
Atom: Horizontally Scaling Strong Anonymity
Albert Kwon

MIT
Henry Corrigan-Gibbs

Stanford
Srinivas Devadas

MIT
Bryan Ford

EPFL
Abstract
Atom is an anonymousmessaging system that protects against
traffic-analysis attacks. Unlike many prior systems, each
Atom server touches only a small fraction of the total mes-
sages routed through the network. As a result, the system’s
capacity scales near-linearly with the number of servers. At
the same time, each Atom user benefits from “best possible”
anonymity: a user is anonymous among all honest users of
the system, even against an active adversary who monitors
the entire network, a portion of the system’s servers, and any
number of malicious users. The architectural ideas behind
Atom have been known in theory, but putting them into prac-
tice requires new techniques for (1) avoiding heavy general-
purpose multi-party computation protocols, (2) defeating
active attacks by malicious servers at minimal performance
cost, and (3) handling server failure and churn.

Atom is most suitable for sending a large number of short
messages, as in amicroblogging application or a high-security
communication bootstrapping (“dialing”) for private messag-
ing systems. We show that, on a heterogeneous network
of 1,024 servers, Atom can transit a million Tweet-length
messages in 28 minutes. This is over 23× faster than prior
systems with similar privacy guarantees.

CCS Concepts
• Security and privacy → Pseudonymity, anonymity
and untraceability; Privacy-preserving protocols; Dis-
tributed systems security;

Keywords
Anonymous communication, mix-net, verifiable shuffle

1 Introduction
In response to the widespread electronic surveillance of pri-
vate communications [69], many Internet users have turned
to end-to-end encrypted messaging applications, such as Sig-
nal and OTR [2]. These encrypted messaging tools provide

SOSP ’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in Proceedings of SOSP ’17 , https://doi.org/10.1145/3132747.3132755.

an effective way to hide the content of users’ communica-
tions from a network eavesdropper. These systems do lit-
tle, however, to protect users’ anonymity. In the context of
whistleblowing [38, 76], anonymous microblogging [22], or
anonymous surveys [43], users want to protect their identi-
ties in addition to the content of their communications.
Unfortunately, anonymity systems that protect against

powerful global adversaries typically cannot accommodate
large numbers of users. This is primarily due to the fact that
traditional anonymity systems only scale vertically. These
systems consist of a handful of infrastructure servers that act
collectively as an anonymity provider; the system can only
scale by increasing the power of each participating server.
Systems based both on classical mix-nets [18, 48, 72] and on
DC-nets [22, 76] suffer from this scalability challenge.
The Tor network [29], in contrast, is an example of an

anonymity system that scales horizontally. Tor consists of
a network of volunteer relays, and increasing the number
of these relays increases the overall capacity of the network.
This scalability property has enabled Tor to grow to handle
hundreds of thousands to millions of users [3]. However, the
fact that Tor provides low-latency anonymity also makes the
system vulnerable to a variety of deanonymization attacks [9,
17, 31, 44, 56, 74, 75].

In this paper, we present Atom, an anonymous messaging
system that takes important steps towards marrying the
best aspects of these two architectural strategies. Like Tor,
Atom scales horizontally: addingmore servers to the network
increases the system’s overall capacity. Likemix-net- andDC-
net-based systems, Atom provides clear security properties
under precise assumptions.
Atom implements an anonymous broadcast primitive for

short, latency-tolerant messages. In doing so, Atom offers
a strong notion of anonymity: an adversary who monitors
the entire network, a constant fraction of servers, and any
number of users only has a negligible advantage at guessing
which honest user sent which message.

We target two applications in particular in this paper. The
first is an anonymous microblogging application. With Atom,
users can broadcast short messages anonymously to orga-
nize protests, whistleblow, or send other sensitive messages.
The second is a “dialing” application: many existing private
messaging systems [8, 50, 72] require pairs of users to first es-
tablish shared secrets using some out-of-band means. Atom
can implement this sort of dialing system while providing
strictly stronger security properties than prior schemes can.

https://doi.org/10.1145/3132747.3132755

SOSP ’17, October 28, 2017, Shanghai, China A. Kwon et al.

An Atom deployment consists of hundreds or thousands
of volunteer servers, organized into small groups. To use
the system, each user submits its encrypted message to a
randomly chosen entry group. Once each server group has
collected ciphertexts from a number of users, the group shuf-
fles its batch of ciphertexts, and forwards a part of each batch
to neighboring server groups. After the servers repeat this
shuffle-and-forward process for a certain number of itera-
tions, our analysis guarantees that no coalition of adversarial
servers can learn which user submitted which ciphertext. At
this point, each group decrypts the ciphertexts it holds to
reveal the anonymized plaintext messages.

Atom’s scalability comes from the fact that each group of
servers works locally, and only needs to handle a small frac-
tion of the total messages routed through the network. In an
Atom deployment routingM messages using N servers, each
Atom server processes a number of ciphertexts that grows
as Õ(M/N). In contrast, traditional verifiable-shuffle-based
or DC-net-based anonymity systems require each server to
do Ω(M2) work, irrespective of the number of servers in the
system [22, 48, 76].
The design of Atom required overcoming three techni-

cal hurdles. First, in a conventional mix-net, each user pro-
duces an onion-style ciphertext, in which her message is
encrypted to each of the mix servers. In Atom, the user does
not know the set of servers its message will travel through
a priori, so she does not know which servers’ keys to use
to encrypt her message. Prior designs for distributed mix
systems [55, 63, 78] circumvented this problem with general-
purpose multi-party computation (MPC) protocols [11, 35],
but these general methods are currently too inefficient to
implement. We instead use a new rerandomizable variant
of ElGamal [32] encryption, which allows groups of servers
in the network to collaboratively and securely decrypt and
reencrypt a batch of ciphertexts to a subsequent group.

Second, Atommustmaintain its security properties against
actively malicious servers. To protect against active attacks,
we group the servers in such a way that every group contains
at least one honest server with overwhelming probability.
We then rely on the honest server to ensure that certain
invariants hold throughout the system’s execution using
two different cryptographic techniques. The first method re-
lies on verifiable shuffles [33, 39, 59], which can proactively
identify bad actors but is computationally expensive. The
second method is a novel “trap”-based scheme, inspired by
prior work on robust mixing [46]. This scheme avoids using
expensive verifiable shuffles, but provides a slightly weaker
notion of security: a malicious server can remove κ honest
users from the system (without deanonymizing them) with
probability 2−κ , thereby reducing the size of the remaining
users’ anonymity set.

Finally, Atom must handle network churn: with hundreds
or thousands of servers involved in the network, benign
server failures will be common. Our mechanism allows us to
pick a fault-tolerance parameter h, and Atom can tolerate up
to h − 1 faults per group while adding less than two seconds
of overhead. Atom also provides a mechanism for recovering
from more than h − 1 faults with some additional overhead.
To evaluate Atom, we implemented an Atom prototype

in Go, and tested it on a network of 1,024 Amazon EC2 ma-
chines. Our results show that Atom can support more than
one million users sending microblogging messages with 28
minutes of latency using 1,024 commodity machines. (Pro-
cessing this number of messages using Riposte [22], a cen-
tralized anonymous microblogging system, would take more
than 11 hours.) For a dialing application, Atom can support
a million users with 28 minutes of latency, with stronger
guarantees than prior systems [50, 72].

In this paper, we make the following contributions:
• propose a horizontally scalable anonymity system that can
also defend against powerful adversaries,
• design two defenses to protect this architecture against
active attacks by malicious servers,
• design a fault-recovery mechanism for Atom, and
• implement anAtom prototype and evaluate it on a network
of 1,024 commodity machines.
With this work, we take a significant step toward bridging

the gap between scalable anonymity systems that suffer from
traffic-analysis attacks, and centralized anonymity systems
that fail to scale.

2 System overview
Atom operates by breaking the set of servers into many
small groups such that there exists at least one honest server
per group with high probability; we call such group an
anytrust [76] group. We then connect the groups using a
carefully chosen link topology.

Communication in Atom proceeds in time epochs, or pro-
tocol rounds. At the start of each round, every participating
user holds a plaintext message that she wants to send anony-
mously. To send a message through Atom, each user pads her
message up to a fixed length, encrypts the message, and sub-
mits the ciphertext to a user-chosen entry group. Each entry
group collects a predetermined number of user ciphertexts
before processing them.

After the collection, each group collectively shuffles their
set of messages. The group collaboratively splits the shuffled
messages into several batches and forwards each batch to a
different subsequent group. This shuffle-split-and-forward
procedure continues for a number of iterations, until a set
of exit groups finally reveal the users’ anonymized messages.
The exit servers can then forward these messages to either a

Atom: Horizontally Scaling Strong Anonymity SOSP ’17, October 28, 2017, Shanghai, China

public bulletin board (e.g., for microblogging) or an address
specified in the message (e.g., for dialing).
Converting this high-level architecture into a working

system design requires solving a number of challenges:
(1) How does Atom provide protection against traffic-

analysis attacks by a global adversary? (§3)
(2) To whom do clients encrypt their messages? If clients

do not know which servers their messages will pass
through, standard mix-net-style onion encryption will
not suffice. (§4.2)

(3) How does Atom protect users from malicious servers
who deviate from the protocol? (§4.3 and §4.4)

(4) How does Atom remain resilient against server churn?
(§4.5)

2.1 Threat model and assumptions
An Atom deployment consists of a distributed network of
hundreds or thousands of servers, controlled by different
individuals and organizations. A cryptographic public key
defines the identity of each server, and we assume that ev-
ery participant in the system agrees on the set of partici-
pating servers and their keys. (A fault-tolerant cluster of
“directory authorities” could maintain this list, as in the Tor
network [29].) Furthermore, we assume that the servers and
the clients communicate over encrypted, authenticated, and
replay-protected channels (e.g., TLS). A large number of
users—on the order of millions—can participate in each round
of the Atom protocol.
We assume that the adversary monitors all traffic on the

network, controls a constant fraction f of the servers, and
can control all but two of the users. The adversarial servers
may deviate from the protocol in an arbitrary way, and col-
lude with each other and adversarial users.

Atom can provide availability in the presence of fail-stop
server faults (§4.5), but not against Byzantine server faults [49].
Our fault-tolerance technique could mitigate some availabil-
ity attacks, but we leave availability attacks out of scope.
That said, Atom does protect users’ anonymity in all cases.

