
Virtual Monotonic Counters and Count-Limited Objects
using a TPM without a Trusted OS∗

Luis F. G. Sarmenta, Marten van Dijk,
Charles W. O’Donnell, Jonathan Rhodes, and Srinivas Devadas

Computer Science and Artificial Intelligence Laboratory (CSAIL)
Massachusetts Institute of Technology

Cambridge, MA 02139

{lfgs,marten,cwo,jrhodes,devadas}@mit.edu

ABSTRACT
A trusted monotonic counter is a valuable primitive that enables
a wide variety of highly scalable offline and decentralized appli-
cations that would otherwise be prone to replay attacks, includ-
ing offline payment, e-wallets, virtual trusted storage, and digital
rights management (DRM). In this paper, we show how one can
implement a very large number of virtual monotonic counters on
an untrusted machine with a Trusted Platform Module (TPM) or
similar device, without relying on a trusted OS. We first present a
log-based scheme that can be implemented with the current version
of the TPM (1.2) and used in certain applications. We then show
how the addition of a few simple features to the TPM makes it pos-
sible to implement a hash-tree-based scheme that not only offers
improved performance and scalability compared to the log-based
scheme, but also makes it possible to implement count-limited ob-
jects (or “clobs” for short) – i.e., encrypted keys, data, and other
objects that can only be used when an associated virtual monotonic
counter is within a certain range. Such count-limited objects in-
clude n-time use keys, n-out-of-m data blobs, n-copy migratable
objects, and other variants, which have many potential uses in dig-
ital rights management (DRM), digital cash, itinerant computing,
and other application areas.

Categories and Subject Descriptors:
D.4.6 [Operating Systems]: Security and Protection
C.3 [Special-Purpose and Application-based Systems]:
Microprocessor/microcomputer applications and Smartcards
E.3 [Data Encryption]: Public key cryptosystems

General Terms: Security, Design

Keywords: trusted storage, key delegation, stored-value, e-wallet
memory integrity checking, certified execution

∗An extended version of this paper will be available as an MIT
CSAIL Technical Report. This work was done as part of the MIT-
Quanta T-Party project, funded by Quanta Corporation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STC’06, November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-548-7/06/0011 ...$5.00.

1. INTRODUCTION
The increasing availability of the Trusted Platform Module (TPM)
[30] as a standard component in today’s PCs and mobile computers
creates many exciting new possibilities in the realm of secure scal-
able and distributed computing. In the past, applications requiring
security have generally assumed that users’ machines are untrusted
and have thus required online interaction with centralized trusted
servers. Today, as more ordinary users’ machines start including a
TPM, however, it now becomes possible to avoid having to contact
a central server by placing trust in the TPM chip on users’ machines
instead. This means that one can now create a variety of decentral-
ized and offline secure applications which have much higher levels
of scalability than previously possible with centralized schemes.

A few applications taking advantage of the TPM in this way have
already been proposed, including applications such as distributed
certificate authorities [8], peer-to-peer computing with enhanced
security [1], controlling mobile access to broadcasted media [10],
and others [20, 23]. In this paper, we propose using the TPM not
just to implement one particular application, but to implement a
fundamental primitive that in turn enables a wide variety of useful
applications. Namely, we show how a TPM can be used to imple-
ment a potentially unlimited number of trusted virtual monotonic
counters on an untrusted machine without a trusted OS.

A trusted monotonic counter – i.e., a tamper-resistant counter
embedded in a device whose value, once incremented, cannot be
reverted back to a previous value – is a very valuable primitive be-
cause it enables one to implement a wide variety of highly scalable
applications that would otherwise be vulnerable to replay attacks.
These include several applications of great interest and commer-
cial value today, such as secure offline payments, e-wallets, virtual
trusted storage, digital rights management (DRM), and digital cash.

In addition, the ability to dedicate and use an unlimited (or at
least very large) number of monotonic counters on a single device
is even more valuable. For one, it enables a user’s personal device,
such as a PC or mobile device, to be used in an arbitrary number
of independent applications at the same time, even if each of these
applications requires its own dedicated monotonic counter. Simi-
larly, it also enables a single server to provide dedicated monotonic
counters to an arbitrary number of clients. Finally, it makes possi-
ble new classes of applications and mechanisms that cannot be im-
plemented with only one or a small number of monotonic counters.
A particular example of these is the idea of count-limited objects
which we present in Sects. 2 and 6, and which have many potential
applications in secure and pervasive computing.

In the latest version of the TPM specification, version 1.2 [30],
the Trusted Computing Group (TCG) has introduced built-in sup-

port for monotonic counters into the TPM [29]. However, because
the low-cost TPM chip can only afford to have a small amount of
internal non-volatile memory, this new functionality is necessarily
limited. Specifically, a TPM 1.2 chip is only required to be able
to store four independent monotonic counter values at a time, and
only one of these counters is usable during a particular boot cycle
(i.e., once one of the counters is incremented, the other counters
cannot be incremented until the host machine is rebooted). The in-
tent of the TCG in designing the TPM this way is not for the built-in
monotonic counters to be used by user-level applications directly,
but rather for the single usable counter to be used by a trusted OS
component to implement an arbitrary number of “virtual monotonic
counters”, which in turn can then be used by user-level applications
[29]. In this way, a TPM 1.2 chip can theoretically be used to pro-
vide an arbitrary number of dedicated virtual monotonic counters
to different applications using only a single monotonic counter.

The problem with this approach, however, is that although it is
theoretically sufficient from an abstract point-of-view, its use in
practical applications is limited by the complex security mecha-
nisms needed to implement a trusted OS. For example, one scheme
for implementing virtual monotonic counters outlined by Microsoft
as part of their proposed Next Generation Secure Computing Base
(NGSCB) system [24] seems simple and straightforward by itself,
but if we look at the security requirements for NGSCB, we find that
it needs not only a PC with a TPM, but also (at least) the following
hardware-based security features as well [9]: (1) a trusted BIOS
that acts as the Core Root-of-Trust for Measurement (CRTM), (2)
a built-in security mechanism in the main CPU, such as Intel’s La-
Grande Technology [16], that can be used to implement an isola-
tion kernel, and (3) a memory controller or chipset that facilitates
protection from DMA attacks. Furthermore, it also requires users
to switch to an entirely new OS built according to the NGSCB ar-
chitecture, and requires OS vendors to perform extensive security
testing on their OS components every time they make a change.

Given the importance of virtual monotonic counters as an en-
abling primitive in many useful applications, we argue that it is
worth the effort to ensure that it is possible to implement such coun-
ters using a TPM alone without relying on a trusted OS or trusted
software. In this paper, we discuss how this goal can be achieved,
and present concrete solutions, recommendations, and applications.

We begin in Sect. 2 by identifying the many potential applica-
tions of being able to keep track of a large number of virtual mono-
tonic counters on a single host. In Sect. 3, we present an abstract
model for how virtual monotonic counters can be used in appli-
cations and how they can be implemented. In Sect. 4, we present
a log-based scheme that can be implemented with TPM 1.2. We
note, however, that this scheme has two drawbacks. First, it can
only implement a non-deterministic form of monotonic counters
which are useful in stored-value and trusted storage applications,
but it cannot be used to implement the stronger arithmetic form of
monotonic counters which is useful in a broader range of applica-
tions. Moreover, it has a potentially unbounded worst-case read and
increment latency. In Sect. 5, we solve these problems by present-
ing a new scheme based on the idea of Merkle hash trees [19] that
can easily be implemented with the addition of relatively simple
new functionality to the TPM. Unlike the log-based scheme, this
hash tree-based scheme has a small bounded worst-case read and
increment latency of O(logN), where N is the number of virtual
counters. Moreover, it can be used to implement arithmetic mono-
tonic counters which the log-based scheme cannot implement. This
in turn enables us to implement a new idea we call count-limited ob-
jects, which we discuss in Sect. 6. In Sect. 7, we present some ex-
perimental peformance measurements using present-day TPM 1.2

chips. We cite related work throughout this paper as appropriate
and discuss other related works in Sect. 8 as well. Finally, we sum-
marize our contributions in Sect. 9. An extended version of this
paper containing more details will be available as an MIT technical
report [25].

2. APPLICATIONS
A monotonic counter is a highly valuable primitive because it can
be used to detect (and thus prevent) replay attacks in offline and
decentralized secure applications. In this section, we present ex-
amples of such applications.

Offline payments, stored-value, and e-wallets. We first consider
the problem of offline payment or stored-value systems. The goal in
such systems is to allow a credit issuer to store a credit balance on a
user’s device, and then, when the user makes a purchase, allow mer-
chants to securely verify and reduce this balance without needing
to communicate with the credit issuer or a third party. The security
challenge in these systems is obvious: since the value of the balance
is stored in the untrusted user’s own device, how does one prevent
the user from double-spending his credits by simply changing or
rewinding the value as he pleases? Preventing arbitrary changes
to the stored balance is easy. A credit issuer can simply use a pri-
vate or secret key, known only to itself and to trusted hardware in
the merchant’s devices, to produce a digital signature or message
authentication code (MAC) for the account balance stored on the
user’s device. This way, only the credit issuer and the trusted mer-
chant devices can write valid balances on the user’s device.1 The
harder problem is that of preventing the user from rewinding or re-
playing his account balance. That is, even if the balances are signed
with an unforgeable signature, the user can still easily copy old
signed balances and reuse these copies with different merchants. A
merchant who has no contact with a centralized server, and who has
not seen the same or a newer signed balance from that user before,
can tell that the balance is authentic because it is signed with the
credit issuer’s private key. However, he has no way of telling if the
balance is fresh – that is, that it is not an old copy.

Without some sort of trusted memory or trusted component on
the user’s device, preventing such replay attacks in an offline sys-
tem would be impossible. If the user’s device, however, has a
trusted monotonic counter (trusted by the credit issuer and the mer-
chants), then a relatively simple solution is possible. Whenever
the credit issuer or a merchant’s device increases or reduces the
stored value in the user’s device, it first increments the monotonic
counter on the user’s device, and then signs a token including the
new monotonic counter value and the new balance value. Then,
when the user presents the token to another merchant at a later time,
that merchant’s device checks not only that the signature on the to-
ken is valid but also that the counter value in the token matches
the current value of the monotonic counter on the user’s device.
This prevents a malicious user from replaying an old credit balance
since the counter value signed with an old balance will not match
the latest counter value in the trusted monotonic counter.

Note that in order for this scheme to work, a dedicated counter
is needed for each balance that needs to be protected. Thus, if we
want to be able to store different independent credit balances (e.g.,
from different credit issuers) in a single user’s device, then that
device must be able to keep track of multiple independent mono-
tonic counters. This is why a mechanism for implementing a large
number of virtual monotonic counters on a single device would be

1We assume for now that some other mechanism allows us to pro-
tect against malicious merchants tampering with their devices.

useful. With such a mechanism, a user’s device can effectively be-
come an e-wallet – that is, a digital equivalent of a real wallet that
can store cash, credit cards, and generally different forms of cur-
rency and credits from different credit issuers.

Virtual trusted storage. A related use of virtual monotonic coun-
ters is in implementing virtual trusted storage. The idea here is to
create a potentially unlimited amount of private, tamper-evident,
and replay-evident virtual storage using untrusted storage and a
small and constant-sized trusted component such as a TPM.

