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Abstract

Background: Our goal is to develop a state-of-the-art protein secondary structure predictor, with an intuitive

and biophysically-motivated energy model. We treat structure prediction as an optimization problem, using

parameterizable cost functions representing biological “pseudo-energies.” Machine learning methods are applied

to estimate the values of the parameters to correctly predict known protein structures.

Results: Focusing on the prediction of alpha helices in proteins, we show that a model with 302 parameters can

achieve a Qα value of 77.6% and an SOVα value of 73.4%. Such performance numbers are among the best for

techniques that do not rely on external databases (such as multiple sequence alignments). Further, it is easier to

extract biological significance from a model with so few parameters.

Conclusions: The method presented shows promise for the prediction of protein secondary structure.

Biophysically-motivated elementary free-energies can be learned using SVM techniques to construct an energy

cost function whose predictive performance rivals state-of-the-art. This method is general and can be extended

beyond the all-alpha case described here.
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Background

It remains an important and relevant problem to accurately predict the secondary structure of proteins

based on their amino acid sequence. The identification of basic secondary structure elements—alpha

helices, beta strands, and coils—is a critical prerequisite for many tertiary structure predictors, which

consider the complete three-dimensional protein structure. To date, there has been a broad array of

approaches to secondary structure prediction, including statistical techniques, neural networks, hidden

Markov models, support vector machines, nearest neighbor methods and energy minimization. In terms of

prediction accuracy, neural networks are among the most popular methods in use today [1, 2], delivering a

pointwise prediction accuracy (Q3) of about 77% and a segment overlap measure (SOV) [3] of about

74% [4].

However, to improve the long-term performance of secondary structure prediction, it likely will be

necessary to develop a cost model that mirrors the underlying biological constraints. While neural

networks offer good performance today, their operation is largely opaque. Often containing up to 10,000

parameters and relying on complex layers of non-linear perceptrons, neural networks offer little insight into

the patterns learned. Moreover, they mask the shortcomings of the underlying models, rendering it a

tedious and ad-hoc process to improve them. In fact, in the past 15 years, the largest improvements in

neural network prediction accuracy have been due to the integration of homologous sequence alignments [4]

rather than specific changes to the underlying cost model.

In our approach we focus on simpler, more natural cost models that are based on the underlying

biophysics. Due to the lack of experimentally determined free energy values, we begin with parameterizable

cost functions, and treat parameter value estimation as an optimization problem. Our goal is then to

determine the values of these “pseudo-energies” such that they correctly predict known protein structures.

An iterative constraint-based optimization method is used to do this machine learning, incorporating the

power of Support Vector Machines (SVMs).

Using a cost function based on Hidden Markov Models (HMMs), we develop a secondary structure

predictor for all-alpha proteins. With only 302 parameters, representing the energetic benefit for each

residue being in a helix or being a certain distance from the N- or C-cap, our predictor achieves a Qα value

of 77.6% and a SOVα score of 73.4% when applied to a database of all-alpha proteins. Our technique does

not depend on any homologous sequence alignments. When compared to other methods that do not utilize

alignment information, it appears that our Qα represents a 3.5% improvement of the previous best [5],

while our SOVα is comparable (0.2% better). However, due to differences in the data set, we emphasize the
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novelty of the approach rather than the exact magnitude of the improvements. We are extending our

technique to beta strands (and associated data sets) as ongoing work.

Related Work

King and Sternberg share our goal of identifying a small and intuitive set of parameters in the design of the

DSC predictor [6]. DSC is largely based on the classic GOR technique [7], which tabulates (during training)

the frequency with which each residue appears at a given offset (-8 to +8) from a given structure element

(helix, strand, coil). During prediction, each residue is assigned the structure that is most likely given the

recorded frequencies for the surrounding residues. King and Sternberg augment the GOR algorithm with

several parameters, including the distance to the end of the chain and local patterns of hydrophobicity.

They use linear discrimination to derive a statistically favorable weighting of the parameters, resulting in a

simple linear cost function; they also perform homologous sequence alignment and minor smoothing and

filtering. Using about 1,000 parameters, they estimate an accuracy of Qα = 73.5% for DSC. The primary

difference between our predictor and DSC is that we achieve comparable accuracy (our Qα = 77.6%)

without providing alignment information. Incorporating an alignment profile is often responsible for 5-7%

improvement in accuracy [8, 9, 10]. In addition, we learn the position-specific residue affinities rather than

using the GOR frequency count. We also consider multiple predictions simultaneously and maintain a

global context rather than predicting each residue independently.

