
Benchmarking and Workload Analysis of Robot Dynamics Algorithms

Sabrina M. Neuman, Twan Koolen, Jules Drean, Jason E. Miller, and Srinivas Devadas

Abstract— Rigid body dynamics calculations are needed for
many tasks in robotics, including online control. While there
currently exist several competing software implementations that
are sufficient for use in traditional control approaches, emerging
sophisticated motion control techniques such as nonlinear
model predictive control demand orders of magnitude more
frequent dynamics calculations. Current software solutions are
not fast enough to meet that demand for complex robots. The
goal of this work is to examine the performance of current
dynamics software libraries in detail. In this paper, we (i)
survey current state-of-the-art software implementations of the
key rigid body dynamics algorithms (RBDL, Pinocchio, Rigid-
BodyDynamics.jl, and RobCoGen), (ii) establish a methodology
for benchmarking these algorithms, and (iii) characterize their
performance through real measurements taken on a modern
hardware platform. With this analysis, we aim to provide
direction for future improvements that will need to be made to
enable emerging techniques for real-time robot motion control.
To this end, we are also releasing our suite of benchmarks to
enable others to help contribute to this important task.

I. INTRODUCTION

Modern robotics relies heavily on rigid body dynamics
software for tasks such as simulation, online control, tra-
jectory optimization, and system identification. But while
early robots performed simple, repetitive tasks in constrained
environments, robots are increasingly expected to perform
complex operations in dynamic, unstructured, and unpre-
dictable environments, ranging from non-standard manipula-
tion tasks [1] to disaster response [2]. These new challenges
will require robots to adapt to their environments in real-time,
which in turn will require more complex control algorithms
that place a greater burden on the rigid body dynamics
implementations that drive them.

One trend in the effort to improve the adaptability of
robots to their environment is the increased use of nonlinear
model-based control (MPC) [3], which moves trajectory
optimization, traditionally an off-line task, into the realm
of online control. Differential dynamic programming (DDP)
techniques, including the iterative linear quadratic regulator
(iLQR) algorithm, are being deployed on more complex
robots [4], [5]. These techniques require simulating into the
future at every control time step, and also require gradients
of the dynamics. Where traditional control approaches might
only evaluate dynamical quantities once per time step, MPC
requires many evaluations, with the quality of the control
policy improving with longer time horizons. Another trend

S. M. Neuman, T. Koolen, J. Drean, J. E. Miller, and S. De-
vadas are with the Computer Science and Artificial Intelligence Labora-
tory at MIT, Cambridge, MA, USA. {sneuman, tkoolen, drean,
jasonm, devadas}@mit.edu

(a) LBR iiwa (b) HyQ (c) Atlas

Fig. 1. 3D visualizations of the robot models used as benchmark cases.
From left to right, LBR iiwa (KUKA AG), HyQ (DLS Lab at the Italian
Institute of Technology), and Atlas (Boston Dynamics, version used during
the DARPA Robotics Challenge).

is the use of machine learning algorithms trained on data ob-
tained from simulation. The performance of these algorithms
typically improves with larger quantities of input data [6].
Thus, speeding up the production of simulation samples may
enable improved performance and lower training costs.

Much work has gone into creating high-performance rigid
body dynamics libraries [7]–[12]. However, existing imple-
mentations still do not have the performance necessary to
satisfactorily run algorithms like iLQR for complex robots on
off-the-shelf hardware [13]. To help improve this situation,
we present benchmark results and an associated benchmark
suite for rigid body dynamics libraries. We include repre-
sentative examples of three different robot categories (see
Fig. 1): a manipulator (LBR iiwa), a quadruped (HyQ), and
a humanoid (Atlas). These benchmarks are aimed at helping
control engineers and library authors understand differences
and similarities between the libraries and identifying possible
areas for optimization. We perform a workload analysis in
this paper, and are also releasing our suite for use by the
larger community.

This paper makes several important contributions:

1) An open-source benchmark suite (http://github.
com/rbd-benchmarks/rbd-benchmarks);

2) Direct comparison of four state-of-the-art rigid body
dynamics libraries;

3) Consistent comparison of each of the libraries, using
the same inputs and ensuring that their outputs match;

4) Low-level performance statistics collected on modern
hardware using hardware performance counters;

5) An analysis of trends and differences across the dis-
tinct combinations of algorithm and implementation,
to provide insight for future work in optimization and
acceleration of this workload.

To our knowledge, this paper provides the most compre-
hensive analysis of the rigid body dynamics workload to date.
Previous work analyzing various software implementations
focused only on overall performance [7]–[11], but not a full

2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
Macau, China, November 4-8, 2019

978-1-7281-4004-9/19/$31.00 ©2019 IEEE 5235

Authorized licensed use limited to: MIT Libraries. Downloaded on June 03,2020 at 00:49:52 UTC from IEEE Xplore. Restrictions apply.

workload analysis from a microarchitectural perspective. To
our knowledge, the only evaluation to analyze additional
performance measurements was in [9], where the authors
used the profiling tool Valgrind to report instruction counts,
cache misses, and branch misprediction rates on several
hardware platforms. However, this study was much more
limited in scope – only two software libraries and two
dynamics algorithms were measured. By contrast, our suite
includes three key dynamics algorithms implemented by four
software libraries, and we present measurements taken from
hardware performance counters, including instruction counts,
cache misses, stall cycles, floating-point vector operations,
and instruction mix.

We begin with a brief review of the rigid body dynamics
problems under study. We will then survey current, state-
of-the-art software implementations of these algorithms and
characterize their performance and use of resources on mod-
ern hardware. Finally, we will examine the commonalities
and differences between these implementations to motivate
future work on the acceleration of these algorithms, an
important step towards satisfying the future computational
needs of real-time robot motion control.