Consider, for example, a user who wants to store his data on a
third-party server on the Internet and wants to be able to retrieve it
at a later time from any one of several client devices that he (or his
friends) own. If the other client devices can be offline at different
times or do not have any secure means of communicating directly
with each other (except through storing and retrieving data on the
untrusted server itself), then the user’s data can be vulnerable to a
replay attack by a malicious third-party server. That is, a second
client device retrieving data from the server would have no way of
knowing if the data on the server is in fact the latest version.

Note that this problem is actually a more generalized form of the
problem in the stored-balance offline payment system described
earlier, except that the directions are reversed. That is, here, the
user is storing his data on a third-party machine, instead of the other
way around (i.e., a third-party such as the credit issuer or merchant
storing data on the user’s device). Thus, a monotonic counter can
also be used to protect the data from replay attacks by the untrusted
server in the same way as described earlier. In this case, the “bal-
ance” being protected is the user’s trusted data, and the server takes
the role of the e-wallet host while the user’s devices take the role of
the credit issuer and merchant’s devices.

In this application, the ability to have a very large number of
dedicated monotonic counters becomes useful for the server, since
it would allow the server to handle an arbitrary number of inde-
pendent users, each of whom may in turn want to securely store an
arbitrary number of indepedent pieces of data. This ability in turn
can enable us to implement many different applications in mobile
and distributed computing, including file storage, synchronization,
and sharing applications.

Count-limited objects (aka clobs). A very useful feature of ex-
isting TPM chips (to be described in more detail in Sect. 6) is the
ability to perform operations using encrypted blobs containing keys
or data that have been encrypted such that only a particular TPM
can decrypt and use them. At present, there is no limit to the num-
ber of times a host can make a TPM use an encrypted key or data
blob once it has a copy of that blob. However, if we can enable a
TPM to keep track of a large number of virtual monotonic coun-
ters, then we can link a blob with a particular virtual monotonic
counter so that the TPM can use this counter to track and limit the
usage of these blobs. Such blobs would then become what we call
count-limited objects, or “clobs” for short.2

Count-limited objects can take many different interesting and
useful forms, including:

• n-time-use clobs. Here, each clob has its own dedicated
counter, which is incremented every time the clob is used.
Useful forms of these include n-time-use decryption keys
(e.g., Alice gives Bob a key that lets Bob decrypt anything
encrypted by Alice’s public key, but only at most n times),
and n-time-use signing keys (e.g., Alice gives Bob a key

2This idea is not related to the character large object (CLOB) data
type in some databases.

that lets Bob sign anything with Alice’s signature, but only
at most n times).

• Shared-counter interval-limited clobs. These are clobs that
are tied to the same virtual counter. One form of such clobs
are time-limited clobs, wherein the shared counter is one
whose value is tied to real time so that the valid interval for
the clob corresponds to the real-time interval during which it
is allowed to be used. Another form are n-out-of-m clobs,
including n-out-of-m encrypted data blobs, which are blobs
that share the same counter and all have a usage interval of 1
to n, such that one can only use at most n out of m encrypted
blobs (regardless of m).3 Still another form are or sequenced
clobs or ordered clobs, which have different usage intervals
set in such way as to ensure that certain clobs cannot be used
before others.

• n-copy migratable objects. Here, a virtual counter is used
to limit the number of times a clob can be migrated (i.e., re-
encrypted) from a particular TPM to another TPM such that
copies of the clob can be circulated indefinitely (i.e., Alice
can migrate a clob to Bob and Bob can migrate the clob back
to Alice without needing a trusted third party), but only at
most n copies of a clob are usable at any point in time (where
n is the count-limit range of the original clob).

• Count-limited TPM operations. Extending the existing idea
of wrapped commands in TPM 1.2, we can have a clob that
contains a wrapped command together with a count-limit
condition. This allows us to apply the various types of count-
limit conditions (e.g., n-time-use, n-out-of-m, n-time mi-
gratable, sequenced, etc.), to any operation that a TPM is
capable of executing.

The different form of count-limited objects, have many exciting
new applications, which we discuss next.

Digital rights management (DRM). The idea of limiting the use
of data and programs is central to DRM. Thus, clobs naturally have
many direct applications to DRM. For example, n-time-use decryp-
tion keys and n-out-of-m encrypted data blobs can be used to allow
a copyright owner to create and store many encrypted media files
on a user’s device, while limiting the number of media files that
the user can decrypt and use. Time-limited clobs would allow for
media files that can only be used within a certain real time interval.
Most interestingly, n-copy migratable clobs can make it possible to
create protected media files that users can freely lend or circulate
to other users much like people do with physical books and CDs.

Digital cash. Clobs also have potential applications as a way to
implement or supplement digital cash schemes which require the
ability to perform offline and anonymous transactions. Consider,
for example, an e-wallet mechanism where instead of storing a
user’s total credit amount as an account balance, we store a col-
lection of n-time-use signing keys. When a user with this kind
of e-wallet purchases goods from a merchant, a merchant receives
payment from the user by asking the user to sign a random nonce
with the credit issuer’s key using one of these signing keys. If we
consider each signature produced using the keyblob as having a
certain value (where different keys can represent different denomi-
nations), then the count limit on a user’s keyblob represents the total
stored value of that keyblob, and this value is reduced accordingly
3Note that in this case, the encrypted data blobs can be encrypted
with different keys which do not necessarily have to be count-
limited as long as they are protected by the TPM.

every time the keyblob is used. This scheme is more secure than the
stored-balance scheme described earlier because it does not require
merchant’s devices to know the credit issuer’s private key. More-
over, another advantage of this scheme is that it preserves the user’s
anonymity. This is because the signed nonces that the user gives to
the merchant are signed with the credit issuer’s key, not the user’s.
Thus, at the end of the transaction, the merchant has proof that the
transaction was valid, and can go to the credit issuer to exchange
the signed nonce for real money, but neither the merchant nor the
credit issuer has any information on who the user was.

Using n-copy migratable clobs, an even more interesting form
of digital cash is possible. If a credit issuer, for example, creates a
“digital coin” as a one-time migratable clob, then such a coin can
be migrated from user to user an arbitrary number of times without
requiring contact with the credit issuer or a trusted third party.
This more closely corresponds to how real cash is used in the real
world. If we assume that all users have TPMs and that all these
TPMs are trusted and working properly, then transactions are both
secure (i.e., at most one valid copy of a coin exists at any time), and
anonymous (i.e., the identity of the previous holder of a coin need
not be exposed in a transaction).

Finally, if we assume that TPMs can get compromised, then
more complex schemes would be necessary, but are possible if we
have count-limited TPM operations involving special types of sign-
ing or decryption. One possibility, for example, is to use Brands’
scheme [3], wherein a trusted hardware device called an observer
is used to produce a signature needed for a successful transaction.
To prevent a user from double-spending his digital coins, the ob-
server is trusted to only produce this signature at most once (i.e.,
for each coin, the observer stores a random number that is needed
to produce the signature for that coin, and then erases it after using
it once). However, even if the observer is compromised, the cryp-
tographic property of the e-cash scheme itself is not compromised,
and double-spending can still be detected (and the offender identi-
fied) eventually by the credit issuer. In our case, we can implement
a digital coin as a one-time-use clob representing this special sig-
nature operation. This allows us to implement Brands’ idea of an
observer, but with the advantages that we can handle an aribtrary
number of coins at the same time, and that we can do it using a non-
dedicated secure coprocessor (i.e., the TPM) that is not limited to
e-cash, but can also be used for other applications.

Itinerant computing. Clobs would also be useful in itinerant com-
puting applications. Here, a user’s code runs not on the user’s own
machine, but on other people’s machines, using resources on those
machines as necessary, and then moving on to other machines (also
belonging to other people) to continue the computation.

A traditional example of such itinerant computing applications
are applications involving mobile agents that move from one host
to another, executing code on behalf of its owner [7, 13, 17]. In
such applications, clobs such as count-limited keys and commands
can improve security by allowing a user’s mobile agent to use the
user’s private keys as it executes on a host, while preventing the
host from using these keys after the agent leaves, even if the host
makes a copy of the mobile agent’s code and wrapped keys. (In a
way, this is a hardware-based alternative or supplement to Hohl’s
idea of time-limited blackbox security [13].)

Clobs also enable new forms of itinerant computing where the
the user himself is itinerant. Suppose, for example, that a user is
traveling and visiting different places where he needs to be able to
run certain programs that require use of his private key, but sup-
pose that he prefers not to bring his own computer with him as he
travels (e.g., perhaps because airlines have banned passengers from

carrying-on electronic devices). In this case, if his host institutions
have machines with a TPM, then the user can create clobs on his
hosts’ machines before his trip. (To prevent a clob from being used
before the user arrives, a clob can include an encrypted authoriza-
tion password like TPM wrapped keys do.) When the user gets
to a host institution, he can use the clobs he has previously sent
over to do his required computations. Then, when he is done, he
makes sure to increment the clobs’ counters beyond their usable
range. (Or, if he has created migratable clobs, he can also migrate
his clobs to his next host institution.) This way, even though the
host can keep a copy of the clobs or even steal the authorization
passwords from the user as he types using their keyboard, the host
cannot use the clobs outside of the count-limit.

Count-limited objects and virtual monotonic counters. Many
other applications of count-limited objects are possible. We em-
phasize, though, that the crucial feature that makes count-limited
objects possible is the ability to keep track of a large number of
virtual monotonic counters. This is because we need a different
virtual counter value for each independent clob (or group of shared-
counter clobs). Having only one or a few monotonic counters, like
the existing TPM currently has, is not good enough since it does
not allow us to freely create counters when needed for a new clob.

3. VIRTUAL MONOTONIC COUNTERS
Having given an appreciation of the many different applications
of virtual monotonic counters, we present in this section a model
and framework for how such virtual monotonic counters can be
implemented and used in an actual system.

Basic definition. We model a monotonic counter as a mecha-
nism (implemented in hardware or software or both), which stores
a value and provides two commands to access this value: the Read
command, which returns the current value, and the Increment com-
mand, which increments the current value according to a specified
increment method and returns the new value of the counter. This
mechanism must have the following properties: First, the value
must be non-volatile. That is, it must not change or be lost unless
explicitly incremented. Second, it must be irreversible. That is,
once the value has been changed (by invoking Increment), there
must be no command or series of commands that can make the
counter assume any previous value that it has had in the past. And
third, the monotonic counter must behave as if the Read and In-
crement commands were atomic. That is, if several commands
are submitted to the counter at the same time, then the output of the
counter must be as if the commands were executed one at a time in
some sequential order.

In real-world applications, a monotonic counter would not be
used alone, but as part of a system containing other hardware and
software components. Thus, in addition to having the properties
above, it must also be trusted and remain secure even if it or the
components around it are exposed to both software-based and phys-
ical attacks by an adversary. This means that a monotonic counter
must also satisfy the following security properties:

1. The counter should ideally be tamper-resistant, but must at
least be tamper-evident. That is, it must be infeasible for an
adversary to directly or indirectly cause the counter to behave
incorrectly without at least being detected. In particular, an
adversary must not be able to set the value of the counter ar-
bitrarily, cause it to revert to a past value, cause it to generate
false execution certificates (as defined below), or cause it to
fail in any other way without being detected – even if the

adversary owns and has physical access to the hardware and
software used to implement and use the counter.

