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ABSTRACT

Fully Homomorphic Encryption (FHE) enables offloading computa-
tion to untrusted servers with cryptographic privacy. Despite its
attractive security, FHE is not yet widely adopted due to its pro-
hibitive overheads, about 10,000X over unencrypted computation.
Recent FHE accelerators have made strides to bridge this perfor-
mance gap. Unfortunately, prior accelerators only work well for
simple programs, but become inefficient for complex programs,
which bring additional costs and challenges.

We present CraterLake, the first FHE accelerator that enables
FHE programs of unbounded size (i.e., unbounded multiplicative
depth). Such computations require very large ciphertexts (tens of
MBs each) and different algorithms that prior work does not sup-
port well. To tackle this challenge, CraterLake introduces a new
hardware architecture that efficiently scales to very large cipher-
texts, novel functional units to accelerate key kernels, and new
algorithms and compiler techniques to reduce data movement.

We evaluate CraterLake on deep FHE programs, including deep
neural networks like ResNet and LSTMs, where prior work takes
minutes to hours per inference on a CPU. CraterLake outperforms a
CPU by gmean 4,600x and the best prior FHE accelerator by 11.2X
under similar area and power budgets. These speeds enable real-
time performance on unbounded FHE programs for the first time.
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1 INTRODUCTION

A large and increasing fraction of the world’s compute runs on
the cloud, which is vulnerable to data breaches. Conventional tech-
niques to mitigate attacks offer limited security, as cloud servers
must decrypt data in order to process it.

Fully homomorphic encryption (FHE) is a special type of encryp-
tion scheme that enables computing on encrypted data directly, with-
out decrypting it. FHE allows a client to offload a computation
to an untrusted server without revealing any data, as Fig. 1 illus-
trates. This enables the client to harness the compute power of the
cloud while maintaining cryptographic privacy. Though FHE has
some limitations (e.g., data-dependent branching is not possible),
it is general enough to support many compelling use cases, such
as privacy-preserving machine learning, secure genome analysis,
private set intersection, private information retrieval, and many
more [15, 27, 30, 35, 36, 43, 44].
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Figure 1: FHE can offload computation to the cloud securely.
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Despite its ideal privacy, FHE is rarely used today because it in-
curs prohibitive overheads: in CPUs, FHE computations are 10,000X
to 100,000x slower than equivalent unencrypted computations,
even when using highly optimized FHE libraries.

Fortunately, state-of-the-art FHE schemes are well-suited to hard-
ware acceleration. First, they are regular and structured: FHE pro-
grams operate on very long vectors, and all operations are known
ahead of time. Second, FHE requires several non-SIMD operations,
such as number-theoretic transforms (NTTs), that are inefficient on
CPUs and GPUs. But these operations can be accelerated by spe-
cialized functional units, avoiding these inefficiencies. As a result,
prior work has proposed FPGA and ASIC-based accelerators [18—
20, 25, 60, 61, 63]. While most prior accelerators achieve limited
speedups, a recent design, F1 [25], achieves speedups of about
5,000 on FHE programs.

Unfortunately, prior accelerators are efficient only on a limited
subset of simple FHE computations—those of shallow multiplicative
depth. For example, prior FHE accelerators can run neural net-
work inference efficiently only for networks with few layers (3-6),
but they cannot accelerate state-of-the-art deep neural networks
(DNNs) with tens to hundreds of layers.

This limitation stems from the characteristics of FHE schemes:
each ciphertext has some associated noise, which grows with each
homomorphic operation, and especially with multiplications. If
noise becomes too large, it garbles the message, making decryption
impossible. Larger ciphertexts tolerate more noise before becoming
undecryptable. However, operations on larger ciphertexts are also
more expensive. To enable computations of unbounded depth, ci-
phertexts can be “refreshed” using a procedure called bootstrapping
that reduces noise. But bootstrapping is expensive, so ciphertexts
must be very large (10s of MBs) for bootstrapping to be efficient.

Prior FHE accelerators do not efficiently handle unbounded-
depth computations because they natively support vectors of a
limited size and they use algorithms that scale poorly to the large
ciphertexts in high-depth programs. As a result, they can only run
small FHE computations, and they do not support sufficient depth
to run the full bootstrapping procedure.

In this paper we tackle this challenge through CraterLake, the

first FHE accelerator to support FHE computations of unbounded
depth. To achieve this, we contribute new algorithms, specialized
functional units, hardware architecture, and compiler techniques
that overcome the key challenge of deep FHE computations: its
extreme data movement demands.
Deep FHE is limited by data movement: FHE schemes encode
information over very long vectors of wide elements. Concretely,
supporting unbounded-depth computations requires vectors of 64K
elements with 1,600 bits per element. This takes 25 MB per cipher-
text, 12X larger than what prior FHE accelerators target.

Moreover, prior work has employed FHE algorithms that re-
quire even larger amounts of auxiliary data. For example, mul-
tiplying 2 MB ciphertexts in F1 [25] requires 32 MB of auxiliary
data, and scaling their algorithm to 25 MB ciphertexts would re-
quire over 1.4 GB of auxiliary data—far too large to fit on-chip. To
tackle this challenge, our key insight is to adopt an FHE algorithm
called boosted keyswitching (Sec. 3) that eliminates most of the aux-
iliary data, reducing this overhead from 1.4 GB to 50 MB. Boosted
keyswitching also reduces computation costs. However, this new
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algorithm is a poor match for prior accelerators: it is dominated by
simple operations where these designs have limited efficiency, and
makes poor use of the specialized functional units of prior designs.

Beyond being inefficient, prior accelerators suffer from a hard-
to-scale vector multicore architecture: to support the needed non-
SIMD operations with reasonable cost, they implement multiple in-
dependent cores with narrower vector datapaths [25]. However, this
causes excessive inter-core communication, and the high-bandwidth
interconnect needed grows superlinearly with the number of cores.
Deep FHE demands new hardware techniques: To tackle these
challenges, we introduce the CraterLake architecture (Sec. 4, Sec. 5),
the first FHE accelerator that achieves high performance on un-
bounded FHE programs. CraterLake is a wide-vector uniprocessor
with specialized functional units. The design is statically sched-
uled to leverage the regularity of FHE computations. We contribute
several new techniques that make this possible, including:

e A new extremely wide (2,048 lanes) vector uniprocessor ar-
chitecture that spreads each vector operation across the chip,
departing from prior vector multicore architectures. This vector
uniprocessor approach reduces the number of concurrent oper-
ations, which minimizes footprint, reducing off-chip traffic, and
simplifies the compiler.

e An efficient implementation of the above architecture, which
is challenging due to non-SIMD FHE operations, NTTs and
automorphisms. We decompose these operations in a novel way
that allows the use of a fixed transpose network among physically
distributed groups of lanes. This reduces on-chip data movement
and interconnect cost over prior approaches.

o A new functional unit that encapsulates the bulk of operations in
boosted keyswitching, improving efficiency and enabling high
utilization across ciphertexts of all sizes.

o A new functional unit that generates half of the required auxil-
iary data on the fly (reducing overheads from 50 MB to 25 MB),
saving on-chip storage and memory bandwidth.

e A vector chaining technique that builds long FU pipelines to
enable many concurrent operations with few register ports.

To program CraterLake, we develop a novel compiler (Sec. 6) that
produces efficient code from high-level FHE programs. The compiler
schedules operations to maximize reuse, decouples data movement
from computation, and adapts the state-of-the-art bootstrapping
algorithm to achieve high utilization [11].

We evaluate CraterLake through a combination of simulation
and RTL synthesis (to find its area and power). We use a broad range
of FHE benchmarks, including programs with high multiplicative
depth that require bootstrapping. CraterLake outperforms a scaled-
up and improved version of the state-of-the-art FHE accelerator, F1,
by gmean 11.2X on these deep computations, and is 4,600x faster
than a 32-core CPU. These speedups enable new use cases for FHE.
For example, deep neural networks like ResNet take 23 minutes per
inference on the CPU, whereas CraterLake achieves 250 milliseconds
per inference, enabling real-time private deep learning.

2 BACKGROUND

State-of-the-art FHE schemes implement operations on encrypted
vectors. The ciphertexts in these schemes support several homomor-
phic operations: element-wise addition, element-wise multiplication,
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and rotations of vector elements. Each homomorphic operation pro-
duces a ciphertext that, when decrypted, produces the same result
as if the operation had been performed on the unencrypted inputs.