II. DYNAMICS ALGORITHMS

Subject to the standard rigid body assumptions, the dy-
namics of a general robot without kinematic loops can be
described using the well-known equations of motion,

M(q)v̇ + c(q, v) = τ, (1)

where:
• q ∈ Rn is the joint configuration (or position) vector;
• v ∈ Rm is the joint velocity vector;
• τ ∈ Rm is the joint torque (or effort/force) vector, which

may include motor torques determined by a controller as
well as friction torques and other external disturbances;

• M(q) ∈ Rm×m is the positive definite (joint space)
mass or inertia matrix;

• c(q, v) ∈ Rm includes velocity-dependent terms and
terms due to gravity, and is referred to as the generalized
bias force [14] or nonlinear effects.

In this paper, we will focus on three standard problems
related to the equations of motion:

1) forward dynamics: computing v̇ given q, v, and τ ;
2) inverse dynamics: computing τ given q, v, and v̇;
3) mass matrix: computing M(q).
Algorithms that solve these standard problems are based

on traversing the kinematic tree of the robot in several passes,
either outward from the root (fixed world) to the leaves (e.g.,
the extremities of a humanoid robot) or inward from the
leaves to the root. While the presented algorithms are often
described as being recursive, in practice the kinematic tree
is topologically sorted, so that recursions are transformed
into simple loops, and data associated with joints and bodies
can be laid out flat in memory. Data and intermediate
computation results related to each of the joints and bodies
are represented using small fixed-size vectors and matrices
(up to 6× 6).

The dominant inverse dynamics algorithm is the Recursive
Newton-Euler Algorithm (RNEA) [15]. It has O(N) time
complexity, where N is the number of bodies. The Com-
posite Rigid Body Algorithm (CRBA) [16] is the dominant
algorithm for computing the mass matrix. It has O(Nd)
time complexity, where d is the depth of the kinematic
tree. For forward dynamics, the O(N) articulated body
algorithm (ABA) is often used [17]. Alternatively, one of
the libraries under study computes M(q) using the CRBA
and c(q, v) using the RNEA, and then solves the remaining
linear equation for v̇ using a Cholesky decomposition of
M(q). Though this approach is O(N3), shared intermediate
computation results between the RNEA and CRBA and the
use of a highly optimized Cholesky decomposition algorithm
could make this approach competitive for small N . Each of
the algorithms is described in detail in [14]. To bound the
scope of this work, we focus on dynamics without contact.

III. SURVEY OF SOFTWARE LIBRARIES

We briefly introduce the software libraries under study and
highlight some of their commonalities and key differences.
All of the libraries have been developed fairly recently, and
are actively maintained, open source, and provided free of
charge. The libraries can all load the layout and properties
of a robot from the common ROS URDF [18] file format,
or a file format to which URDF can be converted using
automated tools. A well-known library missing from this
study is SD-FAST [12]. We chose not to include this library
because it is somewhat older, proprietary, and the authors
of several libraries included in the study have published
benchmarks that show significant improvements over SD-
FAST. The libraries are summarized in Table I.

In contrast to the other libraries, RobCoGen is a Java tool
that generates C++ source code specific to a given robot.
RigidBodyDynamics.jl (referred to from this point on as
RBD.jl) is unique in that it is implemented in Julia [19]. It
is also the only library that doesn’t use the ABA for forward
dynamics, instead solving for the joint accelerations using
a Cholesky decomposition of the mass matrix. Furthermore,
RBD.jl annotates the typical spatial vector and matrix types
(e.g., wrenches) with an additional integer describing the
coordinate frame in which the quantity is expressed, for user
convenience and to enable frame mismatch checks (disabled
for our benchmarks).

All of the C++ libraries use Eigen [20] as a linear algebra
backend. Eigen provides fixed-size matrix and vector types
that can be allocated on the stack, thereby avoiding any
overhead due to dynamic memory allocation. Operations
involving these types can use vector (SIMD) instructions,
if available. RBD.jl, uses StaticArrays.jl for similar fixed-
size array functionality, in addition to using OpenBLAS
through Julia’s LinearAlgebra standard library for operations
on dynamically-sized matrices (mainly, the Cholesky decom-
position of the mass matrix).

A key difference between the libraries lies in how different
joint types (e.g., revolute or floating) are handled. While a
naive implementation might rely on inheritance and virtual

5236

Authorized licensed use limited to: MIT Libraries. Downloaded on June 03,2020 at 00:49:52 UTC from IEEE Xplore. Restrictions apply.

TABLE I
DYNAMICS LIBRARIES EVALUATED

Library Language Linear Algebra Backends Coordinate Choice Release Date

RBDL 2.6.0 [10] C++ Eigen 3.3.7 Body Coordinates 02 May 2018

Pinocchio 2.0.0 [8] C++ Eigen 3.3.7 Body Coordinates 10 Jan 2019

RigidBodyDynamics.jl 1.4.0 [7] Julia StaticArrays.jl 0.10.2, OpenBLAS 0.3.3 World Coordinates 02 Feb 2019

RobCoGen 0.5.1 [11] C++ Eigen 3.3.7 Body Coordinates 07 Dec 2018

methods, all of the libraries have avoided this in various ways
to improve performance. RBDL enumerates the different
joint types, and uses run-time branching based on the joint
type in the main algorithm loops to implement joint-specific
functionality. RBD.jl’s non-standard choice of implementing
the algorithms in world coordinates allows joint-specific
computations to be performed out-of-order: data for all joints
of the same type are stored in separate vectors and are
iterated over separately, avoiding if-statements in tight loops.
Pinocchio handles different joint types using a visitor pattern
based on the Boost C++ library. RobCoGen’s generated
code unrolls all of the loops in the dynamics algorithms,
replacing them with explicit repetition of their contents and
thus avoiding the overhead of program control flow (e.g.,
branches and address calculations) in general, including in
the implementation of joint-type-specific behavior.

