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Hardware Provides Secure Key Storage

I will DIE before
I reveal my secrets!

Invasive probing

Non-invasive measurement

Physical attacks



Processor Architectures for Improved Security

Architect a processor to track the flow of information 
through the code
- This can be done in software albeit with greater overhead
- CHERI, DOVER, ARM Memory Tagging Extensions

Architect a processor to provide strict isolation 
between applications minimizing trusted computing 
base (TCB)
- Secure compartments: XOM, AEGIS, Bastion
- Enclaves: Intel SGX
- Side channel resistance: Sanctum, STT, MI6, next version of 

Intel SGX (?)



What Else Can Hardware Do To Improve Security?

Can implement security functionality in 
hardware, e.g.,
• Encryption
• Message authentication
• Network packet inspection
• Etc.

to improve performance and lower energy



Advanced Encryption Standard (AES) 
Accelerators
• AES-NI instruction set – standard on modern CPUs.
• Accelerate common applications like TLS for secure web browsing.

• Many cryptographic applications use AES for better performance
• PRGs, PRFs, Multi-party computation (VSS).
• Faster software algorithms (compared to software AES) exist for these primitives, 

but hardware acceleration beats them.
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Cryptography on the Rise!

• Private Information Retrieval
• Oblivious Random Access Memory (ORAM)
• Garbled Circuits
• Multiparty Computation (MPC)
• Fully Homomorphic Encryption (FHE)
• Verifiable Computation (VC)
• Zero-Knowledge Proofs, e.g., zk-snarks
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Computationally Intensive!

Hardware Acceleration Can Enable NEW Use Cases
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Fully Homomorphic Encryption (FHE)
The Holy Grail of secure computing

• FHE is a family of encryption schemes that compute directly on encrypted data
• FHE enables secure offloading of computation to the cloud:

• Perfect security, since server never decrypts data!
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Interest in FHE is exploding

• 2009: First FHE scheme realized [Gentry]
• 109 times slower than unencrypted computation

• 2012+: Improved FHE schemes [BGV, B/FV, CKKS, …]
• Richer operations, reduced overheads
• 104 to 106 times slower than unencrypted computation

• 2019: First FHE system that allows deep learning inference in under 1h [LoLa]

• 2021: Intel, IBM, Google, and others announce major FHE initiatives
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Example Application: Private Inference in the 
Cloud

• Client can perform inference in the cloud without revealing its inputs
• Neural network model (weights) can be encrypted and hidden from server or in 

plaintext
• Use cases: Model must remain private to client or too large to download to client
• State of the art without acceleration: 20 minutes per DNN inference
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Secure computing accelerator

• Private deep learning on small to medium-sized models
• ~1s/inference (FPGA) or ~100ms/inference (ASIC)

• Scaling with multiple chips/board

Large FPGA (or optionally ASIC)
High-Bandwidth Memory
with tight integration
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Encryption and Data Types
• Most FHE schemes encrypt vectors of numbers
• Plaintext vectors are encrypted into pairs of polynomials

• Polynomials are represented as vectors of coefficients
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y.b1 y.b2 y.b3 y.b4

y.a1 y.a2 y.a3 y.a4

FHE Operations
• By computing on the ciphertext polynomials, FHE allows us to add, 

multiply, and rotate the underlying values
• Operations on ciphertexts are often quite complex
• Example: to multiply two ciphertexts x and y:
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Multiplying Polynomials

• We often need to multiply polynomials
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Number Theoretic Transform 

(NTT), similar to an FFT

NTTs and NTT-1 each take 
O(nlogn) multiplies, making the 

whole operation O(nlogn)



Wide Arithmetic Using RNS
• Polynomial coefficients are extremely wide (over 1000 bits)
• We also need to support computation on narrower ones
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Rough Shape of FHE Programs
• Ciphertexts start with some initial noise and coefficient width
• As we compute on them, they become noisier, and we chop off the noise, also 

reducing the coefficient width
• Bootstrapping is an expensive procedure to refresh ciphertexts
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Architectural Characteristics of FHE
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• FHE enables many algorithms on encrypted data, not just a single 
application

• Homomorphic operations all rely on big-polynomial arithmetic

• Ciphertexts are large (several megabytes), so data movement is extremely 
important

• Dataflow is completely static



F1 Processor
MICRO 2021

• Existing accelerators like GPUs ineffective on FHE because of data movement à
Need new hardware and systems

• F1, an architecture specialized for FHE
• First programmable FHE accelerator,

executes full FHE programs
• Hardware tailored to FHE operations: Modular

arithmetic, novel functional units, designed to
minimize data movement

• Synthesis-based evaluation on GF 12nm:
150mm2 chip, 60-90 watts

• 3000x-12,000x faster than CPU on deep learning;
200x-1,900x faster than GPUs, prior FHE accelerators
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Levelled FHE
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Bootstrap vs Levelled FHE

Bootstrapped FHE

Computation Communication
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Levelled FHE

Computation Communication



Bootstrap vs Levelled FHE with acceleration

Bootstrapped FHE

Computation Communication
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Levelled FHE

Computation Communication



Observations

• Accelerating communication: hard (or in 
many cases, already done with hardware)
• Network interface cards
• Hardware for switches and routers
• Physical layer

• Accelerating computation: Need clever 
and careful design that speeds up ALL 
computation à Amdahl’s Law
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CraterLake Architecture Overview

• Logical organization: A single set of extremely wide vector FUs (2048 lanes)
• No compute clusters, unlike F1