Importantly, homomorphic operations have a different imple-
mentation from their unencrypted counterparts—for example, a
homomorphic multiplication is not implemented using element-
wise multiplication of the input ciphertexts, but a more complex
sequence of operations. Therefore, it is useful to differentiate be-
tween FHE’s interface, i.e., its supported plaintext datatypes and
operations, and its implementation, i.e., the structure of ciphertexts
and the implementation of homomorphic operations.

There are several FHE schemes, which mainly differ in their
plaintext datatypes and the operations they support. For example,
BGV [12] encodes vectors of integers modulo a constant, whereas
CKKS [16] encodes vectors of fixed-point numbers. Despite the dif-
ferences between these schemes, the commonalities in their under-
lying implementation [49] make it possible for the same hardware
to accelerate many schemes efficiently—CraterLake supports CKKS,
BGV, and GSW [29]. For concreteness, the rest of this section will
focus only on CKKS, as it is the scheme best suited for machine
learning tasks and has been the focus of much recent work in FHE
algorithms and applications [11, 22, 23, 30, 35, 48, 57].

2.1 FHE Interface

FHE schemes implement operations on vectors of values. In CKKS,
each vector element is a fixed-point complex number with a config-
urable number of bits. (Programs that do not use complex arithmetic
can zero out the imaginary part.)

Since values are encrypted, FHE does not permit data-dependent
branching or indirection. Thus, all operations and dependencies
are known ahead of time, and FHE programs can be represented
using static dataflow graphs.

Homomorphic operations in CKKS include element-wise ad-
dition, element-wise multiplication, and cyclic rotations. These
operations are approximate in CKKS, inducing a small and control-
lable amount of error. However, this error can be made arbitrarily
small at the cost of reduced performance. This error is acceptable
in practice as machine learning applications are insensitive to it.

FHE exposes a vector programming model with a restricted set
of operations; in particular, FHE does not provide access to individ-
ual vector elements. This makes it challenging to implement some
operations that are trivial in plaintext: For example, implementing
a convolutional layer of a neural network requires the careful repli-
cation of filter weights. The lack of non-linear functions introduces
other difficulties. For example, the ReLU activation function must
be approximated using a high-degree polynomial [47]. As a result,
faithfully replicating deep neural networks in FHE, as done by a
recent ResNet implementation [48], comes at a high compute cost.
Instead, recent work has proposed neural network structures that
are tailored to FHE and achieve lower overheads while maintaining
similar accuracy to some unencrypted networks [13]. We evaluate
CraterLake on both styles of neural networks.

Finally, not all data needs to be encrypted: additions and es-
pecially multiplications are much cheaper in FHE if one of the
operands is unencrypted. This allows algorithms to trade privacy
for performance. For example, running a neural network using
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unencrypted weights is faster; it still ensures the privacy of inputs
and results, but does not protect weights [13].

2.2 FHE Implementation

We now describe how CKKS represents and operates on encrypted
data (i.e., ciphertexts); other schemes (e.g., BGV) have a similar
structure.
Encryption: A ciphertext holds an encrypted vector of plaintext
values. To create a ciphertext, the vector of plaintext values is
first encoded, or packed, in a polynomial; this polynomial is then
encrypted. CKKS packs a plaintext vector of n = N/2 complex
fixed-point numbers into a degree-(N — 1) polynomial:
(C(), Cly eeny Cn) lﬂ) m= ko + klx + ...+ kN_1XN71
m is then encrypted into a ciphertext. Each ciphertext consists
of ctg, ¢ty —two ciphertext polynomials with coeflicients modulo a
ciphertext modulus Q. Specifically, we encrypt m under a secret key
s by sampling a uniformly random a and a small error e (s, a, and e
are also polynomials):
encrypt
—— ¢t = (cto, ct1) = (a,a-s+e+m)
The above process produces a fully-packed ciphertext, i.e., one that
encodes as many plaintext values as possible. It is possible (though
almost always less efficient) to pack fewer values, producing a
partially packed or unpacked (single-element) ciphertext.

Homomorphic operations are implemented through several modular-

arithmetic operations on ciphertext polynomials, i.e., vectors of
coefficients. Specifically:

o Homomorphic addition of two ciphertexts simply requires mod-
ular addition of their ciphertext polynomials: ¢t,gqq = a+b =
(ao +bg, a1 + bl).

o Homomorphic multiplication is implemented using polynomial
multiplications and additions; multiplying two polynomials re-
quires convolving their coefficients.

e Homomorphic rotation rotates the vector encrypted in a cipher-
text. Implementing it requires performing an automorphism on
the ciphertext polynomials, a structured permutation where, for
automorphism k, each input index i is mapped to output index
ik mod N. There are N possible automorphisms; each automor-
phism induces a simpler, cyclic rotation in the plaintext.

On top of this, homomorphic multiplications and rotations also
require a procedure called keyswitching, which is needed so that
the final ciphertext stays encrypted by the same secret key as the
input. Keyswitching is expensive, and in practice takes over 90% of
all operations. Keyswitching is central to CraterLake, so we discuss
it in detail in Sec. 3.

2.3 Challenges of Deep FHE Computation

FHE ciphertexts include some noise or error to ensure cryptographic
privacy [49]. Noise compounds during homomorphic operations,
which adds overheads. Noise increases primarily during ciphertext
multiplications; each ciphertext can tolerate only a fixed amount
of noise before decryption becomes impossible. Therefore, we say
that the multiplicative depth that a ciphertext can tolerate is the
ciphertext’s multiplicative budget.
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bootstrapping

Multiplicative budget

Time
Figure 2: Multiplicative budget over time. Bootstrapping is
used to refresh a ciphertext’s multiplicative budget.

Supporting a high multiplicative budget requires using cipher-
texts with wide coefficients and a large ciphertext modulus Q. For
example, ciphertexts with 512-bit coefficients have a multiplica-
tive budget of about 16. After each multiplication, the ciphertext
is rescaled to use a smaller modulus (e.g., dropping 32 bits). This
trims the noise and makes computation more efficient over time, as
narrower coefficients are cheaper to operate on. Ciphertexts run out
of multiplicative depth when their coefficients become too narrow
to support further operations (e.g., 32 bits). In CKKS, the specific
number of bits to drop per operation is not fixed, but depends on
the precision that the application requires.

A computation with high multiplicative depth can be supported
by simply using ciphertexts with sufficiently high multiplicative
budgets, but this adds major overheads. First, it requires using very
wide coeflicients, which take more storage per plaintext element
and make computations more complex. Moreover, wide coefficients
induce a second hurdle: they force the use of larger vectors. This
is because, for security, N/log Q must be above a certain thresh-
old. For instance, a multiplicative budget of 16 requires Q of about
512 bits and N=16K (i.e., 2 MB per ciphertext), and a multiplicative
budget of 32 requires Q of about 1,024 bits and N=32K (i.e., 8 MB
per ciphertext). Though larger vectors can pack more plaintext
elements, this quickly results in vectors so large that they cannot
fit on-chip. Overall, ciphertext size grows quadratically with multi-
plicative budget, and compute cost cubically (inducing linear and
quadratic overheads per plaintext element, respectively).
Bootstrapping: FHE schemes limit the overheads of deep compu-
tation through a procedure called bootstrapping that refreshes the
multiplicative budget of a ciphertext. Bootstrapping enables compu-
tations of arbitrary depth by separating them into regions of limited
depth. But bootstrapping is an expensive and deep computation, so
it should happen infrequently.

Fig. 2 illustrates a typical evolution of a ciphertext’s multiplica-
tive budget during program execution: computation proceeds until
the ciphertext runs out of budget, then bootstrapping is applied to
refresh the ciphertext. For example, in our LSTM benchmark, com-
putation starts with a multiplicative budget of 57 and bootstrapping
consumes the highest 35 levels (in red in Fig. 2), leaving 22 levels
for application computation (in blue in Fig. 2).

Ciphertext sizes needed for deep FHE: We now show that Crater-
Lake supports the ciphertext sizes required for deep FHE, and why
prior work falls short. Fig. 3 reports the cost per homomorphic
operation (in scalar multiplies per homomorphic multiply, y-axis)
of two deep programs, as a function of the maximum ciphertext
size used (x-axis). This determines bootstrapping frequency: using
larger ciphertexts requires less frequent bootstrapping. Fig. 3 also
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breaks down cost by that used for application computation (blue)
and bootstrapping (red).