Many researchers have developed Hidden Markov Models (HMMs) for secondary structure prediction.

Once it has been trained, our predictor could be converted to an HMM without losing any predictive

power, as our dynamic programming procedure parallels the Viterbi algorithm for reconstructing the most

likely hidden states. However, for the training phase, our system represents a soft-margin Hidden Markov

SVM [11] rather than a traditional HMM. Unlike an HMM, a Hidden Markov SVM has a discriminative

learning procedure based on a maximum margin criterion and can incorporate “overlapping features”,

driving the learning based on the overall predicted structure rather than via local propagation.

Tsochantaridis, Altun and Hofmann apply an integrated HMM and SVM framework for secondary

structure prediction [12]. The technique may be similar to ours, as we are using their SVM

implementation; unfortunately, there are few details published. Nguyen and Rajapakse also present a

hybrid scheme in which the output of a Bayesian predictor is further refined by an SVM classifier [13]. The

Qα score is 74.1% for the Bayesian predictor alone and 77.0% for the Bayesian/SVM hybrid; the SOVα

score is 73.2% for the Bayesian predictor and a comparable 73.0% for the Bayesian/SVM hybrid. To the
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best of our knowledge, these are the highest Qα and SOVα scores to date (as tested on Rost and Sander’s

data set [9]) for a method that does not utilize alignment information.

Bystroff, Thorsson, and Baker design an HMM to recognize specific structural motifs and assemble them

into protein secondary structure predictions [14]. Using alignment profiles, they report an overall Q3 value

of 74.3%. Our approach may use fewer parameters, as they manually encode each target motif into a

separate set of states. Martin, Gibrat, and Rodolphe develop a 21-state HMM model with 471 parameters

that achieves an overall Q3 value of 65.3% (without alignment profiles) and 72% (with alignment

profiles) [15]. Alpha helices are identified based on an amphiphilic motif: a succession of two polar residues

and two non-polar residues. Won, Hamelryck, Prügel-Bennet and Krogh give a genetic algorithm that

automatically evolves an HMM for secondary structure prediction [16, 17]. Using alignment profiles, they

report an overall Q3 value of 75% (only 69.4% for helices). They claim that the resulting 41-state HMM is

better than any previous hand-designed HMM. While they restrict their HMM building blocks to

“biologically meaningful primitives”, it is unclear if there is a natural energetic interpretation of the final

HMM.

Schmidler, Liu, and Brutlag develop a segmental semi-Markov Model (a generalization of the HMM),

allowing each hidden state to produce a variable-length sequence of the observations [18,19]. They report a

Q3 value of 68.8% without using alignment profiles. Chu and Ghahramani push further in the same

direction, merging with the structure of a neural network and demonstrating modest (∼1%) improvements

over Schmidler et al. [20].

While our technique is currently limited to an alpha helix predictor, for this task it performs better

(Qα = 77.6%) than any of the HMM-based methods described above; furthermore, it does so without any

alignment information. Our technique is fundamentally different in its use of Hidden Markov SVMs for the

learning stage. Lastly, some groups have applied HMM-based predictors to the specific case of

transmembrane proteins, where much higher accuracy can be obtained at the expense of generality [21].

There has been a rich and highly successful body of work applying neural networks to secondary structure

prediction. The efforts date back to Quian and Sejnowski, who design a simple feed-forward network for

the problem [22]. Rost and Sander pioneered the automatic use of multiple sequence alignments to improve

the accuracy as part of their PHD predictor [9], which was the top performer at CASP2. More recently,

Jones employed the PSI-BLAST tool to efficiently perform the alignments, boosting his PSIPred

predictor [4] to the top of CASP3. Baldi and colleagues employ bidirectional recurrent networks in

SSPro [23], a system that provided the foundation for Pollastri and McLysaght’s Porter server [24].
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Petersen describes a ballotting system containing as many as 800 neural networks; while an ensemble of

predictors is commonly used to gather more information, this effort is distinguished by its size [25]. A

neural network has been followed by an HMM, resulting in a simple and fast system [26]; neural networks

have also been used as a post-processing step for GOR predictors [27].

The PSIPred predictor [4] is among the highest scoring neural network techniques. While it achieves an

overall Q3 of about 77% and an SOV of 74%, its performance for alpha helices is even higher: for recent

targets on EVA, an open and automatic testing platform [28], PSIPred offers an SOVα of 78.6% (EVA does

not publish a Qα value comparable to ours).