Finally, Atom does not attempt to prevent intersection
attacks [28, 45]. For example, if anonymous messages about
a protest in Turkey are only available when Alice is online,
then the adversary may be able to infer that Alice is sending
those messages. Atom does not protect against this attack,
but known techniques [41, 77] can mitigate its effectiveness.

2.2 System goals
Atom has three primary goals.
Correctness. At the end of a successful run of the Atom
protocol (i.e., a run that does not abort), each server holds
a subset of the plaintext messages sent through the system.
Informally, we say that the system is correct if the union of

the message sets held at all honest servers contains every
message that the honest users sent through the system.
Anonymity. Following prior work [16, 18, 22, 48, 76], we
say that Atom provides anonymity if an adversary who con-
trols the network, a constant fraction of the servers, and any
number of users cannot guess which honest user sent which
message with probability non-negligibly better than random
guessing. In particular, we require that the final permutation
of the honest users’ messages is indistinguishable from a
random permutation. Under this definition, a user is anony-
mous among all honest users, not just the users who share
the same entry group, even if there is only one honest user
in an entry group.
Scalability. We say that an anonymity system is scalable if
the system can handle more users as the number of servers
grows. If there areM messages and N servers in the system,
we denote the number of ciphertexts each server processes
as 𝒞(M,N). We then require that holding 𝒞(M,N) fixed,M
scales linearly with N .

2.3 Cryptographic primitives
Atom relies on the following two cryptographic primitives.
We describe them at a high level here, and give the details in
Appendix A.
Rerandomizable encryption. Atom uses a rerandomiz-
able CPA-secure encryption scheme, which consists of the
following algorithms:
• (sk,pk) ← KeyGen(). Generate a fresh keypair.
• c ← Enc(pk,m). Encrypt messagem using public key pk .
• m ← Dec(sk, c). Decrypt ciphertext c using secret key sk .
• C ′ ← Shuffle(pk,C). Rerandomize a vector C of cipher-
texts using public key pk , and randomly permute the com-
ponents of the vector.
• c ′ = ReEnc(sk,pk, c). Strip a layer of encryption off of
ciphertext c using secret key sk and add a layer of encryp-
tion using public key pk . When pk = ⊥, this operation is
the same as Dec(sk, c).

For Atom, we require an additional property that the cryp-
tosystem allow “out-of-order” decryption and reencryption.
That is, given an onion-encrypted ciphertext, a server can
decrypt one of the middle layers of encryption and reencrypt
the ciphertext to a different public key.
Non-interactive zero-knowledge proofs of knowledge
(NIZKs). We make use of three NIZK constructions. We use
non-malleable NIZKs, meaning that the adversary cannot
use a NIZK for an input to generate a different NIZK for a
related input.
• (c,π) ← EncProof(pk,m). Compute c ← Enc(pk,m) and
generate a NIZK proof of knowledge of the plaintextm
corresponding to c .

SOSP ’17, October 28, 2017, Shanghai, China A. Kwon et al.

S1

S2

S3

S4

S1

S2

S3

S4

S1

S2

S3

S4

S1

S2

S3

S4F
o
r

T
-4

 i
te

ra
ti

o
n

s

U
s
e
r

c
ip

h
e
rt

e
x
ts

t=0 t=1 t=T-2 t=T-1

S
h

u
ff

le
d

 p
la

in
te

x
ts

Figure 1. An Atom deployment with four servers (S1 through S4),
arranged in the square topology. Each user submits her ciphertext
to an entry server of her choice. The servers perform T iterations
of mixing before outputting the plaintexts.

• (c,π) ← ReEncProof(sk,pk,m). Compute
c ← ReEnc(sk,pk,m) and generate a NIZK proof π that
this operation was done correctly (cf. [20]).
• (C ′,π) ← ShufProof(pk,C). Permute the ciphertext set C
(using Shuffle) and generate a NIZK π thatC is a permuted
version of C ′, reblinded using pk (cf. [10, 39, 59]).

When the operations other than Shuffle and ShufProof are
applied to a vector of ciphertexts C , we apply the operation
to each component of the vector.

3 Random permutation networks
In this section, we describe our solution to the first challenge:
how does Atom provide protection against traffic-analysis
attacks by a global adversary? We use a special network
topology that can provide anonymity against an adversary
that can view the entire network and control any number
of system users but that controls no servers. Then, in §4, we
describe how to protect against malicious servers.
We organize the Atom servers into a layered graph, and

each Atom server is connected to β other servers in the next
layer, where β is a fixed branching factor. An example topol-
ogy is shown in Figure 1 for β = 4. In each protocol run,
each user first chooses an Atom server (an “entry server”)
and encrypts her message with the public key of the server
using a rerandomizable encryption scheme. Each user then
sends her ciphertext to the entry server. Along with her ci-
phertext, the user also provides a NIZK to prove she knows
the underlying plaintext, to prevent a malicious user from
submitting a rerandomized copy of an honest user’s cipher-
text; this would result in duplicate plaintexts at the end of
the network, which would immediately reveal the sender
of the message. We include the id of the server in the NIZK
generation to prevent a malicious user from resubmitting
the exact copy of a ciphertext and its NIZK to a different
server. The details of this NIZK are shown in Appendix A.

We assume that each entry server receives the same num-
ber of messages. To achieve this in practice, an untrusted
load-balancing server could direct users to different entry
servers. We argue later in this section that every honest user

of the system is anonymous amongst all honest users of the
system. Thus, a user’s choice of entry group is not important
for security. Moreover, the untrusted server just directs the
users to a server, and does not actually route any messages.
It therefore cannot selectively remove users’ messages in an
attempt to launch an intersection attack.

Once the Atom entry servers collect a certain pre-specified
number of ciphertexts, the servers then begin a mixing pro-
cess that repeats for T iterations, where T is a parameter
chosen later on. In each iteration of the mixing process, each
server performs the following steps:
• Randomly permute the set of ciphertexts.
• Divide the ciphertexts into β batches of equal size.
• Reencrypt batch i ∈ [1, β] for the ith neighboring server
and forward the reencrypted batch to that server.

The servers repeat this permute-and-reencrypt process using
the incoming batches. After T iterations, each server in the
network holds a set of ciphertexts that has passed through
T other servers in the network. The exit servers can then
decrypt these ciphertexts and publish the corresponding
plaintexts.
Security analysis. We use a particular network topology
called a random permutation network [23–26, 40] to connect
the servers. When the servers are organized into such a
network, the output of the network after carrying out the
protocol above is a near-uniform random permutation of
all input messages. The adversary will thus have negligible
advantage in guessingwhich honest user sent whichmessage
over random guessing. Atom is compatible with any good
random permutation network. In this work, we leverage
prior analyses to identify two simple candidate topologies:
Square network: Håstad studied the problem of permuting
a square matrix ofM elements by repeatedly permuting the
rows and columns [40]. His analysis gives rise to a random
permutation network on

√
M nodes in which each vertex

shuffles
√
M ciphertexts and connects to

√
M vertices on the

subsequent layer (Figure 1). Håstad demonstrated that this
network produces a near-uniform random permutation after
only T ∈ O(1) iterations of mixing. In general, when we
have many more messages than servers (in particular when
N <

√
M), we can have each server “be responsible” for

multiple vertices in the network. For example, S1 and S2 in
t = 0 and 1 in Figure 1 could be handled by a single server.
Iterated-butterfly network: It was shown that O(logM)
repetitions of a standard butterfly network yields an almost-
ideal random permutation network on M elements [26],
where each node in the butterfly network handles O(1) mes-
sages. We say “almost ideal” because the network produces
a random permutation on a constant fraction of theM ele-
ments. Adding a small constant fraction of dummy messages
to the system lets us use this network as if it produced a

Atom: Horizontally Scaling Strong Anonymity SOSP ’17, October 28, 2017, Shanghai, China

truly random permutation [26]. Since a butterfly network has
depth O(logM), the total depth of the network is O(log2M).
If there are fewer thanM servers, then we again have a single
server emulate multiple nodes. The resulting N -server net-
work topology would have O(log2 N) depth, meaning there
would be T ∈ O(log2 N) iterations of mixing.
Efficiency. With M total messages in the network, each
server in each mixing iteration handlesM/N messages. For
the square network, the number of mixing iterations satisfies
T ∈ O(1), and thus each server only handlesO(M/N) cipher-
texts total in the square network. In the case of the iterated-
butterfly network, the number of messages each server han-
dles is O(MN · log

2 N), since there are T ∈ O(log2 N) itera-
tions. For the rest of this paper, we focus on the square
network, since it will perform better in practice due to the
shallower depth. Both networks meet the scalability require-
ment as both can handle more messages as we increase the
number of servers with a fixed C(M,N).

4 Atom protocol
In this section, we extend the protocol of §3 to defend against
actively malicious servers (i.e., servers who can tamper with
the messages). At a high level, we divide the servers into
anytrust groups, and replace the servers in the network with
the groups. Each group then simulates an honest server using
our protocol, and we provide mechanisms to detect malicious
servers deviating from the protocol.

4.1 Anytrust group formation
The Atom servers are organized into groups. As we will see
later in this section, the security of Atom relies on each group
having at least one honest server in this setting. We ensure
this by using a public unbiased randomness source [14, 68] to
generate groups consisting of randomly sampled servers. We
set the group size large enough to ensure that the probability
that all servers in any group are malicious is negligible. Here,
we make an assumption that the adversary controls at most a
particular constant fraction f of the servers in the network.
For example, if we assume that the adversary controls

f = 20% of the servers, we can bound the probability that any
group consists of all malicious servers (“is bad”) by choosing
the group size k large enough. We compute:

Pr[One group of k servers is bad] ≤ f k ,

and then use the union bound to compute

Pr[Any of G groups of k servers is bad] ≤ G · f k .

If we allow failure with probability at most 2−64 with
G = 1024 groups, then we choose the group size k = 32
such that f k ·G < 2−64. Finally, we replace the servers with
the groups in the permutation network.

Algorithm 1 Basic Atom group protocol
Form anytrust groups using the protocol in §4.1. A group
then takes a set of ciphertexts C as input, either from the
users if this server is in the first layer of the network or the
groups in the prior layer, and executes the following.
(1) Shuffle: Each server s computes C ′← Shuffle(C) in

order, and sends C ′ to the next server.
(2) Divide: If s is the last server of the group, then it

divides the permuted ciphertext set C ′ into β evenly
sized batches (B1, . . . ,Bβ), where β is the number of
neighboring groups. It sends (B1, . . . ,Bβ) to the first
server of the current group.

