
DESIGNING HARDWARE FOR CRYPTOGRAPHY
AND

CRYPTOGRAPHY FOR HARDWARE

Srini Devadas

Contributions from Nikola Samardzic, Axel Feldmann, Alex Krastev,
Simon Langowski, Sacha Servan-Schreiber, Daniel Sanchez

Outline

What can hardware do for security?

Accelerating cryptography

Should cryptography change with hardware accelerators?

What’s next?

2

Outline

What can hardware do for security?

Accelerating cryptography

Should cryptography change with hardware accelerators?

What’s next?

3

Hardware Provides Secure Key Storage

I will DIE before
I reveal my secrets!

Invasive probing

Non-invasive measurement

Physical attacks

Processor Architectures for Improved Security

Architect a processor to track the flow of information
through the code
- This can be done in software albeit with greater overhead
- CHERI, DOVER, ARM Memory Tagging Extensions

Architect a processor to provide strict isolation
between applications minimizing trusted computing
base (TCB)
- Secure compartments: XOM, AEGIS, Bastion
- Enclaves: Intel SGX
- Side channel resistance: Sanctum, STT, MI6, next version of

Intel SGX (?)

What Else Can Hardware Do To Improve Security?

Can implement security functionality in
hardware, e.g.,
• Encryption
• Message authentication
• Network packet inspection
• Etc.

to improve performance and lower energy

Advanced Encryption Standard (AES)
Accelerators
• AES-NI instruction set – standard on modern CPUs.
• Accelerate common applications like TLS for secure web browsing.

• Many cryptographic applications use AES for better performance
• PRGs, PRFs, Multi-party computation (VSS).
• Faster software algorithms (compared to software AES) exist for these primitives,

but hardware acceleration beats them.

7

Cryptography on the Rise!

• Private Information Retrieval
• Oblivious Random Access Memory (ORAM)
• Garbled Circuits
• Multiparty Computation (MPC)
• Fully Homomorphic Encryption (FHE)
• Verifiable Computation (VC)
• Zero-Knowledge Proofs, e.g., zk-snarks

8

Computationally Intensive!

Hardware Acceleration Can Enable NEW Use Cases

Outline

What can hardware do for security?

Accelerating cryptography
Case study: Fully Homomorphic Encryption (FHE)

Should cryptography change with hardware accelerators?

What’s next?

9

Fully Homomorphic Encryption (FHE)
The Holy Grail of secure computing

• FHE is a family of encryption schemes that compute directly on encrypted data
• FHE enables secure offloading of computation to the cloud:

• Perfect security, since server never decrypts data!

Server

Tr
us

t b
ar

rie
r

Encrypted(x)

Encrypted(f(x))
Decrypt

Encrypt

f(x)

x

Client

10

Interest in FHE is exploding

• 2009: First FHE scheme realized [Gentry]
• 109 times slower than unencrypted computation

• 2012+: Improved FHE schemes [BGV, B/FV, CKKS, …]
• Richer operations, reduced overheads
• 104 to 106 times slower than unencrypted computation

• 2019: First FHE system that allows deep learning inference in under 1h [LoLa]

• 2021: Intel, IBM, Google, and others announce major FHE initiatives

11

Example Application: Private Inference in the
Cloud

• Client can perform inference in the cloud without revealing its inputs
• Neural network model (weights) can be encrypted and hidden from server or in

plaintext
• Use cases: Model must remain private to client or too large to download to client
• State of the art without acceleration: 20 minutes per DNN inference

Server FHE
AcceleratorTr

us
t b

ar
rie

r

XwrfvAuw3
Decrypt

Encrypt
1 2

3

45Client
“Cat”

Encrypted
neural network

model

12

Secure computing accelerator

• Private deep learning on small to medium-sized models
• ~1s/inference (FPGA) or ~100ms/inference (ASIC)

• Scaling with multiple chips/board

Large FPGA (or optionally ASIC)
High-Bandwidth Memory
with tight integration

13

Encryption and Data Types
• Most FHE schemes encrypt vectors of numbers
• Plaintext vectors are encrypted into pairs of polynomials