Though state-of-the-art neural network predictors such as PSIPred currently out-perform our method by

about 5%, they incorporate multiple sequence alignments and are often impervious to analysis and

understanding. In particular, the number of parameters in a neural network can be an order of magnitude

higher than that of an HMM-based approach (see Table 1). A notable exception is the network of Riis and

Krogh, which is structured by hand to reduce the parameter count to as low as 311 (prediction accuracy is

reported at Q3 = 71.3% with alignment profiles, a good number for its time).

Recently, Support Vector Machines (SVMs) have also been used as a standalone tool for secondary

structure prediction [29, 30, 31, 32, 33, 34]. In contrast to our technique, which uses an SVM only for

learning the parameters of an HMM, these methods apply an SVM directly to a window of residues and

classify the central residue into a given secondary structure class. The number of parameters in these

techniques depends on the number of support vectors; in one instance, the support vectors occupy 680MB

of memory [30]. Regardless of the number of parameters, it can be difficult to obtain a biological intuition

for an SVM, given the non-linear kernel functions and numerous support vectors. Nonetheless, these

techniques appear to have significant promise, as Nguyen and Rajapakse report an overall Q3 of 79.5% and

an SOV of 76.3% on the PSIPred database [29].

Results and Discussion

We have applied our method to the problem of all-alpha protein secondary structure prediction. We

worked with a set of 300 non-homologous all-alpha proteins taken from EVA’s largest sequence-unique

subset [35] of the PDB at the end of July 2005. The sequences and structures have been extracted from

PDB data processed by DSSP [36]. Only alpha helices have been considered (H residues in DSSP files);

everything else has been lumped as coil regions.

In our experiments, we split our 300 proteins into two 150 protein subsets. The first set is used to train our
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parameterizable cost function; the second set is used to evaluate the cost function once its parameters have

been learned. Since the results vary a bit depending on how the proteins are split in two sets, we train the

cost function on 20 random partitions into training and test sets, and report the average performance.

Our predictor minimizes the free-energy function G using the Viterbi algorithm on a simple 7-state Finite

State Machine (shown in Figure 1). The Finite State Machine recognizes alpha helices of length greater

than 3 amino acids using 302 elementary free-energies as learned weights. These weigh each amino acid’s

propensity to be within a helix (20 energies), or within three residues of an N- or C-cap of a helix (20x7x2

energies). Two weights also penalize 1 and 2 length coils. The motivation for and implementation of the

Finite State Machine is described in more detail later.

Table 2 presents our total results using both the Qα and SOVα metrics. Figures 2 and 3 show histograms

detailing the distribution of each score. The Qα metric is simply the number of correctly predicted residues

divided by sequence length. SOVα is a more elaborate metric that has been designed to ignore small errors

in helix-coil transition position, but heavily penalize more fundamental errors such as gaps appearing in a

helix [3].

On average, our method predicts helices in all-alpha proteins with an accuracy of 77.6% (Qα) or 73.4%

(SOVα). Unfortunately, these results are difficult to compare with existing prediction methods which

usually do predictions on both alpha helices and beta strands. Rost and Sanders caution that restricting

the test set to all-alpha proteins can result in up to a 3% gain in accuracy [9]. Nonetheless, if one does

compare our technique with the previous best amongst methods that do not utilize alignment

information [5], our results represent a 3.5% improvement in Qα and a 0.2% improvement in SOVα.

Additional care should be taken in comparing these numbers to recent techniques such as PSIPred [4],

which consider 310 helices (the DSSP state ‘G’) to be part of a helix rather than a loop; they report gains

of about 2% in overall Q3 if helices are restricted to 4-helices (as in most HMM techniques, including ours).

Apart from prediction accuracy, our technique is distinguished from others by its emphasis on an intuitive

and biophysically-motivated cost function. While some of techniques require upwards of 10,000 parameters

(see Table 1), our predictor achieves competitive accuracy using only 302 parameters.

The real power of the machine learning method we use is its applicability beyond HMM models. As will

become evident in the description of the method, we could describe protein structures as a parse tree of a

context-free grammar (or multi-tape grammar) rather than as a sequence of HMM states. With these

enriched descriptions, we should be able to include in the cost function interactions between adjacent

strands of a beta sheet. This should allow us to incorporate beta sheet prediction into our algorithm.
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Unlike most secondary structure methods, we would then be able to predict not only which residues

participate in a beta sheet, but also which residues are forming hydrogen bonds between adjacent sheets.