(3) Decrypt and Reencrypt: Server s receives batches
(B1, . . . ,Bβ) from the previous server. In order, each
server s computes B′i = ReEnc(sks ,pki ,Bi) for each
batch where sks is the secret key of the current server
and pki is the group public key of the ith neighboring
group. If there are no neighbors (i.e., this is the last
iteration of mixing), then pki = ⊥ for all i .
If s is the last server of the group, then it sends all B′i to
the first server in the ith neighboring group. Otherwise,
it sends them to the next server.

If s is the last server of a group in the last layer, then
(B′1, . . . ,B

′
β) contains the plaintext messages.

New groups are formed at the beginning of each round.
In practice, this operation will happen in the background, as
the rest of the protocol is carried out.

4.2 Basic Atom protocol
We first describe our protocol that enables each group to
collectively shuffle and reencrypt the message, without pro-
tection against active attacks. To send messagem, the user
first picks her entry group. She then computes
(c,π) ← EncProof(pk,m), where pk is the group public key;
this produces an onion-encrypted ciphertext encrypted us-
ing the public keys of all servers in the group. For ElGamal,
for example, pk would be the product of the public keys of
all servers in the group. She then sends (c,π) to all servers
in the entry group, and π is verified by all servers.
Once enough ciphertexts and proofs are received, each

group performs a specialized multi-party protocol for shuf-
fling the messages described in Algorithm 1. The security
of this protocol relies on Step 1 and Step 3. After Step 1, the
messages are permuted using the composition of all servers’
permutations. Since the honest server’s permutation is ran-
dom and unknown, the final permutation is secure as well.

Step 3 solves our second challenge: to whom do the users
encrypt their messages? Here, we use the special out-of-
order reencryption property of our cryptosystem (§2.3 and
Appendix A). A user only needs to encrypt for her entry

SOSP ’17, October 28, 2017, Shanghai, China A. Kwon et al.

group (and need not know the path her message will take
a priori), and the entry group can reencrypt for the appro-
priate next group. In particular, the first server decrypts a
layer of encryption of a ciphertext and reencrypts it for the
next group of servers. When the second server receives the
resulting ciphertext, it can decrypt its layer of encryption,
despite the fact that the ciphertext was last encrypted with
a different public key. Since each message is simultaneously
decrypted and reencrypted for another group, all messages
remain encrypted under at least one honest server’s key until
the last layer. Thus, the adversary does not learn anything
by observing the traffic in intermediate mixing iterations.

4.3 Atom with NIZKs
We now describe the two different mechanisms that address
our third challenge: protecting against actively malicious
servers. First, each user generates her ciphertext and the
corresponding NIZK using EncProof, and submits them to
all servers in their entry groups. All servers then verify
the NIZKs, and report the verification result to all other
servers in the group. Our protocol then uses verifiable shuf-
fles [10, 39, 59] and verifiable decryption [20]: After each oper-
ation in Algorithm 1, the server who shuffled or reencrypted
the messages proves the correctness of its operation using
NIZKs to all other servers in the group. The honest server
in each group will detect any deviation from the protocol.
Algorithm 2 describes the details.

4.4 Atom with trap messages
Generating and verifying the zero-knowledge proofs imposes
a substantial computational cost on the servers. The verifi-
able shuffle proposed by Neff [59], for instance, requires each
server to perform a number of exponentiations per element
being shuffled. Since every server needs to produce and ver-
ify a number of these NIZK proofs, the extra computation
can be burdensome. Instead, we use a novel trap message-
based protection, inspired by prior work [46]. In this variant,
each user submits a “trap” ciphertext with the ciphertext of
her message. If a server misbehaves, it risks tampering with
a trap. We then provide a distributed mechanism to detect if
a trap has been modified.
The malicious servers may get lucky and tamper with a

real user message. As such, the trap variant of Atom provides
a slightly weaker notion of security than the NIZK variant:
the adversary could remove (but not deanonymize) up to κ
honest messages from the anonymity set with probability
2−κ . If the number of honest users is large, as we expect
in a scalable system, this weaker anonymity property is
almost as good as the traditional anonymity property. The
NIZK variant of Atom can provide the stronger anonymity
if needed.

Algorithm 2 Atom group protocol with NIZKs
A group receives a set of ciphertexts C as input, as well as
the proof verification results of the previous layer.
(1) Shuffle: In order, each server s does the following:
(a) Compute (C ′,π) ← ShufProof(pk,C), where pk is

the current group public key.
(b) Send (C ′,π) to all servers in the group. All servers

in the group verify the proof π , and send the result
of the verification to all servers in the group. All
servers then check that every server in the group
correctly verified the proof, and abort the protocol
if any server reports failure.

(2) Divide: If s is the last server in the group, then server
s divides the permuted ciphertext set C ′ into β evenly
sized batches (B1, . . . ,Bβ), where β is the number of
neighboring groups. Server s sends (B1, . . . ,Bβ) to the
first server.

(3) Decrypt and Reencrypt: In order, each server s does
the following after it receives batches (B1, . . . ,Bβ)
from the previous server:

(a) Compute (B′i ,πi) = ReEncProof(sks ,pki ,Bi) for
each batch Bi , where sks is the secret key of the
current server and pki is the group public key of the
ith neighboring group.

(b) Send {(B′i ,πi)}i ∈[β] to all servers in the current
group. Send them to all servers in all the neighbor-
ing groups as well, if s is the last server of the group.
All servers that received the proofs {πi }i ∈[β] verify
them, and send the results of the verification to all
servers in the current group, and the neighboring
groups if s is the last server in the group. Then, all
servers who received the proofs check that all other
servers who verified the proofs reported success, and
abort the protocol if any server reports failure.

If s is the last server of a group in the last layer, then
(B′1, . . . ,B

′
β) contains the traps and the inner ciphertexts.

This trap variant of Atom makes use of an extra anytrust
group of servers, which we call the trustees. The trustees first
collectively generate a per-round public key for the group,
with each trustee holding a share of the matching secret key.
Users then encrypt their messages using a double-enveloping
technique [37]: each user first encrypts her messages using
the trustees’ public keywith an IND-CCA2 secure encryption
scheme [58, 62], which ensures that the resulting ciphertext
cannot be modified in anyway. Then, the user encrypts the
resulting ciphertext, which we call inner ciphertexts, with
the group key of her entry group. More precisely, to send a
messagem, a user

Atom: Horizontally Scaling Strong Anonymity SOSP ’17, October 28, 2017, Shanghai, China

(1) encryptsm using the trustees’ public key pkT :
cM ← "EncCCA2(pkT ,m)∥M", where M indicates that
cM is an inner ciphertext,

(2) picks an entry group. Let дid be the index of the entry
group,

(3) chooses a random nonce R and generates a “trap mes-
sage” as cT ← "дid ∥R∥T", where T indicates that cT is
a trap message,

(4) computes (c0,π0) ← EncProof(pk, cM),
(c1,π1) ← EncProof(pk, cT), and the cryptographic com-
mitment CT of cT , where pk is the public key of the
entry group (since the nonces are high-entropy, we
can use a cryptographic hash like SHA-3 [30] as a
commitment),

(5) sends (c0,π0) and (c1,π1) in a random order along with
CT to all servers in her entry group.

The servers verify π0 and π1 when they receive them.
Once a group collects enough ciphertexts and commitments,
each group carries out Algorithm 1, treating each ciphertext
(real or trap) as an independent message. At the end of the
protocol, the last server checks its subset of messages. It then
forwards (1) each trap message to all servers in the group
indicated by the дid field, and (2) each inner ciphertext to all
servers in the group chosen by a deterministic function that
will load-balance the number of ciphertexts forwarded to a
group (e.g., using universal hashing).

Each server reports the following to the trustees:
(1) a bit indicating whether every trap commitment has a

matching trap and vice-versa.
(2) a bit indicating that all inner ciphertext has been for-

warded correctly (e.g., hash is the expected value), and
that there are no duplicate inner ciphertexts.

(3) the number of traps and inner ciphertexts.
Each trustee releases its share of the decryption key if and

only if every server in every group reports no violation and
the total number of traps is the same as the total number of
inner ciphertexts. Otherwise, each trustee deletes its share
of the secret key. If the trustees release the decryption key,
then each server decrypts the inner ciphertexts to recover
the actual messages. Figure 2 summarizes the protocol.
Security analysis. The messages sent in one round cannot
be replayed in another round because the group keys change
across rounds. Thus, we only consider the security of one
round. The servers cannot tamper with any trap messages
since the honest server in each group holds the commitments
to all traps it is expecting to see. Moreover, because the
traps are mixed independently of the real messages, the final
locations of traps do not leak any information about the
real messages. We then use IND-CCA2 encryption, which
creates non-malleable ciphertexts, to prevent the adversary
from tampering with the inner ciphertexts to create related

1. Submit traps and

 inner ciphertexts

2. Shuffle and decrypt

...

4. Report shuffle

 correctness

5. Release

 decryption key

6. Decrypt inner

 ciphertext

3. Sort the traps and

 the inner ciphertexts

Trustees

Figure 2. Atom with trap messages and trustees.

ciphertexts. The adversary could still, however, duplicate,
drop, or replace an inner ciphertext.

The servers first explicitly check for duplicates, and abort
the protocol upon finding any. When a malicious server re-
moves or replaces a ciphertext, there is at least 50% chance
that the modified ciphertext is a trap message because the
users submit the ciphertexts in a random order and the ci-
phertexts are indistinguishable. Thus, if a server drops or
replaces a single ciphertext, it causes the entire protocol run
to abort with probability 50%. The adversary can, however, re-
move or replaceκ messages successfully with probability 2−κ .
Since each successful tampering reduces the anonymity set
of all users by one, the adversary can reduce the anonymity
set size by at most κ with probability 2−κ . This attack does
not impact the privacy of the tampered ciphertexts: the re-
moved inner ciphertexts are always encrypted under at least
one honest server’s key, and thus the plaintext messages of
the replaced messages are never revealed.