A peculiarity of RobCoGen is that the authors have opted
to implement a hybrid dynamics algorithm for floating-base
robots, instead of regular RNEA. In essence, this hybrid
dynamics algorithm does forward dynamics for the floating
base joint, while implementing standard RNEA for the non-
floating (revolute) joints. Although the inputs and outputs of
this algorithm are not the same as for the ‘regular’ inverse
dynamics algorithms implemented by the other libraries, we
still chose to include the results, as we deemed the algorithm
to still be similar enough.

Both Pinocchio and RBD.jl implement the algorithms in
a generic (parameterized or templated) way. This enables,
for example, automatic differentiation of the dynamics using
non-standard special scalar types and function overloading.

IV. METHODOLOGY

This section details our method for collecting timing
results and measurements from performance counters on a
hardware platform.

A. Hardware Measurement Setup

Evaluation of the software implementations was performed
on a modern desktop machine with a quad-core proces-
sor. Key hardware parameters are shown in Table II. This
machine was selected for the workload measurements be-
cause quad-core Intel i7 processors are a common choice
for state-of-the-art robots, including many featured in the
2015 DARPA Robotics Challenge [2], such as Atlas [21],
Valkyrie [22], and CHIMP [23].

To isolate our measurements from the non-deterministic
effects of changing clock frequencies and thread migrations,
TurboBoost and HyperThreading were disabled in the BIOS.

TABLE II
HARDWARE SYSTEM CONFIGURATION

Feature Value

Processor / Frequency Intel i7-7700, 4 Cores / 3.6GHz

Private L1 / L2 Cache per Core 8-way, 32kB / 4-way, 256kB

L3 Cache / DRAM Channels 16-way, 2MB / 2 Channels

The clock frequency of all four cores was fixed at 3.6GHz.
To measure timing, we used the Linux system call clock -
gettime(), with CLOCK MONOTONIC as the source.

To collect measurements of architectural statistics, we used
the hardware performance counter registers [24] provided by
the processor, which can be configured to monitor a given set
of hardware events (e.g., cache misses, instructions retired).
We accessed these registers using LIKWID [25], a C library
interface for reading hardware performance counters. In our
testbed code, calls to the dynamics libraries’ routines were
instrumented with LIKWID routines, in order to carefully
measure only activity during the regions of interest.

B. Software Environment

Our hardware measurement platform ran Ubuntu 16.04.
For RBD.jl, we used version 1.1.0 of Julia [19] with flags
-O3 and --check-bounds=no. All C/C++ code was com-
piled using Clang 6.0, which we chose because both Clang
6.0 and Julia 1.1.0 use LLVM 6 as their backend. The RBDL,
Pinocchio, and RobCoGen C++ libraries were compiled with
the “Release” CMake build type option. For RobCoGen, we
had to add the EIGEN DONT ALIGN STATICALLY flag to the
default flags in the generated CMake file, to avoid crashes
due to memory alignment issues.

While Julia is JIT-compiled by default, for this study we
statically compiled the relevant RBD.jl functions to a C-
compatible dynamic library ahead of time using the Pack-
ageCompiler.jl Julia package [26], so as to avoid benchmark
artifacts due to JIT compilation and to enable interoperation
with measurement tools. As a further precaution against
observing JIT overhead, we called all RBD.jl routines once
before starting measurements.

C. Inputs and Cross-Library Verification of Results

To compare the dynamics libraries, we used three different
robot models as inputs: iiwa, a robot arm with 7 revolute
joints [27], HyQ, a quadruped robot with 12 revolute joints
and a floating joint [28], and Atlas, a humanoid robot with 30
revolute joints and a floating joint [29] (fingers not modeled).

5237

Authorized licensed use limited to: MIT Libraries. Downloaded on June 03,2020 at 00:49:52 UTC from IEEE Xplore. Restrictions apply.

For verification, it was important to ensure that all libraries
were manipulating the exact same representations of the
robot models. This was a non-trivial task because RBDL,
Pinocchio, and RBD.jl all take as input a URDF file describ-
ing the robot model, whereas RobCoGen uses a custom file
format, KinDSL. We started with a set of reference URDF
files for each robot. To generate the KinDSL files, we used
a file conversion tool created by the authors of RobCoGen,
URDF2KinDSL [30]. This tool performs not only a change
of syntax in the robot representation, but also a number of
less-trivial transformations, e.g., from extrinsic to intrinsic
rotations. Unfortunately, URDF2KinDSL did not produce a
KinDSL file that exactly matched the URDF for Atlas, so we
opted to convert each of the KinDSL files back to URDF us-
ing RobCoGen’s built-in conversion tool. It was these back-
and-forth-converted URDF files that were ultimately used as
the inputs for RBDL, Pinocchio, and RBD.jl. While there
was still a somewhat larger mismatch between RobCoGen’s
outputs and those of the URDF-capable libraries, these could
be attributed to the rotation transformations.

To simulate the effect of running many dynamics calcula-
tions during the operation of a robot with time-varying input
data, we executed each dynamics calculation 100,000 times
in a row, using different inputs each time. The libraries each
expect their inputs in a different format, for example as a
result of depth-first or breadth-first topological ordering of
the kinematic tree. To enable cross-library verification, we
used RBD.jl to generate 100,000 random inputs for each
of the robot models (in RBD.jl’s format), after which the
inputs were transformed into the format that each of the
libraries expects. Similarly, corresponding expected output
values were computed using RBD.jl, and transformed to
the representation expected from each of the other libraries.
These expected results were used to verify that all libraries
indeed performed the same computation. For the inverse
and forward dynamics algorithms, gravitational acceleration
and external forces (an optional input) were set to zero to
facilitate direct comparison of the libraries.