Conclusions

This work is a promising first pass at using SVM techniques to find the elementary free-energies needed to

predict protein secondary structure. The method we use is general and can be extended beyond the

all-alpha case described here. In future work, we plan to extend this method to super-secondary structure

prediction, generating contact maps of individual hydrogen bonds in beta sheets.

Methods

It is widely believed that when a protein is folded, its free-energy approaches a thermodynamic minimum.

We therefore treat structure prediction as an optimization problem.

Formal Optimization Problem

In our technique, we define a free-energy function G(x,y) that estimates the free-energy of an amino acid

sequence x when folded into a candidate secondary structure y. Our predictor outputs the secondary

structure ŷ that has the minimal free-energy according to G:

ŷ = argmin
y∈Y

G(x,y). (1)

To go from this general statement to a working algorithm, we need to a find free-energy function G and a

set of structures Y for which the minimization shown in equation (1) is easy to compute. In choosing G

and Y , we tradeoff the ability to efficiently minimize G with the ability to accurately capture the richness

and detailed physics of protein structure. Atomistic models are able to capture the whole range of

structures, and incorporate all the physical interactions between atoms. However, because of this detail

they can only be optimized using heuristic methods. We therefore prefer to consider a simplified set of

structures Y , and a cost function G with lumped parameters that try to approach physical reality.

These lumped parameters are difficult to determine experimentally. We will therefore define a class G of

candidate free-energy functions that are easy to optimize over some set of structures Y . Then we will use

machine learning techniques to pick a good G from all the candidates in G. The machine learning will use

structure information from the Protein Data Bank (PDB) [37] to determine which G to pick. Given a set
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of training examples {(xi,yi) : i = 1, . . . , k}, the learning algorithm needs to find a G ∈ G such that:

∀i : yi = argmin
y∈Y

G(xi,y). (2)

In practice, this G may not exist or may not be unique, so the machine learning algorithm may have to

pick a good approximation, or select a G that is more likely to generalize well to proteins not in the

training set. We will now look more closely at how a good G is selected, and later, in Section , we will be

more specific about what G and Y are.

Iterative Constraint Based Approach

First, we notice that equation (2) can be rewritten as the problem of finding a function G that satisfies the

large set of inequality constraints

∀i, ∀y ∈ Y \ {yi} : G(xi,yi) < G(xi,y). (3)

Unfortunately, the set of all secondary structures Y is exponentially large, so finding a G ∈ G that satisfies

all these inequalities directly is computationally intractable. Our approach reduces the problem by ignoring

as many constraints as possible, only considering the constraints it is “forced” to consider.

In our method, the reduced problem is defined as the problem of finding a function G′ that satisfies the set

of constraints

∀i, ∀y ∈ Si : G′(xi,yi) < G′(xi,y), (4)

for some Si ⊆ Y \ {yi}.

Initially, we begin with no constraints at all (that is, Si = ∅ for all i) and we choose some function G′ ∈ G.

Note that, since we start with no constraints, any function G′ ∈ G initially satisfies equation (4). We then

need to check whether G′ approximates the solution G to the set of constraints (2). In particular, we verify

whether G′ can be used to approximate y1 as the solution ŷ1 of the problem

ŷ1 = argmin
y∈Y

G′(x1,y).

If G′(x1,y1) < G′(x1, ŷ1) + ε, we say that ŷ1 is “close” to y1 in the sense that ŷ1 is a close enough

approximation of y1. If ŷ1 is close to y1, we go on to the next optimization problem,

ŷ2 = argmin
y∈Y

G′(x2,y).

If ŷ1 is not close to y1, this means the constraint G′(x1,y1) < G′(x1, ŷ1) in equation (3) has been violated.

Therefore we must add this constraint to our reduced problem, replacing S1 by S1 ∪ {ŷ1}. In order to solve
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the new reduced problem we need to find a new G′ that satisfies the old and new constraints. At all times

the number of constraints in the reduced problem is relatively small such that it is computationally feasible

to find its solution.

Whenever a prediction ŷi is not satisfactorily close to yi, we add more constraints. For instance, Figure 4

shows our problem reduction for the training example (x1,y1). Note that the reduced problems lead to the

constraints G′(x1,y1) < G′(x1,y
1), G′(x1,y1) < G′(x1,y

7), G′(x1,y1) < G′(x1,y
245), etc., where

Y = {y1,y2, . . . ,ym} (in other words, S1 = {y1,y7,y245}).