4.5 Tolerating server churn
The failure of any server–even a benign one–in the protocols
described thus far prevents the failed server’s group from
making progress. This is an important challenge for Atom:
with hundreds or thousands of volunteer servers involved in
each round, server failures are bound to happen. To address
this issue, we modify Atom to use threshold anytrust groups
that we call “many-trust groups”. We construct the groups
such that there are at least h honest servers in each group,
and enable each group to tolerate up to h − 1 failures.
When using Atom with many-trust groups, we replace

each group public key with the key of a threshold cryptosys-
tem. In a k-server group, we share the keys in such a way
that any k − (h − 1) servers can decrypt messages encrypted
for the group’s key. Since there are at least h honest servers
in each group, any subset of k − (h − 1) servers contains an
honest server. With such groups, Atom works similar to the
anytrust variant, except that only k − (h − 1) group members
need to participate.

SOSP ’17, October 28, 2017, Shanghai, China A. Kwon et al.

Our fault-tolerance mechanism requires two changes to
the network setup described in §4.1. First, we need to increase
the group size k to ensure existence of h honest servers per
group. For example, when h = 2, f = 20%, we need k ≥ 33 to
achieve failure probability < 2−64 (compared to k ≥ 32 when
h = 1). In the common case, however, only 32 = k − (h − 1)
servers need to handle the messages, meaning the messaging
latency does not increase in this case. Appendix B shows
how to compute k , and how large k must be for different
values of h.

Second, each group must generate its threshold encryp-
tion keys. In Atom, we use a dealer-less distributed verifiable
secret sharing (DVSS) protocol [67] to generate the keys to
avoid having a single trusted dealer who knows the secret
key. When a group is first formed, all servers in the group
participate in a round of the DVSS protocol. The public out-
put of this protocol is the group public key and the secret key
is secret shared among the k servers. For subsequent rounds,
the servers can perform this operation in the background as
they mix the messages for the current round.

Atom also provides a way to recover from more than h− 1
failures in a group using what we call buddy groups. When
groups are formed in the beginning of a round, each group
picks one or more buddy groups. Each server then secret
shares its share of the group private key with the servers in
each of the buddy groups. When more than h − 1 servers in
a group fail, a new anytrust group is formed. Each server
in the new group then collects the shares of the private key
from one of the buddy groups, and reconstructs a share of
the group private key. This allows Atom to recover from a
group failure as long as one of its buddy groups is online. In
principle, Atom could use an extra anytrust group of highly
available servers not in the actual network as a buddy group
for all groups to minimize the chance of network failure; for
example, the trustee group can be used for this purpose in
the trap-variant of Atom.

4.6 Malicious users in Atom
In the NIZK variant of Atom, malicious users cannot cause
a protocol run to halt. In the trap variant, however, mali-
cious users could potentially disrupt a round by submitting
(1) missing, incorrect, or extra traps, or (2) duplicate inner
ciphertexts. Since the servers check the traps only once the
routing has completed, Atom with traps unfortunately can-
not proactively prevent such attacks. However, Atom does
provide a way to identify the malicious users after a mis-
behavior is detected. To identify disruptive users, all entry
groups first reveal their private keys. Then, all servers in
each group decrypt the ciphertexts they received, and pub-
lish the resulting traps and inner ciphertexts to all other
servers, along with the original sender of each message and

the commitments of the traps. Each server then checks if each
decrypted trap matches the corresponding commitment and
vice-versa, and reports any user who fails this check. It also
reports any users who submitted the same inner ciphertexts.
Once the malicious users’ identities are known, the system
maintainer could take appropriate actions (e.g., blacklist the
users). If the DoS attack is persistent after many rounds,
Atom can fall back to using NIZKs, effectively trading off
performance for availability.

4.7 Organizing servers

Ensuring maximal server utilization. To maximize the
performance, we need to fully utilize all servers at all times.
A naïve layout of the servers, however, will cause a lot of idle
time. For example, the second server in a group cannot do
any useful work until the first server finishes. To ensure that
every server is active as much as possible, we “stagger” the
position of a server when it appears in different groups (e.g.,
server s is the first server in the first group, second server
in the second group, etc.). This can help minimize idle time.
Changing the positions of the servers within a group does
not impact the security of the system, since the security only
depends on the existence of an honest server.
Pipelining. In scenarios where throughput is more impor-
tant than latency, Atom can be pipelined. When we organize
the servers, we can assign different sets of servers to different
layers of our network. The network can then be pipelined
layer by layer, and output messages every one group’s worth
of latency. We do not explore this trade-off in this paper, as
latency is more important for the applications we consider.

5 Implementation and applications
We implemented an Atom prototype in Go in approximately
3,500 lines of code, using the Advanced Crypto Library [1].
Our prototype implements both protection against active
attacks (§4.3 and §4.4) and our fault-tolerance protocol (§4.5).
We use the NIST P-256 elliptic curve [6] for our crypto-
graphic group, threshold ElGamal encryption [65] for our
fault-tolerance scheme, and Neff’s verifiable shuffle tech-
nique for the zero-knowledge proof of shuffle correctness [59].
For our IND-CCA2-secure encryption scheme, we use a
key encapsulation scheme with ElGamal [66], described in
Appendix A. The source code is available at github.com/
kwonalbert/atom. We now highlight two particularly suit-
able applications for Atom.
Microblogging. Microblogging is a broadcast medium in
which users send short messages. For example, Twitter is a
microblogging service that supports messages up to 140 char-
acters. In several cases, anonymity is a desirable property
for microblogging: protest organizers can announce their

github.com/kwonalbert/atom
github.com/kwonalbert/atom

Atom: Horizontally Scaling Strong Anonymity SOSP ’17, October 28, 2017, Shanghai, China

plans, and whistleblowers can publicly expose illegal activi-
ties without fearing repercussions. Atom is a natural fit for
such applications. To blog, a user sends a short message
through the Atom network. The servers then put the plain-
text messages on a public bulletin board where other users
can read them. We use 160 byte messages in our evaluation.

Dialing. Several private communication systems [8, 50, 72]
require a dialing protocol by which pairs of users can es-
tablish a shared secret. Atom supports a dialing protocol,
similar to that of Vuvuzela [72] and Alpenhorn [50]. To dial
another user Bob, the initiator Alice encrypts her public key
using Bob’s public key. Then, she sends her encrypted key
and Bob’s identifier id (e.g., his public key) through the Atom
network. The servers at the last layer put the encrypted keys
into mailboxes based on the identifier. There are m mail-
boxes, and each dialing message is forwarded to mailbox
id modm. Finally, Bob downloads the contents of the mail-
box that contains the requests for him, decrypt the messages,
and establishes a shared key with Alice.
To hide the number of dialing calls a user receives, we

employ the differential privacy technique proposed by Vu-
vuzela. We require one of the anytrust groups (which could
be the trustees in the trap variant) to generate dummy dialing
messages for each mailbox, where the number of dummies
is determined using differential privacy. Then, these dummy
messages are distributed evenly across the Atom network,
and routed along with the actual users’ dialing messages.
We refer the readers to prior work [72] for detailed privacy
analysis of the required number of dummies.

The size of each dialing message can differ depending on
the cryptosystem used and the security guarantees. In the
simplest version in which a user simply sends an encrypted
public key of an elliptic curve cryptosystem, the message
size can be as small as 80 bytes (Bob’s public key + AEAD
encrypted Alice’s public key). For more sophisticated dialing
protocols, the messages can be larger. Alpenhorn [50], for
instance, uses identity-based encryption, and each message
is approximately 300 bytes. Our prototype implements the
simpler 80 byte message dialing scheme.

6 Evaluation
To evaluate Atom, we performed two classes of experiments.
In the first set of experiments, we measured the performance
of a single anytrust group. In the second, we perform end-to-
end experiments using a large number of machines. In these
latter experiments, we verify that the system can (1) handle
a large number of messages, and (2) scale horizontally. We
carried out our experiments in the us-east-1 region of Ama-
zon EC2, but we artificially introduced a latency between 40

Table 3. Performance of the cryptographic primitives.

Primitives Latency (s)

Enc 1.40 · 10−4
ReEnc 3.35 · 10−4

Shuffle (1,024 messages) 1.07 · 10−1
Prove Verify

EncProof 1.62 · 10−4 1.39 · 10−4
ReEncProof 6.55 · 10−4 4.46 · 10−4

ShufProof (1,024 messages) 7.57 · 10−1 1.41 · 100

Table 4. Latency to create an anytrust group.

Group size 4 8 16 32 64
Setup latency (ms) 7.4 29.4 93.3 361.8 1432.1

and 160 ms for each pair of servers (using tc in Linux) to em-
ulate a more realistic network environment. The machines
communicated over TLS channels.

6.1 Anytrust group performance
Experimental setup. To understand the performance of
the building blocks of an Atom network, we measured the
latency of the cryptographic operations and one mixing iter-
ation. We used Amazon EC2’s c4.xlarge instances for most
of the experiments in this section, which have four Intel
Haswell Xeon E5-2666 vCPUs with 7.5 GB of memory. For
these experiments, we fix the message size at 32 bytes. The
latency increases linearly with the message size, as we use
more points to embed larger messages; i.e., a 32-byte mes-
sage is one elliptic curve point, a 64-byte message is two
elliptic curve points, etc.
Cryptographic primitives. Table 3 shows the performance
of the cryptographic primitives used by Atom.
Group setup time. Table 4 shows the latency to generate
an anytrust group of different sizes. The threshold key gener-
ation (DVSS [67]) is the dominating cost. For all group sizes
of fewer than 64 servers, the setup takes less than two sec-
onds. In practice, we expect this overhead to be even lower,
since the servers can organize themselves into groups in the
background as they mix the messages for the current round.
NIZKs vs. traps. To compare the performance of the two
techniques for defending against malicious servers, we cre-
ated a single anytrust group with 32 servers, and measured
the time required to complete one mixing iteration. The num-
ber of messages varied from 128 to 16,384 messages, which
is the expected range of message load per group. In the trap
version of Atom, we accounted for the trap messages as well,
which doubled the actual number of messages handled by
each group. For example, if there are 1,024 groups and 220
messages, each group would handle 1,024 messages in the
NIZK variant and 2,048 messages in the trap variant.

SOSP ’17, October 28, 2017, Shanghai, China A. Kwon et al.

