharer leading to a longer training period.

4.4 Cluster Size Sensitivity Analysis

Figure 10 plots the energy and completion time for the
locality-aware protocol when run using different cluster
sizes. The experiment is run with the optimal RT of 3. Us-
ing a cluster size of 1 proved to be optimal. This is due to
several reasons.

In benchmarks such as BARNES, STREAMCLUSTER and
BODYTRACK, where the working set fits within the LLC
even with replication, moving from a cluster size of 1 to 64
reduced data locality without improving the LLC miss rate,
thereby hurting energy and performance.

Benchmarks like RAYTRACE that contain a significant
amount of read-only data with low degrees of sharing also
do not benefit since employing a cluster-based approach re-
duces data locality without improving LLC miss rate. A
cluster-based approach can be useful to explore the trade-
off between LLC data locality and miss rate only if the data
is shared by mostly all cores within a cluster.

In benchmarks such as RADIX and FLUIDANIMATE that

EC-1 c-4 HC-16 C-
1.2
§ 1
= 0.8
g06
£
=°-0.4
£02
> 0
bo § L O O & NSRN
= ge%g:<«<§co$ & & S &
o Vv%évé'\\v <3“<&é°/&<9®
Y L& Q CAIRS @ < & S
s @@4%&@\@ P < &
o 1.2
Eg 1
— @ 0.8
S 206
2 €04
9 EqS
%80'0
o~ & & & & <
© %é o S & & ¥ N
© SIS Oé“«\““"@‘“fec T
O @Y&Q@ & RARONES

Figure 10. Energy and Completion Time at cluster sizes
of 1, 4, 16 and 64 with the locality-aware data replication
protocol. A cluster size of 64 is the same as R-NUCA ex-
cept that it does not even replicate instructions.

show no usefulness for replication, applying the locality-
aware protocol bypasses all replication mechanisms and
hence, employing higher cluster sizes would not be any-
more useful than employing a lower cluster size. Intelli-
gently deciding which cache lines to replicate using an RT
of 3 was enough to prevent any overheads of replication.

The above reasons along with the added coherence com-
plexity of clustering (as discussed in Section 2.3.4) motivate
using a cluster size of 1, at least in the 64-core multicore tar-
get that we evaluate.

5 Related Work

CMP-NuRAPID [°] uses the idea of controlled replica-
tion to place data so as to optimize the distance to the LLC
bank holding the data. The idea is to decouple the tag and
data arrays and maintain private per-core tag arrays and a
shared data array. The shared data array is divided into mul-
tiple banks based on distance from each core. A cache line
is replicated in the cache bank closest to the requesting core
on its second access, the second access being detected us-
ing the entry in the tag array. This scheme uses controlled
replication to force just one cache line copy for read-write
shared data, and forces write-through to maintain coherence
for such lines using an additional Communication (C) co-
herence state. The decision to replicate based on the second
access for read-only shared data is also limited since it does
not take into account the LLC pressure due to replication.

CMP-NuRAPID does not scale with the number of cores
since each private per-core tag array potentially has to store
pointers to the entire data array. Results reported in [9] indi-
cate that the private tag array size should only be twice the
size of the per-cache bank tag array but this is because only
a 4-core CMP is evaluated. In addition, CMP-NuRAPID re-
quires snooping coherence to broadcast invalidate replicas,
and complicates the coherence protocol significantly by in-
troducing many additional race conditions that arise from

the tag and data array decoupling.

Reactive-NUCA [13] replicates instructions in one LLC
slice per cluster of cores. Shared data is never replicated
and is always placed at a single LLC slice. The one size fits
all approach to handling instructions does not work for ap-
plications with heterogeneous instructions. In addition, our
evaluation has shown significant opportunities for improve-
ment through replication of shared read-only and shared
read-mostly data.

Victim Replication (VR) [30] starts out with a private L1
shared L2 (LLC) organization and uses the requester’s local
LLC slice as a victim cache for data that is evicted from the
L1 cache. The evicted victims are placed in the local LLC
slice only if a line is found that is either invalid, a replica it-
self or has no sharers in the L1 cache. VR attempts to com-
bine the low hit latency of the private LLC with the low off-
chip miss rate of the shared LLC. The main drawback of this
approach is that replicas are created without paying atten-
tion to the LLC cache pressure since a replacement candi-
date with no sharers exists in the LLC with high probability.
Furthermore, the static decision policy to blindly replicate
(without paying attention to reuse) private and shared data
in the local LLC slice could lead to increased LLC misses.

