
A Low-Latency, Low-Area Hardware Oblivious
RAM Controller

Christopher W. Fletcher†, Ling Ren†, Albert Kwon†,
Marten van Dijk‡, Emil Stefanov◦, Dimitrios Serpanos�, Srinivas Devadas†

† Massachusetts Institute of Technology − {cwfletch, renling, kwonal, devadas}@mit.edu
‡ University of Connecticut − vandijk@engr.uconn.edu
◦ University of California, Berkeley − emil@berkeley.edu

� Qatar Computing Research Institute, Doha − dserpanos@qf.org.qa

Abstract—We build and evaluate Tiny ORAM, an Oblivious
RAM prototype on FPGA. Oblivious RAM is a cryptographic
primitive that completely obfuscates an application’s data, access
pattern, and read/write behavior to/from external memory (such
as DRAM or disk).

Tiny ORAM makes two main contributions. First, by removing
an algorithmic bottleneck in prior work, Tiny ORAM is the
first hardware ORAM design to support arbitrary block sizes
(e.g., 64 Bytes to 4096 Bytes). With a 64 Byte block size, Tiny
ORAM can finish an access in 1.4µs, over 40× faster than the
prior-art implementation. Second, through novel algorithmic and
engineering-level optimizations, Tiny ORAM reduces the number
of symmetric encryption operations by ∼ 3× compared to a
prior work. Tiny ORAM is also the first design to implement
and report real numbers for the cost of symmetric encryption in
hardware ORAM constructions. Putting it together, Tiny ORAM
requires 18381 (5%) LUTs and 146 (13%) Block RAM on a Xilinx
XC7VX485T FPGA, including the cost of encryption.

I. INTRODUCTION

With cloud computing becoming increasingly popular, pri-
vacy of users’ sensitive data has become a huge concern in
computation outsourcing. Ideally, users would like to “throw
their encrypted data over the wall” to a cloud service that
performs computation on that data, but cannot obtain any
information from within that data. It is well known, however,
that encryption is not sufficient to enforce privacy in this
environment, because a program’s memory access pattern
reveals a large percentage of its behavior [27] or the encrypted
data it is computing upon [13], [15].

Oblivious RAM (ORAM), introduced by Goldreich and Os-
trovsky [10], [11], is a cryptographic primitive that completely
eliminates the information leakage from a program’s memory
access trace, i.e. the sequence of memory accesses. ORAM
is made up of trusted client logic (who runs the ORAM
algorithm and maintains some trusted state) that interacts with
an untrusted storage provider. Conceptually, ORAM blocks
information leakage by maintaining all memory contents en-
crypted and memory locations randomly shuffled. On each
access, memory is read and then reshuffled. Under ORAM, any
memory access pattern is computationally indistinguishable
from any other access pattern of the same length. Since the
original proposal, there has been significant work that has
resulted in more efficient and cryptographically-secure ORAM
schemes [17], [16], [5], [4], [12], [14], [24], [20], [22]. The
cost for ORAM security is performance: to read/write a block

(the atomic unit of data a client may request), ORAM moves
a logarithmic number of blocks, with respect to the size of the
untrusted memory, over the chip pins.

Secure FPGA/processor
ORAM controller (hardware)

Client

ORAM (DRAM)

TCB

Initialization,
Key exchange

Memory bus

TCB

Untrusted
cloud

Fig. 1: ORAM in the secure FPGA/processor setting.

An important use case for ORAM is in trusted hard-
ware [15], [7], [21], [22], [19], [6]. Figure 1 shows an example
target cloud configuration. Here, a client communicates with
a trusted secure cloud processor that is attached to untrusted
external memory such as disk, DRAM or flash. In this config-
uration, the ORAM client logic (called the ORAM controller)
is typically implemented in hardware and, thus, needs to be
simple. Therefore, most secure processor proposals [15], [7],
[22], [19], [6] have adopted Path ORAM due to its algorithmic
simplicity and small client storage. For the rest of this paper,
we assume the untrusted memory is implemented in DRAM
and that the adversary is passive: it observes but does not
tamper with the memory. As in virtually all prior ORAM work,
we don’t consider leakage over timing, power, RF or other side
channels.

A. Opportunities for ORAM on FPGA
Because of their programmability and high performance,

FPGAs have attracted significant attention as accelerators for
cryptographic primitives. FPGAs have a key advantage over
ASICs, namely programmability: it is easy to patch FPGA

designs in the event that a security bug is discovered or a
cryptographic primitive is rendered obsolete [25]. Partly for
this reason, major FPGA vendors have added dedicated crypto-
graphic key management logic into their mainstream FPGAs to
support secure sessions and bitstream reconfiguration [26],
[23]. At the same time, FPGAs have a key performance ad-
vantage over software, due to hardware-level optimization. For
example an FPGA implementation of Keccak [3], chosen by
NIST as SHA-3, has been shown to outperform an optimized
software implementation by over 5× [8], [2].

Following this trend, we argue that FPGAs are also very
appealing as target platforms for ORAM. Beyond the points
we have already made, modern FPGAs are often designed
with dedicated memory controllers to achieve high memory
bandwidth. For example, the Xilinx Virtex-7 VC709 board
can achieve a memory bandwidth of 25 GByte/second using
dual DDR3 channels, which is similar to midrange desktop
systems like the Intel Core i7 processor family. Meanwhile,
FPGA designs typically run in 100-300 MHz range. This
fabric/memory clock disparity means the performance cost
of ORAM is significantly dampened on FPGA. Indeed, our
Tiny ORAM’s latency to access a block is approximately 250
cycles, compared to over 1000 cycles estimated on ASIC [19],
[6].