2. In response to a command, the counter must produce a veri-
fiable output message that certifies the output and the execu-
tion of that command. That is, if a user invokes a command
cmd(t) on the counter at some real time t and then subse-
quently receives a corresponding output response message
Out(t) from the counter, there must be a verification algo-
rithm that the user can follow to check Out(t) and convince
himself that the counter has in fact executed cmd(t), and
that Out(t) is indeed cmd(t)’s correct output. We call this
verifiable output an execution certificate.

3. Valid execution certificates must be unforgeable. It must be
infeasible for an adversary using any method (including us-
ing another counter, using a fake monotonic counter, or act-
ing as a man-in-the-middle) to produce an acceptable execu-
tion certificate certifying an operation not actually executed
by the counter.

Attestation identity keys. In a concrete implementation, the last
two conditions above can be satisfied if we assume that the counter
has at least one unique and protected public-private keypair that it
can use for signing. In keeping with TPM terminology, we call
this the counter’s attestation identity key (AIK). The private key
of the AIK is kept in secure non-volatile memory, and it must be
impossible for an adversary to know this private key. The public
key is certified by a trusted certificate authority (CA), and presented
to users of the counter when needed to enable them to verify the
counter’s signatures.

Given such an AIK, the counter can be used as follows: First,
the user of the counter generates a random nonce nonce and then
sends it to the counter together with the Read or Increment com-
mand request. The counter returns an output message, which we
call the execution certificate for the command, that includes the out-
put of the command (i.e., the current or new value of the counter),
the nonce, and a signature using the AIK over the output and the
nonce together. The user can then verify this execution certificate
by checking that the signature is valid according to that counter’s
public key (this protects against an adversary using another counter
or a fake counter), and checking that the nonce included in the
output message is the same as the nonce that the user gave (this
protects against replay attacks by a man-in-the-middle adversary
giving a copy of an older execution certificate).

Virtual vs. physical monotonic counters. As noted earlier, in or-
der to implement the applications we would need to be able to keep
track of a large number of monotonic counters. Although non-
volatile RAM (NVRAM) for general storage is rapidly growing
cheaper today, securing large quantities of non-volatile RAM is still
not easy to do. Thus, secure and low-cost hardware components
such as the TPM are currently limited to having only small amounts
of NVRAM. This problem motivates the idea of virtual monotonic
counters, as opposed to the physical monotonic counters currently
implemented in TPM 1.2. Here, the idea is to use a small bounded-
sized tamper-resistant hardware component together with ordinary
untrusted memory and storage (which we assume to be effectively
unbounded in size) to simulate a potentially unlimited number of
independent “virtual” monotonic counters.

Of course, since virtual monotonic counters need to use untrusted
memory, it is impossible to make virtual monotonic counters truly
tamper-resistant like physical ones. As we will show, however, it is
possible to implement virtual monotonic counters that are tamper-
evident. With such virtual counters, attempts to change the value of

a counter might not be preventable, but would always be detected
by the client. Thus, the worst things that an adversary can do are
denial-of-service attacks, such as destroying a counter or dropping
command requests. These attacks are still worth noting, but are
much less dangerous than arbitrary tampering, since in many appli-
cations, it is in the adversary’s interest not to destroy or slow down
a counter. In an offline payment system for example, the adversary
(i.e., the user) has no incentive to disable or slow down his mono-
tonic counter because he cannot use his credits without it. (This
situation is analogous to the real world where one always has the
ability to destroy or throw away cash in one’s wallet, but one does
not gain anything by doing so, so one does not do it.)

System model. Figure 1 depicts our model of how virtual mono-
tonic counters are used and implemented. Here, we have two in-
teracting systems: the host and the client. The host contains the
virtual monotonic counters and some application-specific functions
and data, while the client runs an application program that needs to
make use of the data, functions, and counters on the host.

RAM DISK
+ storage

Host (Untrusted)

virtual monotonic
counter mechanism

app-specific functions

TPM

CPU
TPM

command
request

CPU

OS kernel

response
(+signature)

verification algorithms

app-specific program

accept
or

reject

app request

app response

CreateCtr(nonce)
ReadCtr(ID,nonce)
IncCtr(ID, nonce)
DestroyCtr(…)
…

execution certificate

Client

Verify
(function,
ID,nonce,
exec cert)

BIOS

crypto engine RAMfirmware NVRAM
AIK SRK

TPM (Trusted)

Figure 1: System Model for an application using virtual mono-
tonic counters. The TPM is a passive secure coprocessor, and
is the only trusted component in the host. An implementa-
tion scheme for virtual monotonic counters needs to define the
shaded software components, given the TPM’s functionality.

The virtual monotonic counter mechanism (shown in Fig. 1 as
the shaded box in the host) is a software component that simulates
a potentially unlimited number of virtual monotonic counters using
the host’s untrusted memory and storage and the TPM (as will be
described below). This mechanism is meant to be used by differ-
ent clients to create and use monotonic counters as needed in their
respective applications. The virtual monotonic counter mechanism
must support the following functions:

• CreateNewCounter(Nonce): Creates a new virtual mono-
tonic counter and returns a create certificate, which contains
the new counter’s unique CounterID and the given nonce.

• ReadCounter(CounterID, Nonce): Returns a read certifi-
cate containing the current value of the virtual counter spec-
ified by the given CounterID, together with the CounterID
itself, and the given nonce.

• IncrementCounter(CounterID, Nonce): Increments the

specified virtual counter, and returns an increment certificate
containing the new value of the virtual counter together with
the CounterID and the given nonce.

• DestroyCounter(CounterID, Nonce): Destroys the spec-
ified virtual counter (so that the same CounterID cannot be
used again), and returns a destroy certificate containing the
CounterID and the given nonce.

Note that output certificates of these functions are not necessarily
single signed messages. In general, these certificates can be com-
plex data structures (possibly containing multiple signatures) that
are designed to be verifiable by the client through the use of a cor-
responding set of verification algorithms, which the client runs on
his own machine (which he trusts). The verification algorithm takes
the execution certificate and checks that it is valid for the same
function, counter ID, and nonce that the client originally gave.

Security model. In our model, we assume that the virtual mono-
tonic counter mechanism can be invoked remotely by an arbitrary
number of independent client devices, each of which may create an
arbitrary number of independent virtual monotonic counters. We
define the owner of a virtual counter to be the owner of the client
device that requested its creation. This owner may own several
client devices, each of which may be used to access the virtual
counter. We assume that independent owners do not trust each
other, and generally do not share virtual counters. However, we
assume that client devices of the same owner generally trust each
other. Specifically, we allow different client devices of the same
owner to run applications that depend on secret or private keys
known only to the other devices of that owner. However, we as-
sume that the client devices of an owner may be offline at differ-
ent times or may have no other way of communicating with each
other except indirectly through the counters they share. Thus, such
client devices are not allowed to depend on the ability to share state
information with each other except indirectly through the virtual
monotonic counters themselves.

Given this model, our main security goal is to implement a vir-
tual monotonic counter mechanism that is at least tamper-evident
from the owner’s point-of-view. That is, at worst, all the client
devices of the owner of a virtual monotonic counter must always
be able to detect any failure or erroneous behavior of the counter
caused by an attack by the host or another owner. Ideally, however,
we would also want to be able to detect tampering by compromised
client devices of the same owner, whenever possible.

As shown in Fig. 1, we assume that all hardware and software
components on the host, except for a Trusted Platform Module
(TPM), are untrusted – i.e., possibly under the control of an ad-
versary working against the client. This includes not only memory,
disk, and all application software, but even the CPU, the BIOS,
and the OS kernel. In particular, note that the software implement-
ing the virtual monotonic counter mechanism itself is considered
as open to being attacked and controlled by the adversary.

In this paper, we assume a TCG-type TPM chip. Abstractly,
however, our techniques should work with any trusted coproces-
sor with similar functionality. The TPM is assumed to contain the
following: (1) a cryptographic engine, (2) internal firmware for im-
plementing a set of TPM commands that the host can invoke, (3)
a small amount of trusted internal memory (both volatile and non-
volatile) that is not visible outside the TPM, and (4) a small number
of protected keys usable only within the TPM, including at least an
attestation identity key (AIK) for signing information generated by
the TPM, and a storage root key (SRK) for encrypting and decrypt-
ing data. The AIK can be used to sign outputs of a TPM, and

can thus provide certification that requested operations have been
executed in the secure environment of the TPM. This is the cru-
cial feature that would allow clients to verify the virtual monotonic
counter mechanism’s outputs. The SRK is a keypair whose private
key is generated internally and never leaves the TPM. Its public key
can be used by an external user or application to encrypt keys and
other data that are meant to be decryptable and usable only inside
the TPM. This key makes encrypted (wrapped) keys and data blobs
possible, as described in Sect. 6. (For a good description of how all
these TPM features work and are used, see [23].)

It is important to note here that the TPM is a special-purpose co-
processor. That is, it does not run arbitrary application software, but
can only be used to execute a limited set of pre-defined commands
as defined by the TPM specifications (see [30]). Furthermore, it is
also a passive processor. That is, it cannot read or write directly
into memory or other devices, and cannot do anything unless the
CPU requests it. It also cannot prevent a CPU from submitting a
request to it. It can return an error message in response to a CPU
request, but only according to the pre-specified definition of the re-
quested TPM command. The challenge, therefore, is how to be able
to use the TPM in the host to implement a tamper-evident virtual
monotonic counter mechanism without relying on any other trusted
hardware or software on the host. This is what we will show in the
following two sections.

4. LOG-BASED SCHEME
Since the TPM was not explicitly designed to support virtual mono-
tonic counters without needing a trusted OS, it is impossible (to our
knowledge) to use a TPM 1.2 chip to directly implement unlimited
arithmetic virtual monotonic counters, where the counter value is
incremented by 1. We can, however, implement a weaker form
of virtual monotonic counter which can be used directly in virtual
trusted storage and stored-value applications.

Implementation. The idea here is to use one of the TPM’s physical
monotonic counters as a “global clock” where the current “time”
t is defined as the value of the monotonic counter at a particular
moment in real time. Given this global clock, we then define the
value of a particular virtual counter as the value of the global clock
at the last time that the virtual counter’s Increment command was
invoked. Note that this results in a non-deterministic monotonic
counter, i.e., a counter that is irreversible, but whose future values
are not predictable. Although such a virtual counter does not have
all the advantages of an arithmetic counter, it can still be used in
virtual trusted storage and stored-value applications as described
in Sect. 2. This is because these applications only need to be able
to tell if the value of a monotonic counter has changed from its
previous value or not. It does not matter what the new value is, as
long as it is different from any other value in the past.