The left plot is for a serial chain of multiplies, the worst case for
bootstrapping cost, as the amount of computation between boot-
strappings is minimal. Consequently, bootstrapping dominates. By
contrast, the right plot is for a wide graph with 100 multiplies per
depth, which converge to a single output after each level. This amor-
tizes bootstrapping across many operations, a best-case scenario.

Crucially, the optimal maximum ciphertext size (shown with a
black dot) is in a narrow range for both extremes, between 20 MB
(right) and 26 MB (left). This is because both application computa-
tion and bootstrapping become more expensive with ciphertext size,
so regardless of which dominates, once bootstrapping is infrequent
enough, moving to larger ciphertexts only hurts performance.

Thus, 20-26 MB max ciphertexts are the sweet spot for most
deep programs, which fall between these extremes. In practice,
bootstrapping placement is NP-hard [9], because real FHE programs
are not as regular. But all our benchmarks show a similar tradeoff
curve to these synthetic programs.

Prior FHE accelerators cannot efficiently support ciphertexts this
large. For example, F1 [25] becomes inefficient past 2 MB, and other
accelerators [60] are limited to even smaller values. This is in-
sufficient to run even bootstrapping itself. (Although F1 supports
unpacked bootstrapping of ciphertexts that encode only a single
element, this is >1,000x slower per element and thus impractical
for full applications, as Sec. 9 shows.)

As we will see, scaling to large ciphertexts is not merely a matter
of scaling up hardware; it requires new algorithms and a new hard-
ware organization to support these algorithms and to cope with
the huge footprint of ciphertexts.

2.4 Implementation Optimizations

We use two common FHE implementations’ optimizations:
Residue Number System (RNS) representation [26] allows rep-
resenting each of the wide coefficients of a ciphertext polynomial
as L residue polynomials with narrow coefficients. This is achieved
by choosing the wide modulus Q to be a product of L smaller fac-
tors, Q = q1q2...qL, called small moduli. Then, x mod Q is uniquely
represented as (x mod q1,x mod gz, ..., x mod qr).

RNS representation reduces overall operation cost, and allows
supporting many coefficient widths with a single narrow width
in hardware. CraterLake exploits this by using 28-bit elements
(algorithm-related limits prevent using arbitrarily narrow coeffi-
cients, as Sec. 5.5 explains). For example, a ciphertext polynomial
with 1,500-bit Q is stored using L=54 28-bit residue polynomials.
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Number-Theoretic Transform (NTT) is a modular-arithmetic
variant of the Fast Fourier Transform. The NTT is an O(N log N)
operation that makes polynomial multiplications efficient: in the
NTT domain, the convolution required for polynomial multiplica-
tion becomes element-wise multiplication. FHE implementations
often store polynomials in the NTT domain. CraterLake includes
NTT functional units.

2.5 Prior Accelerators and Their Limitations

Prior work has proposed multiple FHE accelerators. From these,
F1 [25] is the closest to CraterLake. F1 is a statically scheduled
processor with clusters of vector functional units specialized to FHE.
In particular, F1 introduces new high-throughput vector functional
units for NTTs and automorphisms, all-to-all operations that cannot
be efficiently performed with conventional SIMD datapaths.

Though F1 is programmable and can accelerate full computations,
it targets shallow computations. Specifically, F1 is tailored to a
keyswitching algorithm that does not scale to high multiplicative
budgets L (Sec. 3). As a result, F1 is inefficient when using a more
scalable keyswitching algorithm: It has an inappropriate mix of
functional units, and even with the right mix, it would be dominated
by simple operations that would require over 100 register file ports
for the FUs to be fully utilized. Moreover, F1’s organization incurs
excessive communication and is hard to scale to larger systems.

As a result, CraterLake introduces a fundamentally different
design, needed for deep computations: it adopts a new, simpler
hardware organization and data tiling approach that reduces com-
munication and scales to the large ciphertexts required, and it is
tailored to use an efficient keyswitching algorithm, which requires
new functional units and optimizations.

Besides F1, prior work proposed accelerators for FPGAs [18, 20,
24, 50, 51, 60, 61, 63]. These systems are not programmable: they
accelerate a small number of primitives and use fixed parameters
(N and L), so they cannot execute full applications; they suffer from
excessive data movement; and they achieve limited speedups.

3 BOOSTED KEYSWITCHING

Keyswitching is the dominant computation in FHE, especially for
ciphertexts with high multiplicative budgets (L). Thus, we use
keyswitching to drive CraterLake’s design.

Keyswitching consists of a large number of operations on residue
polynomials and requires a large auxiliary operand called a keyswitch
hint (KSH); the KSH adds pressure on memory bandwidth and on-
chip storage.

Prior accelerators are optimized for the standard keyswitching
algorithm, which is inefficient for deep computations. By contrast,
we target the keyswitching algorithm proposed by Gentry et al. [28,
Section 3.1]. In fact, there are multiple variants of this algorithm [33,
Section 5.3.4], that we collectively refer to as boosted keyswitching.
FHE libraries targeting deep computations use boosted keyswitch-
ing [1, 28, 33, 53].

The key innovation in boosted keyswitching is to expand the
input polynomial to use wider coefficients. This simplifies the KSH
and its application. Boosted keyswitching variants differ in how
much they expand the input, which introduces a tradeoff between
performance and security. We first analyze the most efficient variant
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1 def boostedKeySwitch(p[0:L]):

2 pTmp[0:L] = INTT(p[®:L])

3 pTmp[L:2L] = changeRNSBase(pTmp[®:L], [L:2L])
4 p[L:2L] = NTT(pTmp[L:2L])

5 for i =0, 1:

6 prod; [0:2L] = p[0:2L] * KSH; [0:2L]

7 tmp; [0:2L] = INTT(prod; [L:2L], [0:L])

8 mDTmp; [0:L] = changeRNSBase(tmp; [L:2L], [®:L])
9 modDown; [0:L] = NTT(mDTmp; [0:L])

10 ks;i[0:L] = prod;[0:L] + modDown; [0:L]

11 return (ksg[0:L], ksi[0:L])

12

13 def changeRNSBase(x[0:L], destModIdxList):
14 for srcModIdx in [0:L]:

15 for destModIdx in destModIdxList:

16 C = constant[srcModIdx] [destModIdx]

17 result[destModIdx] += x[srcModIdx] * C
18 return result

Listing 1: Boosted keyswitching implementation (1-digit).

(which expands the input the most), then discuss the performance
and security tradeoffs of different variants.

Fig. 4 compares the memory footprint and compute cost (mea-
sured in scalar multiplications) of standard and boosted keyswitch-
ing as a function of L (the number of residue polynomials, propor-
tional to the bitwidth of Q). Both algorithms have similar costs for
small values of L, but costs grow much more quickly with L for
standard keyswitching.

In particular, keyswitch hints are the size of two ciphertexts in the
boosted algorithm. This footprint reduction is the most important
factor to CraterLake. For instance, at N=64K and L=60, a keyswitch
hint takes 52.5 MB instead of 1.7 GB for the standard algorithm.
This enables holding KSHs on-chip and allows for high reuse. Fig. 4
also shows that boosted keyswitching reduces computational costs
across the range of multiplicative budget.

Listing 1 shows the implementation of boosted keyswitching.
Keyswitching takes a ciphertext polynomial and the keyswitching
hint (KSH) as inputs, and produces two ciphertext polynomials as
output. This variant of boosted keyswitching expands the input
polynomial to use 2x wider coefficients; this expansion reduces
the KSH sizes and their application. In RNS representation, this is
accomplished through changeRNSBase (), which is used to both
expand the L-residue input into a 2L-residue intermediate and later
to shrink the output back to L residues.

Table 1 compares the operations used by boosted and stan-
dard keyswitching. Whereas standard keyswitching has L? NTTs,
boosted keyswitching uses only O(L) NTTs: a 10x reduction for
L=60. To achieve this, boosted keyswitching incurs about 50% more
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Boosted keyswitching Standard
Ops  changeRNSBase + other keyswitching
Mult 3L + 4L 2L?
Add 3L + 2L 2L?
NTT 6L L?
At L=60:
Mult 10,800 + 240 7,200
Add 10,800 + 120 7,200
NTT 360 3,600

Table 1: Operation breakdown for boosted vs. standard
keyswitching as a function of multiplicative budget (L),
and for L=60. Boosted keyswitching operations are split by
whether they happen within or outside changeRNSBase ().

multiplies and adds than standard keyswitching. However, trading
off fewer NTTs for more multiplies and adds is highly beneficial be-
cause NTTs are much more complex, requiring O(N log N) scalar
multiplies and adds.