B. Design Challenges for ORAM on FPGA

The challenge in designing ORAM for FPGA is exactly how
to saturate this plentiful memory bandwidth. For instance, the
Virtex-7 VC709’s 25 GByte/second bandwidth translates to
1024 bits/FPGA cycle (512 bits/cycle per Xilinx MIG memory
controller), forcing the ORAM algorithm and implementation
to have 1024 bits/FPGA cycle throughput. Recently Maas
et al. [15] implemented Phantom, the first hardware ORAM
prototype for the trusted hardware setting. Their design iden-
tifies several performance and resource bottlenecks which we
address in this paper.

The first bottleneck occurs when the application block size
is small. Phantom was parameterized for 4-KByte blocks and
will incur huge pipeline stalls with small blocks (§ III). This
minimum block size they can support without penalty grows
with FPGA memory bandwidth. While benefiting applications
with good data locality, a large block size (like 4KBytes in
Phantom) severely hurts performance for applications with
erratic data locality1. The first goal in this paper is to develop
schemes that flexibly support any block size (e.g., we evaluate
64-Byte blocks) without incurring performance loss.

The second bottleneck is that to keep up with an FPGA’s
large memory bandwidth, an ORAM controller requires many
encryption units, imposing large area overheads. This is be-
cause in prior art ORAM algorithms, all blocks transferred
must be decrypted/re-encrypted, so encryption bandwidth must
scale with memory bandwidth. To illustrate the issue, Phantom
projects that AES units alone would take ∼ 50% of the logic of
a state-of-the-art FPGA device. The second goal in this paper
is to develop new ORAM schemes that reduce the required

1Most modern processors have a 64-Byte cache block size for this reason.

TABLE I: ORAM parameters and notations.

Notation Meaning

L Depth of Path ORAM tree
Z Data blocks per ORAM tree bucket
N Number of real data blocks in tree
B Data block size (in bits)
C Stash capacity (in blocks, excluding transient storage)
K Session key (controlled by trusted processor)
P(l) Path to leaf l in ORAM tree
P(l)[i] i-th bucket on Path P(l)

RAW ORAM (§ IV) only
A The number of AO accesses per EO access

encryption bandwidth, and to carefully engineer the system to
save hardware area.

C. Contributions

In this paper, we present Tiny ORAM, a complete hard-
ware ORAM controller prototype implemented on an FPGA.
Through novel algorithmic improvements and careful hard-
ware design, Tiny ORAM makes two main contributions:

Bit-based stash management to enable small block sizes
(§ III). We develop a new stash management scheme using
efficient bit operations that, when implemented in hardware,
removes the block size bottleneck in the Phantom design [15].
In particular, our scheme can support any reasonable block
size (e.g., from 64-4096 Bytes) without sacrificing system
performance. With a 64 Byte block size, Tiny ORAM im-
proves access latency by ≥ 40× in the best case compared to
Phantom.

RAW ORAM to reduce the required encryption engines
(§ IV). We propose a new ORAM scheme called RAW ORAM
which, through algorithmic and engineering techniques, re-
duces the number of encryption units by ∼ 3× while main-
taining comparable bandwidth to basic Path ORAM.

D. Design and Availability

We implement the above ideas in hardware, and evaluate our
design for performance and area on a Virtex-7 VC707 FPGA
board. With the VC707 board’s 12.8 GByte/s DRAM band-
width, Tiny ORAM can complete an access for a 64 Byte block
in 1.4µs. This design (with encryption units) requires 5% of
the XC7VX485T FPGA’s logic and 13% of its on-chip mem-
ory. We additionally implemented the ORAM Position Map
management techniques due to Fletcher et al. [6] — which
increases logic/memory area by only 1%. Thus, the combined
design significantly reduces hardware footprint relative to
existing alternatives. Our design is open source and available
to the community at http://kwonalbert.github.io/oram.

II. BACKGROUND

As did Phantom, Tiny ORAM originates from and extends
Path ORAM [22]. We now explain Path ORAM in detail.
Parameters and notations are summarized in Table I.

ORAM
Backend

ORAM tree: external memory (untrusted)

Return block
to client

From client: Req for addr a

3Stash

4

ORAM Frontend PosMap1
a, Leaf 1

Address logic

FPGA pins

0 1 2 3 4 5 6 7

DRAM addrs
for Leaf 15

2

(Unmodified) FPGA Memory controller

Fig. 2: A Path ORAM of L = 3 levels and Z = 4 slots per bucket.
Suppose block a, shaded black, is mapped to path l = 1. At any
time, block a can be located in any of the shaded structures (i.e., on
path 1 or in the stash).

A. Basic Path ORAM

Path ORAM organizes untrusted external DRAM as a binary
tree which we refer to as the ORAM tree. The root node of
the ORAM tree is referred to as level 0, and the leaf nodes as
level L. We denote each leaf node with a unique leaf label l
for 0 ≤ l ≤ 2L−1. We refer to the list of buckets on the path
from the root to leaf l as P(l).

Each node in the tree is called a bucket and can hold up to a
small constant number of blocks denoted Z (typically Z = 4).
We denote the block size in bits as B. In this paper, each block
is a processor cache line (so we correspondingly set B = 512).
Buckets that have less than Z blocks are padded with dummy
blocks. Each bucket is encrypted using symmetric probabilistic
encryption (AES-128 counter mode in our design). Thus, an
observer cannot distinguish real blocks from dummy blocks.