We can implement the IncrementCounter function of the vir-
tual monotonic counter mechanisms by using the TPM’s built-in
TPM IncrementCounter command (which increments the TPM’s
physical monotonic counter) inside an exclusive and logged trans-
port session, using the AIK as the signing key and the hash of the
counter ID and the client’s nonce (i.e., H(counterID‖nonce))
as the anti-replay nonce for the final TPM ReleaseTransport-
Signed operation. This produces a signature over a data struc-
ture that includes the anti-replay nonce and a hash of the trans-
port session log, which consists of the inputs, commands, and out-
puts encountered during the entire transport session. This signature
can then be used together with the counter ID, the client’s nonce,
and the transport session log, to construct the increment certificate
which the client can verify. Note that by making this transport ses-

sion exclusive, we ensure that the TPM will not allow other ex-
clusive transport sessions to successfully execute at the same time.
This ensures the atomicity of the increment operation.

The verification algorithm for such an increment certificate is as
follows: First, the client checks that counterID and nonce are
the same as what it gave to the host. If they are, the client then
computes H(counterID‖nonce) and uses this hash together with
the transport log, the signed output, and the certified public key of
the TPM’s AIK to verify the certificate. Finally, if the certificate
verifies as valid, the client gets the virtual counter’s value as the
physical counter’s value, which is included in the log of inputs and
outputs given by the host as part of the certificate.

The more challenging problem in this scheme is that of imple-
menting ReadCounter. We begin by having the host keep an ar-
ray of the latest increment certificates for each virtual counter in
its memory and disk storage, and return the appropriate one upon
a client’s request (since by definition, the global clock value at the
time of the latest increment is the value of the counter). This is not
enough, however, since a malicious or compromised host can easily
reverse a particular counter by replacing its latest certificate with an
older certificate for the same counter. Thus, an extra mechanism is
needed to protect against this replay attack.

Our solution is as follows: On a ReadCounter request from a
client, the host first reads the global clock by issuing a TPM’s built-
in TPM ReadCounter command in an exclusive logged transport
session. This produces a current time certificate, analogous to
the increment certificate produced by using the TPM Increment-
Counter command. Then, the host gets the latest increment certifi-
cate for the client’s desired counter from the array described above.
Finally, it gets all the increment certificates it has generated (re-
gardless of counter ID) from the time of the client’s latest certifi-
cate to the current time. The read certificate for the ReadCounter
command is then composed as a list, or log, of all these certificates,
plus the current time certificate.

The verification algorithm for such a read certificate is as fol-
lows: First, the client checks the current time certificate. Then,
starting from the increment certificate for its desired CounterID, it
goes through the log making sure that: (1) there is a valid increment
certificate for each global time value until the current time, and (2)
none of the increment certificates are for the desired CounterID,
except for the first one. If this verification algorithm succeeds, then
the client is convinced that the first increment certificate indeed cor-
responds to the latest increment operation on that virtual counter.
The value of the counter is then read as the value of the global
counter included in that certificate.

Security. This scheme is provably secure if we assume that the
TPM is trusted and cannot be compromised. One security issue,
however, is that of a fake increment. That is, the host can pretend
that it received an increment command from the client, even when it
did not. The host cannot reverse the virtual counter in this way, but
can make the counter go forward without the owner of the virtual
counter wanting it.

In many applications, this is not a major concern because it would
be to the host’s disdvantage if it increments the counter without the
client requesting it. For example, in the stored-value offline pay-
ment application described in Sect. 2, if the adversary (the user)
performs a fake increment, he still cannot replay old stored values
of an account balance, and would in fact lose his ability to use his
latest available balance at all, since its signed counter value will not
match the new counter value.

Nevertheless, if protection against fake increments is desired,
then there are at least two solutions. One solution is to require

client devices that request increment operations to send a confirma-
tion certificate after verifying the increment certificate it receives.
The confirmation certificate includes a signature of the incremented
counter value generated using the client’s secret key, so that it would
be impossible for the host to generate fake confirmations. Then,
when a read request for a counter is made at a later time, the host
includes the confirmation certificate of the counter’s latest incre-
ment as part of the read certificate. This allows a client to verify
that the latest update was not a fake one. If a client receives a valid
increment certificate but does not receive a valid confirmation, then
it can suspect the host of executing a fake increment. Another solu-
tion is to use a nonce specially constructed and signed by the client
as detailed in [25]. The advantage of this scheme is that it is more
robust against network failures since there is no danger of a confir-
mation being lost between the client and the host.

Another possible problem worth noting is what happens if power
to the host fails some time after the TPM IncrementCounter but
before the host is able to save the increment certificate to disk. If
this happens, then the host will not have a valid execution certifi-
cate for the increment operation, and will have a gap in the log. This
problem cannot be used for a replay attack because clients will still
be able to at least detect the gap during the read counter operation.
However, it does make all counters before the power failure un-
trustable (because client devices would not have proof that these
counters were not incremented during the time slot of the gap).
This problem cannot easily be avoided because of the limitations
of existing TPMs, and is one disadvantage of the log-based scheme
compared to our proposed hash tree-based scheme in Sect. 5. Note,
however, that recovery of a counter’s value is still possible if all
the client devices of the counter’s owner are able to communicate
together and agree on the last valid value of the counter. Then, they
can perform a special increment operation after the gap, and sign
a special confirmation together indicating the correct value of the
counter after the gap.

Finally, note that the functions CreateCounter and Destroy-
Counter can be implemented like IncrementCounter with a spe-
cial confirmation or special nonce to indicate a creation or destruc-
tion event for the desired counter ID. However, since the TPM does
not check the nonce given to the TPMIncrementCounter opera-
tion, there is nothing actually stopping a client device, in collusion
with the host, from incrementing a virtual counter which has not
been created or which has already been destroyed (thus generat-
ing a new increment certificate). Thus, the usefulness of the create
and destroy functions are limited when using the log-based scheme
(unless we can assume that the client devices are trusted and never
misbehave).

Performance. The log-based scheme is relevant because it is im-
plementable using existing TPM 1.2 chips, and it is usable in vir-
tual trusted storage and stored value applications. This means that
we can implement such applications using existing hardware today.
Performance-wise, however, the log-based scheme has a significant
drawback: if a virtual counter C is not incremented while other
counters are incremented many times, then the read certificate for
C would need to include the log of all increments of all counters
(not just C) since the last increment of C. The length of this log is
unbounded in time and can easily grow very large.

In some applications – either where there are only a few counters
(e.g., a small e-wallet), or all counters are incremented frequently,
this may be acceptable since the log would not get very long. It
is also possible to do adaptive time-multiplexing as described in
[25]. This reduces the size of the log required for verification when
reading. However, it still results in potentially unbounded and long

waiting times for increments. Another disadvantage of this scheme
is that it cannot currently be used to implement count-limited ob-
jects because these require arithmetic counters and require modifi-
cations to the TPM that allow it to prevent signing and decryption
operations based on the value of a virtual monotonic counter.

5. HASH TREE-BASED SCHEME
If we can add new commands to the TPM, then a better solution
is possible which not only has a bounded (and small) computation,
communication, and latency cost for virtual counter operations, but
which also enables us to implement arithmetic virtual monotonic
counters and the idea of count-limited objects described in Sect. 2.
In this section, we present a basic version of this solution consist-
ing of a new TPM command, TPM ExecuteHashTree, and some
minor changes to existing TPM commands. We discuss the imple-
mentation of count-limited objects in Sect. 6.

Merkle Hash Trees. Our solution is based on the idea of a Merkle
hash tree, a well-known technique for efficiently checking the in-
tegrity of a large number of data objects [19]. In a Merkle hash
tree (such as the one shown in the middle of Fig. 2), a leaf node
is created for each data object, and contains a collision-free hash
of the object’s contents. Then, a binary tree is formed, where the
value of an internal node is the hash of the concatenation of its left
and right children. The root of this tree, called the root hash is then
itself a collision-free hash for the entire set of data objects, and is
guaranteed to change if any of the data objects change.

The advantage of using a Merkle tree over other ways of pro-
ducing a collision-free hash over a large data set is that once the
tree has been initialized, it only takes O(logN) steps to update the
root hash whenever there is a change in one of the N data objects.
Specifically, whenever a piece of data is changed, we go up the
hash tree along the path from the changed leaf node to the root. At
each step, the new value of a node is hashed with its sibling in order
to produce the new value of its parent, and this process is repeated
until the root hash itself is updated. Verifying the integrity and
freshness of a data object also only takes O(logN) steps. Here, we
take the current version of the data object in question, and compute
a root hash in the same way as above. The computed root hash can
then be compared with a saved value of the latest root hash known
to the verifier to determine if the given version of the data object is
in fact the latest version of that object.

In the context of secure and trusted computing, Merkle trees have
been proposed as an efficient way of protecting the integrity and
freshness of a large (practically unbounded) amount of data stored
in untrusted memory using a much smaller bounded-sized trusted
component. The idea here is to require all legitimate read and up-
date requests for the data objects to go through a trusted compo-
nent which maintains a hash tree and uses it to verify the integrity
of the data before proceeding. It can be shown that as long as the
root hash is kept in persistent trusted memory, then it is possible
to achieve tamper-evident operation, even if hash tree nodes them-
selves are stored in untrusted memory. This is because the use of
collision-free hash functions means that even if the adversary can
illegitimately change the data objects or any of the nodes in the
tree, it would be computationally infeasible for him to produce a
combination of these corresponding to a different set of leaf node
values but hashing to the same root hash node.

In previous work, different forms of such a trusted component
have been proposed and used. (The reader is referred to the papers
cited here for alternative explanations of how Merkle hash trees
work.) Applications involving authenticated dictionaries [21] and
trusted databases [18] have been proposed that use a trusted com-

TPM_HASHTREE
_EXEC_CERT

newCounterBlob
signature

mode
nonce

Hash Tree State

newCounterBlob
curPosition

curOrigHash

mode

curNewHash

nonce

rootHash

Root Hash
(non-volatile)

countValue data authDataBlobcounterID
TPM_COUNTER_BLOB

address randomID
TPM_COUNTER_ID

h1

h10 h11

h1100

h110

h1101

h111

c1101c1100c1011c1010c1001c1000 c1110 c1111

if last step is OK,
update internal rootHash

and produce execution certificate

aikHandle, mode, nonce, c1101,
stepInputs = [h1100, h111, h10])

TPM_ExecuteHashTree(
Command from Host to TPM

aikHandle

Figure 2: Hash tree-based scheme data structures and exam-
ple. The counter blobs (squares) and hash nodes (circles) are all
stored in the host’s memory. To read or update counter c1101 ,
the host sends the TPM the command shown. Dashed circles
show the inputs given to the TPM. The shaded internal tree
nodes are computed internally by the TPM given these inputs.
Arrows show the flow of computation inside the TPM.

puter running trusted software to authenticate data stored in storage
that is accessible to other untrusted computers. The AEGIS project
[27] proposes a secure CPU which ensures privacy by encrypting
any data it stores in main memory, and decrypting it internally. To
protect itself against replay attacks on its externally stored data, the
AEGIS processor uses a Merkle tree with the root hash stored in
trusted memory inside the secure CPU. In other recent work, hash
trees have also been proposed as way of protecting the data in-
tegrity and freshness in a system with a TPM and the Nexus trusted
OS [31, 26]. In this case, as in the case of Microsoft’s scheme for
virtual monotonic counters cited in Sect. 1, the trusted component
is a trusted OS loaded through a secure boot process, and requires
not only a TPM, but also a trusted BIOS, and certain security fea-
tures in the main CPU and hardware of the system.