0 2000 4000 6000 8000 10000 12000 14000 16000

Number of messages

0

500

1000

1500

2000

2500

3000

T
im

e
 p

e
r

m
ix

in
g
 i
te

ra
ti

o
n
 (

s
)

NIZK

Trap

Figure 5. Time per mixing iteration for a single group of 32 servers
as the number of messages varies.

4 8 16 32 64

Size of group

0

50

100

150

200

250

T
im

e
 p

e
r

m
ix

in
g
 i
te

ra
ti

o
n
 (

s
)

NIZK

Trap

Figure 6. Time per mixing iteration for a single groupwhen routing
1,024 messages as the group size varies.

As shown in Figure 5, the mixing time of both modes
increases linearly with the number of messages, since the
mixing time largely depends on the number of ciphertexts
each server has to shuffle and reencrypt. The NIZK variant
takes about four times longer than the trap variant due to
costly proof generation and verification. Based on this, we
estimate that a full Atom network using NIZKs would be
four times slower than a trap-based Atom network.
Group size. The size of each anytrust group in Atom de-
pends on the security parameter and f , the fraction of servers
that are adversarial. Figure 6 demonstrates the impact of
group size on the mixing iteration time when the group
handles 1,024 messages. For both schemes, the mixing time
increases linearly with the group size, since each additional
server adds another serial set of shuffling and reencryption
operations. While our fault tolerance parameter h impacts
the group size k as well, only k − (h − 1) servers handle the
messages in a given iteration since k − (h − 1) servers is
enough to decrypt the threshold encrypted ciphertexts.
Number of cores. The computations that the Atom servers
perform are highly parallelizable, especially for the trap vari-
ant. Adding more cores to each server decreases the overall
latency in proportion. To demonstrate this effect, we created
an anytrust group of 32 servers using EC2 c4 nodes with 4, 8,
16, and 36 cores, and we routed 1,024 messages through them.
Figure 7 shows the speed-up of different anytrust groups over

4 8 16 36

Number of cores

2

4

6

8

S
p
e
e
d
-u

p

Trap

NIZK

Figure 7. Speed-up of one mixing iteration of Atom as we increase
the number of cores on a server. The baseline is when all servers
have four cores.

Figure 8. The Tor network topology [70] (left) and our network
topology (right). The size of a node indicates its capacity; very high-
capacity nodes are in green. In our topology, links within a cluster
have 40 ms latency and across clusters have 80-160 ms latency.

the one consisting of only four core servers. The speed-up is
nearly linear for the trap-variant, since majority of the load
is parallelizable. The speed-up of the NIZK variant is sub-
linear because the NIZK proof generation and verification
technique we use is inherently sequential.

6.2 Large-scale evaluation of Atom
Experimental setup. In this set of experiments, we used
up to 1,024 various Amazon EC2 machines to test Atom’s
scalability and performance using the trap variant of Atom.
In each experiment, 80% of the servers had 4 cores (c4.xlarge),
10% had 8 cores (c4.2xlarge), 5% had 16 cores (c4.4xlarge), and
5% had 32 cores (c4.8xlarge).We used the bandwidth statistics
of the Tor network [3] as a proxy to chose the servers for
our network1: 80% of the servers have less than 100 Mbps,
10% have between 100 Mbps and 200 Mbps, 5% have between
200 Mbps and 300 Mbps, and 5% have over 300 Mbps of
available bandwidth. Figure 8 shows our network topology.
We picked the system parameters assuming f = 20% of

the servers are malicious. We set up our groups to handle
one server failure for each group (§4.5). Thus, we set the
group size to 33 servers, and required 32 out of the 33 servers
to route the messages. Finally, we used µ = 13, 000, where µ

1Statistics on core counts of Tor servers were not available.

Atom: Horizontally Scaling Strong Anonymity SOSP ’17, October 28, 2017, Shanghai, China

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Number of messages (millions)

500

1000

1500

2000

2500

3000

3500

M
e
s
s
a
g
in

g
 l
a
te

n
c
y
 (

s
) Atom (microblogging)

Atom (dialing)

Figure 9. Latency of Atom for microblogging and dialing for vary-
ing number of messages. The latency increases linearly with the
number of messages.

128 256 512 1024

Number of servers

1

2

3

4

5

6

7

8

S
p
e
e
d
-u

p

3.81hr

1.89hr

0.94hr

0.47hr
Atom (microblogging)

Figure 10. Speed-up of Atom networks of varying sizes relative
to an Atom network of 128 servers. The speed-up is linear in the
number of servers in the network.

is the average number of dummy messages by each server
in an anytrust group for differential privacy [72]. Thus, on
average, we expect about 32 · µ = 410, 000 dummy messages
total in the network for anytrust groups of 32 servers.

We usedT = 10 iterations with the square network for the
evaluation. To measure the latency of one round of protocol
run, we measure the time lapse between the moment that
the first server in the first layer receives a message and the
last server in the last layer outputs a message.

We answer the following questions in this section:
• Can Atom support a large number of users?
• How does Atom scale horizontally?
• How does Atom compare to prior systems?

Number ofmessages.Weused 1,024 servers organized into
1,024 groups, and measured the latency as the total number
of messages varied. As Figure 9 shows, the latency increases
linearly with the total number of messages, since the number
of messages handled by each group increases linearly with
the total number of messages. The difference in the slope
between the two applications is due to the smaller message
size for dialing. For both applications, our prototype can
handle over a million users with a latency of 28 minutes.

210 211 212 213 214 215

Number of servers

1

5

10

15

20

S
p
e
e
d
-u

p

4
8
3
.6

h
r

2
4
4
.4

h
r

122.9hr

65.5hr

36.7hr

20.5hr
Atom (simulated)

Figure 11. Simulated speed-up of Atom networks of varying sizes
relative to an Atom network of 1,024 servers when routing a billion
microblogging messages. At this scale, the speed-up is sub-linear
in the number of servers.

Horizontal scalability. To demonstrate that Atom scales
horizontally, we measured the end-to-end latency for the
network to route a million microblogging messages as the
number of servers varied. As shown in Figure 10, the network
speeds up linearly with the number of servers. That is, an
Atom network with 1,024 servers is twice as fast as one with
512 servers.

We also simulated larger Atom networks to show further
scalability. Here, we modified the implementation to model
the expected latency given an input using values shown in
Table 3, instead of actually performing the operations. We
then had each physical server in our network emulate a large
number of logical servers. Figure 11 shows the simulated
latency when routing over a billion microblogging messages
using larger Atom networks. Unlike the cases with less than
1,024 servers, we observed that the speed-up is slightly sub-
linear in the number of servers. We believe there were two
reasons for this. First, there areG2 connections between two
layers where G is the number of servers per layer. When
there are tens of thousands of groups per layer, the num-
ber of connections became unmanageable for some servers.
Second, the single trustee group experienced performance
degradation. While the trustees could handle tens of thou-
sands of TLS connections, the overhead of establishing TLS
connection became non-negligible at this scale.

Comparison to prior work. Table 12 compares the perfor-
mance of Atom to that of three prior works: Riposte [22],
Vuvuzela [72], and Alpenhorn [50]. Riposte is an anonymous
microblogging system that uses centralized anytrust servers.
To compare Atom’s microblogging capabilities, we used the
fastest variant of Riposte which uses three 36-core machines
configured to handle a million messages. As shown in Ta-
ble 12, Riposte takes approximately 11 hours to anonymize a
million messages. Atom can support a million microblogging
messages in 3.8 hours with 128 servers and 28 minutes with
1,024 servers, which is 2.9× and 23.7× faster than Riposte.

SOSP ’17, October 28, 2017, Shanghai, China A. Kwon et al.

Table 12. Latency to support a million users. For microblogging,
Atom is 23.7× faster than Riposte with 1,024 servers. Vuvuzela is
56× faster than Atom for dialing.

Latency (min.)
Microblog Dial

Hardware
(
Speedup
vs. Riposte

) (
Slowdown
vs. Vuvuzela

)
Config.

Atom 128×mixed 228.7 (2.9×) 225.1 (450×)
256×mixed 113.4 (5.9×) 112.6 (225×)
512×mixed 56.3 (11.9×) 55.5 (111×)
1024×mixed 28.2 (23.7×) 27.9 (56×)

Alpenhorn [50] 3×c4.8xlarge – 0.5 (1×)
Vuvuzela [72] 3×c4.8xlarge – 0.5 (1×)
Riposte [22] 3×c4.8xlarge 669.2 (1×) –

While Atom uses many more servers to achieve better perfor-
mance, Riposte cannot take advantage of more servers with-
out additional security assumptions. In particular, Riposte
could scale by replacing each logical server with a cluster
of physical servers. An adversary, however, still needs to
only compromise one server from each cluster to break the
security of the system.
Vuvuzela and Alpenhorn are private messaging systems

with centralized anytrust servers that also support dialing.
We show the dialing latency with one million users for the
two systems when the network consists of three 36-core
machines with 10 Gbps connection between them. These two
systems are approximately 56× faster than Atom for mainly
two reasons: (1) more efficient cryptography, as they use
hybrid encryption, while Atom uses public key encryption,
and (2) their machines are more powerful than the average
machine in our network. Although Atom is slower, we still
believe it is suitable for dialing. For example, Alpenhorn [50]
suggests running a dialing round once every few hours due
to client bandwidth limitations. Atom can support more than
two million users on this time scale.

Atom also offers three concrete benefits over Vuvuzela and
Alpenhorn. First, the bandwidth requirement for each server
is significantly lower. Vuvuzela servers use 166 MB/sec of
bandwidth for all servers [72], while Atom servers use less
than 1 MB/sec of bandwidth. Second, Atom provides a clear
way to scale further: adding more servers to our network
will reduce the overall latency. Vuvuzela or Alpenhorn could
replace each logical server with a cluster of servers to scale-
out. However, similar to Riposte, the adversary only needs
to compromise a server in each cluster to break the security
of the system. Finally, Atom can provide additional privacy
by preventing servers from tampering with honest users’
messages. Vuvuzela and Alpenhorn do not aim to prevent
servers from tampering with the users’ messages, and as a
result, a malicious server can drop all but one honest user’s

messages (the honest user will still be protected via differen-
tial privacy). In Atom, we guarantee that the users will enjoy
anonymity among all honest users in addition to differential
privacy.