Previous accelerators cannot perform boosted keyswitching ef-
ficiently because they are designed to execute all multiplies and
adds separately, resulting in an overwhelming amount of register
file port pressure. However, the bulk of these operations take place
in changeRNSBase() (Table 1), and are structured as sequence
of multiply and accumulate operations (Listing 1) [7]. CraterLake
exploits this by introducing a novel changeRNSBase () functional
unit, CRB, that buffers the intermediate sums and thereby reduces
the register file pressure by a factor of L (i.e., up to 60X%).

Additionally, Listing 1 shows that most intermediate variables
are consumed immediately after being produced and can then be
discarded. CraterLake exploits this by building configurable pipelines
of functional units, further reducing register file pressure (Sec. 5.4).

3.1 Performance-Security Tradeoffs in Boosted
Keyswitching

As Sec. 2.3 explained, the security level of FHE depends on N /logQ:
the ratio between the number of polynomial coefficients and the
width of each coefficient. By expanding the input polynomial by a
factor of two, the above boosted keyswitching algorithm increases
the maximum logQ by 2x. This would require either doubling N
or using half of the levels to achieve the same security level as
standard keyswitching.

Since boosted keyswitching is much more efficient than standard
algorithm, this is a worthwhile tradeoff. Moreover, other boosted
keyswitching variants offer finer control over this tradeoff. Specif-
ically, boosted keyswitching variants are parameterized by the
number of so-called digits t. The variant described above is 1-digit
keyswitching. In t-digit keyswitching, (1) the input polynomial
is expanded by a factor t/(1 + t); (2) keyswitch hint footprint
is proportional to 1 + ¢; and (3) compute operations outside of
changeRNSBase also increase, e.g., multiplications grow by a factor
1+ t; however, this is a minor effect, because changeRNSBase dom-
inates the number of operations (Table 1), and operations within
changeRNSBase do not grow with the number of digits.

Concretely, using t=2, 3, or 4 digits increases the maximum
logQ by 1.5%, 1.33%, and 1.25X, respectively. Thus, higher-digit
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Figure 5: Overview of the CraterLake architecture.

keyswitching variants reduce the N required for a given level of
security, or increase the number of levels allowed between boot-
strappings vs. 1-digit keyswitching. The main drawback of these
variants is that keyswitch hints grow quickly with the number
of digits (by a factor t + 1), so whereas in 1-digit keyswitching
each KSH is the size of 2 ciphertexts, with 2-4-digit keyswitching
each KSH takes 3-5 ciphertexts. This makes these variants more
memory-bound, especially if the larger KSHs reduce on-chip reuse.

Achieving a given level of security efficiently requires carefully
trading off the keyswitching variant used and frequency of boot-
strapping. FHE programs also use multiple keyswitching variants
over time: higher-digit keyswitching may be necessary when logQ
is large, but 1-digit keyswitching can be used when ciphertexts be-
come narrowetr, since a 2X expansion does not affect the maximum
logQ of the computation. Given these tradeoffs, FHE accelerators
should support different keyswitching variants efficiently. For ex-
ample, to achieve 80-bit security with N=64K in our evaluation, we
use 2-digit keyswitching for multiplicative budgets L > 52 and 1-
digit keyswitching elsewhere; we also show how to achieve higher
security levels, e.g., 128 bits (Sec. 9.4).

4 ARCHITECTURE OVERVIEW

Fig. 5 shows an overview of the CraterLake architecture. We first
describe its key elements, and then explain why this is the right
architecture for FHE by considering design alternatives.

4.1 Logical Organization

Vector FUs and data types: CraterLake is a vector processor
with specialized functional units (FUs) tailored to FHE operations.
CraterLake includes fast vector FUs for modular additions, modu-
lar multiplications, NTTs, and automorphisms, which are adapted
from F1 [25]. In addition, CraterLake contributes two novel FUs: a
Change-RNS-Base unit (CRB) that accelerates the bulk of boosted
keyswitching, and a Keyswitch hint generator (KSHGen) that gen-
erates half of each keyswitch hint on the fly, reducing memory
traffic and on-chip storage.

CraterLake implements a single set of vector FUs that process
vectors of a configurable length N, which can be any power of 2 from
2,048 to 65,536 in our implementation. Each vector represents one
residue polynomial, so vector elements have a fixed, narrow width
(28 bits in our implementation). CraterLake has a large number
of vector lanes E, 2,048 in our implementation. All FUs are fully
pipelined, consuming and producing E=2,048 elements/cycle. Each
vector is fed to an FU in N/E consecutive cycles.
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Memory system: CraterLake’s on-chip storage is organized as
a single-level 256 MB register file shared by all FUs. While this
amount of storage might appear excessive, it fits just 10 ciphertexts
at the largest parameters CraterLake targets (Nmax=64K, Lmax=60),
and smaller register files severely limit performance, as we show
in Sec. 9.3. The register file uses an element-partitioned design [6]
to efficiently emulate 12 read and write ports. Still, this is only half
of the 24 input ports of our FUs. We bridge this gap by allowing
FUs to be chained to form multi-FU pipelines that execute more
complex operations.

CraterLake uses high-bandwidth main memory (HBM2E in our

implementation). Memory controllers interface directly with regis-
ter file banks. The system uses decoupled data orchestration [56]
to hide memory latency: memory transfers are performed indepen-
dently of compute operations, staging ciphertexts in the register
file ahead of their use.
Static control: CraterLake hardware is statically scheduled to lever-
age the regularity of FHE operations. All operations have a fixed
latency, and the compiler is responsible for scheduling all opera-
tions and memory transfers to respect all data dependencies. This
avoids the need for hardware to implement any dynamic control,
like backpressure or stalling logic, and enables CraterLake to sup-
port very wide vector FUs with minimal control overheads.

4.2 Physical Organization

Implementing an E=2,048-lane vector processor naively would re-
sult in prohibitive on-chip traffic. CraterLake addresses this by
splitting its lanes into G=8 lane groups. Each lane group is EG=256
elements wide and occupies a physically distinct region of the chip,
as Fig. 5 shows. As lane groups contain both FU lanes and register
file banks, the majority of data movement can be performed locally
within each group.

Splitting lanes into groups is challenging because NTTs and
automorphisms have all-to-all dependencies between vector el-
ements, requiring communication among lane groups. Luckily,
F1[25] showed that these dependencies can be mapped to transposes
(one per NTT and two per automorphism). But F1’s implementa-
tion of transposes does not scale to this many lanes. To address
this challenge, we contribute a new transpose implementation that
performs all data movement between lane groups through a simple
fixed permutation network that consists of only wires and registers,
without any network switches. Supporting CraterLake’s compute
throughput requires this network to have a total bandwidth of 4E
elements per cycle (29 TB/s).

4.3 Comparison to Prior Work

As CraterLake implements a single set of E=2,048-lane FUs, all of
its lane groups operate in tandem on different parts of the same
residue polynomial. The only operations that require communica-
tion among lane groups are NTTs and automorphisms, which need
E and 2E elements per cycle of bandwidth, respectively (Sec. 5.3).
This is at most 29 TB/s for the 2 NTTs and 1 automorphism unit in
CraterLake; each homomorphic multiplication and rotation transfer
8NL and 10NL words among lane groups, respectively.

In contrast, prior work implements multiple independent com-
pute clusters (analogous to our lane groups), and assigns all elements
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Figure 6: Microarchitecture of the change RNS Base (CRB)
unit.

of each residue polynomial to a compute cluster [25, 60]. This makes
each NTT and automorphism local to a cluster, but each keyswitch
requires all-to-all communication of residue polynomials at a rate
of GE elements per cycle, where G is the number of clusters; in
total, each homomorphic operation transfers 3GNL words among
clusters. Thus, this approach scales poorly. Specifically, for G=8
(as we use in CraterLake), it requires double the peak bandwidth
of our approach (57 TB/s), and incurs over 2.4x more traffic per
homomorphic operation. More importantly, this approach requires
a complex network between clusters, which is 16X larger than our
fixed permutation network (Sec. 8).