• All on-chip storage in a large
single-level register file (256 MB)
• No RFs + scratchpad, unlike F1

• New FUs to accelerate boosted
key switching (CRB, KSHGen)
• FUs can be chained to form

high-throughput pipelines
• Static control, like F1
• Physical organization: Spatially distributed lane groups with an extremely simple 

fixed permutation network
• Relies on new way to tile computation 26



CraterLake Vector Datapath

• Polynomials divided into E=2048-element 
chunks
• Datapath is 2048 lanes wide
• Vector adds and multiplies act coefficient-

wise à easy to pipeline
• NTTs and automorphisms have 

dependencies across chunks, making them 
hard to vectorize and pipeline
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Scaling the Vector Datapath with Transposes
• Key insight: NTTs and automorphisms can be decomposed by using transposes 

(one per NTT, two per automorphism)
• CraterLake tiles polynomial coefficients across lane groups

• Each polynomial spans the whole chip, unlike in F1, where each polynomial was 
processed in a separate compute cluster

• Improves throughput and reduces footprint,
enabling much larger polynomials

• With boosted key switching, this tiling
incurs less global traffic than F1

• New 2-level transpose operation
enables the global interconnect to
be a simple fixed permutation network
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Synthesis results

• Targeting ASIC evaluation
• Synthesized RTL on GF 12nm
• 1 TB/s HBM main memory (like F1)
• Similar budget to GPUs,

server processors

• Compared architectures:
• Server CPU baseline (32-core AMD

Threadripper, similar area in 7nm)
• F1+: Scaled-up F1 to have same compute

capabilities (35% more area)
29



CraterLake performance
ISCA 2022

• CraterLake outperforms F1+ by up to 21x on deep benchmarks; 
similar performance on shallow benchmarks

30

32-core CPU

$100M to Build and Deploy!



A full-stack approach from hardware to algorithms
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Scalable FHE hardware accelerator
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VC and FHE Computations Have Similarities
● Both FHE schemes and VC schemes rely on arithmetic over high-degree 

polynomials with large coefficients

● Both domains can share the same compiler front-end, which compiles a 
high-level language program into an arithmetic cryptographic circuit

● The dataflow graph of FHE programs and VC proof generation is known 
at compile time

● Both domains have operands that are up to tens of megabytes in size.
• Must manage memory bandwidth effectively, while only being able to keep 

fewer than 10 operands on-chip
35



VC and FHE Computations Have Differences
● Elliptic-curve VC uses prime moduli that are hundreds of bits wide

● While FHE has even wider composite moduli, they can be decomposed 
into many independent smaller leveraging RNS
• F1 and CraterLake accelerate FHE using relatively narrow word sizes (~30 bits 

wide)

● Elliptic-curve VC requires hardware that supports very wide (100s of bits) 
arithmetic
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Using CraterLake for VC

• Instead of using an elliptic-curve based VC scheme, we can use a lattice-
based one.

• Example: “Shorter and Faster Post-Quantum Designated-Verifier
zkSNARKs from Lattices.”
• Combines the Peikert-Vaikuntanathan-Waters (PVW) lattice-based 

encryption scheme with the Groth-16 zkSNARK proof system.
• Doesn’t require wide arithmetic in large prime fields
• Not public-key verifiable

• Can also use CraterLake to accelerate other lattice encryption schemes!
37



Structure of a Lattice-Based VC scheme

Polynomial 
interpolation 
via NTT

Homomorphic 
query evaluation

Circuit 
evaluation

Encrypted Query (CRS)

Proof (query answer)

Ciphertext 
rerandomization



CraterLake Architecture (Revisited)
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VC-only CraterLake
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Private Information Retrieval (PIR)

• Allows a user to retrieve an item from a server in possession of a 
database without revealing which item is retrieved

41
Courtesy: Beimel, Ishai,

Kushilevitz, Malkin



PIR Recursion Level
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1-D database 2-D database 3-D database

Communication: O(n)  
send the whole database
Computation: None

Communication: O( 𝒏)

Computation: More

Communication: O(𝟑 𝒏)

Computation: A lot!



PIR Tradeoffs
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XPIR, SealPIR, MulPIR, 
OnionPIR, Spiral, 
SimplePIR

Trivial Bootstrapped 
FHE

Computation

DoublePIR

Practical Impractical
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PIR Tradeoffs
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XPIR, SealPIR, MulPIR, 
OnionPIR, Spiral, 
SimplePIR

Trivial Bootstrapped 
FHE

Computation

DoublePIR

Practical Impractical

PIR (no acceleration):
• 300 KB of communication
• 600 seconds of computation

CPU bottlenecked
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XPIR, SealPIR, MulPIR, 
OnionPIR, Spiral, 
SimplePIR

Trivial Bootstrapped 
FHE

Computation

DoublePIR

Practical Impractical

PIR (no acceleration):
• 300 KB of communication
• 600 seconds of computation

CPU bottlenecked

PIR with acceleration (estimate):
• 300 KB of communication
• A second of computation

Network / memory 
bottlenecked

Acceleration

F1 can accelerate 
these schemes

CraterLake can 
accelerate this
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FHE + VC for Privacy + Integrity?
● Directly compose FHE and VC protocols: Two options

• General VC system to prove that all of the server’s FHE operations were 
computed correctly 

• The entire VC proof generation could be evaluated inside of FHE – only has 
covert security

● The overhead of FHE is multiplied by the overhead of VC, resulting in a 
wildly impractical protocol 

● Hardware acceleration seems to only apply to the outermost protocol, 
not the other
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Thank You!
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