7 Discussion and future work
We now discuss some aspects of Atom we did not consider
in this paper and describe potential future work.
Estimated deployment costs. The deployment cost of a
server depends on compute and bandwidth cost. When rent-
ing compute power from a commercial cloud service, the
cost is usually fixed per hour of uptime. For example, if a
volunteer wants to maintain a 100% up-time with a four core
server on Amazon AWS, it would cost about $146/month,
while a 36-core server would cost about $1,165/month as of
September 2017.
The bandwidth cost depends on the number and the size

of messages routed by the server, but we can estimate an
upper bound by calculating the bandwidth requirement to
rate-match the compute power of the server. Based on our
microbenchmarks of the cryptographic primitives (Table 3),
a four core server in the trap variant of Atom can reen-
crypt about 2,700 messages/second and shuffle about 9,200
messages/second when each message is 32 bytes. This trans-
lates to about 90KB/second and 300KB/second of bandwidth
respectively. Assuming a constant flow of 300KB/second,
the upper bound on the bandwidth cost would be about
$7.20/month on AWS. For a 36-core server, this cost would
scale linearly, and would cost about $65/month.
Denial-of-service. Our focus in this work was on provid-
ing scalable anonymity in the face of a near-omnipresent
adversary. We explicitly left availability attacks out of scope.
Our fault-tolerance mechanism (§4.5), however, can help de-
fend against a small number of malicious failures as well: as
long as there are fewer than h failures per group, benign or
malicious, Atom can recover. Defending against a large scale
DoS (e.g., in which the attacker takes more than half of the
servers offline) remains an important challenge for future
work. Proactively defending against malicious users in the
trap variant is another important future work, as Atom can
only retroactively identify malicious users after a disruption
happens (§4.6).
Load balancing. In a real-world Atom deployment, there
will be some variances in the capacity of the servers; e.g.,
number of cores, amount of available bandwidth, memory,
etc. From a performance perspective, it would be beneficial
to have the more powerful servers appear in more groups.
Such non-uniform assignments of servers to groups, how-
ever, could result in an adversary controlling a full Atom
group. We must therefore be careful when load-balancing
servers, but the degradation in security may be worth the

Atom: Horizontally Scaling Strong Anonymity SOSP ’17, October 28, 2017, Shanghai, China

performance gain in practice. Tor [29], the only widely de-
ployed anonymity network, makes this trade-off: servers
with more available bandwidth are more likely picked when
forming a Tor circuit.

Intersection attacks by servers. Apart from the intersec-
tion attacks [28, 45] naturally occurring due to the changes
in the set of Atom users, malicious servers in the trap variant
of Atom could attempt to launch an intersection attack by
selectively removing a user’s ciphertexts. It is not possible,
however, to remove both trap and message ciphertexts with-
out getting caught, since the commitments of the traps are
made available to all servers. Thus, the malicious server has
to guess the real ciphertext to remove. As a result, the adver-
sary performing such an attack on one user is caught with
probability 50%, and this probability is amplified to 2−κ for
κ trials. Therefore, while Atom does not completely prevent
intersection attacks by the servers, it does limit the number
of times the adversary can attempt this attack.

8 Related work
Tor [29] is the only anonymous communication system in
widespread use today. Like Atom, Tor scales horizontally.
Unlike Atom, Tor aims to support low-latency real-time traf-
fic streams, and Tor does not aim to defend against a global
network adversary. Recent analysis of the Tor network sug-
gests that even certain local adversaries may be able to de-
anonymize Tor users [17, 42, 60, 74].

Free-route mix-nets [27, 51, 57, 64] also scale horizontally.
As with Tor, these systems do not provide strong anonymity
properties in the face of powerful global adversaries. When
the adversary can monitor the entire network and control
some servers, the anonymity properties of these systems
can degenerate to the set of users who share the same entry
point to the network.
Mix-nets [18] and Dining Cryptographer networks (DC-

Nets) [19] are the earliest examples of anonymity systems
that provide protection against global adversaries. However,
neither of these systems scales horizontally: mix-nets incur
overhead linear in the number of servers, and DC-Nets incur
overhead quadratic in the number of participants. Systems
that build on these primitives [34, 48, 76] face similar prob-
lems when trying to scale. Riposte [22] is an anonymous
microblogging system that uses techniques from private in-
formation retrieval [21] to scale to millions of users. Like a
DC-Net, Riposte requires each server to perform work qua-
dratic in the number of messages sent through the system.
The parallel mix-net of Golle and Juels [36] uses a dis-

tributed network of mix servers, similar to Atom. In this
mix-net, Borisov showed that if the adversary controls some
inputs and learns the output positions of the controlled in-
puts, then the adversary can infer some information about

the messages sent by the honest users [15]. In contrast, know-
ing output positions of some users’ messages in Atom does
not result in anonymity loss for the other users.

Vuvuzela [72] and Alpenhorn [50] are two recent private-
messaging systems that also provide dialing mechanisms
that a user can use to establish a shared secret with another
user. Both systems require all messages to pass through a
centralized set of servers, making the systems scale only
vertically. Moreover, contrary to Atom, malicious servers in
these systems can drop all but one honest user’s messages.
In Atom, we ensure no honest users’ messages are tampered
with. Thus, Atom can provide anonymity in addition to dif-
ferential privacy.
Vuvuzela also provides point-to-point metadata-hiding

communication (not anonymity). Using Vuvuzela, two users
who share a secret can communicate via the system without
an adversary learning that these two users are communicat-
ing. Vuvuzela, however, cannot be used to anonymously orga-
nize protests, since the recipient of a message always knows
its sender. Pung [8] addresses the same problem as Vuvuzela,
but does so without the need for an anytrust assumption.
Pung instead relies on computational private information
retrieval, which escapes the need for trust assumptions but
comes with significant computational costs [47].
Stadium [71] is a recent work that aims to horizontally

scale Vuvuzela (i.e., private point-to-point communication)
using distributed anytrust groups in a similar way to Atom.
Stadium uses a system architecture inspired by the parallel
mix-net [36] instead of permutation networks, and uses veri-
fiable shuffle and cover traffic (dummy messages) to achieve
a differential private notion of security. Stadium achieves
lower latency than Atom by verifiable shuffling only the
metadata of each message (e.g., a digest). The actual mes-
sages are encrypted using efficient hybrid encryption, and
the servers after each iteration of mixing check that the meta-
data matches the ciphertexts. This strategy cannot be used in
Atom since a user does not know the path that her message
will take. Instead, Atom provides anonymous broadcasting
without cover traffic and security based on indistinguisha-
bility of permutations at a higher latency.
Loopix [61] is a recent system that provides asynchro-

nous bidirectional anonymous messaging, and scales hor-
izontally. Loopix can provide low-latency communication
using servers that insert small amount of delays before rout-
ing themessages. However, the security guarantees of Loopix
degrade as the fraction of adversarial servers increases. In
contrast, Atom provides a way to remain secure even when a
large fraction of servers are actively malicious, at the cost of
polylogarithmic increase in the latency due to larger group
sizes. MCMix [7] is another system that provides bidirec-
tional anonymous messaging, but using multiparty computa-
tion (MPC). MCMix achieves better performance than Atom

SOSP ’17, October 28, 2017, Shanghai, China A. Kwon et al.

by defending against a weaker adversary. The MCMix pro-
totype, for example, only supports three-server MPC that
provides security against one passively malicious server.
The security analysis of Atom draws on the theoretical

analysis of permutation networks. Permutation networks
have long been studied as a way to permute a large num-
ber of elements using a network built of small components
(“switches”) [73]. In a 1993 paper, Rackoff and Simon [63]
proposed building a distributed mix-net from a large permu-
tation network. Their scheme required O(logk n) iterations
of mixing to mix n messages, where k was a “double-digit”
number [24]. In Atom, we convert this theoretical result into
a practical one. Abe also proposed building a distributed
mix-net from a butterfly permutation network [4], though
the construction had a flawed security analysis [5].

Recent theoretical work investigated the number of itera-
tions of a butterfly network required so that a random setting
of the switches produces a random permutation [52–54]. Czu-
maj and Vöcking [26] have recently argued that O(log2(M))
iterations are enough to generate an “almost” random per-
mutation of M inputs. Czumaj [23] also studied randomly
constructed networks and demonstrated that most networks
of depth O(log2(M)) and width O(M) produce good random
permutations. Håstad studied a permutation network [40]
based on shuffling the rows and columns of a square ma-
trix. Any of these networks could be used as the underlying
topology for an Atom network, but we focused on using the
network by Håstad [40] due to its efficiency.

9 Conclusion
Atom is a traffic-analysis resistant anonymous messaging
system that scales horizontally. To achieve strong anonymity
and scalability, Atom divides servers into many anytrust
groups, and organizes them into a carefully constructed
topology. Using these groups, we design an efficient protocol
for collectively shuffling and rerandomizing ciphertexts to
protect users’ privacy. We then propose two mechanisms,
based on zero-knowledge proof techniques and trap mes-
sages, to protect against actively malicious servers. Finally,
we provide a low-overhead fault-recovery mechanism for
Atom. Our evaluation of Atom prototype on a distributed net-
work consisting of over one thousand servers demonstrates
that the system scales linearly as the number of participating
servers increases. We also demonstrated that Atom can sup-
port more than a million users for microblogging and dialing.
With its distributed and scalable design, Atom takes traffic-
analysis-resistant anonymity one step closer to real-world
practicality.

Acknowledgements
We thank Nirvan Tyagi, David Lazar, Riad Wahby, Ling Ren,
and Dan Boneh for valuable feedback and discussion during
this project. We also thank the anonymous reviewers, and
our shepherd Peter Druschel. This work was supported in
part by the NDSEG fellowship.