The Path ORAM controller (trusted hardware) contains a
position map, a stash and associated control logic. The position
map (PosMap for short) is a lookup table that associates each
data block’s logical address with a leaf in the ORAM tree. The
stash is a random access memory (e.g., a BRAM) that stores
up to a small number of data blocks. Together, the PosMap
and stash make up Path ORAM’s client storage.

Path ORAM invariant. At any time, each data block in
Path ORAM is mapped to a random leaf via the PosMap.
Path ORAM maintains the following invariant: If a block is
mapped to leaf l, then it must be either in some bucket on path
l or in the stash.

Path ORAM access. To make a request for a block
with address a (block a for short), the Last Level Cache
(LLC) or FPGA user design calls the ORAM controller via
accessORAM(a, op, d′), where op is either read or write and
d′ is the new data if op is write. The steps are also shown in
Figure 2.

1) Look up PosMap with a, yielding the corresponding leaf
label l. Randomly generate a new leaf l′ and replace the
PosMap entry for a with l′.

2) Read and decrypt all the blocks along path l. Add all the
real blocks to the stash (dummies are discarded). Due to
the Path ORAM invariant, block a must be in the stash
at this point.

3) Update block a in the stash to have leaf l′.
4) If op = read, return block a to the LLC. If op = write,

replace the contents of block a with data d′.
5) Evict and encrypt as many blocks as possible from the

stash to path l in the ORAM tree while keeping the
invariant for each block. Fill any remaining space on the
path with encrypted dummy blocks.

Path ORAM security. The intuition for Path ORAM’s
security is that every PosMap lookup (Step 1) will yield a fresh
random leaf that has never been revealed before. This makes
the sequence of ORAM tree paths accessed (which is visible to
an observer) independent of the program’s access pattern. Fur-
ther, probabilistic encryption ensures that no computationally-
bounded adversary can determine which block was requested
on each path.

Stash size and eviction. The stash capacity is the maximum
number of data blocks on a path plus a small number, i.e.,
(L+1)Z +C. We say that the stash has overflowed if, at the
beginning of an ORAM access, the number of blocks in the
stash is > C. If the stash overflows, some data blocks may be
lost, causing ORAM to be functionally incorrect. Therefore,
we need to keep stash overflow probability negligible. At the
same time, we would like the stash size to be small because
on-chip storage is a scarce resource.

Step 5, the eviction step, in the Path ORAM algorithm is
essential in keeping the stash size small. This operation tries
to move as many blocks as possible from the stash back to the
ORAM tree without violating the invariant that each block is
somewhere on the path it is mapped to. Intuitively, the more
slots there are on each path (i.e., a larger bucket size Z),
the more blocks we can put back to the ORAM tree, and
the less likely the stash overflows. Yet, a larger bucket size
hurts performance (more blocks on a path to read and write).
Prior work has shown that the minimum bucket size to ensure
negligible stash overflow probability is Z = 4 [22], [15]. In
this paper, we adopt Z = 4 and C = 78, which gives 2−80

stash overflow probability (using the methodology from [15]).
Not surprisingly, designing efficient logic for the eviction

step is non-trivial (more details will be given in § III) and has
been a big challenge for hardware Path ORAM designs [15].
One contribution in this paper is a simple and efficient
implementation of the eviction logic (see § III).

Bucket header. Implicit in the Path ORAM algorithm, each
block is stored alongside some metadata in the ORAM tree.
Specifically, each bucket stores a bucket header, which tracks
the program address and leaf for each of the Z blocks, and an
initialization vector (abbreviated IV later on) for probabilistic
encryption (e.g., the counter in AES counter mode). Dummy
blocks are marked with a special program address ⊥. Each
program address and leaf is roughly L bits and the initializa-
tion vector is 64 bits to avoid counter overflow.

F0

C0

E

D1

1

A1

B0

Stash

Leaf 0 (b0) Leaf 1 (b1)

Root (b3)

C

A1

0

E

D1

1

A1

B0

Stash

C

A1

0

E

D1

1

B0

A1

B0

Stash

Assigned
leaf

Block
ID

Initial state Step 1 Step 2

b2

Fig. 3: Stash eviction example for Z = 2 slots per bucket. Buckets
are labeled b0, b1, . . . etc. We evict to the path to leaf 1, which
includes buckets b1, b2 and b3. Each block is represented as a tuple
(leaf, block ID), where leaf indicates which leaf the block is mapped
to.

B. Recursive Path ORAM
In basic Path ORAM, the number of entries in the PosMap

scales linearly with the number of data blocks in the ORAM.
This results in a significant amount of on-chip storage —
indeed, Phantom [15] required multiple FPGA’s just to store
the PosMap for sufficiently large ORAMs. Recursive ORAM
was proposed by Shi et al. [20] to solve this problem. The
idea is to store the PosMap in a separate ORAM, and store
the new ORAM’s (smaller) PosMap on-chip. This trick can be
recursively applied until the final PosMap is small enough.

Freecursive ORAM [6] demonstrates how to make ORAM
recursion basically free with very small area overhead. That
paper calls the recursion part Frontend (Step 1 in the above
algorithm) and the underlying ORAM Backend (Steps 2-5).
Following that terminology, this paper’s focus is to optimize
the Backend only. Our optimizations can be combined with
[6], since techniques of Freecursive ORAM apply to any
underlying ORAM Backend. We will evaluate a combined
system, using the optimized Frontend of [6], in § V-E for
completeness.

