HPCA 2019 Keynote

Towards Secure High-Performance Computer Architectures

Srini Devadas

Massachusetts Institute of Technology

Architectural Isolation of Processes

Fundamental to maintaining correctness and privacy!

Performance Dictates Microarchitectural Optimization

Isolation Breaks Because of Shared Microarchitectural State!

Shared Last Level Cache

Control Flow Speculation for Performance

Sequential Instruction Execution

I: Compute

I+1: Compute

I+2: Compute

I+3: Compute

Non-Sequential Instruction Execution

I: Control Flow

Correct direction

J: Compute

J+1: Compute

J+2: Compute

Mis-speculated direction

K: Compute

K+1: Compute

K+2: Compute

Control Flow Speculation is insecure

Speculative execution does not affect architectural state → "correct"

... but can be observed via some "side channels" (primarily cache tag state)

... and <u>attacker</u> can influence (mis)speculation (branch predictor inputs not authenticated)

A huge, complex attack surface!

Building a Transmitter

Pre-existing (RSA conditional execution example)
Written by attacker (Meltdown)
Synthesized out of existing victim code by attacker (Spectre)

Side Channels Gone Wild!

Real systems: large, complex, cyberphysical

Philosophy

Build enclaves on an enclave platform, not just processes

Enclaves strengthen the process abstraction

- Processes guarantee isolation of memory
- Enclaves provide a stronger guarantee
 - No other program can infer anything private from the enclave program through its use of shared resources or shared microarchitectural state
- Largely decouple performance considerations from security
- Minimally invasive hardware changes
- Provable security under chosen threat model

A Typical Computer Trusted Computing Base

Software...

... Running on hardware

Disk

Network

IIII Single-Chip Secure Processor: Shrink the TCB

Edward Suh's ICS 2003 Talk on Aegis processor

- Enclave assumes trusted hardware + trusted software "monitor"
- Operating system is untrusted

Enclave Lifecycle (simplified)

Enclave Lifecycle (simplified)

- Any attack by a privileged attacker on the same machine as the victim that can extract a secret inside the victim enclave, could also have been run successfully by an attacker on a different machine than the victim.
 - No protection against an enclave leaking its own secrets through its public API.

 Three strategies for isolation: Spatial isolation, temporal isolation and cryptography

Sanctum Design

Victor Costan, Ilia Lebedev

Sanctum: Minimal Hardware Extensions for Strong Software Isolation

Target: multi-core processor (no hyperthreading, no speculation)

Microarchitectural State Isolation in Sanctum Enclaves

- Resources exclusively granted to an enclave, and scheduled at the granularity of process context switches are isolated temporally
 - Register files, branch predictors, private caches, and private TLBs
- Resources shared between processes ondemand, with arbitrarily small granularity are isolated spatially by partitioning
 - Shared caches and shared TLBs

Operating System Manages Page Tables

Practical Software Attack on SGX "Simulators"

 Microsoft Research, IEEE S&P 2015: Exploit no-noise side channel due to page faults

Enclave A Virtual Address Space

Host application space

EVRANGE A

Host application space

Enclave B Virtual Address Space

Host application space

EVRANGE B

Host application space

Partitioning to Prevent Timing 4 Attacks

Address bits covering the maximum addressable physical space of 2 MB

Page Colors = DRAM Regions

Page Colors = DRAM Regions

A little bit-shifting gets us a large contiguous DRAM region

Sanctum Secure Processor No Speculation, No Hyperthreading

RISCV Rocket Core, Changes required by Sanctum (+ ~2% of core)

Sanctum Status and Current Limitations

- We have built an open-source Sanctum based on the RISC-V ISA
 - Low performance and area overhead to support enclaves
 - Ongoing formal verification effort
- Sanctum is an academic, lightweight processor
- Apply its design philosophy to speculative out-of-order (OOO) processors, which need to protect against Spectre-style attacks

MI6 Design

Thomas Bourgeat, Ilia Lebedev, Andrew Wright, Sizhuo Zhang, Arvind

MI6: Secure Enclaves in a Speculative Out-of-Order Processor

Timing Independent Cache Hierarchy

- ~15% performance overhead for enclaves
- Enclaves trade expressivity for security
 - Cannot make system calls directly since OS can't be trusted to restore an enclave's execution state
 - Enclave's runtime must ask the host application to proxy file system and network I/O requests
 - What syscall functionality should the enclave's runtime provide?

- Runtime decisions based on sensitive data leak information through timing: completion time, resource usage
- Crypto to the rescue?
 - Secure demand paging using page-level memory encryption, integrity verification and ORAM
 - Secure and efficient dynamic memory allocation in enclaves an open problem

Challenge: Interaction

- Interaction with the outside may leak information
 - Public schedule for interaction does not leak

 Can we bound leakage of adaptive interactions with users, other programs?

Challenge: (Formal) Verification

Open Source >> Independent Verification

Properties of Enclaves:

Measurement := Different enclaves have different measurements (also inverse)

Integrity := Modelled attacker cannot affect enclave state

Confidentiality := Modelled attacker cannot observe enclave state

Adversary := set of ops an attacker can use to tamper with or observe enclave state. Any combination of these can be used at any time.

Threat model := U(observation function, tamper function, model initial state)

Specify non-interference properties or invariants that execution should satisfy

Invariants and Non-Interference

The proof describes a CFG with "forks". Search this graph for a path that violates an invariant.

Summary: Desiderata for Single-Chip Secure Processor

- Open source
- Formally verified (small) TCB
- Secure against all practice re attacks
- Secure against physical and secure against physical agains
- Enhanced phy arity against invasive attacks
- Mir ormance overhead

Acknowledgements

- Edward Suh
- Victor Costan
- Ilia Lebedev
- Chris Fletcher
- Ling Ren
- Albert Kwon
- Sanjit Seshia
- Pramod Subramanyan

- Arvind
- Thomas Bourgeat
- Andrew Wright
- Sizhuo Zhang
- Kyle Hogan
- Jules Drean
- Rohit Sinha
- NSF, DARPA, ADI, Delta

Thank you for your attention!