A Cryptographic details
We describe a modification to the ElGamal cryptosystem [32]
for Atom. We work in a cyclic group G of order q with
generator д in which the Decision Diffie-Hellman problem
is hard [13]. The space of messages, ciphertexts, and public
keys is G ∪ {⊥}, where ⊥ represents a special null element.
• (x ,X) ← KeyGen(). Sample x ←R Zq and setX = дx ∈ G.
• (R, c,Y) ← Enc(X ,m). Sample r ←R Zq and set R ← дr .
Set c ← m · X r , and Y = ⊥. (R, c) forms the ElGamal
ciphertext, and Y is a new element for Atom.
• m ← Dec(x , (R, c,Y)). Return m ← c/Rx . The symbol
“/” indicates multiplication by the inverse of the second
operand. If Y , ⊥, then the algorithm fails.
• C ′ ← Shuffle(X ,C). To rerandomize a single ciphertext
(R, c,⊥) for public key X , sample r ′ ← Zq and compute
(дr

′

·R, c ·X r ′,⊥). IfY , ⊥, then the algorithm fails. To shuf-
fle, rerandomize all ciphertexts and then permute them.
• (R′, c ′,Y ′) ← ReEnc(x ,X ′, (R, c,Y)). If Y = ⊥, then set
Y = R and R = 1G , where 1G is the multiplicative identity
ofG . The algorithm proceeds in two steps: First, remove a
layer of encryption using x : ctmp ← c/Y x . Then, reencrypt
for X ′: sample r ′ ← Zq and set R′ ← дr

′

· R and Y ′ = Y .
Set c ′← ctmp · X

′r ′ .
Intuitively, Y holds the randomness used to encrypt for
the current group, while R holds the randomness used to
encrypt for the next group. By keeping both Y and R, the
servers in the current group can decrypt out-of-order. In
Atom, before the last server of a group forwards (R′, c ′,Y ′)
to the next group, it sets Y ′ = ⊥; at this point, all layers of
encryption by the current group have been peeled off, and
c ′ is encrypted only under X ′, making Y ′ unnecessary.
We use a key encapsulation scheme with ElGamal for our

IND-CCA2 encryption scheme for inner ciphertexts.
• (x ,X) ← KeyGen(). Sample x ←R Zq and setX = дx ∈ G.
• (R, c) ← Enc(X ,m). Sample r ←R Zq , and set R ← дr .
Generate a shared secret k = X r = дxr , and set c ←
AEnc(k,m) where AEnc is an authenticated symmetric
encryption scheme. For Atom, we used NaCl [12] for AEnc.
• m ← Dec(x , (R, c)). Generate the shared secret k = Rx =
дxr . Setm ← ADec(k, c), where ADec is the decryption
routine for AEnc.
Finally, we describe the NIZKs we use.

Atom: Horizontally Scaling Strong Anonymity SOSP ’17, October 28, 2017, Shanghai, China

0 5 10 15 20

Number of required honest servers in each group (h)

30

40

50

60

70

G
ro

u
p
 s

iz
e
 (
k
)

Figure 13. Required size of each group to maintain the security
guarantees for different values of h for f = 0.2 and G = 1, 024.

• (c,π) ← EncProof(pk,m). Compute the ciphertext (дr ,m ·
X r ,⊥) ← Enc(X ,m), and keep r . Pick a random s ∈ Zq .
Then, compute t = H (c ∥дs ∥X), and u = s + t · r , where H
is a cryptographic hash function. Set c = (дr ,m · X r ,⊥)
and π = (дs ,u).
To verify this proof, a verifier checks that дu = дs · дr t .
• (c,π) ← ReEncProof(sk,pk,m).We use the Chaum-Pedersen
proof [20] without any modifications.
• (C ′,π) ← ShufProof(pk,C). We use the Neff verifiable
shuffle [59] without any modifications.

For EncProof, the same proof π cannot be used for two dif-
ferent public keys, since the public key X is given as input
to H when computing t . This prevents an adversary from
copying the ciphertext and the NIZK submitted to one group,
and submitting them to a different group.

B Many-trust group size
Atom handles server churns using many-trust groups, as
described in §4.5. To tolerate up to h − 1 server failures in a
group, each many-trust group needs at least h honest servers.
We create such groups with high probability by increasing
the group size. Let k be the group size, f be the fraction of
malicious servers, and G be the number of groups in the
network. Similar to the analysis done in §4.1 for the anytrust
groups, we need
G · Pr[fewer than h honest servers in a group of k servers]

= G ·
h−1∑
i=0

Pr[i honest servers in a group of k servers]

= G ·
h−1∑
i=0

(
k

i

)
(1 − f)i f k−i < 2−64

Figure 13 shows the required size of the groups k as a func-
tion of h when f = 0.2, and G = 1024.

References
[1] Advanced crypto library for the Go language.

https://github.com/DeDiS/crypto.
[2] Off-the-Record Messaging. https://otr.cypherpunks.ca/.
[3] Tor Metrics Portal. https://metrics.torproject.org.
[4] Masayuki Abe. 1999. Mix-networks on permutation networks. In

ASIACRYPT. Springer, 258–273.
[5] Masayuki Abe and Fumitaka Hoshino. 2001. Remarks on mix-network

based on permutation networks. In PKC. Springer, 317–324.
[6] Mehmet Adalier. 2015. Efficient and Secure Elliptic Curve Cryptogra-

phy Implementation of Curve P-256. (2015).
[7] Nikolaos Alexopoulos, Aggelos Kiayias, Riivo Talviste, and Thomas

Zacharias. 2017. MCMix: AnonymousMessaging via SecureMultiparty
Computation. In USENIX Security Symposium. USENIX Association,
Vancouver, BC, 1217–1234.

[8] Sebastian Angel and Srinath Setty. 2016. Unobservable Communication
over Fully Untrusted Infrastructure. In OSDI. USENIX Association, GA,
551–569.

[9] Kevin Bauer, Damon McCoy, Dirk Grunwald, Tadayoshi Kohno, and
Douglas Sicker. 2007. Low-Resource Routing Attacks Against Tor. In
WPES.

[10] Stephanie Bayer and Jens Groth. 2012. Efficient Zero-
knowledge Argument for Correctness of a Shuffle. In EU-
ROCRYPT. Springer-Verlag, Berlin, Heidelberg, 263–280.
https://doi.org/10.1007/978-3-642-29011-4_17

[11] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Com-
pleteness theorems for non-cryptographic fault-tolerant distributed
computation. In STOC. ACM, 1–10.

[12] Daniel J Bernstein, Tanja Lange, and Peter Schwabe. 2012. The security
impact of a new cryptographic library. In International Conference on
Cryptology and Information Security in Latin America. Springer, 159–
176.

[13] Dan Boneh. 1998. The Decision Diffie-Hellman problem. In Interna-
tional Algorithmic Number Theory Symposium. Springer, 48–63.

[14] On Bitcoin as a public randomness source. https://eprint.iacr.org/2015/
1015.pdf.

[15] Nikita Borisov. 2006. An Analysis of Parallel Mixing with Attacker-
Controlled Inputs. In International Workshop on Privacy Enhancing
Technologies. Springer Berlin Heidelberg, Berlin, Heidelberg, 12–25.
https://doi.org/10.1007/11767831_2

[16] Justin Brickell and Vitaly Shmatikov. 2006. Efficient Anonymity-
preserving Data Collection. In KDD. ACM, New York, NY, USA, 76–85.
https://doi.org/10.1145/1150402.1150415

[17] Xiang Cai, Xincheng Zhang, Brijesh Joshi, and Rob Johnson. 2012.
Touching from a Distance: Website Fingerprinting Attacks and De-
fenses. In CCS.

[18] David Chaum. 1981. Untraceable Electronic Mail, Return Addresses,
and Digital Pseudonyms. Commun. ACM 24, 2 (Feb. 1981), 84–90.
https://doi.org/10.1145/358549.358563

[19] David Chaum. 1988. The Dining Cryptographers Problem: Uncondi-
tional Sender and Recipient Untraceability. Journal of Cryptology 1, 1
(March 1988), 65–75.

[20] David Chaum and Torben P. Pedersen. 1993. Wallet Databases with
Observers. In CRYPTO. 89–105.

[21] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan.
1998. Private Information Retrieval. J. ACM 45, 6 (Nov. 1998), 965–981.
https://doi.org/10.1145/293347.293350

[22] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. 2015. Riposte:
An Anonymous Messaging System Handling Millions of Users. In IEEE
Symposium on Security and Privacy. 321–338.

https://otr.cypherpunks.ca/
https://doi.org/10.1007/978-3-642-29011-4_17
https://eprint.iacr.org/2015/1015.pdf
https://eprint.iacr.org/2015/1015.pdf
https://doi.org/10.1007/11767831_2
https://doi.org/10.1145/1150402.1150415
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/293347.293350

SOSP ’17, October 28, 2017, Shanghai, China A. Kwon et al.

[23] Artur Czumaj. 2015. Random permutations using switching networks.
In STOC. ACM, 703–712.

[24] Artur Czumaj, Przemyslawa Kanarek, Miroslaw Kutylowski, and
Krzysztof Lorys. 1999. Delayed Path Coupling and Generating Random
Permutations via Distributed Stochastic Processes. In SODA. 271–280.

[25] Artur Czumaj, Przemka Kanarek, Krzysztof Loryś, and Miroslaw Kuty-
lowski. 2001. Switching networks for generating random permutations.
In Switching Networks: Recent Advances. Springer, 25–61.

[26] Artur Czumaj and Berthold Vocking. 2014. Thorp Shuffling, Butterflies,
and Non-Markovian Couplings. In ICALP. 344–355.

[27] George Danezis, Roger Dingledine, David Hopwood, and Nick Math-
ewson. 2003. Mixminion: Design of a Type III Anonymous Remailer
Protocol. In IEEE Symposium on Security and Privacy. 2–15.

[28] George Danezis and Andrei Serjantov. 2004. Statistical disclosure or
intersection attacks on anonymity systems. In International Workshop
on Information Hiding. Springer, 293–308.

[29] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor:
The Second-Generation Onion Router. In USENIX Security Symposium.
USENIX Association, 303–320.

[30] Morris J. Dworkin. 2014. SHA-3 Standard: Permutation-Based Hash
and Extendable-Output Functions. (2014).

[31] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and Thomas Shrimp-
ton. 2012. Peek-a-Boo, I Still See You: Why Efficient Traffic Analysis
Countermeasures Fail. In IEEE Symposium on Security and Privacy.

[32] Taher ElGamal. 1984. A public-key cryptosystem and a signature
scheme based on discrete logarithms. In CRYPTO. Springer, 10–18.

[33] Jun Furukawa and Kazue Sako. 2001. An efficient scheme for proving
a shuffle. In CRYPTO. Springer-Verlag, 368–387.

[34] Sharad Goel, Mark Robson, Milo Polte, and Emin Gün Sirer. 2003. Her-
bivore: A Scalable and Efficient Protocol for Anonymous Communication.
Technical Report 2003-1890. Cornell University, Ithaca, NY.