The algorithm terminates if no constraints need to be added. That is, each prediction is a good

approximation,

∀i : G′(xi,yi) < G′(xi, ŷi) + ε where ŷi = argmin
y∈Y

G′(xi,y). (5)

This is equivalent to

∀i, ∀y ∈ Y \ {yi} : G′(xi,yi) < G′(xi,y) + ε. (6)

This is similar to the full set of constraints on G in equation (3), except that G′ need only satisfy each

inequality within a distance of ε.

Linear Cost Function

One important assumption we make is that the family of free energy functions G is linear. That is, the

total free energy of the protein is a sum of elementary interactions. This simplification agrees with many

mathematical models of the energy force fields that control protein folding. For example, electrostatic, Van

der Waals, stretch, bend, and torsion forces can all be described by the sum of energy terms for each pair

of molecular elements. Given this, we can formally define the family of functions G to be

G = {Gw : (x,y) −→ 〈w,Ψ(x,y)〉 : for some w}. (7)

Here the feature function Ψ is fixed and known, representing the specific energy characteristics that we are

interested in. For example, one element of the vector Ψ(x,y) might be the number of proline residues from

sequence x that appear within an alpha helix in candidate structure y. Additional details on our design of

Ψ appears later. By definition of a linear function, the dot product of the vector w (notated by 〈, 〉) can

then be taken to appropriately weight the importance of individual terms within Ψ. With this assumption,

the reduced problem’s constraints given by equation (4) can be rewritten as

∀i, ∀y ∈ Si : Gw(xi,yi) < Gw(xi,y). (8)
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In order to solve the reduced problem, we need to find the unknown weight vector w such that these

constraints are satisfied. Again, since Gw is a linear function, this set of constraints can translate into

∀i, ∀y ∈ Si : 〈w,∆Ψi(y)〉 > 0, (9)

where ∆Ψi(y) = Ψ(xi,y)−Ψ(xi ,yi). This reformulation of the constraints allows this problem to be solved

in a much more elegant and computationally efficient manner. We use the powerful technique of Support

Vector Machines to quickly determine the function Gw, although many other techniques are possible.

Iteratively Constraining Support Vector Machines

Support Vector Machines (SVMs) are a fast and effective tool for generating functions from a set of labeled

input training data. SVMs are able to determine a set of weights w for the function Gw that will allow Gw

to accurately map all of the training example inputs xi to outputs yi. This problem can be formulated as a

quadratic program, in which the variables are the weights w and a set of “slack variables” ξi:

ŵ = argmin
w

1

2
‖w‖2 +

C

n

n
∑

i=1

ξi (10a)

under the constraints

∀i, ∀y ∈ Si : 〈w,∆Ψi(y)〉 ≥ 1− ξi with ∀i : ξi ≥ 0. (10b)

The only differences between these constraints and those in equation (9) is that (i) the strict inequality

(> 0) is replaced by a non-strict inequality (≥ 1), and (ii) slack variables ξi are introduced to allow a

best-fit solution in the event of unsatisfiable constraints. The objective function minimizes the length of

the weight vector (to normalize the constraints across various dimensions of w) and the size of the slack

variables. The constant parameter C indicates how much a solution is penalized for violating a constraint.

In practice, SVMs solve the dual of the minimization problem.

We can therefore use SVMs to determine our function Gw; however, this only solves half of our problem.

Given a candidate Gw we must then determine if equation (3) has been violated and add more constraints

to it if necessary. To accomplish this task, we build off of work done by Tsochantaridis et al. [38] which

tightly couples this constraint verification problem with the SVM w minimization problem.

First a loss function ∆(yi,y) is defined that weighs the goodness of the structures ŷi. Smaller values of

∆(yi,y) indicate that structures yi and y are more similar. Adding this to the SVM constraints in

equation (10b) gives

∀i, ∀y ∈ Si : ξi ≥ ∆(yi,y)− 〈w,∆Ψi(y)〉. (11)
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Using this we can decide when to add constraints to our reduced problem and which constraints to add.