• Polynomials are represented as vectors of coefficients

14

m1

m2

…
mN

a1

a2

…
aN

+1
-1
…
0

b1

b2

…
bN

encryption

plaintext values (~8 bit values)

small random noise

secret key
ciphertext
polynomial

coefficients can be over 1000 bits wide

each ciphertext is a
pair of polynomials

y.b1 y.b2 y.b3 y.b4

y.a1 y.a2 y.a3 y.a4

FHE Operations
• By computing on the ciphertext polynomials, FHE allows us to add,

multiply, and rotate the underlying values
• Operations on ciphertexts are often quite complex
• Example: to multiply two ciphertexts x and y:

15

x.a1 x.a2 x.a3 x.a4

x.b1 x.b2 x.b3 x.b4

x

y

×

×

×

×

+

Key Switch Hints (many MBs)

+

+
xy

Key
Switching
Algorithm

Multiplying Polynomials

• We often need to multiply polynomials

16

x1

x2

x3

x4

x1

x2

x3

x4

Naively, this takes O(n2)
multiplications

NTT
x1
x2
x3
x4

NTT
x1
x2
x3
x4

n1

n2

n3

n4

n1

n2

n3

n4

×

×

×

×

NTT-1
x1
x2
x3
x4

Instead, we can use the
Number Theoretic Transform

(NTT), similar to an FFT

NTTs and NTT-1 each take
O(nlogn) multiplies, making the

whole operation O(nlogn)

Wide Arithmetic Using RNS
• Polynomial coefficients are extremely wide (over 1000 bits)
• We also need to support computation on narrower ones

17

a1

a2

…

aN

Residue Number System: we can represent a single wide polynomial
modulo some large Q as L many polynomials each mod a smaller qi where

q1q2…qL = Q
a1,1

a2,1

…

aN,1

a1,2

a2,2

…

aN,2

a1,L

a2,L

…

aN,L

…

b1

b2

…

bN

b1,1

b2,1

…

bN,1

b1,2

b2,2

…

bN,2

b1,L

b2,L

…

bN,L

…

× × × ×

Advantage: we
can perform

arbitrarily wide
modular

arithmetic with
narrow (~32-bit)

multipliers

Residue polynomials
are F1’s primitive

datatype

Rough Shape of FHE Programs
• Ciphertexts start with some initial noise and coefficient width
• As we compute on them, they become noisier, and we chop off the noise, also

reducing the coefficient width
• Bootstrapping is an expensive procedure to refresh ciphertexts

18

Must perform
computation at

multiple bit-widths!

Time

Co
ef

fic
ie

nt
 b

it-
w

id
th bootstrapping

Architectural Characteristics of FHE

19

• FHE enables many algorithms on encrypted data, not just a single
application

• Homomorphic operations all rely on big-polynomial arithmetic

• Ciphertexts are large (several megabytes), so data movement is extremely
important

• Dataflow is completely static

F1 Processor
MICRO 2021

• Existing accelerators like GPUs ineffective on FHE because of data movement à
Need new hardware and systems

• F1, an architecture specialized for FHE
• First programmable FHE accelerator,

executes full FHE programs
• Hardware tailored to FHE operations: Modular

arithmetic, novel functional units, designed to
minimize data movement

• Synthesis-based evaluation on GF 12nm:
150mm2 chip, 60-90 watts

• 3000x-12,000x faster than CPU on deep learning;
200x-1,900x faster than GPUs, prior FHE accelerators

20

Vector Register
File (banked)

M
em

ory hierarchy

x128 lanes

NTT

Distributed control

Automorphism

Vector functional units

Compute cluster

Mem
ctrl

Mem
ctrl

Mem
ctrl

Mem
ctrl

High-Bandwidth Memory

Scratchpad
banks (x16)

On-chip network
(3 16x16 crossbars)

Compute clusters
(x16)

Mod mult...x x x

...

... ...

Mod mult...x x x

Mod add...+ + +

Mod add...+ + +

...

...Does Not Accelerate Bootstrapping

Levelled FHE

21

Encrypted(x)

Encrypted(y)
Decrypt

Encrypt

y
x

Server

Encrypted(y)

Encrypted(z)
Decrypt

Encrypt

z
y

Encrypted(z)

Encrypted(f(x))
Decrypt

Encrypt

f(x)

zRe-encrypt
intermediate
values

Large communication cost!