For each combination of algorithm and robot model,
statistics were measured for the entire set of inputs and
then these numbers were divided by 100,000 to calculate the
average per calculation. To further insulate our measurements
from potential background noise, each experiment run of
100,000 inputs was performed 10 non-consecutive times, and
the results across those 10 experiments were averaged.

V. EVALUATION

This section presents the results of running the four
different software implementations of the robot dynamics
algorithms for the three different robot models (Section IV).
The average execution times of the dynamics algorithms are
shown in Fig. 2. Each cluster of bars shows the results for
all of the implementations on a particular robot model.

The runtime values shown are averaged across multiple
experimental runs of 100, 000 inputs each (as described in
Section IV-C). We examined the standard deviation, σ, of
the execution time of a single dynamics calculation from a

single input value, and we found that for all of our data
collected, 0.2% < σ < 1.3% of the overall mean runtimes.
This suggests that for these implementations of the dynamics
algorithms, the performance is not sensitive to differences in
the input data, as we expected.

The top performing libraries overall were RobCoGen and
Pinocchio. These results will be explored in more detail in
Sections V-A, V-B, and V-C, which examine the data from
each algorithm separately. We will also comment on the
memory usage of the algorithms, and the effects of various
types of parallelism on their performance.

A. Forward Dynamics Results

RobCoGen gave the fastest runtimes for forward dynam-
ics for all robot models, at 1.1µs, 2.4µs, and 5.9µs for
iiwa, HyQ, and Atlas, respectively (Fig. 2a). The key to
RobCoGen’s performance on this algorithm is indicated by
its instruction count data (Fig. 4a). The total number of
instructions retired by RobCoGen is much lower than the
total instructions retired by all of the other implementations.
This remarkable reduction can be attributed to RobCoGen’s
technique of using explicit loop unrolling. The unrolled loops
can perform the same calculation with far lower instruction
count overhead because they eliminate branches (Fig. 4a)
and calculation of branch conditions, and can reuse address
calculation temporaries. For the limited number of links in
the robot models evaluated, loop unrolling is an effective
strategy for performance (though it should be noted this may
not necessarily be the case for robots with many more links).
RobCoGen gives the fastest performance because it does so
few instructions overall, despite having a somewhat lower
rate of instruction throughput, measured in instructions per
cycle (IPC) (Fig. 3). (Note that the maximum rate of IPC
per core for our testbed hardware platform is 4 [31].)

The other three libraries, which do not perform explicit
loop unrolling, all have similar rates of instruction throughput
(Fig. 3), so it is not surprising that their relative runtimes
directly correspond to the total instructions retired by each.
Recall that RBD.jl, which generates the most instructions
(Fig. 4a), also uses a different algorithm for forward dynam-
ics than the other libraries (see Section II), which requires
significantly more memory accesses (loads and stores).

These results indicate that reducing the overall amount
of instructions to be performed and avoiding extra work
(e.g., branch calculations) that does not directly contribute
to the algorithm is a clear path to performance success for
this algorithm. For RobCoGen, this reduction came from
aggressive loop unrolling, leading to a significant reduction
in the number of instructions.

B. Mass Matrix Results

For the mass matrix calculation, RobCoGen was fastest for
iiwa and HyQ (at 0.6µs and 1.1µs, respectively), but Pinoc-
chio was slightly faster for the Atlas robot, at 3.5µs (Fig. 2b).
RobCoGen’s impressive performance on this algorithm has
the same explanation as its superior performance on the
forward dynamics algorithm (Section V-A): RobCoGen’s

5238

Authorized licensed use limited to: MIT Libraries. Downloaded on June 03,2020 at 00:49:52 UTC from IEEE Xplore. Restrictions apply.

iiwa
HyQ

Atlas
0

2

4

6

8

10

12

14

16

FD
Ti

m
e

[u
s]

RBDL Pinocchio RBD.jl RobCoGenRBDL Pinocchio RBD.jl RobCoGen

(a) Forward Dynamics Runtime

iiwa
HyQ

Atlas
0

1

2

3

4

5

6

7

M
M

Ti
m

e
[u

s]

RBDL Pinocchio RBD.jl RobCoGenRBDL Pinocchio RBD.jl RobCoGen

(b) Mass Matrix Runtime

iiwa
HyQ

Atlas
0
2
4
6
8

10
12
14
16

ID
Ti

m
e

[u
s]

RBDL Pinocchio RBD.jl RobCoGenRBDL Pinocchio RBD.jl RobCoGen

(c) Inverse Dynamics Runtime

Fig. 2. Runtime in microseconds. Shorter runtimes indicate better performance. Within each cluster, the bars are in the same order as the top legend.

iiwa
HyQ

Atlas
0.0

0.5

1.0

1.5

2.0

2.5

3.0

FD
IP

C

RBDL Pinocchio RBD.jl RobCoGenRBDL Pinocchio RBD.jl RobCoGen

(a) Forward Dynamics Instructions Per Cycle

iiwa
HyQ

Atlas
0.0

0.5

1.0

1.5

2.0

2.5

3.0

M
M

IP
C

RBDL Pinocchio RBD.jl RobCoGenRBDL Pinocchio RBD.jl RobCoGen

(b) Mass Matrix Instructions Per Cycle

iiwa
HyQ

Atlas
0.0

0.5

1.0

1.5

2.0

2.5

3.0

ID
IP

C

RBDL Pinocchio RBD.jl RobCoGenRBDL Pinocchio RBD.jl RobCoGen

(c) Inverse Dynamics Instructions Per Cycle

Fig. 3. Instructions per cycle (IPC). Higher IPC indicates better instruction throughput.

iiwa
HyQ

Atlas
0
1
2
3
4
5
6
7
8
9

FD
In

st
ru

ct
io

ns
(N

or
m

.)