Adaptive Selective Replication (ASR) [4] also replicates
cache lines in the requester’s local LL.C slice on an L1 evic-
tion. However, it only allows LLC replication for cache
lines that are classified as shared read-only using an addi-
tional per-cache-line shared bit. ASR pays attention to the
LLC pressure by basing its replication decision on a prob-
ability that is obtained dynamically. The probability value
is picked from discrete replication levels on a per-core ba-
sis. A higher replication level indicates that L1 eviction vic-
tims are replicated with a higher probability. The replication
levels are decided using hardware monitoring circuits that
quantify the replication effectiveness based on the benefit
(lower L2 hit latency) and cost (higher L2 miss latency) of
replication.

A drawback of ASR is that the replication decision is
based on coarse-grain information. The per-core counters
do not capture the replication usefulness for cache lines with
time-varying degree of reuse. Furthermore, the restriction
to replicate shared read-only data is limiting because it does
not exploit reuse for other types of data. ASR assumes an
8-core processor and the LLC lookup mechanism that needs
to search all LLC slices does not scale to large core counts
(although we model an efficient directory-based protocol in
our evaluation).

6 Conclusion

We have proposed an intelligent locality-aware data
replication scheme for the last-level cache. The locality
is profiled at runtime using a low-overhead yet highly ac-
curate in-hardware cache-line-level classifier. On a set of
parallel benchmarks, our locality-aware protocol reduces
the overall energy by 16%, 14%, 13% and 21% and the
completion time by 4%, 9%, 6% and 13% when compared

to the previously proposed Victim Replication, Adaptive
Selective Replication, Reactive-NUCA and Static-NUCA
LLC management schemes. The coherence complexity of
our protocol is almost identical to that of a traditional non-
hierarchical (flat) coherence protocol since replicas are only
allowed to be created at the LLC slice of the requesting
core. Our classifier is implemented with 14.5K B storage
overhead per 256 K B LLC slice.

References

[1] First the tick, now the tock: Next generation Intel microarchi-
tecture (Nehalem). White Paper, 2008.

[2] DARPA UHPC Program (DARPA-BAA-10-37), March 2010.

[3] A. Agarwal, R. Simoni, J. L. Hennessy, and M. Horowitz. An
Evaluation of Directory Schemes for Cache Coherence. In In-
ternational Symposium on Computer Architecture, 1988.

[4] B. M. Beckmann, M. R. Marty, and D. A. Wood. Asr: Adap-
tive selective replication for cmp caches. In Proceedings of the
39th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO 39, pages 443-454, 2006.

[5] S.Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao,
C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fair-
banks, D. Khan, F. Montenegro, J. Stickney, and J. Zook.
Tile64 - processor: A 64-core soc with mesh interconnect. In
IEEE Solid-State Circuits Conference, feb. 2008.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
Benchmark Suite: Characterization and Architectural Implica-
tions. In International Conference on Parallel Architectures
and Compilation Techniques, 2008.

[7] S. Borkar. Thousand core chips: a technology perspective. In
Design Automation Conference, 2007.

[8] L. M. Censier and P. Feautrier. A new solution to coher-
ence problems in multicache systems. IEEE Trans. Comput.,
27(12):1112-1118, Dec. 1978.

[9] Z. Chishti, M. D. Powell, and T. N. Vijaykumar. Optimizing
replication, communication, and capacity allocation in cmps.
In Proceedings of the 32nd annual international symposium

on Computer Architecture, ISCA ’05, pages 357-368, 2005.

[10] P.Conway, N. Kalyanasundharam, G. Donley, K. Lepak, and
B. Hughes. Cache Hierarchy and Memory Subsystem of the
AMD Opteron Processor. IEEE Micro, 30(2), Mar. 2010.

[11] W.]. Dally and B. Towles. Principles and practices of inter-
connection networks. Morgan Kaufmann, 2003.

[12] N. Eisley, L.-S. Peh, and L. Shang. In-network cache coher-
ence. In IEEE/ACM International Symposium on Microarchi-
tecture, MICRO 39, pages 321-332, 2006.