III. STASH MANAGEMENT

As mentioned in § II-A, deciding where to evict each block
in the stash is a challenge for Path ORAM hardware designs.
Conceptually, this operation tries to push each block in the
stash as deep (towards the leaves) into the ORAM tree as
possible while keeping to the invariant that blocks can only
live on the path to their assigned leaf.

Figure 3 works out a concrete example for the eviction logic.
In Step 1 of Figure 3, block A is mapped to leaf 1 and therefore
may be placed in buckets b1, b2, and b3. It gets placed in
bucket b2 because bucket b1 is full and b2 is deeper than b3.
In Step 2, block B could be placed in b2 and b3 and gets
placed in b3 because b2 is full (since block A moved there
previously).

To decide where to evict blocks, Phantom constructs an
FPGA-optimized heap sort on the stash [15]. Unfortunately,
this approach creates a performance bottleneck because the
initial step of sorting the stash takes multiple cycles per block.
For example, in the Phantom design, adding a block to the
heap takes 11 cycles (see Appendix A of [15]). If the ORAM
block size and memory bandwidth is such that writing a block
to memory takes less than 11 cycles, system performance is

bottlenecked by the heap-sort-based eviction logic and not by
memory bandwidth.2

In this section, we propose a new and simple stash eviction
algorithm based on bit-level hardware tricks that takes a single
cycle to evict a block and can be implemented efficiently in
FPGA logic. This eliminates the above performance overhead
for any practical block size and memory bandwidth.

A. PushToLeaf With Bit Tricks

Our proposal, the PushToLeaf() routine, is shown in Al-
gorithm 1. PushToLeaf(Stash, l) is run once during each
ORAM access and populates an array of pointers S. Stash
can be thought of as a single-ported RAM that stores data
blocks and their metadata. Once populated, S[i] points to
the block in Stash that will be written back to the i-th
position along P(l). Thus, to complete the ORAM eviction, a
hardware state machine sends each block given by Stash[S[i]]
for i = 0, . . . , (L+ 1) ∗ Z − 1 to be encrypted and written to
external memory.

Notations. Suppose l is the current leaf being accessed. We
represent leaves as L-bit words which are read right-to-left:
the i-th bit indicates whether path l traverses the i-th bucket’s
left child (0) or right child (1). On Line 3, we initialize each
entry of S to ⊥, to indicate that the eviction path is initially
empty. Occupied is an L + 1 entry memory that records the
number of real blocks that have been pushed back to each
bucket so far.

Algorithm 1 Bit operation-based stash scan. 2C stands for
two’s complement arithmetic.

1: Inputs: The current leaf l being accessed
2: function PUSHTOLEAF(Stash, l)
3: S ← {⊥ for i = 0, . . . , (L+ 1) ∗ Z − 1}
4: Occupied ← {0 for i = 0, . . . , L}
5: for i← 0 to C + L ∗ Z − 1 do
6: (a, li, D) ← Stash[i] . Leaf assigned to i-th block
7: level ← PushBack(l, li,Occupied)
8: if a 6= ⊥ and level > −1 then
9: offset ← level ∗ Z + Occupied[level]

10: S[offset] ← i
11: Occupied[level] ← Occupied[level] + 1

12: function PUSHBACK(l, l′,Occupied)
13: t1 ← (l ⊕ l′)||0 . Bitwise XOR
14: t2 ← t1 & −t1 . Bitwise AND, 2C negation
15: t3 ← t2 − 1 . 2C subtraction
16: full ← {(Occupied[i]

?
= Z) for i = 0 to L}

17: t4 ← t3 & ∼full . Bitwise AND/negation
18: t5 ← reverse(t4) . Bitwise reverse
19: t6 ← t5 & −t5
20: t7 ← reverse(t6)

21: if t7
?
= 0 then

22: return −1 . Block is stuck in stash
23: return log2(t7) . Note: t7 must be one-hot

Details for PushBack(). The core operation in our proposal
is the PushBack() subroutine, which takes as input the path l
we are evicting to, the path l′ a block in the stash is mapped to,

2Given the 1024 bits/cycle memory bandwidth assumed by the Phantom
system, the only way for Phantom to avoid this bottleneck is to set the ORAM
block size to be ≥ 1408 Bytes.

and outputs which level on path l that block should get written
back to. In Line 13, t1 represents in which levels the paths P (l)
and P (l′) diverge. In Line 14, t2 is a one-hot bus where the
set bit indicates the first level where P (l) and P (l′) diverge.
Line 15 converts t2 to a vector of the form 000 . . . 111, where
set bits indicate which levels the block can be pushed back to.
Line 17 further excludes buckets that already contain Z blocks
(due to previous calls to PushBack()). Finally, Lines 18-20
turn all current bits off except for the left-most set bit, which
now indicates the level furthest towards the leaves that the
block can be pushed back to.

Security. We remark that while our stash eviction procedure
is highly-optimized for hardware implementation, it is algo-
rithmically equivalent to the original stash eviction procedure
described in Path ORAM [22]. Thus, security follows from
the original Path ORAM analysis.