Additionally, having all lane groups operate in lockstep reduces
on-chip storage requirements, as we can dedicate the whole chip to a
single homomorphic operation at a time. By contrast, using compute
clusters well often requires overlapping multiple homomorphic
operations, which adds to footprint.

Finally, our approach makes the compiler’s job easier: it only
needs to decide on a single polynomial operation to run at a time,
instead of needing to orchestrate for parallelism by scheduling
multiple operations across clusters. This keeps the compiler simple
and utilization high.

5 MICROARCHITECTURE

This section introduces CraterLake’s novel FUs, CRB (Sec. 5.1) and
KSHGen (Sec. 5.2); presents the transpose network needed by NTT
and automorphism FUs (Sec. 5.3); describes our implementation of
FU chaining to reduce register file pressure (Sec. 5.4); and introduces
new optimizations for modular multipliers, which dominate area
and energy (Sec. 5.5).

5.1 Change-RNS-Base (CRB) Unit

As Sec. 3 discussed, boosted keyswitching is dominated by change-
RNS-base operations. The CRB unit, shown in Fig. 6, consists of
many parallel multiply-and-accumulate pipelines that spatially un-
roll the inner loop of changeRNSBase () (Listing 1). The CRB unit
exploits the high internal reuse in changeRNSBase () to allow much
higher throughput than independent multipliers and adders com-
municating through the register file. This is the same insight behind
DNN accelerators like the TPU [41] and Tensor Cores in GPUs [17].
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The CRB unit first receives as input L residue polynomials, and
then produces L output residue polynomials, both at E elements/cy-
cle. Each input polynomial is broadcast to all pipelines, with each
pipeline producing exactly one of the output polynomials. The CRB
unit is double-buffered so that it can simultaneously produce the
output of one operation, and receive the input for the next one.

We size the CRB unit to handle the largest ciphertexts that we
find in deep applications, Njpax=64K and Linax=60. This results in 60
parallel pipelines with 26.25 MB of total buffers. Smaller ciphertexts
leave some of the CRB pipelines unused.

The CRB unit is by far CraterLake’s largest FU: it consists of
120K scalar multipliers and adders, consuming 34% of on-chip area.
Despite its size, the CRB unit is easy to lay out in hardware as it
performs only element-wise operations. In return, the CRB unit
reduces the time it takes to perform keyswitching from O(L?) to
O(L). This is essential for achieving high utilization across different
ciphertext sizes, as the runtime of all other operations in FHE grows
linearly with L.

5.2 KeySwitch Hint Generator (KSHGen)

As half of each keyswitch hint (KSH) is pseudo-random, it can
be generated on the fly from a small seed, halving KSH storage
and bandwidth. While this optimization has been previously imple-
mented in software [32], we propose the first hardware Keyswitch-
Hint Generator (KSHGen).

The KSHGen generates numbers uniformly distributed mod-
ulo some prime by sampling random bits from a cryptographic
PRNG [10], and then performing rejection sampling. The challenge
is that rejection sampling has variable throughput, which plays
poorly with static scheduling.

We address this in two ways: First, we reduce the probability of
rejection by sampling additional random bits per generated word.
Second, we introduce small buffers (16 words deep) that hide the oc-
casional rejections. As these buffers are refilled between generating
different KSHs, the probability any of them runs empty is negligible.
Additionally, since software controls the seeds, it can test and avoid
the few that fail to produce outputs at-speed. The KSHGen unit is
cheap and improves performance by up to 2.5x (Sec. 9).

5.3 Transpose Network and FUs

CraterLake’s lane groups communicate using a fixed permutation
network, i.e., a network that connects specific input/output pairs
without any control logic. This approach reduces network area over
the full-crossbar approach of F1 by 16X, with a 2.4X reduction in
network bandwidth for keyswitching.

NTTs and automorphisms are the only FUs with dependencies
between elements of the same vector. F1 approaches these oper-
ations by laying out the N-element input vector as a VN X VN
matrix. Then, an NTT over the whole vector can be expressed as a
set of row-wise NTTs followed by a set column-wise ones. A similar
decomposition exists for automorphisms. Therefore, by introducing
a fully-pipelined transpose unit, F1 efficiently maps these dataflows
to a VN-lane vector processor [25].

CraterLake differs from F1 in that it has E=2,048 lanes, 8x the
maximum VN=256 it targets. F1’s approach is unsuitable for Crater-
Lake as it results in monolithic 2,048-lane pipelines, with excessive
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communication between lanes. Instead, CraterLake partitions its
lanes into G=8 groups of EG=256 lanes each. All dependencies be-
tween lane groups are satisfied using a novel, spatially distributed
transpose network that can process E=2,048 elements per cycle.

CraterLake distributes the rows of the Eg X Eg matrix across
lane groups in a round-robin fashion (Fig. 7, step 0). Then, it splits
the matrix into G X G blocks, and decomposes the transpose into
two steps: (1) transposing the (Eg/G) X (Eg/G) block-matrix, and
(2) transposing all G x G blocks.

Fig. 7 illustrates transposing a 4 X 4 matrix (Eg=4) across G=2
lane groups. The right side of the figure shows how the steps are
executed in hardware, while the left side shows their effect on the
Eg X Eg matrix.

Step 1: As lane group i is responsible for row i of all G X G
blocks, the block-matrix transpose can be performed locally: each
lane group performs a block-level transpose on the 1 X G sub-
blocks it holds. CraterLake implements this step by using a separate
fully-pipelined transpose unit in each lane group (using the same
transpose unit design as F1).

Step 2: When transposing each G X G block, group i starts off
storing its i-th row, and must end up storing its i-th column. While
this requires moving elements between lane groups, the exchange
follows a fixed pattern: group i sends to group j the elements in the
Jj-th columns of all 1 X G subblocks it holds. CraterLake implements
this using a fixed permutation network among lane groups.

CraterLake handles vectors with N <Npax similarly to F1: vectors
are laid out as N/Eg x Eg matrices, and transposed only within
N/Eg X N/Eg blocks. This requires only adjusting step 1, which
is performed locally.

5.4 Vector Chaining

While the CRB substantially reduces register file (RF) port pressure,
achieving high utilization requires a large number of FUs, as shown
in Fig. 5. If these FUs always operated on registers, keeping them
busy would require dozens of RF ports.

To tackle this challenge, we allow FUs to be chained, so that the
output of an FU can be consumed by another FU without going
through the register file. This is similar to Cray-1’s vector chain-
ing [62], except that chained values are not written to the regis-
ter file, saving write ports. Chaining works well because boosted
keyswitching is amenable to pipelining: most operands are con-
sumed immediately after being produced.
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Figure 8: Illustration of how vector chaining is used for part
of a homomorphic multiply.

For efficiency, we tailor the allowed inter-FU chaining options
to those needed by homomorphic operations. For example, Fig. 8
shows how FU chaining is used to form a pipeline that implements
a part of homomorphic multiplication. While this pipeline chains
10 FUs (beginning and ending in the CRB), it uses only 5 read and
1 write RF ports, instead of the 24 it would need without chaining.
Overall, vector chaining reduces register file traffic by 3.5x during
keyswitching.

We find that supporting four large pipelines with a few variants
suffices to chain most operations. Chaining adds few inter-FU paths:
on average, each output is connected to 3 inputs (including the RF),
resulting in a cheap implementation.

5.5 Bitwidth and Multiplier Optimizations

CraterLake’s FUs are dominated by scalar modular multipliers.
Thus, an efficient multiplier design is crucial. RNS moduli ¢; must
come from a set of restricted, NTT-friendly primes. F1’s FHE-specific
multipliers exploit this to simplify logic [25].

CraterLake improves F1’s design in two ways: First, since multi-
plier area and power scale quadratically with bitwidth, CraterLake
adopts a narrower, 28-bit datapath (F1 uses 32 bits). We cannot re-
duce bitwidth any further because then there would not be enough
NTT-friendly moduli to support the deep benchmarks CraterLake
targets (we need 2Lmax=120 small moduli). Second, we pipeline
each multiplier to its energy-optimal point.

Together, these approaches improve area per bit by 1.6x and
energy per bit by 1.3x over F1’s multipliers. Without these opti-
mizations, power draw would limit throughput.