Bootstrap vs Levelled FHE

Bootstrapped FHE

Computation Communication

22

Levelled FHE

Computation Communication

Bootstrap vs Levelled FHE with acceleration

Bootstrapped FHE

Computation Communication

23

Levelled FHE

Computation Communication

Observations

• Accelerating communication: hard (or in
many cases, already done with hardware)
• Network interface cards
• Hardware for switches and routers
• Physical layer

• Accelerating computation: Need clever
and careful design that speeds up ALL
computation à Amdahl’s Law

24

CraterLake Architecture Overview

• Logical organization: A single set of extremely wide vector FUs (2048 lanes)
• No compute clusters, unlike F1

• All on-chip storage in a large
single-level register file (256 MB)
• No RFs + scratchpad, unlike F1

• New FUs to accelerate boosted
key switching (CRB, KSHGen)
• FUs can be chained to form

high-throughput pipelines
• Static control, like F1
• Physical organization: Spatially distributed lane groups with an extremely simple

fixed permutation network
• Relies on new way to tile computation 26

CraterLake Vector Datapath

• Polynomials divided into E=2048-element
chunks
• Datapath is 2048 lanes wide
• Vector adds and multiplies act coefficient-

wise à easy to pipeline
• NTTs and automorphisms have

dependencies across chunks, making them
hard to vectorize and pipeline

27

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

x14

x15

Chunk

Scaling the Vector Datapath with Transposes
• Key insight: NTTs and automorphisms can be decomposed by using transposes

(one per NTT, two per automorphism)
• CraterLake tiles polynomial coefficients across lane groups

• Each polynomial spans the whole chip, unlike in F1, where each polynomial was
processed in a separate compute cluster

• Improves throughput and reduces footprint,
enabling much larger polynomials

• With boosted key switching, this tiling
incurs less global traffic than F1

• New 2-level transpose operation
enables the global interconnect to
be a simple fixed permutation network

Local transpose Local transpose

Fixed permutation network

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

0 1 2 3

8 9 10 11

4 5 6 7

12 13 14 15

Lane group 0 Lane group 1

0
1
2
3

4
5
6
7

8
9
10
11

12
13
14
15

0 1
4 5
2 3
6 7

10 11

8 9
12 13

14 15

0

1

2

0

0 1

2 3

8 9

10 11

14 5

6 7

12 13

14 15

20 4 8 12

2 6 10 14

1 5 9 13

3 7 11 15

28

Synthesis results

• Targeting ASIC evaluation
• Synthesized RTL on GF 12nm
• 1 TB/s HBM main memory (like F1)
• Similar budget to GPUs,

server processors

• Compared architectures:
• Server CPU baseline (32-core AMD

Threadripper, similar area in 7nm)
• F1+: Scaled-up F1 to have same compute

capabilities (35% more area)
29

CraterLake performance
ISCA 2022

• CraterLake outperforms F1+ by up to 21x on deep benchmarks;
similar performance on shallow benchmarks

30

32-core CPU

$100M to Build and Deploy!

A full-stack approach from hardware to algorithms

31

Scalable FHE hardware accelerator

Driving applications
Private
deep
learning

Post
quantum
crypto

Private
data
analytics

Accelerator chip

Compute clusters

Interconnect

On-chip mem banks

Memory Memory Memory

…

Hardware-
friendly

FHE
algorithms

Tightly
codesigned
hardware,
algorithms,

and compiler

Near-data
organization
ASIC or FPGA

implementations

FHE compiler

Compile

Translates programs into optimized FHE circuits,
hiding the complexity of FHE

Compiles FHE circuits to run on accelerator

Outline

What can hardware do for security?

Accelerating cryptography
Case study: Fully Homomorphic Encryption (FHE)

Should cryptography change with hardware accelerators?

What’s next?