RBDL Pinocchio RBD.jl RobCoGen

load
store
branch
other

load
store
branch
other

(a) Forward Dynamics Instructions

iiwa
HyQ

Atlas
0

1

2

3

4

5

6

7

M
M

In
st

ru
ct

io
ns

(N
or

m
.)

RBDL Pinocchio RBD.jl RobCoGen

load
store
branch
other

load
store
branch
other

(b) Mass Matrix Instructions

iiwa
HyQ

Atlas
0

5

10

15

20

ID
In

st
ru

ct
io

ns
(N

or
m

.)

RBDL Pinocchio RBD.jl RobCoGen

load
store
branch
other

load
store
branch
other

(c) Inverse Dynamics Instructions

Fig. 4. Total instructions retired by the processor, categorized into memory accesses (loads and stores), branches, and other instructions. Results normalized
to RBDL on iiwa.

iiwa
HyQ

Atlas
0

1

2

3

4

5

6

7

8

FD
C

yc
le

s
(N

or
m

.)

RBDL Pinocchio RBD.jl RobCoGen

mem. stall
other stall
execution

mem. stall
other stall
execution

(a) Forward Dynamics Clock Cycles

iiwa
HyQ

Atlas
0

1

2

3

4

5

6

M
M

C
yc

le
s

(N
or

m
.)

RBDL Pinocchio RBD.jl RobCoGen

mem. stall
other stall
execution

mem. stall
other stall
execution

(b) Mass Matrix Clock Cycles

iiwa
HyQ

Atlas
0

5

10

15

20
ID

C
yc

le
s

(N
or

m
.)

RBDL Pinocchio RBD.jl RobCoGen

mem. stall
other stall
execution

mem. stall
other stall
execution

(c) Inverse Dynamics Clock Cycles

Fig. 5. Total clock cycles, categorized into memory stall cycles, non-memory “other” stall cycles, and non-stall cycles. Results normalized to RBDL on
iiwa.

iiwa
HyQ

Atlas
0

1

2

3

4

5

6

7

FD
Fl

oa
tin

g-
Po

in
tO

ps
.

(N
or

m
.) RBDL Pinocchio RBD.jl RobCoGen

dp scalar
dp 128b
dp 256b

dp scalar
dp 128b
dp 256b

(a) Forward Dynamics Floating-Point Operations

iiwa
HyQ

Atlas
0

1

2

3

4

5

6

7

M
M

Fl
oa

tin
g-

Po
in

tO
ps

.
(N

or
m

.) RBDL Pinocchio RBD.jl RobCoGen

dp scalar
dp 128b
dp 256b

dp scalar
dp 128b
dp 256b

(b) Mass Matrix Floating-Point Operations

iiwa
HyQ

Atlas
0
5

10
15
20
25
30
35
40
45

ID
Fl

oa
tin

g-
Po

in
tO

ps
.

(N
or

m
.) RBDL Pinocchio RBD.jl RobCoGen

dp scalar
dp 128b
dp 256b

dp scalar
dp 128b
dp 256b

(c) Inverse Dynamics Floating-Point Operations

Fig. 6. Total floating-point operations, categorized into double precision operations with scalar, 128-bit packed vector, and 256-bit packed vector operands.
Results normalized to RBDL on iiwa.

iiwa
HyQ

Atlas
0

1

2

3

4

5

6

7

8

FD
L1

-D
A

cc
es

se
s

(N
or

m
.)

RBDL Pinocchio RBD.jl RobCoGen

miss
hit
miss
hit

(a) Forward Dynamics L1 Data Cache Accesses

iiwa
HyQ

Atlas
0

1

2

3

4

5

6

7

M
M

L1
-D

A
cc

es
se

s
(N

or
m

.) RBDL Pinocchio RBD.jl RobCoGen

miss
hit
miss
hit

(b) Mass Matrix L1 Data Cache Accesses

iiwa
HyQ

Atlas
0
5

10
15
20
25
30
35
40
45

ID
L1

-D
A

cc
es

se
s

(N
or

m
.)

RBDL Pinocchio RBD.jl RobCoGen

miss
hit
miss
hit

(c) Inverse Dynamics L1 Data Cache Accesses

Fig. 7. L1 data cache accesses, categorized into hits and misses. Results normalized to RBDL on iiwa.

5239

Authorized licensed use limited to: MIT Libraries. Downloaded on June 03,2020 at 00:49:52 UTC from IEEE Xplore. Restrictions apply.

optimized code greatly reduces the number of superfluous
instructions (Fig. 4b) that are not related to the core calcu-
lations of the algorithm. Once again, RobCoGen’s unrolled
loops cut down on its total number of branch instructions
(Fig. 4b) and L1 data cache accesses (Fig. 7b) compared to
the other implementations.

Pinocchio’s good performance on this algorithm corre-
sponds with an increased IPC throughput (Fig. 3b) relative
to the other libraries.

C. Inverse Dynamics Results

For inverse dynamics, RobCoGen was the fastest library
for iiwa (at 0.6µs). However, for the floating base robots,
RobCoGen was the slowest library by far, and Pinocchio
gave the fastest runtimes, at 1.5µs and 3.5µs for HyQ and
Atlas, respectively (Fig. 2a). This is due to the much larger
number of instructions executed. In these cases, RobCoGen
executes many more loads and stores (Fig. 4c) than the
other libraries, and it also performs many more floating-point
operations (Fig. 6c).