Our new scheme borrows the idea of using Merkle trees from
these previous works, but takes it further by allowing the trusted
component to be a simple and passive coprocessor like the TPM,
instead of a more complex and active one, such as a main CPU like
AEGIS, or a trusted OS like NGSCB or Nexus.

TPM Implementation. Figure 2 presents the basic version of our
scheme, which uses a new TPM command, TPM ExecuteHash-
Tree, shown in Fig. 3. In this scheme, the data objects being pro-
tected by the Merkle tree are a set of counter blobs, each represent-
ing an independent virtual monotonic counter. Aside from contain-
ing the actual value of the counter (countV alue), each counter

Command: TPM_ExecuteHashTree
Inputs: int aikHandle, byte mode

 TPM_COUNTER_BLOB counterBlob
 TPM_NONCE nonce

TPM_DIGEST stepInputs[]
(optional) byte[] command

Outputs: If successful, returns TPM_HASHTREE_EXEC_CERT
(or output of command)

Else returns error code
Actions:
1. Check authorizations for the AIK, for counterBlob, and for command

and ABORT on failure (i.e., return error code and clear hts)
2. Check mode and ABORT if illegal
3. Check counterBlob.counterID.address and ABORT if illegal

4. HASHTREE_START routine:
Initialize the Hash Tree State
a. Create a new TPM_COUNTER_BLOB, newCounterBlob

i. Copy all fields of counterBlob to newCounterBlob
ii. if mode is INCREMENT then

(1) newCounterBlob.countValue
 = counterBlob.countValue + 1

(2) newCounterBlob.data = nonce
iii. else if mode is CREATE then

(1) newCounterBlob.counterID.randomID
 = new random number

(2) newCounterBlob.countValue = 0
(3) newCounterBlob.data = nonce
(4) counterBlob = null // old blob should have been null

b. Setup TPM’s internal Hash Tree State for leaf node
i. Let hts be the TPM’s internal Hash Tree State
ii. Set hts.aikHandle = aikHandle
iii. Set hts.mode = mode
iv. Set hts.nonce = nonce
v. Set hts.newCounterBlob = newCounterBlob
vi. Set hts.curPosition = newCounterBlob.counterID.address
vii. Compute hts.curOrigHash = Hash(counterBlob)
viii. Compute hts.curNewHash = Hash (newCounterBlob)
ix. if mode is equal to RESET then

hts.curNewHash = KnownNullHashes[height of position]
x. hts.command = command

Notes:
1. mode can be READ, INCREMENT, CREATE, or RESET.

EXECUTE is an option bit which can be OR’d into mode
(usually with INCREMENT or READ).

2. EXECUTE can be used with or without command. If used without
command, hts is remembered so it can be checked by the immediately
following command given to the TPM

5. HASHTREE_STEP loop:
FOR each i = 0 TO stepInputs.length DO
a. siblingHash = stepInputs[i]
b. isRight = hts.curPosition & 1 // (i.e., get lowest bit)
c. // Set hts “current” state to refer to parent

if (isRight is 0) then
hts.curOrigHash = Hash(hts.curOrigHash || siblingHash)

 hts.curNewHash = Hash(hts.curNewHash || siblingHash)
else

hts.curOrigHash = Hash(siblingHash || hts.curOrigHash)
hts.curNewHash = Hash(siblingHash || hts.curNewHash)

d. hts.curPosition = hts.curPosition >> 1 (right shift)
6. Check if computed original root hash is same as trusted root hash

a. If (hts.curPosition is not 1)
 then ABORT // not enough stepInputs presented

b. If ((hts.curOrigHash is NOT EQUAL to TPM.rootHash)
 AND (mode is NOT EQUAL to RESET))
 then ABORT // original values fed in were not correct

7. Execute command according to mode
a. If (hts.mode is INCREMENT)

 OR (hts.mode is CREATE)
 OR (hts.mode is RESET)
 then TPM.rootHash = hts.curNewHash

b. If (hts.mode does NOT have EXECUTE bit set)
 OR (hts.command is null) then
i. Create new TPM_HASHTREE_EXEC_CERT execCert
ii. execCert.mode = hts.mode
iii. execCert.nonce = hts.nonce
iv. execCert.newCounterBlob = hts.newCounterBlob
v. execCert.signature

 = Sign(hts.mode || hts.nonce || hts.newCounterBlob)
 using AIK specified by hts.aikHandle

vi. if (hts.mode has EXECUTE bit set)
then remember hts for immediately following command
else erase hts

vii. Return execCert
c. else // i.e., hts.mode has EXECUTE and hts.command is not null

i. Get count-limit condition pertaining to hts.command
ii. Compare mode and counterID in count-limit condition

with those in hts, and ABORT on failure
iii. If hts.newCounterBlob.countValue is within the valid

range in count-limit condition then execute hts.command
and return result, else ABORT

3. For READ and INCREMENT, input counterBlob should have the
current counter value. For CREATE, input counterBlob contains
address and encrypted authDataBlob from owner/creator. For
RESET, input counterBlob should have address of node or subtree to
be reset, and encrypted authDataBlob with TPM owner authorization.

Figure 3: The TPM ExecuteHashTree command pseudocode.

blob also contains a counter ID, an arbitrary data field, and an
encrypted data blob for authentication information, authDataBlob.
The counter ID is composed of an address field, and a randomID
field. The address contains the position of the counter blob in the
tree, expressed as a “1” followed by the binary representation of
the path from the root to the counter blob, while the randomID field
contains a random number generated by the TPM at the creation of
the virtual monotonic counter. The use of the random ID field here
allows the address of a virtual counter that has been destroyed to be
reused without compromising any clients who depend on the old
counter at the same address. The arbitrary data field is not strictly
necessary for basic functionality, but is used to make certain ap-
plications possible. In our current implementation, we simply use
this field to store the nonce given by the client. Finally, the en-
crypted authDataBlob field is analogous to the authorization data
fields in key blobs in the TPM. It specifies a secret that a caller to
the TPM would be required to demonstrate knowledge of, through
the TPM’s OSAP or OIAP authorization protocols, before the TPM

would allow any operation involving this counter blob to proceed.
A client can use this authorization mechanism to prevent the host
from performing fake increments. (Note that the TPM’s OSAP and
OIAP protocols work without exposing the authorization secret in
the clear between the TPM and the caller. Thus, it is possible
for the host to act as a man-in-the-middle between the client and
the TPM without learning the secret.) Confirmations or specially-
constructed nonces, as discussed in Sect. 4, can also be used instead
of or in addition to this authorization mechanism.

In the beginning, before any virtual counters are created, all the
counter blobs are assumed to have a special null value (i.e., all-
zeros), and both the TPM and the host assume a hash tree computed
from such null values. Since such a tree is symmetric, the hashes
corresponding to internal nodes at the same depth are equal to one
another. Thus, we can pre-compute all of the nodes of the tree by
pre-computing a set of log2N distinct null hashes, one for each
level, given a maximum number of virtual counters N . The value
of the highest-level hash is used as the initial value of the root hash.

The pre-computed values of all the null hashes are also kept by
both the TPM and the host for reference. The host can use these
constants when it needs to produce a hash for an unused or reset
subtree. The TPM can store these constants in internal ROM (or
hardwired circuitry) and use them when resetting subtrees in the
tree (at the request of the host) as is done in line 4b.ix of Fig. 3.

Starting from this null state, the host then responds to each legit-
imate create, read, increment, and destroy request from a client by
invoking the TPM ExecuteHashTree command, shown in pseu-
docode in Fig. 3.4 This command takes in an AIK handle, a mode

parameter to specify the desired operation, a nonce, and the cur-
rent counter blob corresponding to the desired virtual counter (or an
empty counter blob with only the address field and encrypted au-
thorization blob, when creating a new counter or resetting a counter
or subtree). It also takes a list, stepInputs, corresponding to the
hashes of the siblings of the leaf’s ancestors along the path to the
root. (An example is shown in Fig. 2.) These are provided by
the host from the host’s copy in untrusted memory. Given these
input parameters, the TPM computes the root hash correspond-
ing to the current counter blob. For create, increment, and re-
set operations, the TPM also generates an updated counter blob
(newCounterBlob) and computes the corresponding root hash for
it. If the root hash computed using the current (original) counter
blob matches the TPM’s internal copy of the root hash, then the
TPM replaces the internal copy with the new computed root hash,
and generates an execution certificate signed by the specified AIK.
This execution certificate can then be passed by the host to the
client, which can then verify it by checking the counter ID, nonce,
and mode in it, and verifying the signature from the AIK.

Whenever an update is made to any of the counter blobs, the host
also updates the corresponding hash tree nodes in its own untrusted
memory. Note that the TPM only needs to produce the final execu-
tion certificate, and does not need to output the intermediate values
in the hash tree. This is because the host can easily compute these
values by itself given the new counter blob. Also note that the host
need not store counter blobs or hash tree nodes in subtrees with no
virtual counters, since the hash values of these are pre-computed as
discussed above. Thus, even if a host may logically have a tree con-
taining billions of virtual counters, it only needs memory propor-
tional to the number of active virtual counters. And, significantly,
the TPM only needs a small constant amount of memory, namely,
non-volatile memory for the root hash, and a constant amount of
volatile memory for the hash tree state used during the execution of
the algorithm.

We assume that TPM ExecuteHashTree, like other TPM com-
mands, is an atomic operation. That is, we assume that the TPM
will not allow other TPM commands to be invoked while TPM Ex-
ecuteHashTree is still executing. This satisfies the atomicity re-
quirement for our virtual monotonic counter functions since such
functions are implemented here directly as a single call to TPM Ex-
ecuteHashTree.

Also note that if there is a power loss during an increment op-
eration before the host is able to get the execution certificate from
the TPM or return it to the client, then the host can simply return
an error code to the client. The client can then issue a Read-
Counter request to check whether the counter has actually been
incremented or not. (The client, not the host, needs to do this be-
cause authorization may be needed.) In this case, the host performs

4We leave the name of this command general since it is possible to
define other ways for using this command by simply defining new
modes. This allows this command to potentially support other use-
ful mechanisms as well in the future (e.g., non-monotonic virtual
trusted storage, etc.)

the ReadCounter operation using a new counter blob derived from
the old blob by incrementing the count value, and feeds this to
TPM ExecuteHashTree. If the operation succeeds, then the host
and client know that the counter has been incremented, otherwise,
the client simply reissues the IncrementCounter command. (Note
that this assumes that a power loss while TPM ExecuteHashTree
is executing results in either the root hash being untouched or be-
ing updated to its new correct value, but not an indeterminate value.
This is actually not guaranteed by the current TPM 1.2 specifica-
tions for NVRAM in general, but is possible to guarantee with very
high probability given extra internal hardware in the TPM.)

