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ABSTRACT
We present Path-Diverse In-Order Routing (PDIOR), an oblivious
routing method which guarantees network-level inorder delivery
for multi-path routing. Based on Exclusive Dynamic Virtual Chan-
nel Allocation (EDVCA), which allows single-path efficient in-
order delivery with dynamic virtual channel allocation, PDIOR ex-
tends the same guarantees to routing schemes where each flow may
be routed via more than one path. As with EDVCA, PDIOR avoids
the overheads inherent in reordering packets at the destination core,
and requires only minor, inexpensive changes to traditional oblivi-
ous router architectures: for example, an implementation of PDIOR
on 8× 8 mesh network with 4 VCs per port requires 492 bytes of
memory per node, while inorder packet delivery in a comparable
conventional network may requires tens to hundreds of kilobytes
of reorder buffer memory at each node.

1. INTRODUCTION
Inorder packet delivery in a network is a widely assumed basis

for a wide range of application protocols such as file transfer proto-
cols and optimized cache coherence protocols (e.g., [6, 7]); for ex-
ample, Hennessy & Patterson begin the description of their cache
coherence protocol with “first, we assume that the network pro-
vides point-to-point inorder delivery of messages” [6, p. E–7]. Im-
plementations of direct-communication computation models such
as stream computing (e.g., StreamIt [15]) also require that packets
be delivered in the order they were sent, as do explicit message-
passing applications. Indeed, inorder delivery is so widely taken
for granted that it is often not specifically addressed.

Although some routing algorithms naturally deliver packets in
order, they offer limited efficiency. Basic dimension-order routing
(DOR) without virtual channels, an approach popular in network-
on-chip (NoC) designs, always preserves packet order because all
packets follow the same path and are stored in the same buffers. Be-
cause packets from different flows are buffered in the same queues,
however, a single ill-behaved flow can overwhelm other flows and
effectively block them even if they are destined for a different egress
port, a phenomenon known as head-of-line blocking.

Unfortunately, popular solutions to these shortcomings either sac-
rifice inorder delivery for improved performance or have limited
application. “Path-diverse” routing protocols (e.g., [13, 16, 11, 12])
alleviate throughput problems by routing each flow via more than
one path, but give up inorder delivery, since packets on the different
paths may experience different congestion and travel times. Static
route assignment techniques like WOT [4] or BSOR [8] can opti-
mize flow-to-route assignment to limit congestion, but rely on pre-
computing routes off-line and configuring the network before the
application starts. This requires fairly accurate a priori knowledge
of the application’s traffic patterns, a reasonable assumption for
fixed-application chips but an unrealistic requirement for general-
purpose NoCs. Using multiple dynamically allocated virtual chan-
nels (VCs) on each link, a popular way to ameliorate head-of-line
blocking, allows packets from the same flow to be buffered in mul-
tiple VCs on a given link, and, in effect, creates multiple virtual

paths for each flow, compromising inorder guarantees. Allocating
VCs statically [14] can minimize head-of-line blocking and maxi-
mize throughput, but again relies on off-line precomputation and as
such is not generally applicable.

In such algorithms, inorder delivery can be accomplished by re-
sorting to packet reordering: each packet is tagged with a sequential
serial number, and any packets that arrive out of order are stored in
a reorder buffer at the destination node until all of their predeces-
sors have been received. This induces significant hardware cost, as
the reorder buffers at each node must be quite large to ensure that
all out-of-order packets can be stored: in simulations using DOR
and O1TURN on a 4-VC system, we found that, depending on the
traffic pattern, up to between 25% and 75% of packets arrived out
of order, and the reorder buffers needed to hold up to 69 packets.
The high percentage of packets received out of order indicates that
the reorder buffer and reordering logic must operate at close to line
rate, effectively excluding any software-level solution. Since one
such buffer may have to be implemented for each flow arriving at
a given destination, and the efficiency demands would require very
fast storage, the cost of reorder buffer space alone in a store-and-
reorder scheme would be significant.

In this paper, we describe efficient network-level in-order de-
livery in multi-path oblivious algorithms like O1TURN [13] with
multiple dynamically allocated VCs. By limiting the number of
outstanding packets on each path, PDIOR guarantees inorder de-
livery while avoiding deadlock, reorder buffers, and retransmis-
sion logic. In addition, PDIOR applied to O1TURN has 6% bet-
ter performance on average compared to baseline (out-of-order)
O1TURN on synthetic and application loads due to reduced head-
of-line blocking and improved load balancing efficiency.