B. Hardware Implementation and Pipelining

Algorithm 1 runs C + (L + 1)Z iterations of PushBack()
per ORAM access. In hardware, we pipeline Algorithm 1 in
three respects to hide its latency:

First, the PushBack() circuit itself is pipelined to have 1
block / cycle throughput. PushBack() itself synthesizes to sim-
ple combinational logic where the most expensive operation
is two’s complement arithmetic of (L + 1)-bit words (which
is still relatively cheap due to optimized FPGA carry chains).
reverse() costs no additional logic in hardware. The other bit
operations (including log2(x) when x is one-hot) synthesize
to LUTs. To meet our FPGA’s clock frequency, we had to add
2 pipeline stages after Lines 14 and 15. An important subtlety
is that we don’t add pipeline stages between when Occupied
is read and updated. Thus, a new iteration of PushBack() can
be started every cycle.

Second, as soon as the leaf for the ORAM access is
determined (i.e., concurrent with Step 2 in § II-A), blocks
already in the stash are sent to the PushBack() circuit “in the
background”. Following the previous paragraph, C + 2 is the
number of cycles it takes to perform the background scan in
the worst case.

Third, after cycle C+2, we send each block read on the path
to the PushBack() circuit as soon as it arrives from external
memory. Since a new block can be processed by PushBack()
each cycle, eviction logic will not be the system bottleneck.

IV. MINIMIZING DESIGN AREA

Another serious problem for ORAM design is the area
needed for encryption units. Recall from § II-A that all data
touched by ORAM must get decrypted and re-encrypted to
preserve privacy. Encryption bandwidth hence scales with
memory bandwidth and quickly becomes the area bottleneck.
Indeed, Phantom [15] did not implement real encryption units
in their design but predicted that encryption would take 50%
area of a high-end Virtex 6 FPGA.

To address this problem we now propose a new ORAM
design, which we call RAW ORAM, optimized to minimize
encryption bandwidth at the algorithmic and engineering level.

Block
Addresses

Block
Leaves

IV2

RAW
ORAM

Path
ORAM

Read from memory Read from memory & decrypted

IV1

Encrypted under IV2

RAW ORAM
Bucket Header

Requested
block

Z * L = 160 bits

B = 512 bits

Unused space

Fig. 4: Data read vs. data decrypted on a RAW ORAM AO read
(left) and Path ORAM access (right) with Z = 3. IV1 and IV2 are
initialization vectors used for encryption.

A. RAW ORAM Algorithm

First, we split ORAM Backend operations into two flavors:
access-only (AO) and eviction-only (EO) accesses. AO ac-
cesses perform the minimal amount of work needed to service
a client processor’s read/write requests (i.e., last level cache
misses/writebacks) and EO accesses perform evictions (to
empty the stash) in the background. To reduce the number of
encryption units needed by ORAM, we optimize AO accesses
to only decrypt the minimal amount of data needed to retrieve
the block of interest, as opposed to the entire path. EO accesses
require more encryption/decryption, but occur less frequently.3

We now describe the protocol in detail:
Parameter A. We introduce a new parameter A, set at

system boot time. For a given A, RAW ORAM obeys a strict
schedule that the ORAM controller performs one EO access
after every A AO accesses.

An AO access reads an ORAM tree path (as does Path
ORAM) but only performs the minimal number of on-chip
operations (e.g., decryption) needed to decrypt/move the re-
quested block into the stash and logically remove that block
from the ORAM tree. This corresponds to Steps 2-4 in § II-A
with three important changes. First, we will only decrypt the
minimum amount of information needed to find the requested
block and add it to the stash. Precisely, we decrypt the Z block
addresses stored in each bucket header (§ II-A), to identify the
requested block, and then decrypt the requested block itself (if
it is found). The amount of data read vs. decrypted is illustrated
in Figure 4.

Second, we add only the requested block to the stash (as
opposed to the whole path). Third, we update the bucket
header containing the requested block to indicate a block was
removed (e.g., by changing its program address to ⊥), and
re-encrypt/write back to memory the corresponding state for
each bucket. To re-encrypt header state only, we encrypt that
state with a second initialization vector denoted IV2. The rest
of the bucket is encrypted under IV1. A strawman design may
store both IV1 and IV2 in the bucket header (as in Figure 4).
We describe an optimized design in § IV-D.

3We remark that Ring ORAM [18] also breaks ORAM into AO/EO and
uses a predictable access pattern for EO accesses. That work, however, does
not aim to reduce encryptions on AO accesses and does not recognize or
exploit path eviction predictability.

Time

G = 0 G = 1 G = 2 G = 3

Fig. 5: Reverse lexicographic order of paths used by EO accesses.
After the G = 3 path is evicted to, the order repeats.

An EO access performs a normal but dummy Path ORAM
access to a static sequence of leaves corresponding to a reverse
lexicographic order of paths (first proposed in [9]). By dummy
access, we simply mean reading and evicting a path to push
out blocks in the stash that have accumulated over the A AO
accesses (as described in [19]).

We give a visual example for the reverse lexicographic order
in Figure 5. Here, G is a counter that tracks the number
of EO accesses made so far. Notice that the leaf (and its
corresponding path) being evicted to next is given precisely
by G mod 2L if we encode leaves as described in § III-A.

Security. We note that AO accesses always read paths in
the ORAM tree at random, just like Path ORAM. Further, EO
accesses occur at predetermined times (always after A AO
accesses) and are to predictable/data-independent paths.