Variants. Variants of this instruction are possible. One variant
is to split TPM ExecuteHashTree into two commands: a start
command, which the TPM calls at the beginning with the AIK han-
dle, mode, nonce, and original counter blob, and a step command,
which takes a single step input (sibling hash) and is called for each
successive step up the tree. The start command would essentially
correspond to lines 1 to 4 of Fig. 3 and the step command would
correspond to one iteration of the loop in line 5, and then lines 6
and 7 when the position reaches the root. (Atomicity can be pre-
served by treating the start-step sequence like an exclusive transport
session.) This has the advantage that it only requires the TPM to
hold a very small of amount data in secure volatile memory at a
time, and can be useful if the input buffer or the internal volatile
memory are small. Another variant would be to modify the hash
tree data structure such that counter blobs are contained in internal
hash tree nodes as well, and not just the leaves. Combined with the
start-step variant described above, this variation makes it possible
to have dynamically growing hash trees that enable us to support a
truly unbounded number of virtual counters.

We note, however, that even if we assume a tree of depth of 32,
supporting 232 virtual monotonic counters, the stepInput array
(which forms the bulk of the input data) only amounts to 32 hash
values of 20 bytes each, or 640 bytes total. This is still consider-
ably smaller than the 4K byte input buffer that present-day TPMs
already have. Thus, we expect that the TPM ExecuteHashTree
command as we have defined it will be a practical solution for ac-
tual TPMs.

Other variants are also possible, such as allowing for multiple
independent hash trees, and allowing for multiple increments of
different counters to be done in one step (saving the time it takes
to produce the final execution certificate signature). A general opti-
mization technique worth noting that can be applied orthogonally to
any variant scheme would be that of caching certain internal nodes.
This would improve performance by allowing a TPM to stop check-
ing the hashes as soon as it reaches a cached node in its internal
secure volatile memory. This technique was originally proposed in
[11] in the context of memory integrity checking schemes, and was
used in AEGIS [27].

6. COUNT-LIMITED OBJECTS
We can implement the idea of count-limited objects or clobs pre-
sented in Sect. 2 by combining our proposed new features for vir-
tual monotonic counter features with existing features in the TPM
for supporting encrypted keys and data blobs. In this section, we
show how this can be done.

Background: wrapped keys and encrypted data blobs. One of
the useful features of existing TPM chips today is the ability to sign
or decrypt data using a wrapped key – i.e., a public-private keypair
where the private key has been encrypted (by the TPM itself or by
an external party) using a key protected by the TPM (e.g., the SRK

mentioned in Sect. 3), such that it can only be decrypted and used
internally by a particular TPM. There are several forms of such
keys and many applications.

A non-migratable key, for example, is a wrapped key where the
private key is generated internally by a TPM and encrypted using
that TPM’s unique key, so that it can only be used by that particular
TPM. If one encrypts data using the public part of such a key, then
the encrypted data can only be decrypted by the particular TPM
with the private key. This allows one to tie data to a particular
machine, such that, for example, if a data thief somehow copies the
entire hard disk of a PC, the thief cannot decrypt the data without
stealing the actual PC itself. This feature also has potential use in
DRM since it can allow a media distributor, for example, to send
protected media to a consumer such that the data can be decrypted
only on the consumer’s particular TPM-enabled device.

An externally wrapped key is another useful kind of wrapped
key. Here, an external party, Alice, takes a public-private keypair
that she owns (i.e., where the private key is known only to her) and
creates a wrapped key for another party, Bob, by using the public
key of the SRK of Bob’s TPM. If Alice then gives the wrapped
key to Bob, Bob can now use this key to sign data with Alice’s
signature (if it is a signing key), or to decrypt data encrypted with
Alice’s public key (if it is a decryption key). However, Bob can
only do this on the machine with his particular TPM. If he tries to
use the wrapped key on another machine, it will not work because
the other machine would not be able to decrypt the private part of
the wrapped key. Thus, for Alice, this is a kind of key delegation
mechanism that gives the assurance that her delegated key (i.e., the
wrapped key) can be used only on a specific machine (i.e., Bob’s).

In addition to wrapped keys, the TPM also supports encrypted
data blobs. There are two forms of these. Bound data blobs are
blobs that have been encrypted using the public key of a wrapped
key protected by a TPM. Such blobs can be created by anyone
(without using a TPM), but can only be decrypted on a particular
TPM using a particular wrapped key. Sealed data blobs are cre-
ated using the TPM itself, and can only be unsealed by the same
TPM and only if the values in the platform configuration registers
(PCRs) of the TPM match the values specified in the sealInfo

field of the data blob. Such blobs can be used to hold data that can
only be decrypted while a certain trusted program (represented by
the particular PCR values) is running.

Wrapped keys and sealed data blobs can also include an en-
crypted usage authorization secret. This adds an extra layer of se-
curity which ensures that a key or a blob can be used only if the
caller knows its authorization secret. (As noted earlier, the TPM’s
OSAP and OIAP authorization protocols work without exposing
the authorization secret in the clear, so it is possible for the host to
act as a man-in-the-middle between the client and the TPM with-
out learning the secret.) In addition, wrapped keys, like sealed data,
can also be tied to PCR configurations such that they can only be
used while running certain trusted software.

A wrapped key can also be a migratable key. Such a wrapped
key includes a migration authorization secret encrypted in the blob
together with the private key and the usage authorization secret. A
migratable key wrapped for a source TPM A can be migrated to
a destination TPM B by invoking a migration command on TPM
A with the public key of TPM B and the migration authorization
secret of the key. (Note that the TPM does not certify that the other
TPM’s public key is authentic, but relies on the assumption that the
trusted party who knows the migration authorization secret trusts
the public key of the other TPM.)

Implementing count-limited objects. Currently, there is no limit

to the number of times that a host can use a wrapped key or en-
crypted data blob as long as it has the correct TPM, and authoriza-
tion secret. If the new mechanisms for virtual monotonic coun-
ters that we propose in Sect. 5 are included in a future version of
the TPM, however, then these can be used to provide count-limited
versions of the TPM’s existing abilities to handle wrapped keys and
encrypted data. This leads to the various forms of clobs described
in Sect. 2.

To do this, we first modify the existing TPM data structures
for wrapped keys and encrypted data blobs to include an optional
count-limit condition field, containing the counter ID of a virtual
monotonic counter plus, the mode and the range of counter values
that are required for valid use of the key or data. At present, both the
TPM KEY and TPM STOREDDATA structures for wrapped key
blobs and sealed data blobs, respectively, already have a variable-
length field for specifying a required PCR configuration, if desired.
We propose to have the TPM allow a count-limit condition structure
to be used in this field instead of, or in addition to, the PCR infor-
mation. (Note that the count-limited condition, like the PCR infor-
mation, is stored in unencrypted form to allow the host to know the
condition. However, as done with wrapped keys and sealed data
blobs in TPM 1.2, a hash of the unencrypted parts of the blob –
including the condition – is included in the encrypted part of the
blob. This prevents the host from altering the count-limit condi-
tion.) Correspondingly, the TPM LOADKEY command must be
changed to include the count-limit condition information as part of
the information loaded and kept in the TPM’s memory so that it can
be checked whenever the key is used. (Note that TPM LOADKEY
need not do any checking itself, though.)

Second, we modify the TPM ExecuteHashTree command pro-
posed earlier to allow for an EXECUTE option bit in the mode

input parameter. If this bit is set, then the TPM will remember the
final hash tree state (hts) of a successful TPM ExecuteHashTree
execution such that it can be checked by the TPM command in-
voked immediately after it (and then erased afterwards). In typical
use, we expect the EXECUTE bit to be used with the INCRE-
MENT mode so that using a clob requires incrementing a counter.
However, it may also be used with the READ mode to allow us to
create clobs that do not require the counter to be incremented each
time they are used. This allows for clobs that the host can use an
unlimited number of times until someone else (e.g., the owner of
the counter or another clob) increments the counter.

Finally, we modify the TPM Sign, TPM Unbind, and TPM Un-
seal commands to add a simple check when using keys or data
blobs that have a count-limit condition field. Specifically, these
commands must first check the count-limit condition field (if any)
in the corresponding loaded key information or data blob and make
sure that the counterID and mode in the TPM’s hash tree state
match the values in the count-limit condition, and that countV alue

is within the valid range. (In the case of TPM Unseal, we also
modify the command such that if there is a count-limit condition,
then it does not require the sealed data blob to have a PCR config-
uration or tpmProof field.)

To allow for virtual counters that can only be incremented by us-
ing a clob (and not by calling TPM ExecuteHashTree by itself),
we can also allow the desired TPM command (e.g., TPM Sign,
TPM Unbind, or TPM Unseal), together with all its input param-
eters, to be included as an optional variable-length input parame-
ter of TPM ExecuteHashTree in a similar way to how wrapped
commands are included in the TPM 1.2’s TPM ExecuteTransport
command). This is useful, for example, in implementing sequenced
clobs as described in Sect. 2, which require that the shared counter
cannot be incremented except by executing the clobs themselves.

Using count-limited objects. Given these modifications, using a
count-limited object, or clob, is easy. If Alice, the issuer or dele-
gator, wants to give a count-limited object to Bob, the recipient or
delegatee, then they take the following steps:

1. First, Alice checks that Bob’s host machine has a genuine and
secure TPM. Exactly how this is done is not the focus of this
paper, but well-known schemes for doing this include Direct
Anonymous Attestation [4], a scheme supported in TPM 1.2
that allows verification while preserving Bob’s anonymity.

2. Then, if Alice wants to create an n-time-use clob, or the first
clob among a set of shared-counter interval-limited clobs,
she gets a new virtual monotonic counter ID from Bob by in-
voking his CreateCounter function remotely. Alternatively,
she could also use an existing counter ID of Bob’s, if she
wants to create a shared-counter clobs using that counter.

3. Alice then constructs the count-limit condition field with the
counter ID, count range, and mode (i.e., READ or INCRE-
MENT) that she desires. A mode of INCREMENT means
that the counter must be incremented before each use of the
clob. A mode of READ means that the counter can be used
an unlimited number of times until someone else increments
the counter.

4. Given the appropriate counter ID, Alice then uses the public
key of Bob’s TPM’s SRK (or another storage keypair whose
private key is known by Bob’s TPM but not revealed to Bob)
to construct a wrapped key blob or sealed data blob for Bob.
The resulting encrypted blob is usable only on Bob’s TPM,
and only according to the count-limit condition included in it
by Alice.

5. On Bob’s side, Bob can use a count-limited key or data blob
exactly as he does an ordinary TPM wrapped key or data
blob, except that he has to first invoke TPM ExecuteHash-
Tree immediately before calling his desired operation (e.g.,
TPM Sign, TPM Unbind, or TPM Unseal). This reads or
increments the appropriate counter, and sets up the hash tree
state so that the desired operation called after it can check it
before proceeding. Alternatively, he can also feed the desired
TPM command as an additional input into TPM Execute-
HashTree itself.

Count-limited migratable objects. One of the more intriguing
variants of clobs are n-time migratable or n-copy migratable ob-
jects, described briefly in Sect. 2. To support such clobs, we create
new commands that work similarly to the TPM’s existing set of
commands for supporting migratable keys, except that they take
into account the count-limit condition field. These new migration
commands must enforce the condition described in Sect. 2. Specif-
ically, if a clob’s count-limit range is 1 to n and its correspond-
ing virtual counter on the source TPM A currently has the value c

(where c ≤ n), then TPM A can create a new clob for the desti-
nation TPM B with a count-limit range of 1 to k provided that the
virtual counter of TPM A’s clob is first incremented by k and the
new counter value does not exceed n. Given this rule, a clob can
be circulated indefinitely (i.e., TPM B can migrate the clob back
to A, thus creating a new clob with a separate counter from the
original one), but the total usable ranges of the count limits of the
original clob and clobs migrated from it (as well as clobs migrated
from those) cannot exceed n at any one time, where n is the count
limit of the original clob.