To understand this degradation of performance, recall that
RobCoGen in fact implements a hybrid dynamics algo-
rithm for floating base robots (see Section III). For more
detail, we profiled RobCoGen with the software profiling
tool Valgrind [32]. We found that there were a handful of
function calls in RobCoGen’s inverse dynamics routine that
were generating a clear majority of the function calls, as
well as the resulting high numbers of branch instructions
and L1 data cache accesses observed in the data from the
hardware performance counters (Figs. 4c and 7c). Upon
reviewing the code, we found that this is likely caused
by coordinate-frame transformation of composite rigid body
inertias, which are intermediate result of the hybrid dynamics
algorithm that RobCoGen uses for floating-base robots. We
suspect that this operation can be easily and significantly
optimized, as RobCoGen’s mass matrix algorithm already
uses a more efficient implementation of the same coordinate
transformation. In addition, this coordinate transformation
is only needed as a result of RobCoGen’s choice to use
a hybrid dynamics algorithm for floating-base robots; the
baseline recursive Newton-Euler algorithm used by other
libraries does not require this step. For the iiwa robot, this
effect does not come into play because RobCoGen does use
‘regular’ (non-hybrid) recursive Newton-Euler for fixed-base
robots.

The runtimes for Pinocchio and RBDL are fairly close
for inverse dynamics, with Pinocchio giving the shortest
runtimes for the HyQ and Atlas robots. RBD.jl executes
significantly more instructions overall than Pinocchio and
RBDL, so it has a longer runtime than those libraries.

D. Memory Usage

All of the software implementations spent the clear major-
ity of their cycles on execution (Fig. 5) rather than waiting
for memory (stall cycles), so they can all be considered
to be compute-bound, not memory-bound. In fact, most of
the software implementations suffered almost no misses in

the L1 data cache (Fig. 7), with average miss rates of all
computations < 1.4%. From this, we can see that for most
of the implementations of these algorithms, the working set
fits comfortably in the 32kB L1 data cache on this machine.

For inverse dynamics on HyQ and Atlas, RobCoGen has
a much higher number of L1 memory accesses (Fig. 7c).
This is caused by non-optimal access patterns related to the
coordinate-frame transformation described in Section V-C.
Again, this high number of memory accesses corresponds
with a higher total number of instructions executed (Fig. 2c)
and greatly increases the runtime of RobCoGen for inverse
dynamics on floating-base robots.

A likely cause for RBD.jl’s comparatively high number of
memory accesses is its use of the integer frame annotations
mentioned in Section III, which need to be copied along with
each intermediate computation result.

E. Sources of Parallelism

All of the studied implementations are written sequentially
at the top level, largely because they implement a set of
recursive algorithms. As a result, there is currently no task-
level parallelism exploited by any of the libraries. How-
ever, some future opportunities for task-level parallelism are
within reach. For example, RBD.jl uses a world frame imple-
mentation (see Section II), which enables a loop interchange
where joints of the same type can be stored in separate
vectors and iterated over not in topological order. This
presents an opportunity for task-level parallelism, however,
it is not currently implemented in a parallel manner.

There was also data-level parallelism present in the
floating-point workload (see Fig. 6). Interestingly, RBD.jl
was the only implementation whose linear algebra library
made significant use of the widest vector operations avail-
able, the 256-bit packed double precision floating-point in-
structions. The main source of these densely packed op-
erations is Julia’s use of the superword-level parallelism
(SLP) vectorizer LLVM compiler pass in combination with
unrolled code for small linear algebra operations generated
by StaticArrays.jl. While RBD.jl took a performance hit by
generating many more instructions overall than the other
libraries (Fig. 4), a combination of instruction codebase
efficiency and vectorization together could result in increased
performance.

F. Sensitivity to Compiler Choice

All results presented in this section were taken from
software compiled with Clang 6.0.1, but we performed
some additional experiments to see the effect of compiling
the non-Julia libraries (RBDL, Pinocchio, and RobCoGen)
with GCC/G++ 7.4, released the same year as Clang 6.0.1.
For RBDL and Pinocchio, results with GCC demonstrated
degraded performance (e.g., runtime increased by 54% for
forward dynamics with Pinocchio). For RobCoGen, perfor-
mance was roughly the same for forward dynamics and the
mass matrix. The only case where performance improved at
all from using GCC was with RobCoGen on the inverse (or
rather, hybrid) dynamics benchmark for HyQ and Atlas (both

5240

Authorized licensed use limited to: MIT Libraries. Downloaded on June 03,2020 at 00:49:52 UTC from IEEE Xplore. Restrictions apply.

runtimes decreased by about 40%). However, these times are
still far behind the best times observed for inverse dynamics
using Clang (see Fig. 2). From these additional experiments,
it is clear that compiler choice can have a large impact on
performance for these applications.

VI. DISCUSSION

In this section, we note several trends that span the
different algorithms and implementations and describe some
possible strategies for improving performance in future work.
We also briefly speculate on the implications that our findings
for the dynamics workloads might have for another related
set of computations, the dynamics gradients.

A. Observed Trends
One clear trend in our results is that none of these cal-

culations are memory-bound. Interestingly, all of them show
extremely low L1 cache miss rates (except for Atlas with
RBD.jl where they are merely low, see Fig. 7) despite having
an unusually high proportion of load and store instructions
(Fig. 4). From this, we conclude that these routines have
very small working sets with large amounts of locality (either
spatial or temporal). This is consistent with the majority of
calculations being linear algebra routines on small arrays.
However, the large proportion of loads and stores indicates
that few operations are being performed on each fetched
element before it is stored. This suggests that there will
be an opportunity to improve performance by combining
operations or reorganizing data access patterns to avoid
loading and storing the same values repeatedly.