Since at every iteration of the algorithm we determine some w for the current Si, we can then find the

value ξ̂i assigned to variable ξi as a result of the optimization. ξ̂i corresponds to the “worst” prediction by

w across the structures y ∈ Si:

ξ̂i = max(0,max
y∈Si

∆(yi,y)− 〈w,∆Ψi(y)〉). (12)

This resulting ξ̂i, which was determined using Si, can be compared to a similar ξ̂′
i
that is obtained by

instead maximizing over Y \ {yi} in equation (12). This will tell us how much the constraints we are

ignoring from Y \ {yi} will change the solution. The constraint that is most likely to change the solution is

that which would have caused the greatest change to the slack variables. Therefore we would add the

constraint to Si that corresponds to

ŷ′ = argmax
y∈Y\{yi}

∆(yi,y) − 〈w,∆Ψi(y)〉. (13)

Tsochantaridis et al. [38] show that by only adding constraints when ŷ′ could change ξ̂i by more than ε,

one can attain a provable termination condition for the problem. The summary of this overall process

appears in Algorithm 1.

Defining the Set of Valid Structures

One final issue remains to be solved to complete our algorithm. We need to specify what Y and Ψ(x,y)

are, and how to optimize G(x,y) over Y . In general, Y can be exponentially large with respect to the

sequence length, making brute-force optimization impractical. Our general approach is to structure Y and

Ψ(x,y) in a way that allows optimization of G(x,y) through dynamic programming.

Most secondary-structure prediction tools use local features to predict which regions of a protein will be

helical [2]. Individual residues can have propensities for being in a helix, they can act as helix nucleation

sites, or they can interact with other nearby residues. This type of information can be well captured by

Hidden Markov Models (HMMs). Equivalently, we choose to capture them using Finite State Machines

(FSMs). The only difference between the FSMs we use and a non-stationary HMM is that the HMM deals

with probabilities, which are multiplicative, while our FSMs deal with pseudo-energies, which are additive.

To a logarithm, they are the same.

We define Y to be the language that is recognized by some FSM. Thus a structure y ∈ Y will be a string

over the input alphabet of the FSM. For example, that alphabet could be {h, c}, where h indicates that the
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residue at that position in the string is in a helix, and c indicates that it is in a coil region. A string y is

read by an FSM one character at a time, inducing a specific set of transitions between internal states. Note

that the FSMs we are considering do not need to be deterministic. However, they do need to satisfy the

property that, for a given input string, there is at most one set of transitions leading from the initial state

to a final state. We denote this sequence of transitions by σ(y) and note that σ(y) need not be defined for

all y.

To define Ψ(x,y), we create a helper function ψ(x, t, i) which assigns a vector of feature values whenever

transition t is taken at position i in the sequence x. For example, if a transition is taken to start a helix at

position i, then ψ(x, t, i) might return features indicating that residues at position i− 3 to i+ 3 are

associated with an N-terminal helix cap. The overall feature vector is the sum of these features across all

positions in the sequence: Ψ(x,y) =
∑

i
ψ(x, σ(y)i , i).

The total cost G(x,y) follows the form of equation (7). We also specify an infinite cost for structures that

are the wrong length or are rejected by the FSM:

G(x,y) =

{

+∞ if |x| 6= |y| or σ(y) is undefined
〈w,Ψ(x,y)〉 otherwise

(14)

This cost is easy to optimize over Y by using the Viterbi algorithm. This algorithm proceeds in |x| rounds.

In round i, the best path of length s starting from an initial state is calculated for each FSM state. These

paths are computed by extending the best paths from the previous round by one transition, and picking

the best resulting path for each state. The algorithmic complexity is O(|FSM| · |x|), where |FSM| is the

number of states and transitions in the FSM.

Implementation of the Predictor

In our experiments, we have used an extremely simple finite state machine that is presented in Figure 1.

Each state corresponds to being in a helix or coil region, and indicates how far into the region we are.

States H4 and C3 correspond to helices and coils more than 4 and 3 residues long, respectively. Short coils

are permitted, but helices shorter than 4 residues are not allowed, as even 310 helices need at least 4

residues to complete one turn and form the first hydrogen bond.

Table 3 lists the basic features that were used in our experiments. These features can also be considered to

be the parameters of our system, as our learning algorithm assigns an appropriate weight to each one. Our

choice of features is motivated by observations that amino acids have varying propensities for appearing

within an alpha helix as well as for appearing at the ends of a helix, an area termed the helix cap [39]. We
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introduce a single feature per residue to account for helix propensity, for a total of 20 parameters. For helix

capping, we use a separate feature for each residue that appears at a given offset (−3 to +3) from a given

end of the helix (N-terminal or C-terminal). This accounts for 20 ∗ 7 ∗ 2 = 280 parameters. Finally, we also

introduce a feature for very short (2-residue) and short (3-residue) coils. Thus, there are a total of 302

parameters.

