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Architectural Isolation
of Processes
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Fundamental to maintaining correctness 
and privacy!



Performance Dictates 
Microarchitectural Optimization
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Isolation Breaks Because of Shared 
Microarchitectural State!



Shared Last Level Cache
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Control Flow Speculation for 
Performance

I: Compute
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Control Flow Speculation is insecure

Speculative execution does not affect 
architectural state → “correct”
… but can be observed via some “side channels” 
(primarily cache tag state)

… and attacker can influence (mis)speculation 
(branch predictor inputs not authenticated)

A huge, complex attack surface!
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Domain of Victim

Transmitter

Secret

Receiver
ChannelAccess

Secret

Attacker

Pre-existing (RSA conditional execution example)
Written by attacker (Meltdown)
Synthesized out of existing victim code by attacker (Spectre)

Building a Transmitter
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• Real systems: large, complex, cyberphysical
(not secure)
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Philosophy

Build enclaves on an 
enclave platform, not 

just processes
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Enclaves strengthen
the process abstraction

• Processes guarantee isolation of memory
• Enclaves provide a stronger guarantee

– No other program can infer anything private from 
the enclave program through its use of shared 
resources or shared microarchitectural state

• Largely decouple performance considerations 
from security

• Minimally invasive hardware changes
• Provable security under chosen threat model
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A Typical Computer
Trusted Computing Base
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Single-Chip Secure Processor:
Shrink the TCB

Protected Environment

Memory

I/O

Trusted
Software

Protect

Identify

• Enclave assumes trusted hardware + 
trusted software “monitor”

• Operating system is untrusted 12

Edward Suh’s ICS 2003 Talk on Aegis processor



Enclave Enclave

Enclave Lifecycle (simplified)
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binary 
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Enclave Lifecycle (simplified)
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Untrusted 
software (OS)

Create enclave,
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Load
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Seal
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④
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(enclave executes in a 
strongly isolated 

environment)

Platform erases 
(flushes) 

sensitive state



Strong Isolation Goal

• Any attack by a privileged attacker on the 
same machine as the victim that can extract a 
secret inside the victim enclave, could also 
have been run successfully by an attacker on a 
different machine than the victim.
– No protection against an enclave leaking its own 

secrets through its public API.

• Three strategies for isolation: Spatial isolation, 
temporal isolation and cryptography 15



Sanctum Design

Victor Costan, Ilia Lebedev
Sanctum: Minimal Hardware Extensions 

for Strong Software Isolation



Software Stack
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Enclave syscall shims Sanctum-aware runtime
Non-sensitive code and data Sensitive code and data

Enclave setup
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Target: multi-core processor
(no hyperthreading, no speculation)
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Microarchitectural State
Isolation in Sanctum Enclaves

• Resources exclusively granted to an enclave, 
and scheduled at the granularity of process 
context switches are isolated temporally
– Register files, branch predictors, private caches, 

and private TLBs

• Resources shared between processes on-
demand, with arbitrarily small granularity are 
isolated spatially by partitioning
– Shared caches and shared TLBs 
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Operating System
Manages Page Tables

Virtual
Address

Physical 
AddressMapping

Page
Tables

Virtual
Address Space

Physical
Address Space

Address 
Translation

Software DRAM

System bus



Practical Software Attack
on SGX “Simulators”

• Microsoft Research, IEEE S&P 2015: Exploit 
no-noise side channel due to page faults
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Page Table Isolation 

Host application
space

Host application
space
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Enclave A Virtual
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Partitioning to Prevent Timing 
Attacks
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Page Coloring

DRAM Region
Index

Cache
Line Offset

5 0611
Page Offset

1214

Cache Set Index

DRAM Stripe
Index

151720 18
Cache Tag

Address bits used by 256 KB of DRAM

Address bits covering the maximum addressable physical space of 2 MB

Physical page number (PPN)
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A little bit-shifting 
gets us a large 
contiguous DRAM 
region