[35] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play
any mental game. In STOC. ACM, 218–229.

[36] Philippe Golle and Ari Juels. 2004. Parallel mixing. In CCS. ACM,
220–226.

[37] Philippe Golle, Sheng Zhong, Dan Boneh, Markus Jakobsson, and Ari
Juels. 2002. Optimistic mixing for exit-polls. In International Conference
on the Theory and Application of Cryptology and Information Security.
Springer, 451–465.

[38] Edward Snowden: the whistleblower behind the NSA
surveillance revelations. Accessed 2 November
2016, https://www.theguardian.com/world/2013/jun/09/
edward-snowden-nsa-whistleblower-surveillance.

[39] Jens Groth and Steve Lu. 2007. Verifiable shuffle of large size cipher-
texts. In PKC. 377–392.

[40] Johan Håstad. 2006. The square lattice shuffle. Random Structures &
Algorithms 29, 4 (2006), 466–474.

[41] Jamie Hayes, Carmela Troncoso, and George Danezis. 2016. TASP:
Towards anonymity sets that persist. In Workshop on Privacy in the
Electronic Society. ACM, 177–180.

[42] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. 2009.
Website Fingerprinting: Attacking Popular Privacy Enhancing Tech-
nologies with the Multinomial Naive-bayes Classifier. In ACM Work-
shop on Cloud Computing Security. ACM, New York, NY, USA, 31–42.
https://doi.org/10.1145/1655008.1655013

[43] Susan Hohenberger, Steven Myers, Rafael Pass, et al. 2014. ANON-
IZE: A large-scale anonymous survey system. In IEEE Symposium on
Security and Privacy. 375–389.

[44] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syver-
son. 2013. Users Get Routed: Traffic Correlation on Tor by Realistic
Adversaries. In CCS.

[45] Dogan Kedogan, Dakshi Agrawal, and Stefan Penz. 2002. Limits of
anonymity in open environments. In International Workshop on Infor-
mation Hiding. Springer, 53–69.

[46] Shahram Khazaei, Tal Moran, and Douglas Wikström. 2012. A mix-
net from any CCA2 secure cryptosystem. In ASIACRYPT. Springer,
607–625.

[47] Eyal Kushilevitz and Rafail Ostrovsky. 2000. One-way trapdoor permu-
tations are sufficient for non-trivial single-server private information
retrieval. In EUROCRYPT. Springer, 104–121.

[48] Albert Kwon, David Lazar, Srinivas Devadas, and Bryan Ford. 2015.
Riffle: An Efficient Communication System With Strong Anonymity.
PETS 2016, 2, 115–134.

[49] Leslie Lamport, Robert Shostak, and Marshall Pease. 1982. The Byzan-
tine Generals Problem. ACM Transactions on Programming Languages
and Systems 4/3 (July 1982), 382–401. https://www.microsoft.com/
en-us/research/publication/byzantine-generals-problem/

[50] David Lazar and Nickolai Zeldovich. 2016. Alpenhorn: Bootstrapping
Secure Communication without Leaking Metadata. In OSDI.

[51] Stevens Le Blond, David Choffnes, Wenxuan Zhou, Peter Druschel,
Hitesh Ballani, and Paul Francis. 2013. Towards Efficient Traffic-
analysis Resistant Anonymity Networks. In SIGCOMM. ACM, New
York, NY, USA, 303–314. https://doi.org/10.1145/2486001.2486002

[52] Ben Morris. 2008. The mixing time of the Thorp shuffle. SIAM J.
Comput. 38, 2 (2008), 484–504.

[53] Ben Morris. 2009. Improved mixing time bounds for the Thorp shuffle
and L-reversal chain. The Annals of Probability (2009), 453–477.

[54] Ben Morris. 2013. Improved mixing time bounds for the Thorp shuffle.
Combinatorics, Probability and Computing 22, 01 (2013), 118–132.

[55] Mahnush Movahedi, Jared Saia, and Mahdi Zamani. 2014. Secure
anonymous broadcast. arXiv preprint arXiv:1405.5326 (2014).

[56] Steven J. Murdoch and Piotr Zieliński. 2007. Sampled Traffic Analysis
by Internet-Exchange-Level Adversaries. In PET, Nikita Borisov and
Philippe Golle (Eds.). Springer.

[57] Ulf MÂĺoller, Lance Cottrell, and Peter Palfrader. 2003. Mixmaster
Protocol Version 2. (2003).

[58] Moni Naor and Moti Yung. 1990. Public-key cryptosystems provably
secure against chosen ciphertext attacks. In STOC. ACM, 427–437.

[59] C. Andrew Neff. 2001. A Verifiable Secret Shuffle and Its Application
to e-Voting. In CCS. ACM, New York, NY, USA, 116–125. https://doi.
org/10.1145/501983.502000

[60] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel.
2011. Website Fingerprinting in Onion Routing Based Anonymization
Networks. InWPES. 103–114. https://doi.org/10.1145/2046556.2046570

[61] Ania M. Piotrowska, Jamie Hayes, Tariq Elahi, Sebastian Meiser, and
George Danezis. 2017. The Loopix Anonymity System. In USENIX
Security Symposium. USENIX Association, Vancouver, BC, 1199–1216.

[62] Charles Rackoff and Daniel R Simon. 1991. Non-interactive zero-
knowledge proof of knowledge and chosen ciphertext attack. In
CRYPTO. Springer, 433–444.

[63] Charles Rackoff and Daniel R Simon. 1993. Cryptographic defense
against traffic analysis. In STOC. ACM, 672–681.

[64] Michael K. Reiter and Aviel D. Rubin. 1999. Anonymous Web Trans-
actions with Crowds. Commun. ACM 42, 2 (Feb. 1999), 32–48. https:
//doi.org/10.1145/293411.293778

[65] Dorothy Elizabeth Robling Denning. 1982. Cryptography and Data
Security. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA.

[66] A Proposal for an ISO Standard for Public Key Encryption. Cryptology
ePrint Archive, Report 2001/112. http://eprint.iacr.org/2001/112.

[67] Douglas R Stinson and Reto Strobl. 2001. Provably secure distributed
Schnorr signatures and a (t, n) threshold scheme for implicit certifi-
cates. In Australasian Conference on Information Security and Privacy.

https://www.theguardian.com/world/2013/jun/09/edward-snowden-nsa-whistleblower-surveillance
https://www.theguardian.com/world/2013/jun/09/edward-snowden-nsa-whistleblower-surveillance
https://doi.org/10.1145/1655008.1655013
https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
https://doi.org/10.1145/2486001.2486002
https://doi.org/10.1145/501983.502000
https://doi.org/10.1145/501983.502000
https://doi.org/10.1145/2046556.2046570
https://doi.org/10.1145/293411.293778
https://doi.org/10.1145/293411.293778
http://eprint.iacr.org/2001/112

Atom: Horizontally Scaling Strong Anonymity SOSP ’17, October 28, 2017, Shanghai, China

Springer, 417–434.
[68] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi,

M. J. Fischer, and B. Ford. 2017. Scalable Bias-Resistant Distributed
Randomness. In IEEE Symposium on Security and Privacy. 444–460.
https://doi.org/10.1109/SP.2017.45

[69] NSA slide shows surveillance of undersea ca-
bles. https://www.washingtonpost.com/business/
economy/the-nsa-slide-you-havent-seen/2013/07/10/
32801426-e8e6-11e2-aa9f-c03a72e2d342_story.html. Accessed
26 October 2016.

[70] Tor Metrics. https://metrics.torproject.org/bubbles.html. Accessed 19
April 2017.. The visualization in Figure 8 is a modified version of
the Tor Metric visualization. The original diagram carries a Creative
Commons Attribution 3.0 United States License.

[71] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and Nickolai
Zeldovich. 2017. Stadium: A Distributed Metadata-Private Messaging
System. In SOSP. ACM.

[72] Jelle Van Den Hooff, David Lazar, Matei Zaharia, and Nickolai Zel-
dovich. 2015. Vuvuzela: Scalable private messaging resistant to traffic
analysis. In SOSP. ACM, 137–152.

[73] AbrahamWaksman. 1968. A permutation network. J. ACM 15, 1 (1968),
159–163.

[74] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Gold-
berg. 2014. Effective Attacks and Provable Defenses for Website Fin-
gerprinting. In USENIX Security Symposium. USENIX Association, San
Diego, CA.

[75] Tao Wang and Ian Goldberg. 2013. Improved Website Fingerprinting
on Tor. In WPES. ACM.

[76] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron
Johnson. 2012. Dissent in Numbers: Making Strong Anonymity Scale.
In OSDI. USENIX Association, Hollywood, CA, 179–182.

[77] David Isaac Wolinsky, Ewa Syta, and Bryan Ford. 2013. Hang with
your buddies to resist intersection attacks. In CCS. ACM, 1153–1166.

[78] Mahdi Zamani, Jared Saia, Mahnush Movahedi, and Joud Khoury. 2013.
Towards Provably-Secure Scalable Anonymous Broadcast. In FOCI.

https://doi.org/10.1109/SP.2017.45
https://www.washingtonpost.com/business/economy/the-nsa-slide-you-havent-seen/2013/07/10/32801426-e8e6-11e2-aa9f-c03a72e2d342_story.html
https://www.washingtonpost.com/business/economy/the-nsa-slide-you-havent-seen/2013/07/10/32801426-e8e6-11e2-aa9f-c03a72e2d342_story.html
https://www.washingtonpost.com/business/economy/the-nsa-slide-you-havent-seen/2013/07/10/32801426-e8e6-11e2-aa9f-c03a72e2d342_story.html
https://metrics.torproject.org/bubbles.html

	Abstract
	1 Introduction
	2 System overview
	2.1 Threat model and assumptions
	2.2 System goals
	2.3 Cryptographic primitives

	3 Random permutation networks
	4 Atom protocol
	4.1 Anytrust group formation
	4.2 Basic Atom protocol
	4.3 Atom with NIZKs
	4.4 Atom with trap messages
	4.5 Tolerating server churn
	4.6 Malicious users in Atom
	4.7 Organizing servers

	5 Implementation and applications
	6 Evaluation
	6.1 Anytrust group performance
	6.2 Large-scale evaluation of Atom

	7 Discussion and future work
	8 Related work
	9 Conclusion
	A Cryptographic details
	B Many-trust group size
	References