Table 4 illustrates how features are associated with the transitions of the FSM. This table corresponds to

the ψ function described earlier; given an FSM transition and a position in the input sequence, it outputs a

set of representative features. Most of this mapping is straightforward. In the case of helix caps (labels #1

and #2), features are emitted across a 7-residue window that is centered at position n− 1 (the previously

processed residue).

None of the features we have used involve more than one residue in the sequence. We have experimented

with more complicated cost functions that model pairwise interactions between nearby residues in a helix,

namely between n and n+ 3 or n and n+ 4. So far we have not managed to improve our prediction

accuracy using these interactions, possibly because each pairwise interaction adds 400 features to the cost

function, leaving much room for over-learning. Indeed, with the expanded cost functions we observed

improved predictions on the training proteins, but decreased performance on the test proteins.

We have also experimented with various loss functions ∆. We have tried a 0-1 loss function (0 unless both

structures are identical), hamming distance (number of incorrectly predicted residues), and a modified

hamming distance (residues are given more weight when they are farther from the helix-coil transitions).

Each one gives results slightly better than the previous one.
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3. Zemla A, Česlovas Venclovas, Fidelis K, Rost B: A Modified Definition of Sov, a Segment-Based

Measure for Protein Secondary Structure Prediction Assessment. Proteins 1999, 34(2):220–223.

4. Jones DT: Protein Secondary Structure Prediction Based on Position-specific Scoring Matrices.
Journal of Molecular Biology 1999, 292:195–202.

5. Nguyen MN, Rajapakse JC: Prediction of protein secondary structure using bayesian method and

support vector machines. In ICONIP 2002.

6. King RD, Sternberg MJ: Identification and application of the concepts important for accurate and

reliable protein secondary structure prediction. Protein science 1996, 5:2298–2310.

7. Garnier J, Osguthorpe D, Robson B: Analysis of the accuracy and implications of simple methods for

predicting the secondary structure of globular proteins. Journal of Molecular Biology 1978, 120:97–120.

8. Levin J, Pascarella S, Argos P, Garnier J: Quantification of secondary structure prediction

improvement using multiple alignments. Protein Engineering 1993, 6:849–854.

9. Rost B, Sander C: Prediction of protein secondary structure at better than 70% accuracy. Journal of
Molecular Biology 1993, 232:584–599.

10. Riis S, Krogh A: Improving prediction of protein secondary structure using structured neural

networks and multiple sequence alignments. Journal of Computational Biology 1996, 3:163–183.

11. Altun Y, Tsochantaridis I, Hofmann T: Hidden Markov Support Vector Machines. In ICML ’03:
Proceedings of the 20th International Conference on Machine Learning 2003.

12. Tsochantaridis I, Altun Y, Hoffman T: A crossover between SVMs and HMMs for protein structure

prediction. In NIPS Workshop on Machine Learning Techniques for Bioinformatics 2002.

13. Nguyen MN, Rajapakse JC: Prediction of protein secondary structure using bayesian method and

support vector machines. In 9th International Conference on Neural Information Processing 2002.

14. Bystroff C, Thorsson V, Baker D: HMMSTR: a Hidden Markov Model for Local Sequence-Structure

Correlations in Proteins. Journal of Molecular Biology 2000, 301.

15. Martin J, Gibrat JF, Rodolphe F: Hidden Markov Model for protein secondary structure. In
International Symposium on Applied Stochastic Models and Data Analysis 2005.
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Figures
Figure 1 - Predictor finite state machine

The finite state machine we used. Double circles represent accept states. The arrow leading into state C3

indicates that it is an initial state. Each transition is labeled with the type of structure it corresponds to:

helix (H) or coil (C), and a label (#i) indicating which features correspond to this transition in Table 4.

H, #3
C, #1

C, #0C, #0

H, #2 H, #3 H, #3

H, #3

C, #0 H, #4

H, #5 

H1 H2 H3 H4

C1C2C3

Figure 1: Predictor finite state machine

Figure 2 - Qα accuracy histogram

Histogram showing the distribution of Qα across proteins in the test set. We have shown the average case,

and the best of the 20 runs which has the highest Qα.
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Figure 2: Qα accuracy histogram
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Figure 3 - SOVα accuracy histogram

Histogram showing the distribution of SOVα across proteins in the test set. We have shown the average

case, and the best of the 20 runs which has the highest SOVα.
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Figure 3: SOVα accuracy histogram

Figure 4 - Summary of learning algorithm

Summary of the learning method. In this figure each large frame represents a problem that needs to be

solved. On the left, we start with an intractably large problem. At each iteration, we pick a subset of the

large problem to work on, solve it approximately using an SVM formulation, and use the resulting solution

to expand the subset of constraints we are working with.