B. Performance and Area Characteristics

Assume for simplicity that the bucket header is the same
size as a data block (which matches our evaluation). Then,
each AO access reads (L+ 1)Z blocks on the path, but only
decrypts 1 block; it also reads/writes and decrypts/re-encrypts
the L + 1 headers/blocks. An EO access reads/writes and
decrypts/re-encrypts all the (L+ 1)(Z + 1) blocks on a path.
Thus, in RAW ORAM the relative memory bandwidth per
bucket is Z+2+ 2(Z+1)

A , and the relative encryption bandwidth
per bucket is roughly 1 + 2(Z+1)

A .
The remaining question for RAW ORAM is: what A and

Z combinations result in a stash that will not overflow, yet at
the same time minimize encryption and memory bandwidth?
In Figure 6, we visualize the relative memory and encryption
bandwidth of RAW ORAM with different parameter settings
that have been shown [18] to give negligible stash overflow
probability. We find Z = 5, A = 5 (Z5A5) to be a good
trade-off as it achieves 6% memory bandwidth improvement
and ∼ 3× encryption reduction over Path ORAM. We will
use Z5A5 in the evaluation and remark that this configuration
requires C = 64 for a 2−80 stash overflow probability.

C. Design Challenges In Practice

Despite RAW ORAM’s theoretic area savings for encryption
units, careful engineering is needed to prevent that savings
from turning into performance loss. The basic problem is that
by reducing encryption units (we say AES from now on) to
provide “just enough” bandwidth for AO accesses, we are
forced to wait during EO accesses for that reduced number of
AES units to finish decrypting/re-encrypting the entire path.
Further, since all AES IVs are stored externally with each

2 4 6 8 10
Relative encryption overhead

8

10

12

Re
la

tiv
e

m
em

or
y

ov
er

he
ad

Z2A1

Z3A2Z4A3Z5A5

Z6A6
Z7A8

Z4

Fig. 6: The relative memory and encryption bandwidth over-
head of RAW ORAM with different parameter settings.

bucket, the AES units can’t start working on a new EO access
until that access starts.

D. Path Eviction Predictability

To remove the above bottleneck while maintaining the AES
unit reduction, we make the following key observation: Since
EO accesses occur in a predictable, fixed order, we can
determine exactly how many times any bucket along any path
has been written in the past.

Recall that G indicates the number of EO accesses made so
far. (We allocate a 64-bit counter in the ORAM controller to
store G.) Now, due to load-balancing nature of reverse lexi-
cographic order, if P(l)[i] has been evicted to gi times in the
past, then P(l)[i+1] has been evicted gi+1 = b(gi+1−li)/2c
where li is the i-th bit in leaf l. This can be easily computed
in hardware as gi+1 = (gi + ∼li) � 1, where � is a right
bit-shift and ∼ is bit-wise negation.

Using eviction predictability, we will pre-compute the AES-
CTR initialization vector IV1 (§ IV-A). Simply put, this means
the AES units can do all decryption/encryption work for EO
accesses “in the background” during concurrent AO accesses.

To decrypt the i-th 128-bit ciphertext chunk of the bucket
with unique ID BucketID at level j in the tree, as done
on an EO ORAM path read, we XOR it with the following
mask: AESK(gj || BucketID || i) where gj is the bucket
eviction count defined above. Correspondingly, re-encryption
of that chunk is done by generating a new mask where the
write count has been incremented by 1. We note that with this
scheme, gj takes the place of IV1 and since gj can be derived
internally, we need not store it externally.

On both AO and EO accesses, we must decrypt the program
addresses and valid bits of all blocks in each bucket (§ IV-A).
For this we apply the same type of mask as in Ren et al. [19],
namely AESK(IV2 || BucketID || i), where IV2 is stored
externally as part of each bucket’s header.

At the implementation level, we time-multiplex an AES core
between generating masks for IV1 and IV2. The AES core
prioritizes IV2 operations; when the core is not servicing IV2

requests, it generates masks for IV1 in the background and
stores them in a FIFO.

V. EVALUATION

We now describe our hardware prototype of Tiny ORAM on
a Virtex-7 VC707 FPGA board and analyze its area and perfor-

mance characteristics. Our complete design, built on top of the
Recursive ORAM design due to [6], is open source and avail-
able to the community at http://kwonalbert.github.io/oram.

A. Metrics and Baselines

We evaluate our design in terms of performance and area.
Performance is measured as the latency (in FPGA cycles or
real time) between when an FPGA user design requests a
block and Tiny ORAM returns that block. Area is calculated
in terms of FPGA lookup-tables (LUT), flip-flops (FF) and
Block RAM (BRAM), and is measured post place-and-route
(i.e., represents final hardware area numbers). For the rest of
the paper we count BRAM in terms of 36 Kb BRAM. For all
experiments, we compiled with Xilinx Vivado version 2013.4.

We compare Tiny ORAM with two baselines shown in
Table II. The first one is Phantom [15], which we normal-
ize to our ORAM capacity and the 512 bits/cycle DRAM
bandwidth of our VC707 board. We further disable Phantom’s
tree top caching. Phantom’s performance/area numbers are
taken/approximated from the figures in their paper, to our best
efforts. The second baseline is a basic Path ORAM with our
stash management technique, to show the area saving of RAW
ORAM.

B. Implementation

Parameterization. Both of our designs (Path ORAM and
RAW ORAM) use B = 512 bits per block and L = 20 levels.
We chose B = 512 (64 Bytes) to show that Tiny ORAM can
run even very small block sizes without imposing hardware
performance bottlenecks. We are constrained to set L = 20
because this setting fills the VC707’s 1 GByte DRAM DIMM.

Clock regions. The DRAM controller on the VC707 board
runs at 200 MHz and transfers 512 bits/cycle. To ensure
that DRAM is Tiny ORAM’s bottleneck, we optimized our
design’s timing to run at 200 MHz.