To use migratable clobs, we simply use the modified TPM com-
mands described above (e.g., TPM Sign, TPM Unbind, or TPM-
Unseal) immediately after a TPM ExecuteHashTree command

as before. The mode in the count-limit condition of a migratable
clob determines how the clob can be used. If the mode is INCRE-
MENT, then the total number of times that a clob can be used is
limited to n regardless of which machine uses them. If the mode is
READ, then a host holding a clob can use it an unlimited number
of times, as long as it has not been migrated from that host more
than its count limit. (That is, if the host migrates the clob more
than n times where n is the count limit in the host’s copy of the
clob, then the counter exceeds the count limit and the host’s TPM
starts disallowing use of that clob.) This allows for a clob that can
be circulated indefinitely and used an unlimited number of times
on multiple hosts, but only in at most n hosts at any one time. This
variant is notable because it allows for the media “lending” exam-
ple mentioned in Sect. 2, among other applications.

(Note that here, we assume that a new virtual counter must be
created at the destination TPM and the counter ID of this new
counter must be included by the source TPM in the reencrypted
blob. However, if the destination TPM does use an old counter
whose value is not zero, then there is no security problem because
at worst, it can only reduce the count limit on the blob, and not
increase it.)

One important question for n-time migratable blobs is that of
how the source TPM can know that the destination public key is
that of a valid and trustworthy TPM. In the current version of the
TPM (1.2), the migration commands assume that either the owner
of the TPM or the process invoking the commands (which could be
a remote process on a trusted machine) is trusted to verify the desti-
nation public key and to only authorize migration if the destination
public key is that of a valid TPM. The TPM itself does not check
the trustworthiness of the destination public key given to it. How-
ever, in our model, neither the owner of the TPM nor any processes
in the host are trusted. Thus, the TPM needs to be able to verify the
destination public key by itself so that the secret data in the blob
is guaranteed to only be reencrypted for another trusted TPM, and
never exposed to any untrusted parties.

One possible solution to this problem is to include a verification
key inside the clob. This verification key should be the public key
of a certificate authority trusted by the issuer of the clob. (Like the
count-limit condition, the verification key can be unencrypted but is
included in a hash that is in the encrypted part of the blob to prevent
the host from altering it.) Then, when the clob is to be migrated,
the receiving host presents a valid certificate chain, rooted at the
trusted certificate authority, to certify the destination key that it is
giving. (An example would be a certificate chain including a DAA
signature [4] on the receiving TPM’s AIK, which in turn certifies
the destination key as a non-migratable storage key on that TPM.)
Given the verification key in the original blob and this certificate
chain, the source TPM can then verify the destination public key
and reencrypt the blob only if the destination key is valid. (Note
that the same verification key is included in the reencrypted blob.)

Count-limited TPM operations. Existing TPM 1.2 chips already
support the idea of wrapped commands as part of transport ses-
sions. If we extend this idea by creating a clob containing a wrapped
command and a count-limit condition, then we can apply various
types of count-limit conditions (e.g., n-time-use, n-out-of-m, n-
time migratable, sequenced, etc.) to any operation that the TPM is
capable of executing. Furthermore, if we create sequenced clobs
(as described in Sect. 2), with such wrapped commands, then we
can create a count-limited sequence of TPM operations. This would

be analogous to a transport session, with the advantages that: (1)
it would be count-limited, and (2) it can be executed by the un-
trusted host without needing online contact with the remote party
issuing the operations.5 Note, however, that in these cases, the
sequences are no longer atomic operations, unlike the individual
wrapped commands, so care must be taken in designing them. Al-
ternatively, we can also allow a single clob to contain a small num-
ber of wrapped commands in sequence (as would fit in the TPM’s
internal memory), so that atomicity can be ensured by the TPM as
it executes the operations internally.

Variant: Using physical monotonic counters. Note that count-
limited objects can also be implemented if the TPM had a larger
– but not necessarily unlimited – number of physical monotonic
counters. Suppose, for example, that we have a trusted (tamper-
resistant) table of N finite-sized “slots” in NVRAM, each indexed
by an address i. We can use this table to store up to N TPM -
COUNTER BLOB structures, each representing a virtual mono-
tonic counter. Using this trusted table, the read and increment op-
erations can be implemented by simply having the TPM read or
increment the appropriate blob directly (i.e., no hash tree compu-
tation is required). As in our hash-tree based scheme, we use a
random ID field together with the slot address of a blob to give
the blob’s virtual counter ID. This allows us to safely reuse the
NVRAM space of a counter which has been destroyed. Given such
an implementation, all the variations of clobs we have described
can be implemented just as before, except that no hash tree compu-
tations are needed anymore to verify and update the counters.

Such an implementation would have the benefits of better perfor-
mance and reliability (since there is no risk of the host losing the
counter blobs and hash tree nodes). The main disadvantage here,
of course, is that the number of monotonic counters that the host
can keep track of at a time would be limited, and thus the number
of clobs that a host can hold would be limited too. In some applica-
tions, however, this may be acceptable. For example, in digital cash
applications, this would simply mean that the host can only hold at
most N digital coins at a time, and would need to use a coin before
it can get a new one. This is not different from the real world, where
a real wallet can only hold a limited number of real coins. The only
requirement, then, is for the number of secure NVRAM slots N to
be large enough for the needs of the user. Thus, if it becomes pos-
sible in the future to implement sufficiently large tamper-resistant
NVRAMs, then this variant may be a practical way to implement
virtual monotonic counters and clobs.

Note, however, that even if it does become possible to make
tamper-resistant NVRAMs large enough for users’ needs, using our
hash-tree scheme still has its benefits. For one, it would still be
much easier for the TPM manufacturer to guarantee the physical
security of a single NVRAM register for storing the root hash than
that of a large number N of NVRAM slots. Thus, a TPM using our
hash-tree scheme can arguably be made cheaper for the same level
of security (or alternatively, more secure for the same price) than
one depending on many secure NVRAM slots.

Variant: unique clob counter IDs. Another interesting imple-
mentation variant is one where the counter ID of a clob is derived
from a function (such as a collision-free hash) that generates a
unique ID based on certain parts of the clob’s contents. This al-

5In TPM 1.2 transport sessions, wrapped commands are encrypted
with a random session key, and thus requires online contact with
the remote party. In the case of a clob with a wrapped command,
this is unnecessary since the wrapped command can be encrypted
using the public key of the TPM’s SRK, just as in other clobs.

lows us to skip the step of having to create a new virtual counter on
the host before creating the clob. In this case, the issuer of the clob
can simply create the clob and give it to the host. Then, just before
using the clob for the first time, the host issues a special command
to the TPM, which then computes the unique counter ID from the
blob and gives it to the host.6 Given this unique ID, the host then
performs a CreateCounter operation using the given address.7

It is important to note that this scheme requires a counter ID ad-
dress space large enough (e.g., 160-bits) so that the probability of
collisions is negligibly small. Otherwise, such collisions can allow
someone or something else other than the clob itself to increment
the clob’s counter (whether maliciously or unintentionally). Thus,
this is a case where using our hash-tree-based scheme for imple-
menting virtual monotonic counters offers a significant advantage
over using physical monotonic counters as described earlier. Since
our hash-tree-based scheme requires only O(logN) steps for each
counter operation, implementing even a very large virtual counter
address space would still take a reasonable amount of time, and
can still be useful in many non-time-critical applications. For ex-
ample, as noted in Sect. 7, if we assume the speed of present-day
TPM chips, then handling 160-bit counter ID addresses would only
take around 3 s – which is an acceptable delay if, for example, the
clob in question is used for decrypting a media file being migrated
from one secure media player to another. In contrast, it is not ob-
vious how one can implement, or even simulate, a collision-free
160-bit virtual counter ID address space using physical monotonic
counters, even if it were cheap to implement thousands or millions
of these physical counters. (An interesting possibility, however, is
proposed in [25].)

7. PERFORMANCE ISSUES
Experimental TPM Performance Results. To get a feel for the
practical performance that we can expect to get from our schemes,
we measured the execution times of various TPM instructions on
an HP DC7600 with a Broadcom TPM 1.2 chip. We used IBM’s
tpmdd device driver [14] as the low level device driver providing
the TDDL-level interface, and used JTPM, a Java API that we have
developed ourselves to allow us to access TPM 1.2-specific func-
tionality such as monotonic counters and transport sessions, which
are not supported by other freely available TPM software stacks to-
day. Note that the TPM is slow enough compared to the main CPU
that any slowdown due to the use of Java (vs. C) was verified by us
to be negligible.

Roughly, we found that on average, TPM PCRExtend (which
computes the hash of two 160-bit values concatenated together)
takes about 12 ms, generating a signature takes about 0.9 s, and
a call to TPM IncrementCounter wrapped in a logged transport
session takes about 1.4 s (about 0.4 s to increment the counter, and
about 1 s to generate the signature of the transport log). However,
on the Broadcom chip, the latter can only be done once every 2.1
s. (To prevent burnout of the monotonic counter’s NVRAM, the
TPM 1.2 specifications allow TPM implementations to throttle the
monotonic counter to be incremented only once every 5 s.)

We have implemented the log-based scheme described in Sect. 4,
and have verified that, as predicted, we can indeed execute an In-
crementCounter operation approximately once every 2.1 seconds
(with the operation itself taking around 1.4 s but requiring a wait

6The host cannot compute this ID by itself because the function for
computing the ID may use secrets encrypted in the blob itself so
that the ID can only be computed internally by the TPM.
7The TPM in turn cannot “create” the counter by itself because it
needs the step inputs from the host in order to update its root hash.

before it is used again). We cannot implement the hash-tree based
scheme on a real TPM chip since TPM 1.2 does not support our
proposed TPM ExecuteHashTree command. However, from our
measurements above, we can preliminarily estimate that the hash-
tree based scheme would take about 1.7 s per operation assuming
a 32-level hash tree allowing a maximum of 232 virtual counters
(i.e., 0.9 s signing time, plus 32 hash operations at 12 ms each, and
around 0.4 s to write to the NVRAM), and would take only about
3.2 s per operation (i.e., same computation as before with 160 hash
operations instead) even if we used a 160-bit counter ID address
space allowing a maximum of 2160 independent virtual counters.
Moreover, in a real implementation, the actual time would proba-
bly be less because the 12 ms cost per hash operation that we use
in these estimate is actually the cost of invoking a separate TPM
command. This cost likely includes a significant amount of com-
munication overhead which will not exist in our proposed imple-
mentation where all the inputs can be given in one command.

8. RELATED WORK
The idea of implementing “virtual monotonic counters” using a sin-
gle physical monotonic counter and untrusted storage was previ-
ously presented in the context of TPM 1.2 by the TCG [29] and
NGSCB by Microsoft [24]. Their schemes, however, rely on a
trusted OS, which in turn relies on a trusted BIOS and special secu-
rity support in the CPU and other hardware (as noted in Sect. 1). To
our knowledge, we are the first to present a scheme for implement-
ing a potentially unbounded number of virtual monotonic counters
trusting only in a small passive coprocessor like the TPM with only
a very small amount of secure non-volatile storage, without trusting
in the OS or even the CPU.