PDIOR requires only minor, inexpensive changes to traditional
oblivious router architectures. Unlike reorder buffers, which may
require on the order of 10–100KB per destination core to keep up
with line rate and grow with packet size, the additional memory
required by PDIOR (492 bytes for an 8× 8 mesh) is insignificant,
and is independent of dynamic traffic properties.

While our motivation in this paper is inorder packet delivery in
NoCs and we focus on applying PDIOR (Section 3) to O1TURN
routing on a mesh, PDIOR is independent of network topology and
route selection, and can be applied to other oblivious path-diverse
routing algorithms (e.g., Valiant [16], ROMM [11, 12], or adaptive
routing schemes like turn methods [5] or odd-even routing [2].

In Section 3 we describe how PDIOR implements inorder packet
delivery. Next, Section 4 details implementation differences rela-
tive to a baseline oblivious virtual-channel router design. Section 5
offers performance analysis via extensive cycle-accurate simulation
with synthetic as well as application traffic patterns, and Section 6
concludes the paper.

2. RELATED WORK
Few routing scheme designs explicitly address out-of-order pac-

ket delivery. Within the Network-on-Chip (NoC) context, DOR
routing without virtual channels is naturally ordered, since all pack-



ets between a specific source and destination travel along the same
path and are buffered in the same queues, but the ordering guaran-
tee breaks down with multiple VCs. ROMM [11], Valiant [16] and
O1TURN [13] may all deliver packets out of order. Static route/VC
assignment schemes, such as Weighted Ordered Toggle [4] and
BSOR [8, 14], can guarantee ordering but rely on off-line route/VC
assignment and require knowledge of traffic patterns for efficiency.

EDVCA [9] and Flow-Aware Allocation (FAA) [1] are similar
dynamic VC allocation schemes that can work with any routing al-
gorithm. While EDVCA focuses on inorder guarantees (and defines
flows as source-destination pairs) and FAA focuses on ameliorating
head-of-line blocking (and defines flows by destination only), both
can guarantee inorder packet delivery for single-path routing algo-
rithms; neither, however, conserves ordering in a multi-path routing
scheme where each flow can travel via several distinct paths with
potentially different travel times.

Murali et al [10] describe a multi-path inorder scheme where
sequentially numbered packets belonging to a given flow are de-
layed at switches where distinct paths used by the same flow join
(or cross), their scheme also relies on a static assignment of flows to
links; moreover, their reordering method contemplates only pack-
ets within one flow and either does not consider the possibility of
deadlock when separate flows block each other or makes the unre-
alistic assumption of a private virtual channel for each flow.

3. PATH-DIVERSE INORDER ROUTING
PDIOR implements inorder packet delivery guarantee for multi-

path routing algorithms. We start by outlining EDVCA, which en-
sures that packets are delivered in order along a single path (i.e.,
sequence of nodes), and then describe how PDIOR extends this
guarantee to flows which may travel along multiple paths.

We describe and evaluate our scheme as implemented on top of
O1TURN [13] routing in a 2D mesh. O1TURN randomly chooses
between XY and YX routing for each packet, thus on average send-
ing 50% of traffic along each path; to avoid deadlock, separate vir-
tual channel sets are used for the XY and YX paths.

3.1 Single-path ordering
Even single-path routing schemes (e.g., DOR) can deliver pack-

ets out-of-order when routers have multiple dynamically allocated
virtual channels. EDVCA [9] overcomes this limitation and guar-
antees inorder delivery in single-path algorithms by ensuring that
packets from each flow are buffered in at most one VC per node,
and thus effectively travel through only one sequence of VCs at any
one time even though the sequence of VCs may change over time.

To achieve this, EDVCA alters the VC assignment logic and the
related credit update mechanism. When allocating a next-hop VC
to a packet from a flow f , the following principles apply:
• if no next-hop VC contains packets from f , assign the packet

to any available VC; if no VCs are available, stall the packet
and allocate again in the next cycle (emulates dynamic VCA)
• if some next-hop VC v already contains packets from f , and

v is available, assign the packet to v; if v is not available, stall
the packet and try to allocate again in the next cycle.