6 COMPILER

The CraterLake compiler translates FHE programs written in a
high-level language. It primarily seeks to minimize off-chip data
movement by maximizing on-chip reuse, and to decouple mem-
ory accesses and computation, fetching off-chip operands ahead
of their use to prevent stalls. The compiler produces a cycle-by-
cycle configuration for all chip resources. We now describe the
compiler’s organization, in order of transformations applied to an
input program:

1. Input FHE programs: We use a Python-embedded DSL to de-
scribe FHE programs, similar to the compiler of F1 [25].

2. Ordering of homomorphic operations: The input program
is first translated to a dataflow graph of homomorphic operations.
These operations are then ordered to maximize reuse of operands
using a standard tiling analysis [38, 55, 68] similar to Timeloop [55].
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Ordering to maximize reuse is critical: because operands are so
large, CraterLake’s on-chip storage can only hold a few of them. For
example, for N=64K and L=60, each ciphertext is 26 MB, so on-chip
storage can hold just shy of 10 ciphertexts.

3. Compiling homomorphic operations: Once ordered, homo-
morphic operations are translated one-by-one and scheduled to run
on the accelerator.

The compiler first translates each homomorphic operation into
a sequence of simpler operations on ciphertext polynomials. To
achieve high utilization, the compiler implements keyswitching
as a sequence of up to five FU pipelines, leveraging vector chain-
ing (Sec. 5.4). Thus, each keyswitching operation is expressed as
a sequence of up to five complex operations. All other ciphertext
polynomial computations are translated to individual multiplica-
tion, addition, and automorphism operations, which use a single
FU and read and write to the register file.

The compiler then schedules memory accesses and compute
operations cycle-by-cycle. Off-chip loads are scheduled greedily:
any time the memory is free, the scheduler traverses operations
in order and fetches the first operand that it finds is off-chip. If
this operand requires evicting a live value, that value is written
back first. We follow Belady’s MIN [8] and evict the operand reused
the furthest. The load is deferred if the victim operand is used
earlier than the loaded operand, or if the loaded operand would
have to be evicted before its use. Each operation is then scheduled
on the earliest cycle where its input operands and its FU (or FUs
for keyswitch pipelines) are available.

This procedure produces a cycle-by-cycle schedule of all opera-
tions and data transfers. This schedule is then transformed into the
configuration streams for all components of the chip.

Optimized bootstrapping: Since bootstrapping uses the largest
ciphertexts, maximizing its reuse is crucial. We use a state-of-the-
art bootstrapping algorithm that recursively decomposes its key
kernels, analogously to FFTs [14]. We decompose the computation
into many partitions, each small enough to fit on chip (a 4x4 tile).
This decomposition makes bootstrapping consume some extra lev-
els, but it achieves much higher performance overall by allowing
on-chip reuse.

Comparison with prior work: CraterLake’s compiler builds on
F1’s, and shares key features: it uses high-level programs as inputs,
and seeks to minimize and decouple off-chip data movement, which
are critical. However, CraterLake’s compiler is substantially simpler
and achieves higher utilization. This is because CraterLake has a
simpler interface than F1: CraterLake exposes a single set of wide-
vector functional units, similar to a vector uniprocessor, whereas F1
organizes narrower FUs into independent compute clusters and has
two levels of on-chip storage (per-cluster register files and a shared
scratchpad), similar to a vector multicore. Thus, F1’s compiler must
distribute a single homomorphic operation among multiple clusters,
and must often overlap many homomorphic operations. This dis-
tributed design creates complex scheduling problems, e.g., trading
off load balance and utilization for reuse.

7 IMPLEMENTATION

We implemented CraterLake’s components in RTL, and synthesized
them in a commercial 14/12nm process using state-of-the-art tools.
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Component Area [mm?]
CRB FU 158.8
NTTFU 28.1
Automorphism FU 9.0
KSHGen FU 33
Multiply FU 2.2
Add FU 0.8
Total FUs (CRB, 2xNTT, 240.5
Aut, KSHGen, 5xMul, 5xAdd)
Register file (256 MB) 192.0
On-chip interconnect 10.0
Mem. PHYs (2xHBM2E) 29.8
Total CraterLake 472.3

Table 2: Area breakdown of CraterLake by component.

These include a commercial SRAM compiler that we use for register
file banks.

We target a configuration with area and power budgets similar
to a modern GPU or server CPU. This design requires careful op-
timizations to limit power. We target a 1 GHz frequency for most
components, and pipeline them to their energy-optimal points,
using high-Vt cells and clock gating. Register file banks run double-
pumped at 2 GHz. This enables using single-ported SRAMs while
serving up to two accesses per cycle and bank.

We use HBM2E main memory, and assume 512 GB/s bandwidth
per PHY (similar to NVIDIA’s A100 GPU [17], which has 2.4 TB/s
with 6 PHYs [54]). We use prior work to estimate the HBM2E PHY
area [21, 58] and power [58].

Table 2 shows CraterLake’s area and its breakdown by compo-
nent. Overall, our CraterLake configuration requires 472 mm?. FUs
take 51% of the area, with 41% going to the register file, 6% to the
two HBM2E PHYs, and 2% to the on-chip interconnect. As we will
see in the evaluation, this design stays within a power budget of
320 W, in line with GPUs and server CPUs.

Finally, while these figures could be considered high, note that
we are not using a leading-edge fabrication node: based on pub-
lished logic and SRAM scaling factors [69], on current TSMC 5nm
technology, CraterLake would consume a modest 157 mm? area
and 146 W peak power.

Host communication: We assume that CraterLake is implemented
as an accelerator. The needed CPU-accelerator bandwidth required
to stream inputs and outputs in our benchmarks is 50 GB/s on aver-
age and 130 GB/s at most, so a commodity PCle 5 interface suffices
to achieve full throughput. CPU-accelerator latency is not an issue,
as these are bulk transfers and can be overlapped with computation.

8 EXPERIMENTAL METHODOLOGY

Modeled system: We evaluate our CraterLake implementation
from Sec. 7 using a cycle-accurate simulator to execute Crater-
Lake programs. We use activity-level energies from synthesized
components to produce energy breakdowns.

Benchmarks: We use several FHE programs to evaluate Crater-
Lake. All programs come from state-of-the-art software implemen-
tations, and use the CKKS scheme. To show that CraterLake is effi-
cient on unbounded computations, we use four deep benchmarks,
which have a high multiplicative depth and require bootstrapping.
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We also use four shallow benchmarks, with low multiplicative depth
and no bootstrapping, to show that CraterLake is also efficient at
low depths.

We meet 80-bit security for all benchmarks by using a combi-
nation of 2-digit and 1-digit keyswitching (Sec. 3.1). We also use
non-sparse keys and the most recent bootstrapping techniques [11]
to maximize multiplicative budget without losing precision. We
later evaluate variants with 128-bit security and beyond (Sec. 9.4).
We use the LWE estimator [5] to derive security parameters.
Deep benchmarks include:

(1) LSTM is a Long-Term Short-Term (LSTM) NLP benchmark [57].
This benchmark boils down to computing k.1 = o(Woh; + Wix;)
many times. o is an activation function approximated by a degree-3
polynomial, and Wyh;, Wix; are 128x128 matrix-vector multiplies.
This computation is multiplicatively deep and requires 50 boot-
strappings per inference.

(2) ResNet-20 is an FHE implementation [48] of the ResNet-20
DNN. We benchmark an inference on a single encrypted image.
(3) Logistic regression uses the HELR algorithm [36], which is
based on CKKS. We compute many batches of logistic regression
training with 256 features, and 256 samples per batch, starting at
computational depth L=38. This benchmark is different from the
one reported in F1, as it performs multiple logistic regression itera-
tions. F1 reported performance on only a single iteration, thereby
avoiding frequent bootstrapping that is necessary for running mul-
tiple training iterations.

(4) Fully-packed bootstrapping takes an L=3 and N=64K cipher-
text with an exhausted multiplicative budget and refreshes it by
bringing it up to L=57, then performs the bootstrapping compu-
tation to obtain a usable ciphertext at a lower budget. The fully-
packed version implies the ciphertext uses all N/2=32K available
slots. Bootstrapping costs grow with the number of slots (both in
multiplicative depth and compute).

We use the state-of-the-art fully packed bootstrapping algo-
rithm [53], and use Lattigo’s implementation [2] as the baseline.
We tune CraterLake’s bootstrapping implementation to maximize
performance as discussed in Sec. 6.