DRAM controller. We interface with DDR3 DRAM
through a stock Xilinx on-chip DRAM controller with 512
bits/cycle throughput. From when a read request is presented
to the DRAM controller, it takes ∼ 30 FPGA cycles to return
data for that read (i.e., without ORAM). The DRAM controller
pipelines requests. That is, if two reads are issued in consec-
utive cycles, two 512 bit responses arrive in cycle 30 and 31.
To minimize DRAM row buffer misses, we implemented the
subtree layout scheme from [19] which allows us to achieve
near-optimal DRAM bandwidth (i.e., > 90%, which is similar
to Phantom) for our 64 Byte block size.

Encryption. We use “tiny aes,” a pipelined AES core that is
freely downloadable from Open Cores [1]. Tiny aes has a 21
cycle latency and produces 128 bits of output per cycle. One
tiny aes core costs 2865/3585 FPGA LUT/FF and 86 BRAM.
To implement the time-multiplexing scheme from § IV-D, we
simply add state to track whether tiny aes’s output (during
each cycle) corresponds to IV1 or IV2.

Given our DRAM bandwidth, RAW ORAM requires 1.5
(has to be rounded to 2) tiny aes cores to completely hide
mask generation for EO accesses at 200 MHz. To reduce area
further, we optimized our design to run tiny aes and associated
control logic at 300 MHz. Thus, our final design requires only

a single tiny aes core. Basic Path ORAM would require 3 tiny
aes cores clocked at 300 MHz, which matches our 3× AES
saving in the analysis from § IV-B. We did not optimize the
tiny aes clock for basic Path ORAM, and use 4 of them running
at 200 MHz.

C. Access Latency Comparison
For the rest of the evaluation, all access latencies are

averages when running on a live hardware prototype. Our
RAW ORAM Backend can finish an access in 276 cycles
(1.4µs) on average. This is very close to basic Path ORAM;
we did not get the 6% theoretical performance improvement
because of the slightly more complicated control logic of RAW
ORAM.

After normalizing to our DRAM bandwidth and ORAM
capacity, Phantom should be able to fetch a 4 KByte block
in ∼ 60µs. This shows the large speedup potential for small
blocks. Suppose the program running has bad data locality
(i.e., even though Phantom fetches 4 KBytes, only 64 Bytes
are touched by the program). In this case, Tiny ORAM using
a 64 Byte block size improves ORAM latency by 40× relative
to Phantom with a 4 KByte block size. We note that Phantom
was run at 150 MHz: if optimized to run at 200 MHz like our
design, our improvement is ∼ 32×. Even with perfect locality
where the entire 4 KByte data is needed, using a 64 Byte
block size introduces only 1.5− 2× slowdown relative to the
4 KByte design.4

D. Hardware Area Comparison
In Table II, we also see that the RAW ORAM Backend

requires only a small percentage of the FPGA’s total area.
The slightly larger control logic in RAW ORAM dampens the
area reduction from AES saving. Despite this, RAW ORAM
achieves an ≥ 2× reduction in BRAM usage relative to Path
ORAM. Note that Phantom [15] did not implement encryption:
we extrapolate their area by adding 4 tiny aes cores to their
design and estimate a BRAM savings of 4× relative to RAW
ORAM.

E. Full System Evaluation
We now evaluate a complete ORAM controller by con-

necting our RAW ORAM Backend to the optimized ORAM
Frontend (called ‘Freecursive ORAM’) proposed in [6]. For
completeness, we also implemented and evaluated a baseline
Recursive Path ORAM. (To our knowledge, we are the first to
implement any form of Recursive ORAM in hardware.) For
our L = 20, we add 2 PosMap ORAMs, to attain a small
on-chip position map (< 8 KB).

Figure 7 shows the average memory access latency of
several real SPEC06-int benchmarks. Due to optimizations in
[6], performance depends on program locality. For this reason,
we also evaluate two synthetic traces: scan which has perfect
locality and rand which has no locality. We point out two
extreme benchmarks: libq is known to have good locality, and
on average our ORAM controller can access 64 Bytes in 490

4We remark that this slowdown is due to the Path ORAM algorithm: with
a fixed memory size, a larger block size results in a shorter ORAM tree (i.e.,
L decreases which improves performance).

TABLE II: Parameters, performance and area summary of different
designs. Access latencies for Phantom are normalized to 200 MHz.
All %s are relative to the Xilinx XC7VX485T FPGA. For Phantom
area estimates, “∼ 235 + 344” BRAM means 235 BRAM was
reported in [15], plus 344 for tiny aes.

Design Phantom Path ORAM RAW ORAM

Parameters
Z, A 4, N/A 4, N/A 5, 5

Block size 4 KByte 64 Byte 64 Byte
of tiny aes cores 4 4 1

Performance (cycles)
Access 64 B ∼ 12000 270 276
Access 4 KB ∼ 12000 17280 17664

ORAM Backend Area
LUT (%) ∼ 6000 + 11460 18977 (7%) 14427 (5%)
FF (%) not reported 16442 (3%) 11359 (2%)

BRAM (%) ∼ 172 + 344 357 (34%) 129 (13%)

Total Area (Backend+Frontend)
LUT (%) ∼ 10000 + 11460 22775 (8%) 18381 (6%)
FF (%) not reported 18252 (3%) 13298 (2%)

BRAM (%) ∼ 235 + 344 371 (36%) 146 (14%)

scan rand libq bzip2 gcc sjeng
Memory access pattern

0

200

400

600

800

1000

1200

Av
er

ag
e

ac
ce

ss
 la

te
nc

y
(c

yc
le

s)

Baseline DRAM latency = 30 cycles

Recursive Path ORAM
Freecursive Path ORAM

Freecursive RAW ORAM

Fig. 7: Average number of FPGA clock cycles needed to complete
an ORAM access.

cycles. sjeng has bad (almost zero) locality and fetching a
64 Byte block requires ∼ 950 cycles (4.75 µs at 200 MHz).
Benchmarks like sjeng reinforce the need for small blocks:
setting a larger ORAM block size will strictly decrease system
performance since the additional data in larger blocks won’t
be used.