In a traditional VC router, each router keeps track of the number
of free slots (credits) in every next-hop VC queue, only consider-
ing a packet’s flits for crossbar traversal when the credit counter
for the relevant remote VC queue is positive; the next-hop router
sends back per-VC credit updates when flits are forwarded from
its ingress queues. EDVCA adds a Flow Assignment Table (FAT),
which ensures that a flow is assigned to at most one next-hop VC at
any given time. The FAT entry for each flow lists the currently as-
signed VC (if any), and the number of flits from that flow remaining

in that VC; to keep the FAT up to date, the credit updates from the
next-hop routers include the flow IDs of the departed flits. During
VC allocation, EDVCA queries the FAT in parallel with standard
dynamic VCA, and overrides its result if the flow already has flits
in the next-hop VC:

• choose the next available VC v according to a dynamic VC
scheduling algorithm;

• in parallel, query the FAT entry for flow f , FAT[ f ];
• if FAT[ f ] names a VC and #flits > 0, assign flow f to the

VC in FAT[ f ];
• otherwise, assign f to v and set FAT[ f ]← (VC=v,#flits=0).

3.2 Multi-path ordering
Much like EDVCA ensures that packets from one flow travel

via at most one sequence of VCs at any point in time, PDIOR en-
sures that at any snapshot packets flow through only one sequence
of nodes even though the sequence may be different at different
times. Under PDIOR, the source node chooses one of the available
routes, and sends some number of packets (drawn from a random
distribution with some expected value N) along that route. The last
contiguous packet sent on that route is tagged with a “switch” flag
indicating that the next packet will be sent along a different route;
upon receiving a “switch” packet, the destination router sends an
acknowledgement (ACK) packet back to the source. Finally, when
the ACK is received, the source node selects a different path and
sends another sequence of packets. This way, the flow only travels
along one path at any given instant, allowing inorder delivery; at
the same time, when examined over an extended period of time,
the flow travels over both paths and benefits from the congestion-
reducing effects of path diversity.1

Naturally, since transmission stalls while the source node waits
for the ACK packet, efficiency depends on the number of contigu-
ous packets sent on a single path (the N above). If the N is too
small, the period when packets are being transmitted (the on_time)
will be small compared to the time spent waiting for the ACK (the
off_time) and overall throughput will be poor; if the N is too large,
on the other hand, PDIOR will spend long stretches in either XY or
YX mode, and consequently may suffer from the same limitations
as DOR. PDIOR addresses this by “learning” on the fly a value of
N which balances the two extremes,2 as described in Section 3.4
below. Like O1TURN, PDIOR uses two sets of virtual channels
to achieve deadlock freedom: one set is used for traffic on the XY
path, and the other for traffic on the YX path. PDIOR also uses
EDVCA for VC allocation, so packets can flow through only one
sequence of nodes and only one sequence of VCs to preserve the
packet order.

3.3 Route control
The additional state required by PDIOR is contained in a Route

Control Table (RCT) in each node at which traffic originates. For
each flow that starts at the node, the RCT stores:

• the current-route value (XY or YX),
• the current-N value of the average sequence length,
• a waiting-for-ACK flag indicating whether the flow is trans-

mitting or waiting for an ACK packet,
• the on_timestamp (in cycles),

1Unlike Weighted Ordered Toggle [4], which chooses either XY
or YX routing for each flow before runtime and therefore offers no
path diversity for any one flow, PDIOR changes the routing on the
fly and therefore offers true run-time path diversity.
2PDIOR remains an oblivious algorithm, since, unlike an adap-
tive routing algorithm, it does not reroute packets in response to
regional or global congestion statistics.



• the off_timestamp (in cycles).

Packets on a given flow f may be transmitted by the source node
whenever it is not waiting on an ACK for f :

• if RCT[ f ] has waiting-for-ACK set, stall;
• otherwise r← [0 . . .1) uniformly at random, and
• if r < 1

current−N ,
– set the packet’s switch flag,
– send the packet on current-route in RCT[ f ],
– set current-route← inverse of current-route,
– set waiting-for-ACK, and
– set off_timestamp← current time.

• otherwise,
– clear the packet’s switch flag, and
– send the packet along current-route in RCT[ f ].

The destination node receives packets as it normally would under
O1TURN, except that for any packet with the switch flag, say on
flow f , it also generates an ACK packet for flow f and sends it to
f ’s source along any path. Finally, when an ACK packet for flow f
is received at the source node,

• clear waiting-for-ACK in RCT[ f ],
• set on_timestamp← current time, and
• adjust current-N (see Section 3.4 below).

Flow f is then free to continue transmission.