The idea of data, operations, or programs that can only be used
a certain number of times is an old idea that forms the core of
several computer security application areas such as DRM, digital
cash, and others. For example, one may consider limited-used trial
software or media that expire after n uses or n days as a form of
count-limited object. Similarly, digital coins in existing digital cash
schemes are another form of count-limited object since they are not
supposed to be used more than once.

In [2], Bauer et al. present a logic model that can be used to
analyze, develop, and prove systems that use what they call “con-
sumable credentials” – i.e., credentials that provide authorization
only a limited number of times, such as coins, tickets, and simi-
lar tokens in both the real and digital worlds. However, as far as
we understand, although they discuss how consumable credentials
(which are essentially count-limited objects as well) can be used,
they do not answer the question of how these can be implemented.

To date, there have been two main approaches to enforcing the
usage limitations of consumable credentials and count-limited ob-
jects. One approach is to trust that the hardware and software of
the executing platform will prevent a count-limited object from be-
ing used outside of its count-limit. This approach is used in existing
DRM schemes for limiting the use of software and media files. The
problem with this approach, however, is that many implementations
of this approach today – including most DRM applications running
on PCs – rely on general-purpose non-secure hardware, and imple-
ment security through obscurity in the trusted operating system or
trusted software. This makes it possible for motivated hackers to
eventually be able to break security by disassembling the software.

An alternative approach is not to trust the hardware or software
at all, but to design the application such that if a user uses a count-
limited object beyond its limit, such use will be detected eventually
and the user identified and punished. This approach is used in ap-
plication areas such as digital cash. In Chaum’s e-cash scheme

[6], (as well as Brands’ scheme [3], described earlier in Sect. 2),
for example, the idea of blind signatures allows users to engage
in legal transactions offline and anonymously, but ensures that if a
user double-spends an e-cash coin then his identity will eventually
be exposed to the issuing bank, and the bank can prosecute him.
More recent examples of “one-time” or “k-time” operations of this
type and their applications include [5, 17, 22, 28], among others.
The approach used by these schemes has the advantage of being
secure even if the hardware or software used by the user is com-
promised. The disadvantage, however, is that it does not actually
prevent malicious activity from happening in offline transactions
but only detects and punishes it later. Thus, it is not effective if it is
possible for the adversary to hide and escape from being punished,
or if there is a need to actually prevent the malicious activity from
happening at the time of the offline transaction itself.

Our approach is a variation of the first approach above, with the
difference that we do not rely on the security of the host CPU and
OS, but only on that of a much smaller, simpler, and passive co-
processor such as the TPM. This makes our solutions more secure
and harder to break than other existing DRM solutions that rely on
a trusted CPU and OS.

In recent work, Goldwasser et al. have coined the terms one-
time programs and n-time programs to refer to general programs
that can only be run a limited number of times [12]. They have
also shown the first implementation (to our knowledge) of such
programs using very simple trusted hardware, and have proposed
the application of such programs to digital cash and DRM. Their
scheme uses a very different technique from ours, and assumes
even simpler trusted hardware than ours does. Our schemes and
ideas about count-limited keys, data, and TPM operations, and the
applications of such count-limited objects to digital cash, DRM,
and other application areas were developed independently of Gold-
wasser et al.’s work, and do not use any of their techniques. Inspired
by their ideas, however, we are developing the idea of count-limited
general-purpose programs in ongoing work.

9. CONCLUSION
In this paper, we make two major contributions: First, we present
a hash tree-based scheme that makes it possible to implement a
very large number of virtual monotonic counters using only a small
constant amount of trusted space and a single simple new instruc-
tion for the TPM. Unlike previous schemes, our scheme guarantees
tamper-evident operation even if everything other than the TPM on
the host platform implementing the virtual monotonic counters is
completely untrusted, including the software, the OS, BIOS, and
even the CPU. This provides a significant improvement in secu-
rity over existing schemes by making it impossible for hackers to
break the security of our scheme without physically breaking into
the TPM chip. Second, we show how we can use these virtual
monotonic counters with the existing idea of wrapped keys, data,
and commands already implemented by the TPM to implement the
new idea of count-limited objects or clobs, which have many useful
applications.

The changes to the TPM that can make all these things possi-
ble are simple, elegant, and efficient, and are easily implementable
given the internal features already present in the TPM. Thus, we
hope that the changes we have proposed in this paper will be con-
sidered for inclusion in future TPM specifications.

Meanwhile, we have also presented a log-based scheme which
can be implemented using the current TPM 1.2 chip without any
new instructions. Although the log-based scheme cannot be used
to implement clobs, it can be used for virtual trusted storage and
stored-value applications.

Finally, we note that our techniques are not limited to systems
using TCG’s TPM chip, but can also be applied to other secure
coprocessor systems as well. For example, our tree-based scheme
and our mechanisms for clobs may be a useful feature to include in
smart cards or even in security technologies meant to be embedded
in CPUs, such as IBM’s SecureBlue [15]. Even though these sys-
tems are already designed to be fully secure themselves, the benefit
of our techniques would be that they provide a way to support a
large number of monotonic counters and count-limited objects us-
ing only a small amount of trusted space. This potentially makes
it possible not only to build smaller and cheaper smart cards and
other secure components, but also to improve the security of such
components, since a small trusted computing base is much easier
to guarantee security for than a bigger one.

10. REFERENCES
[1] S. Balfe, A. Lakhani, and K. Paterson. Securing peer-to-peer

networks using trusted computing. In C. Mitchell, editor,
Trusted Computing, chapter 10. IEE, 2005.

[2] L. Bauer, K. D. Bowers, F. Pfenning, and M. K. Reiter.
Consumable credentials in logic-based access control.
Technical Report CMU-CYLAB-06-002, CyLab, Carnegie
Mellon University, Feb. 2006.

[3] S. Brands. Untraceable off-line cash in wallet with observers
(extended abstract). In CRYPTO ’93, volume 773 of Lecture
Notes in Computer Science, Aug. 1993.

[4] E. Brickell, J. Camenisch, and L. Chen. Direct Anonymous
Attestation. In Proceedings of the 11th ACM Conference on
Computer and Communications Security, 2004.

[5] L. Bussard and R. Molva. One-time capabilities for
authorizations without trust. In Proceedings of the second
IEEE conference on Pervasive Computing and
Communications (PerCom’04), pages 351–355, March 2004.

[6] D. Chaum. Blind signatures for untraceable payments. In
Advances in Cryptology - Crypto ’82 Proceedings, pages
199–203. Plenum Press, 1982.

[7] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and
G. Tsudik. Itinerant agents for mobile computing. IEEE
Personal Communications, 2(5):34–49, Oct. 1985.

[8] A. Dent and G. Price. Certificate management using
distributed trusted third parties. In C. Mitchell, editor,
Trusted Computing, chapter 9. IEE, 2005.

[9] E. Gallery. An overview of trusted computing technology. In
C. Mitchell, editor, Trusted Computing, chapter 3. IEE, 2005.

[10] E. Gallery and A. Tomlinson. Secure delivery of conditional
access applications to mobile receivers. In C. Mitchell,
editor, Trusted Computing, chapter 7. IEE, 2005.

[11] B. Gassend, G. E. Suh, D. Clarke, M. van Dijk, and
S. Devadas. Caches and Merkle Trees for Efficient Memory
Integrity Verification. In Proceedings of Ninth International
Symposium on High Performance Computer Architecture,
New-York, February 2003. IEEE.

[12] S. Goldwasser, G. Rothblum, and Y. Kalai. One-time
programs. Personal communication, June 2006.

[13] F. Hohl. Time limited blackbox security: Protecting mobile
agents from malicious hosts. Lecture Notes in Computer
Science, 1419, 1998.

[14] IBM. Linux TPM Device Driver.
http://tpmdd.sourceforge.net/.

[15] IBM. SecureBlue. http://domino.watson.ibm.com/
comm/pr.nsf/pages/news.20060410 security.html, 2006.

[16] Intel. LaGrande Technology.
http://www.intel.com/technology/security/, 2003.

[17] H. Kim, J. Baek, B. Lee, and K. Kim. Secret computation
with secrets for mobile agent using one-time proxy signature.
In Proceedings of the 2001 Symposium on Cryptography and
Information Security, 2001.

[18] U. Maheshwari, R. Vingralek, and W. Shapiro. How to Build
a Trusted Database System on Untrusted Storage. In
Proceedings of OSDI 2000, 2000.

[19] R. Merkle. A certified digital signature. In manuscript, 1979.
[20] C. Mitchell, editor. Trusted Computing. The Institution of

Electrical Engineers, 2005.
[21] M. Naor and K. Nissim. Certificate revocation and certificate

update. In Proceedings 7th USENIX Security Symposium
(San Antonio, Texas), 1998.

[22] L. Nguyen and R. Safavi-Naini. Dynamic k-times
anonymous authentication. In Applied Cryptography and
Network Security (ACNS 2005), volume 3531 of Lecture
Notes in Computer Science, pages 318–333, 2005.

[23] S. Pearson, editor. Trusted Computing Platforms: TCPA
Technology in Context. Prentice-Hall, 2005.

[24] M. Peinado, P. England, and Y. Chen. An overview of
NGSCB. In C. Mitchell, editor, Trusted Computing,
chapter 4. IEE, 2005.

[25] L. F. G. Sarmenta, M. van Dijk, C. W. O’Donnell, J. Rhodes,
and S. Devadas. Virtual Monotonic Counters and
Count-Limited Objects using a TPM without a Trusted OS
(Extended Version). MIT CSAIL Technical Report (to be
published), Sept. 2006. http://publications.csail.mit.edu/.

[26] A. Shieh, D. Williams, E. G. Sirer, and F. B. Schneider.
Nexus: a new operating system for trustworthy computing.
In SOSP ’05: Proceedings of the twentieth ACM symposium
on Operating systems principles, pages 1–9, New York, NY,
USA, 2005. ACM Press.

[27] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and
S. Devadas. AEGIS: Architecture for Tamper-Evident and
Tamper-Resistant Processing. In Proceedings of the 17th

Int’l Conference on Supercomputing
(MIT-CSAIL-CSG-Memo-474 is an updated version),
New-York, June 2003. ACM.

[28] I. Teranishi, J. Furukawa, and K. Sako. k-times anonymous
authentication (extended abstract). In ASIACRYPT 2004,
volume 3329 of Lecture Notes in Computer Science, pages
308–322, 2004.

[29] Trusted Computing Group. TPM v1.2 specification changes.
https://www.trustedcomputinggroup.org/groups/tpm/
TPM 1 2 Changes final.pdf, 2003.

[30] Trusted Computing Group. TCG TPM Specification version
1.2, Revisions 62-94 (Design Principles, Structures of the
TPM, and Commands).
https://www.trustedcomputinggroup.org/specs/TPM/,
2003-2006.

[31] D. Williams and E. G. Sirer. Optimal parameter selection for
efficient memory integrity verification using merkle hash
trees. In Proceedings of IEEE Symposium on Network
Computing and Applications (NCA ’04), 2004.