Add slack variables

Reduced problemsFull−problem SVM problems

Linearization
Margin maximization

Constraint selection

Solve

Find G′ ∈ G such that:
G′(x1,y1) < G′(x1,y

0)
G′(x1,y1) < G′(x1,y

1)
G′(x1,y1) < G′(x1,y

2)
· · ·
G′(x1,y1) < G′(x1,y

m)

Find G′ ∈ G such that:

G′(x1,y1) < G′(x1,y
1)

G′(x1,y1) < G′(x1,y
7)

G′(x1,y1) < G′(x1,y
245)

Find ŵ that minimizes
ŵ = 1

2
‖w‖2 + C

n

∑
n

i=1
ξi

under the constraints
〈w, ∆Ψi(y)〉 ≥ ∆(y1,y

1) − ξ1

〈w, ∆Ψi(y)〉 ≥ ∆(y1,y
7) − ξ1

〈w, ∆Ψi(y)〉 ≥ ∆(y1,y
245) − ξ1

wG′

Fig. 1. Overview of the learning algorithm.
Figure 4: Summary of the learning algorithm.
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Algorithms
Algorithm 1 - Algorithm for iterative constraint based optimization

Algorithm for iterative constraint based optimization.

Algorithm 1 Algorithm for iterative constraint based optimization.

1 Input: (x1,y1), . . . , (xn,yn), C, ε

2 Si ← ∅ for all 1 ≤ i ≤ n

3 w← any arbitrary value

4 repeat (

5 for i = 1, . . . , n do (

6 Set up the cost function:

7 H(y) = ∆(yi,y)− 〈w,∆Ψi(y)〉

8 Compute ŷ = argmax
y∈Y\{yi}

H(y)

9 Compute ξ̂i = max{0, maxy∈Si
H(y)}

10 if H(ŷ) > ξ̂i + ε then (

11 Si ← si ∪ {ŷ}

12 w← optimize over S = ∪iSi

13 ))) until no Si changes during iteration

Tables
Table 1 - Number of Predictor Parameters

Number of parameters used for various protein structure predictors.

Number of Predictor Parameters

Category Predictor Number of Parameters

Neural Net PHD [9] ≥ 10,000
Neural Net SSPro [23] 1400-2900
Neural Net Riis & Krogh [10] 311-600

GOR + Linear Discrimination DSC [6] 1000
HMM Martin et al. [15] 471

HM-SVM this paper (alpha only) 302

Table 1: Number of predictor parameters.
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Table 2 - SOVα and Qα Results

Performance of our algorithm on all-alpha protein structure prediction.

SOVα and Qα Results

Description SOVα (%) SOVα (%) Qα (%) Qα (%) Training
(train) (test) (train) (test) time (s)

Best run for SOVα 76.4 75.1 79.6 78.6 123
Average of 20 runs 75.1 73.4 79.1 77.6 162

Standard deviation of 20 runs 1.0 1.4 0.6 0.9 30

Table 2: SOVα and Qα results.

Table 3 - Features considered by predictor

Summary of basic features that are considered. Each of these features corresponds to a parameter that is

learned by our algorithm.

Features considered by predictor

Name Number of features Description

A 1 Penalty for very short coil
B 1 Penalty for short coil
HR 20 Energy of residue R in a helix
Ci

R
140 Energy of residue R at position i relative to C-cap

N i

R
140 Energy of residue R at position i relative to N-cap

Total 302

Table 3: Features considered by predictor.

Table 4 - Sets of features emitted by FSM transition

Sets of features that are emitted by transitions in the FSM. Ri denotes the residue at position i in the

protein, and n is the current position of the FSM.

Sets of features emitted by FSM transition

Label Features Description

#0 0 Coil defined as zero-energy

#1
∑+3

i=−3
Ci−1

Rn+i−1
End of helix processing (C-cap)

#2 HRn
+

∑+3

i=−3
N i−1

Rn+i−1
Start of helix processing (N-cap)

#3 HRn
Normal helix residue

#4 HRn
+A Helix after very short coil

#5 HRn
+B Helix after short coil

Table 4: Sets of features emitted by FSM transition.
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