VI. CONCLUSION

In this paper we have presented Tiny ORAM, a low-latency
and low-area hardware ORAM controller. We propose a novel
stash management algorithm to unlock low latency and RAW
ORAM to decrease design area. We demonstrate a working
prototype on a Virtex-7 VC707 FPGA board which can return
a 64 Byte block in ∼ 1.4 µs and requires 5% of the FPGA
chip’s logic, including the cost of symmetric encryption.

Taken as a whole, our work is an example of how ideas
from circuit design and cryptographic protocol design, coupled
with careful engineering, can lead to significant efficiencies in
practice.

Acknowledgments: We thank the anonymous reviewers
for many constructive comments. This research was partially
supported by QCRI under the QCRI-CSAIL partnership and
by the National Science Foundation. Christopher Fletcher was

supported by a DoD National Defense Science and Engineer-
ing Graduate Fellowship.

REFERENCES

[1] Open cores. http://opencores.org/.
[2] D. J. Bernstein and T. Lange. The new sha-3 software shootout. Cryp-

tology ePrint Archive, Report 2012/004, 2012. http://eprint.iacr.org/.
[3] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Keccak sponge

function family main document. Submission to NIST (Round 2), 3, 2009.
[4] D. Boneh, D. Mazieres, and R. A. Popa. Remote oblivious

storage: Making oblivious RAM practical. Manuscript,
http://dspace.mit.edu/bitstream/handle/1721.1/62006/MIT-CSAIL-
TR-2011-018.pdf, 2011.

[5] I. Damgård, S. Meldgaard, and J. B. Nielsen. Perfectly secure oblivious
RAM without random oracles. In TCC, 2011.

[6] C. Fletcher, L. Ren, A. Kwon, M. van Dijk, and S. Devadas. Freecursive
oram: [nearly] free recursion and integrity verification for position-based
oblivious ram. In ASPLOS, 2015.

[7] C. Fletcher, M. van Dijk, and S. Devadas. Secure Processor Architecture
for Encrypted Computation on Untrusted Programs. In STC, 2012.

[8] K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, and M. U. Sharif.
Comprehensive evaluation of high-speed and medium-speed implemen-
tations of five sha-3 finalists using xilinx and altera fpgas. Cryptology
ePrint Archive, Report 2012/368, 2012. http://eprint.iacr.org/.

[9] C. Gentry, K. A. Goldman, S. Halevi, C. S. Jutla, M. Raykova,
and D. Wichs. Optimizing oram and using it efficiently for secure
computation. In PET, 2013.

[10] O. Goldreich. Towards a theory of software protection and simulation
on oblivious rams. In STOC, 1987.

[11] O. Goldreich and R. Ostrovsky. Software protection and simulation on
oblivious rams. In Journal of the ACM, 1996.

[12] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia.
Privacy-preserving group data access via stateless oblivious RAM sim-
ulation. In SODA, 2012.

[13] M. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on
searchable encryption: Ramification, attack and mitigation. In NDSS,
2012.

[14] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (in) security of hash-
based oblivious ram and a new balancing scheme. In SODA, 2012.

[15] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic,
J. Kubiatowicz, and D. Song. Phantom: Practical oblivious computation
in a secure processor. In CCS, 2013.

[16] R. Ostrovsky. Efficient computation on oblivious rams. In STOC, 1990.
[17] R. Ostrovsky and V. Shoup. Private information storage (extended

abstract). In STOC, 1997.
[18] L. Ren, C. W. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. V. Dijk, and

S. Devadas. Ring oram: Closing the gap between small and large client
storage oblivious ram. Cryptology ePrint Archive, Report 2014/997,
2014. http://eprint.iacr.org/.

[19] L. Ren, X. Yu, C. Fletcher, M. van Dijk, and S. Devadas. Design space
exploration and optimization of path oblivious ram in secure processors.
In ISCA, 2013.

[20] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious ram with
o((logn)3) worst-case cost. In Asiacrypt, 2011.

[21] E. Stefanov and E. Shi. Oblivistore: High performance oblivious cloud
storage. In S&P, 2013.

[22] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and
S. Devadas. Path oram: An extremely simple oblivious ram protocol.
In CCS, 2013.

[23] Altera Corporation. Protecting the fpga design from common threats.
Whitepaper.

[24] P. Williams and R. Sion. Single round access privacy on outsourced
storage. In CCS, 2012.

[25] T. Wollinger, J. Guajardo, and C. Paar. Cryptography on fpgas: State of
the art implementations and attacks. ACM Transactions in Embedded
Computing Systems (TECS), 2004.

[26] Xilinx. Developing tamper resistant designs with xilinx virtex-6 and 7
series fpgas. Whitepaper.

[27] X. Zhuang, T. Zhang, and S. Pande. HIDE: an infrastructure for
efficiently protecting information leakage on the address bus. In
ASPLOS, 2004.