[13] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki.
Reactive NUCA: Near-Optimal Block Placement and Repli-
cation in Distributed Caches. In International Symposium on
Computer Architecture, 20009.

[14] S. Igbal, Y. Liang, and H. Grahn. Parmibench - an
open-source benchmark for embedded multiprocessor sys-
tems. Computer Architecture Letters, 9(2):45 —48, feb. 2010.

[15] A. Jaleel, E. Borch, M. Bhandaru, S. C. Steely Jr., and
J. Emer. Achieving Non-Inclusive Cache Performance with In-
clusive Caches: Temporal Locality Aware (TLA) Cache Man-
agement Policies. In International Symposium on Microarchi-
tecture, 2010.

[16] H. Kaul, M. Anders, S. Hsu, A. Agarwal, R. Krishnamurthy,
and S. Borkar. Near-threshold voltage (NTV) design - opportu-
nities and challenges. In Design Automation Conference, 2012.

[17] C. Kim, D. Burger, and S. W. Keckler. An Adaptive, Non-
Uniform Cache Structure for Wire-Delay Dominated On-Chip
Caches. In International Conference on Architectural Support
for Programming Languages and Operating Systems, 2002.

[18] A. Kumar, P. Kundu, A. P. Singh, L.-S. Peh, and N. K. Jha.
A 4.6tbits/s 3.6ghz single-cycle noc router with a novel switch
allocator in 65nm cmos. In International Conference on Com-
puter Design, 2007.

[19] G. Kurian, O. Khan, and S. Devadas. The locality-aware
adaptive cache coherence protocol. In Proceedings of the 40th
Annual International Symposium on Computer Architecture,
ISCA ’13, pages 523-534, New York, NY, USA, 2013. ACM.

[20] G. Kurian, J. Miller, J. Psota, J. Eastep, J. Liu, J. Michel,
L. Kimerling, and A. Agarwal. ATAC: A 1000-Core Cache-
Coherent Processor with On-Chip Optical Network. In Inter-
national Conference on Parallel Architectures and Compila-
tion Techniques, 2010.

[21] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. Mcpat: An integrated power, area,
and timing modeling framework for multicore and manycore
architectures. In International Symposium on Microarchitec-
ture, 2009.

[22] M. M. K. Martin, M. D. Hill, and D. J. Sorin. Why on-chip
cache coherence is here to stay. Commun. ACM, 55(7), 2012.

[23] J. E. Miller, H. Kasture, G. Kurian, C. G. III, N. Beckmann,
C. Celio, J. Eastep, and A. Agarwal. Graphite: A Distributed
Parallel Simulator for Multicores. In International Symposium
on High-Performance Computer Architecture, 2010.

[24] D. Sanchez and C. Kozyrakis. SCD: A Scalable Coherence
Directory with Flexible Sharer Set Encoding. In International
Symp. on High-Performance Computer Architecture, 2012.

[25] D.J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Mem-
ory Consistency and Cache Coherence. Synthesis Lectures in
Computer Architecture, Morgan Claypool Publishers, 2011.

[26] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agar-
wal, L.-S. Peh, and V. Stojanovic. DSENT - A Tool Connect-
ing Emerging Photonics with Electronics for Opto-Electronic
Networks-on-Chip Modeling. In International Symposium on
Networks-on-Chip, 2012.

[27] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B. Brockman, and
N. P. Jouppi. A comprehensive memory modeling tool and its
application to the design and analysis of future memory hierar-
chies. In International Symposium on Computer Architecture,
pages 51-62, 2008.

[28] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Methodolog-
ical Considerations. In International Symposium on Computer
Architecture, 1995.

[29] J. Zebchuk, V. Srinivasan, M. K. Qureshi, and A. Moshovos.
A tagless coherence directory. In International Symposium on
Microarchitecture, 2009.

[30] M. Zhang and K. Asanovié. Victim Replication: Maximizing
Capacity while Hiding Wire Delay in Tiled Chip Multiproces-
sors. In International Symp. on Computer Architecture, 2005.

[31] H. Zhao, A. Shriraman, and S. Dwarkadas. SPACE: sharing
pattern-based directory coherence for multicore scalability. In
International Conference on Parallel Architectures and Com-

pilation Techniques, pages 135-146, 2010.