For consistency, we also use this bootstrapping algorithm in all
benchmarks that require bootstrapping. This is important, because
this algorithm is not yet widely implemented in other libraries, so
the original ResNet-20 and LogReg used much slower bootstrapping
algorithms. In fact, the cost of older bootstrapping algorithms grows
very quickly with the number of plaintext elements encoded in
each ciphertext, so the baselines used partially packed ciphertexts
(e.g., packing 128 elements per N=64K ciphertext) to reduce overall
overheads. But with efficient bootstrapping, using fully packed
ciphertexts is more efficient. For instance, we modify ResNet-20
to pack all channels into a single ciphertext before bootstrapping.
This reduces the number of bootstrappings by 38X and improves
performance on all hardware platforms by about 10x.

Shallow benchmarks come from F1 [25]. They include three
neural networks from Low-Latency CryptoNets (LoLa) [13]. LoLa-
MNIST is a simple, LeNet-style network used on the MNIST data-
set [46], while LoLa-CIFAR is a 6-layer network (similar in computa-
tion to MobileNet v3 [37]) used on the CIFAR-10 dataset [45]. LoLa-
MNIST includes two variants with unencrypted and encrypted
weights; LoLa-CIFAR is available only with unencrypted weights.
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Execution time (ms) on CraterLake F1+ CPU vs.F1+ vs.CPU Speedup vs. KSHGen CRB/chain Network
ResNet-20 249.45 2,693 23min 10.8% 5,519% ResNet-20 2.0x 20.0x 1.7x
Logistic Regression 119.52 639 356's 534x  2,978x Logistic Regression 1.3% 8.8x 1.2x
LSTM 138.00 2,573 859s 18.6X 6,225X% LSTM 2.5% 34.5% 1.3%x
Packed Bootstrapping 391 583 17.2s 14.9%  4,398% Packed Bootstrapping 2.0x 27.4x 1.3x
deep gmean speedup 11.2X 4,611 deep gmean speedup 1.9% 20.2X 1.3Xx
Unpacked bootstrapping 0.10 0.21 877 2.04x  8,612x Unpacked Bootstrapping 1.9 3.7% 1.0
CIFAR Unencryp. Wghts. 50.50  94.1 187s 1.86% 3,695% CIFAR Unencrypt. Wghts. 1.0x 3.7X 2.0%
MNIST Unencryp. Wghts. 0.14  0.13 561 0.97x  4,152x MNIST Unencrypt. Wghts. 1.1x 1.3% 1.5%
MNIST Encryp. Wghts. 0.24  0.22 1369 0.88x% 5,621X MNIST Encryp. Wghts. 1.1x 1.0x 1.3x
shallow gmean speedup 1.34x  5,220% shallow gmean speedup 1.2X 2.0x 1.4%

Table 3: Performance of CraterLake, F1+, and CPU on full FHE
benchmarks.

These benchmarks do not use bootstrapping and their max L is
between 4 and 8.

Finally, we also benchmark unpacked bootstrapping, which boot-
straps a ciphertext that packs a single element. This makes it shal-
lower (L<23) and less computationally demanding, but performance
per slot is a lot worse than fully packed bootstrapping. Thus, un-
packed bootstrapping is not used much in practice. We include it
because it is the bootstrapping benchmark used in F1 [25].
Compared systems: We compare CraterLake with a CPU system.
We use a 32-core, 64-thread, 3.5 GHz AMD Ryzen Threadripper PRO
3975WX; at 420mm? in a mix of 7nm and 12nm technology, this
CPU has a comparable transistor count and power budget (280 W
TDP) to CraterLake.

We also compare performance to prior accelerators, in particular
to F1 [25]. For fairness, we evaluate F1+, a version of F1 that is
scaled to a 256 MB 32-bank scratchpad, 32 compute clusters with 256
lanes each, and 1 MB register file per cluster. This makes F1+ have
the same or higher throughput on basic operations as CraterLake.
However, F1+ takes 636 mm?, 35% more than CraterLake, because
its network scales poorly: F1+’s on-chip network takes 160 mm?,
16X more than CraterLake’s fixed permutation network. This large
overhead shows that CraterLake’s novel hardware organization is
crucial to scale to larger chips.

Finally, although F1 is tailored to standard keyswitching, boosted
keyswitching becomes more efficient for L > 14. Thus, F1+ uses
the most efficient keyswitching algorithm at each level. In short,
these changes allow comparing the F1 and CraterLake architectures
without the confounding factors of different hardware budgets or
subpar algorithms.

9 EVALUATION

9.1 Performance

Table 3 compares the performance of CraterLake, CPU, and F1+
on deep and shallow benchmarks. It shows execution times and
CraterLake’s speedups over the CPU and F1+.

CraterLake achieves very large speedups over the CPU imple-
mentations, ranging from 2,978xX to 8,612X. Speedups are similar
across deep and shallow benchmarks, showing that CraterLake
provides robust gains across FHE program types.

Table 4: Speedups of CraterLake over configurations
without KSHGen, CRB or chaining, or the fixed network.

I Functional Units [ Off-chip Bandwidth
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Figure 9: Utilization of functional units and main memory
bandwidth.

CraterLake achieves large speedups over F1+ on deep bench-
marks, outperforming it by gmean 11.2x and up to 18.6X. By con-
trast, CraterLake and F1+ achieve comparable speeds on shallow
benchmarks, with a gmean speedup of only 1.34x. These stark dif-
ferences demonstrate that prior FHE accelerators are efficient only on
shallow computations, and falter on deep ones due to the limitations
that we have discussed.

On the MNIST shallow benchmarks, CraterLake is slightly slower
than F1+ because standard keyswitching is efficient in this range
and CraterLake spends a large fraction of area on the CRB, which
has low utilization at low L, whereas F1+ has higher NTT, add,
and multiply throughput. But the high speedups on deep programs
show that most compute happens at high L, so CraterLake optimizes
for the common case.

9.2 Architectural Analysis

To understand these results in more depth, we examine CraterLake’s
resource utilization and power consumption.
Utilization: Fig. 9 reports the average utilization of FUs and main
memory bandwidth for each application. FU utilization is reported
as the fraction of cycles that FUs are consuming input values, aver-
aged across all FUs. It reflects issue rate—for example, a utilization
of 66% means that 10 out of the 15 FUs are consuming new inputs.
Bandwidth utilization is simply the fraction of cycles memory is ac-
tive, e.g., 70% utilization denotes an average bandwidth of 700 GB/s.
Overall, CraterLake achieves high utilization of both memory
and compute, denoting a balanced system. Thanks to the CRB,
CraterLake’s FU mix is balanced across all ciphertext sizes, so FU
utilization is always high unless memory limits throughput. Some
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Figure 10: Per-benchmark breakdown of (a) data movement
and (b) average power for CraterLake.

workloads, like unpacked bootstrapping, saturate on memory band-
width, but most others see compute utilization near or above 50%
(near 100% utilization is not achievable as all programs experience
some memory-bound phases).

By contrast, F1+’s utilization is much lower, especially on deep
benchmarks, where average FU utilization is 10%, owing to its
inadequate FU mix and lack of CRB.

Data movement: Fig. 10a breaks down memory traffic by keyswitch
hint (KSH), inputs, and intermediate loads and stores. We see that

deep benchmarks incur a manageable amount of intermediate traf-
fic, while shallow benchmarks have a sufficiently low footprint to

cause no eviction of intermediates.”

Power consumption. Fig. 10b shows the power breakdown for

CraterLake and the total power consumption for each benchmark.
The figure includes both chip and HBM power. Power stays within

a 320 W envelope, and is higher for deep benchmarks, primarily due

to higher FU/memory utilization and higher internal CRB utiliza-
tion. FUs dominate power across benchmarks, consuming 50-80%.
This shows the importance of CraterLake’s FU energy optimiza-
tions, and demonstrates that its architecture is far more efficient:
F1 was dominated by data movement energy, and F1+ consumes

gmean 18X more energy than CraterLake on our deep benchmarks.
CraterLake’s efficiency and performance benefits yield a gmean

201X improvement in performance per Joule over F1+.

9.3 Sensitivity Studies

On-chip storage: Fig. 11 shows CraterLake’s performance as regis-
ter file grows from 100 to 350 MB. Each line shows the performance
of a different application, normalized to its performance at the default
size, 256 MB. While shallow benchmarks are insensitive to storage
size, most deep benchmarks suffer severely from a smaller register
file, incurring slowdowns of up to 5.5X. This shows that Crater-
Lake’s large on-chip storage is crucial for deep benchmarks. Finally,
adding more on-chip storage leads to diminishing returns: only
packed bootstrapping sees significant improvements past 256 MB,
reaching a 1.5X speedup with a 300 MB register file.