32

Tr
us

t b
ar

rie
r

Server VC Proof
Accelerator

f(x)Verify

x

Client

Proof of correctness

Verifiable Computation (VC)
From Privacy to Integrity

zk-SNARK used in cryptocurrencies is a verifiable computation primitive

VC and FHE Computations Have Similarities
● Both FHE schemes and VC schemes rely on arithmetic over high-degree

polynomials with large coefficients

● Both domains can share the same compiler front-end, which compiles a
high-level language program into an arithmetic cryptographic circuit

● The dataflow graph of FHE programs and VC proof generation is known
at compile time

● Both domains have operands that are up to tens of megabytes in size.
• Must manage memory bandwidth effectively, while only being able to keep

fewer than 10 operands on-chip
35

VC and FHE Computations Have Differences
● Elliptic-curve VC uses prime moduli that are hundreds of bits wide

● While FHE has even wider composite moduli, they can be decomposed
into many independent smaller leveraging RNS
• F1 and CraterLake accelerate FHE using relatively narrow word sizes (~30 bits

wide)

● Elliptic-curve VC requires hardware that supports very wide (100s of bits)
arithmetic

36

Using CraterLake for VC

• Instead of using an elliptic-curve based VC scheme, we can use a lattice-
based one.

• Example: “Shorter and Faster Post-Quantum Designated-Verifier
zkSNARKs from Lattices.”
• Combines the Peikert-Vaikuntanathan-Waters (PVW) lattice-based

encryption scheme with the Groth-16 zkSNARK proof system.
• Doesn’t require wide arithmetic in large prime fields
• Not public-key verifiable

• Can also use CraterLake to accelerate other lattice encryption schemes!
37

Structure of a Lattice-Based VC scheme

Polynomial
interpolation
via NTT

Homomorphic
query evaluation

Circuit
evaluation

Encrypted Query (CRS)

Proof (query answer)

Ciphertext
rerandomization

CraterLake Architecture (Revisited)

39

VC-only CraterLake

40

Private Information Retrieval (PIR)

• Allows a user to retrieve an item from a server in possession of a
database without revealing which item is retrieved

41
Courtesy: Beimel, Ishai,

Kushilevitz, Malkin

PIR Recursion Level

42

1-D database 2-D database 3-D database

Communication: O(n)
send the whole database
Computation: None

Communication: O(𝒏)

Computation: More

Communication: O(𝟑 𝒏)

Computation: A lot!

PIR Tradeoffs

43

XPIR, SealPIR, MulPIR,
OnionPIR, Spiral,
SimplePIR

Trivial Bootstrapped
FHE

Computation

DoublePIR

Practical Impractical

PIR Tradeoffs

44

XPIR, SealPIR, MulPIR,
OnionPIR, Spiral,
SimplePIR

Trivial Bootstrapped
FHE

Computation

DoublePIR

Practical Impractical

Hardware acceleration

PIR Tradeoffs

45

XPIR, SealPIR, MulPIR,
OnionPIR, Spiral,
SimplePIR

Trivial Bootstrapped
FHE

Computation

DoublePIR

Practical Impractical

PIR (no acceleration):
• 300 KB of communication
• 600 seconds of computation

CPU bottlenecked

PIR Tradeoffs

46

XPIR, SealPIR, MulPIR,
OnionPIR, Spiral,
SimplePIR

Trivial Bootstrapped
FHE

Computation

DoublePIR

Practical Impractical

PIR (no acceleration):
• 300 KB of communication
• 600 seconds of computation

CPU bottlenecked

PIR with acceleration (estimate):
• 300 KB of communication
• A second of computation

Network / memory
bottlenecked

Acceleration

F1 can accelerate
these schemes

CraterLake can
accelerate this

Outline

What can hardware do for security?

Accelerating cryptography
Case study: Fully Homomorphic Encryption (FHE)

Should cryptography change with hardware accelerators?

What’s next?

48

FHE + VC for Privacy + Integrity?
● Directly compose FHE and VC protocols: Two options

• General VC system to prove that all of the server’s FHE operations were
computed correctly

• The entire VC proof generation could be evaluated inside of FHE – only has
covert security

● The overhead of FHE is multiplied by the overhead of VC, resulting in a
wildly impractical protocol

● Hardware acceleration seems to only apply to the outermost protocol,
not the other

49

H
BM

 m
em

ory controller

256-lane
group

Transpose netw
ork

256-lane
group

256-lane
group

256-lane
group

H
BM

 m
em

ory controller

256-lane
group

256-lane
group

256-lane
group

256-lane
group

✕

✕+
+

✕

✕+
+

✕

✕+
+

✕

✕+
+

CGRA Arithmetic
Unit

Narrow (28-bit)
adders and
multipliers

A Universal Cryptographic Accelerator?

Thank You!

51