Sanctum Secure Processor
No Speculation, No Hyperthreading

RISCV Rocket Core, Changes required by Sanctum (+ ~2% of core)

Also requires 9 new config registers



Sanctum Status and
Current Limitations

• We have built an open-source Sanctum based 
on the RISC-V ISA
– Low performance and area overhead to support 

enclaves
– Ongoing formal verification effort

• Sanctum is an academic, lightweight processor
• Apply its design philosophy to speculative 

out-of-order (OOO) processors, which need 
to protect against Spectre-style attacks
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MI6 Design

Thomas Bourgeat, Ilia Lebedev,
Andrew Wright, Sizhuo Zhang, Arvind

MI6: Secure Enclaves in a
Speculative Out-of-Order Processor



RiscyOO Processor

31

Rename

ROB

ALU IQ Issue Reg
Read Exec Reg

Write

MEM IQ Issue Reg
Read

Addr
Calc

Update
LSQ

Physical Reg File

L1 D TLB

LSQ (LQ + SQ)

Commit

Issue
Ld

Deq

Store
Buffer

L1 D$

Resp
Ld

Issue
St

Resp
St

Rename
Table

Speculation
Manager

Epoch
Manager

Scoreboard

ALU pipeline

MEM pipeline

Load-Store Unit

Front-end

Fetch Bypass

Last Level Cache



RiscyOO Processor
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entire program results in 
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MI6 Processor
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All modules with private state are 
flushed on enclave entry and exit.

Performance overhead ~ 5%.



MI6 Processor
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Last Level Cache is spatially 
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Performance overhead ~7%.



Leaky Cache Hierarchy
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Timing Independent
Cache Hierarchy
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Fair LLC Arbiter.
Performance overhead ~8%.



MI6 Processor
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MI6 Processor
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overhead is negligible.



MI6 Processor
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MI6 Processor
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Security Monitor virtually 
unchanged. Hardware can evolve 

separately from software (and vice 
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Challenge: Expressivity

• ~15% performance overhead for enclaves
• Enclaves trade expressivity for security

– Cannot make system calls directly since OS can’t 
be trusted to restore an enclave’s execution state

– Enclave’s runtime must ask the host application to 
proxy file system and network I/O requests

– What syscall functionality should the enclave’s 
runtime provide?
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Challenge: Adaptivity

• Runtime decisions based on sensitive data 
leak information through timing: completion 
time, resource usage

• Crypto to the rescue?
– Secure demand paging using page-level memory 

encryption, integrity verification and ORAM
– Secure and efficient dynamic memory allocation 

in enclaves an open problem
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Challenge: Interaction

• Interaction with the outside may leak 
information
– Public schedule for interaction does not leak

• Can we bound leakage of adaptive 
interactions with users, other programs?

43

Can I
Trust You?



Challenge: (Formal) Verification

Open Source à Independent Verification

Properties of Enclaves:

Measurement := Different enclaves have different 
measurements (also inverse)

Integrity := Modelled attacker cannot affect 
enclave state

Confidentiality := Modelled attacker cannot 
observe enclave state
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Modeling the Adversary

Adversary := set of ops an attacker can use to 
tamper with or observe enclave state. Any 
combination of these can be used at any time.

Threat model := ∪(observation function, tamper 
function, model initial state)

Specify non-interference properties or 
invariants that execution should satisfy
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Invariants and Non-Interference
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Check 
invariants

Do an attacker action
Init 

operations
Do a victim action

The proof describes a CFG with 
“forks”. Search this graph for a path 
that violates an invariant.



Summary: Desiderata for
Single-Chip Secure Processor

• Open source
• Formally verified (small) TCB
• Secure against all practical software attacks
• Secure against physical attacks on memory
• Enhanced physical security against invasive 

attacks
• Minimal performance overhead
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Thank you for your attention!
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