“For some of the shallow benchmarks from F1, the F1 paper [25] reports higher input
traffic than Fig. 10a. This is because F1’s evaluation used plaintexts that are the same
size as ciphertexts (each plaintext fits in half the size of a ciphertext).
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Figure 11: Gmean performance of CraterLake on deep
benchmarks as a function of on-chip register file size.

Execution time (ms) for  128-bit  vs. 80-bit ‘ 200-bit  vs. 80-bit
ResNet-20 321.26 1.29% 588.70 2.36X
Logistic Regression 121.91 1.02x | 123.10 1.03x
LSTM 223.56 1.62X 596.16 4.32%
Packed Bootstrapping 6.33 1.62X 17.01 4.35x%
gmean slowdown 1.36X% ‘ 2.60%

Table 5: Performance of CraterLake at 128-bit security and
at 200-bit (which uses N=128K instead of 64K) with compar-
isons to performance at 80-bit security.

Effect of CraterLake’s features: Table 4 shows the impact of our

innovations by reporting the slowdown of alternative configurations.
KSHGen omits the KSHGen FU and stores full KSHs in memory.
This hurts performance noticeably, especially in deep benchmarks,
by gmean 1.9 and by up to 2.5X. CRB/chain omits the CRB and the

vector chaining optimizations. Performance is even worse than for

F1+, because the system becomes bottlenecked on register file ports

and CraterLake has 50% of the NTT and 40% of the multiply/add

throughput of F1+. Network replaces CraterLake’s fixed transpose

network and polynomial tiling design with F1+’s crossbar-based

network and residue polynomial tiling design. Performance is up to

2X worse even though the F1+ network is 16X larger, because residue

polynomial tiling incurs 2.4X more traffic than CraterLake’s tiling

approach (Sec. 4.3).

9.4 Performance vs. Target Security Level

The benchmarks presented so far meet an 80-bit security level,
which is often considered sufficient [25, 31, 34, 39, 40]. We now
analyze the impact of meeting higher levels of security: 128-bit
security, which is also a commonly used target [4, 48, 60] and can
be efficiently achieved with N=64K, and 200-bit security, a very
conservative target that requires using larger polynomials.
128-bit security: Table 5 shows CraterLake’s performance on our
benchmarks when adjusted for 128-bit security (128-bit column), as
well as the slowdown compared to performance for 80-bit security.

To reach 128 bits of security with a polynomial degree of N=64K,
we bootstrap twice as often as with 80 bits of security, i.e., target half
the number of usable levels after bootstrapping. This allows using
boosted keyswitching variants with a relatively small number of
digits: we use 1-digit keyswitching for L <32, 2-digit keyswitching
for 32< L <43, and 3-digit keyswitching for L >43. As we bootstrap
twice as often, we never go beyond L=51.



CraterLake: A Hardware Accelerator for Efficient Unbounded Computation on Encrypted Data

Table 5 (left) shows that 128-bit security adds modest overheads:

a 1.36X gmean slowdown, and a worst-case slowdown of 1.62Xx.
These overheads stem from the higher memory footprint of multi-
digit keyswitching and the more frequent bootstrapping. Impor-
tantly, though bootstrapping is twice as frequent, slowdowns are
below 2X, because both bootstrapping and useful computation hap-
pen at lower L values, lowering their cost. This is a concrete example
of the tradeoff that Fig. 3 in Sec. 2.3 illustrates.
Beyond 128-bit security: Effectively supporting significantly more
than 128-bit security requires using larger polynomials. Here, we
evaluate a 200-bit security target, which requires doubling N from
64K to 128K. Note that this security target is very conservative, and
not used in FHE benchmarks; we use it to study performance over
a wide range of security levels.

CraterLake as evaluated so far supports N up to 64K natively, but
larger vectors would require multiple passes through FUs and forgo
FU chaining. We thus evaluate a different CraterLake configuration
that supports N up to 128K natively. This requires modest hardware
changes, chiefly (1) the buffers in the CRB need to double, from
26.25 MB to 52.5 MB; and (2) NTTs require an additional butterfly
stage. These changes consume 27.4 mm? of additional area, i.e., less
than 6% of chip area.

Table 5 (right) reports the performance of deep benchmarks for
200-bit security and N=128K. Since N=128K ciphertexts have dou-
ble the slots of N=64K ciphertexts, we normalize performance per
element. This is because doubling N allows doubling the number of
slots (plaintext elements) per ciphertext, which enables more com-
putations to happen in parallel. For example, consider the ResNet
benchmark: starting from the original benchmark, which uses
N=64K ciphertexts and performs one inference at a time, it is easy
to construct a ResNet benchmark that uses N=128K and performs
two inferences in parallel. In addition to doubling N, CraterLake
achieves 200-bit security by using higher-digit keyswitching.

Table 5 shows that the 200-bit security target imposes additional
overheads, incurring a 2.6x gmean slowdown over 80-bit security,
and a worst-case slowdown of 4.35X. Most of these slowdowns
are caused by the fact that using N=128K doubles the footprint of
ciphertexts and KSHs over N=64K. This limits reuse opportunities
and adds off-chip traffic. While doubling the register file (to 512 MB)
would erase most of these overheads, it would add significant area.

10 ADDITIONAL RELATED WORK

We now present related work not discussed so far.

HE-MPC accelerators are hampered by communication: To
avoid the overheads of FHE, recent work has proposed accelerators
for private deep learning that combine shallow homomorphic en-
cryption (HE) with multi-party computation (MPC): Gazelle [43]
and Cheetah [59]. These systems require very frequent communica-
tion with the client, essentially after every single level of multipli-
cation. So while they reduce accelerator overheads, they are limited
by high client-server communication and client encryption/decryp-
tion overheads. Delphi [52] shows that each DNN inference takes
gigabytes of traffic, which dominates performance. However, the
above accelerators do not consider this traffic. CHOCO [64] shows
that, even after accelerating client operations, communication costs
dominate.
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By dramatically accelerating bootstrapping, CraterLake avoids

the high communication costs of HE-MPC and shallow HE designs.
To avoid bootstrapping, these prior approaches require the client
to receive, re-encrypts, and resend ciphertexts that have exhausted
their multiplicative budgets. In our benchmarks, avoiding each boot-
strapping would require transferring over 13 MB between client and
server (as the client must resend the ciphertext with a reasonable
noise budget). Even if we ignore client computation and network
latency, on a 100 Mbps connection this would require over 1 second
per ciphertext. By contrast, CraterLake bootstraps this ciphertext
in 3.9ms, 256X faster. Bootstrapping also allows the client to send
narrow inputs (e.g., with 32 instead of 1,500 bits per coefficient),
which the server can bootstrap before computation. This greatly
reduces encryption and network overheads.
GPUs are inefficient on FHE: Prior work has studied the use
of GPUs to accelerate FHE [3, 42, 65-67]. While the data-parallel
nature of GPUs may seem a good fit for FHE, these efforts achieve
modest speedups over multicore CPUs. This is because GPUs lack
modular arithmetic, cannot implement all-to-all operations like
NTTs and automorphisms efficiently, and their on-chip memories
are too small to enable sufficient reuse (Fig. 11), despite their use
of HBM. Specifically, state-of-the-art GPU approaches carefully
tune algorithms to achieve high off- and on-chip bandwidth uti-
lization [42]; however, this prior work [42] is 200X slower than
CraterLake. This shows that CraterLake’s high reuse is crucial: to
achieve the same throughput as CraterLake, a GPU would need
over 100 TB/s of memory bandwidth.

11 CONCLUSION

For widespread adoption of FHE, accelerators must efficiently sup-
port deep computations. CraterLake is the first accelerator to achieve
this. By adopting state-of-the-art algorithms and using them to de-
sign CraterLake, we target a new regime of FHE not explored by
prior approaches. Through new architectural and compiler tech-
niques, CraterLake addresses the overheads of deep computations
and provides an order-of-magnitude speedups over prior accelera-
tors, which scale poorly to the accelerator sizes required to process
very large ciphertexts, and are inefficient on the algorithms needed
by deep computations. As a result, CraterLake enables new ap-
plications for FHE, such as real-time inference using deep neural
networks like ResNet or LSTMs.
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