Another observation is that the scaling trends of the
algorithms (see Section II), are also demonstrated by their
corresponding software implementations. Performance and
most other measures scale approximately linearly with robot
complexity (i.e., number of joints). The Atlas robot has
approximately 4.4× the number of joints of iiwa and takes
about 6× as long to calculate, on average. HyQ falls propor-
tionally in the middle. This suggests that our results can be
extrapolated to estimate performance for other robots using
the degrees of freedom. However, there may be a point at
higher numbers of joints where the internal matrices’ sizes
will exceed the L1 cache size and performance will degrade
substantially.

One final observation relates to the use of floating-point
operations. These routines vary considerably in how much
they use packed (vector) floating-point instructions. Since
the majority of the math they are doing is linear algebra,
we would expect this workload to be highly amenable to
vectorization. This suggests two things: 1) that having high-
performance floating-point units with vector support will
benefit these algorithms, and 2) that these implementations
are probably not taking advantage of vector floating-point
instructions as much as they could be.

B. Opportunities for Performance Gains
As previously mentioned, all of these implementations

have some inefficiencies in their operation. The large pro-
portion of load and store instructions indicates that there is

a lot of overhead beyond what the mathematics requires.
This view is supported by the lower overheads we see in
RobCoGen and Pinocchio; for forward dynamics and mass
matrix, they perform significantly fewer loads and stores
than the other libraries. RobCoGen further reduces its total
number of instructions by unrolling loops and eliminating
conditional branching, efficiently reducing overhead. Careful
profiling may expose additional opportunities.

A major opportunity for performance gains for the dy-
namics algorithms would be better use of parallel resources.
There would seem to be room for improvement in all three
types of parallelism: instruction, data and task. While the
instruction-level parallelism (ILP) we measured was reason-
able, the processor in our machine is capable of much more.
In addition, there is much variability in the use of 128-
and 256-bit vector operations indicating that these highly-
efficient data-parallel operations may be under-utilized. Fi-
nally, none of the implementations make effective use of
task-level (a.k.a. thread-level) parallelism. This means that
three of the four cores in our testbed machine went unused.
As trends in processor architectures are towards greater
parallelism rather than greater single-thread performance, it
would be worthwhile to exploit these resources.

C. Implications for Dynamics Gradients

As novel control techniques push more of the motion
planning workload to the low-level, high-rate part of a robot
control architecture, an important requirement will be fast
evaluation of gradients of the dynamics. This is because
motion planning techniques typically employ gradient-based
optimization and local approximations of the dynamics.

Various approaches can be employed to compute gra-
dients of dynamics-related quantities. Perhaps the easiest
but crudest technique is numerical differentiation. Automatic
differentiation may also be employed, which exploits the
chain rule of differentiation to compute exact gradients
evaluated at a point, often at a reduced computational cost
compared to numerical differentiation. Employing automatic
differentiation requires writing the dynamics algorithms in a
generic (in C++, templated) way, so that non-standard input
types that carry derivative-related information may be used.
Pinocchio, RBD.jl, and a fork of RobCoGen [5] are written to
support such non-standard inputs. Further performance gains
may be achieved using analytical derivatives that exploit
the structure of rigid body dynamics, as currently only
implemented by Pinocchio [8].

The relation between the performance of algorithms for
dynamics quantities and for their gradients is perhaps clearest
for numerical differentiation, where the original algorithm is
simply run once for each perturbation direction. However,
each of these gradient computation approaches has clear
links to the basic algorithms analyzed in this paper. As
such, we expect insights gained and performance gains made
for the basic dynamics algorithms to extend to gradient
computations to a large degree.

We also note that if gradients are required, it may be
more worthwhile to utilize task-level parallelization in the

5241

Authorized licensed use limited to: MIT Libraries. Downloaded on June 03,2020 at 00:49:52 UTC from IEEE Xplore. Restrictions apply.

computation of gradients, rather than in the basic algorithms
themselves, because gradient computations can be trivially
parallelized with one partial derivative per thread, while
we also expect lower threading overhead due to a more
significant workload per thread.

VII. CONCLUSION

The calculation of robot dynamics is an essential and time-
consuming part of controlling a highly-articulated robot. This
paper introduced a new benchmark suite with four different
implementations of the three most commonly-used dynamics
calculations. Our initial analysis of the suite provides infor-
mation to help steer future optimization and acceleration of
this workload.

Our goal in this work was to provide researchers and
library implementers with information they can use to un-
derstand and optimize these calculations in the future. We
found significant similarities and differences between the
implementations, which helps to highlight which character-
istics are intrinsic to the problem and which are due to the
particular implementation. Key insights are that all of these
implementations have small working sets and are not highly
parallelized. However, it is also clear that they differ in the
efficiency with which they perform the essential calculations,
leading us to believe that there are still significant opportu-
nities for improvement.

One promising avenue for future work is the use of
parallelism. These implementations do not fully exploit the
parallelism currently available on even modest desktop com-
puters. It is possible that by using different algorithms or
data structures, additional parallelism can be exposed and
exploited. With acceleration from harnessing parallelism and
other software and hardware techniques, we are optimistic
that sufficient improvements can be made to enable the ex-
citing new control algorithms currently under development.

REFERENCES

[1] N. Correll, K. E. Bekris, D. Berenson, O. Brock, A. Causo, K. Hauser,
K. Okada, A. Rodriguez, J. M. Romano, and P. R. Wurman, “Analysis
and observations from the first amazon picking challenge,” IEEE
Transactions on Automation Science and Engineering, vol. 15, 2018.

[2] E. Krotkov, D. Hackett, L. Jackel, M. Perschbacher, J. Pippine,
J. Strauss, G. Pratt, and C. Orlowski, “The DARPA robotics challenge
finals: results and perspectives,” Journal of Field Robotics, vol. 34,
2017.

[3] M. Diehl, H. J. Ferreau, and N. Haverbeke, “Efficient numerical meth-
ods for nonlinear mpc and moving horizon estimation,” in Nonlinear
model predictive control. Springer, 2009, pp. 391–417.

[4] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of com-
plex behaviors through online trajectory optimization,” in Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference
on. IEEE, 2012.

[5] M. Neunert, C. De Crousaz, F. Furrer, M. Kamel, F. Farshidian,
R. Siegwart, and J. Buchli, “Fast nonlinear model predictive control
for unified trajectory optimization and tracking,” in Robotics and
Automation (ICRA), 2016 IEEE International Conference on. IEEE,
2016.

[6] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning, vol. 37, 2015.

[7] T. Koolen and contributors, “RigidBodyDynamics.jl,” 2018. [Online].
Available: https://github.com/JuliaRobotics/RigidBodyDynamics.jl

[8] J. Carpentier, F. Valenza, N. Mansard et al., “Pinocchio: fast forward
and inverse dynamics for poly-articulated systems, 2015–2018.”
[Online]. Available: https://stack-of-tasks.github.io/pinocchio

[9] M. Naveau, J. Carpentier, S. Barthelemy, O. Stasse, and P. Souères,
“Metapod: Template meta-programming applied to dynamics: Cop-
com trajectories filtering,” in Humanoid Robots (Humanoids), 2014
14th IEEE-RAS International Conference on. IEEE, 2014.

[10] M. L. Felis, “RBDL: an efficient rigid-body dynamics library using
recursive algorithms,” Autonomous Robots, 2016. [Online]. Available:
http://dx.doi.org/10.1007/s10514-016-9574-0

[11] F. Marco, B. Jonas, D. G. Caldwell, and S. Claudio, “RobCoGen: a
code generator for efficient kinematics and dynamics of articulated
robots, based on domain specific languages,” Journal of Software
Engineering in Robotics, vol. 7, 2016.

[12] M. A. Sherman and D. E. Rosenthal, “SD/FAST,” 2013. [Online].
Available: www.sdfast.com/

[13] B. Plancher and S. Kuindersma, “A performance analysis of parallel
differential dynamic programming on a gpu,” in International Work-
shop on the Algorithmic Foundations of Robotics (WAFR), 2018.

[14] R. Featherstone, Rigid body dynamics algorithms. Springer, 2008.
[15] J. Y. Luh, M. W. Walker, and R. P. Paul, “On-line computational

scheme for mechanical manipulators,” Journal of Dynamic Systems,
Measurement, and Control, vol. 102, 1980.

[16] M. W. Walker and D. E. Orin, “Efficient dynamic computer simulation
of robotic mechanisms,” Journal of Dynamic Systems, Measurement,
and Control, vol. 104, 1982.

[17] R. Featherstone, “The calculation of robot dynamics using articulated-
body inertias,” The International Journal of Robotics Research, vol. 2,
1983.

[18] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009.

[19] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Julia:
A fast dynamic language for technical computing,” arXiv preprint
arXiv:1209.5145, 2012.

[20] G. Guennebaud, B. Jacob, P. Avery, A. Bachrach, S. Barthelemy et al.,
“Eigen v3,” 2010. [Online]. Available: https://eigen.tuxfamily.org/

[21] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Per-
menter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based
locomotion planning, estimation, and control design for the atlas
humanoid robot,” Autonomous Robots, vol. 40, 2016.

[22] N. A. Radford, P. Strawser, K. Hambuchen, J. S. Mehling, W. K.
Verdeyen, A. S. Donnan, J. Holley, J. Sanchez, V. Nguyen, L. Bridg-
water et al., “Valkyrie: NASA’s first bipedal humanoid robot,” Journal
of Field Robotics, vol. 32, 2015.

[23] A. Stentz, H. Herman, A. Kelly, E. Meyhofer, G. C. Haynes, D. Stager,
B. Zajac, J. A. Bagnell, J. Brindza, C. Dellin et al., “CHIMP, the CMU
highly intelligent mobile platform,” Journal of Field Robotics, vol. 32,
2015.

[24] Intel Inc., “Intel® 64 and ia-32 architectures software developer’s
manual,” Volume 4: Model-Specific Registers., 2018.

[25] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
Parallel Processing Workshops (ICPPW), 2010 39th International
Conference on. IEEE, 2010.

[26] S. Danisch and contributors, “PackageCompiler.jl,” 2018. [Online].
Available: https://github.com/JuliaLang/PackageCompiler.jl

[27] KUKA AG, “LBR iiwa,” accessed in 2018. [Online]. Available: https:
//www.kuka.com/products/robotics-systems/industrial-robots/lbr-iiwa

[28] C. Semini, “HyQ - design and development of a hydraulically actuated
quadruped robot,” Doctor of Philosophy (Ph. D.), University of Genoa,
Italy, 2010.

[29] Boston Dynamics, “Atlas - the world’s most dynamic humanoid,”
accessed in 2018. [Online]. Available: https://www.bostondynamics.
com/atlas

[30] RobCoGen team, “urdf2kindsl,” 2018. [Online]. Available: https:
//bitbucket.org/robcogenteam/urdf2kindsl/

[31] J. Doweck, W.-F. Kao, A. K.-y. Lu, J. Mandelblat, A. Rahatekar,
L. Rappoport, E. Rotem, A. Yasin, and A. Yoaz, “Inside 6th-generation
intel core: new microarchitecture code-named skylake,” IEEE Micro,
vol. 37, 2017.

[32] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” in ACM Sigplan notices, vol. 42,

no. 6. ACM, 2007.

5242

Authorized licensed use limited to: MIT Libraries. Downloaded on June 03,2020 at 00:49:52 UTC from IEEE Xplore. Restrictions apply.