3.4 Switching frequency control
To find a good sequence length N, PDIOR aims to keep the ra-

tio of the off_time (when packets are not being transmitted) to the
on_time (when packets are being transmitted) within a heuristi-
cally determined range. The on_time can be computed locally at
the source node, and the off_time is the number of cycles between
when the switch packet is transmitted and the ACK packet received.
N is then adjusted as follows:

• if off_time > on_time/lth, N is multiplied by
2dlog2(lth·off_time/on_time)e

• if off_time < on_time/hth, N is divided by
2dlog2(on_time/(hth·off_time))e

The parameter lth gives the lower boundary of “duty cycle” D,
that is on_time/(on_time + off_time). In PDIOR, throughput dur-
ing on_time is scaled down roughly by D because packets are not
injected in off_time; hence PDIOR cannot outperform single-path
EDVCA if throughput during on_time is cannot exceed the through-
put of single-path EDVCA after being scaled down by D. We ad-
dress this by requiring a minimum duty cycle: for example, in an 8-
by-8 mesh, we set the minimum duty cycle to be 1/1.5, with lth = 2,
because the worst-case throughput of O1TURN routing is about
150% greater than the worst-case throughput of DOR assuming that
throughput during on_time is roughly the same as O1TURN.

3.5 Effects
PDIOR guarantees network-level inorder packet delivery in a

multi-VC network, while maintaining the congestion-robustness
and fault-tolerance advantages of path-diverse routing and reduc-
tion in head-of-line blocking due to EDVCA on multiple VCs. Al-
though the need to wait for acknowledgement before switching
paths slightly lowers the possible throughput, automatically adjust-
ing the contiguous packet sequence length N as described in Sec-
tion 3.4 ensures that this off_time is low compared to the on_time
during which packets are actually transmitted, and, as shown in
Section 5, often exploits the benefits gained from path diversity.

While in this paper we focus on a two-path version of PDIOR
based on O1TURN in a 2D mesh geometry, the technique can be

used in any connection geometry, and can be applied to any path-
diverse algorithm where the route can be selected at the source (i.e.,
not along the way): instead of inverting the route choice (XY vs.
YX), one would randomly select among the available routes.

4. IMPLEMENTATION COST

4.1 Conventional Inorder Network
Ensuring inorder packet delivery in a fast on-chip network in-

curs some additional cost in all but the most basic routing schemes
(e.g., single-VC DOR); for example, a store-and-reorder scheme
with good performance would require significant buffer space at
the destination as discussed in Section 1.

If the size of reorder buffer is not enough to hold all out-of-order
packets until they can be reordered, either end-to-end flow control
or retransmission is required to ensure that the destination buffers
do not overflow, which requires additional memory space at the
source and degrades throughput due to additional protocols.

Instead of dedicated reorder buffers at network nodes, out-of-
order packets may be stored in the main memory of processing el-
ements. Even so, any out-of-order packets must be removed from
the network at line rate in order to prevent deadlock, which im-
poses the severe requirement that the memory be fast enough to
keep up; equipping a processing element with enough such mem-
ory to satisfy both the reorder buffers and the applications it runs
can be prohibitively expensive.

Thus, conventional implementations of inorder packet delivery
either require a large amount of fast memory at each node, or sig-
nificantly degrade the performance. In comparison, as shown be-
low, PDIOR requires only a modicum of additional hardware.

4.2 PDIOR
As PDIOR uses EDVCA on each path, each node needs a Flow

Assignment Table (FAT), which maps each flow ID to a remote VC
assignment (two bits for a 4-VC system) and a flit count (three bits
for eight-flit queues per VC); the table key is a flow ID, which, as-
suming a flow for each source-destination pair in an 8×8 system,
might be twelve bits. While at first blush it might appear that in a
system with many flows the FAT might have to be quite large—
e.g., 4096 entries in an 8× 8 mesh—observe that only a much
smaller subset of flows will ever pass through any single node. In
O1TURN-based PDIOR, this is limited to flows where either the
source or the destination node is on the same row or column as the
relevant transit node: in an N×N mesh the maximum number of
flows that pass through a single node is N2(2N− 1)/4 with even
N or(2N−1)(N2−1)/4 with odd N, for a total of 240 bytes in an
8×8 mesh with 4 eight-flit VCs.

PDIOR also needs a Route Control Table (RCT) at each source
node (see Section 3.3). Although this table is nominally addressed
by the flow ID, such IDs generally encode the source and destina-
tion node IDs; since the RCT lives at the source node, its node ID
can be ignored, and in an 8× 8 system with a flow between each
source/destination pair, each source node would need a 63-entry
table. Each entry in the table requires a bit for the route direction
(XY or YX), a bit for the ACK flag, several (say 15) bits for the
sequence length and the off-timestamp (which can be relative), for
a total of 32 bits (the on-timestamp can be omitted as the on-time
can be approximated from N).

In all, PDIOR requires a total of 492 bytes per node (240 bytes
for the FAT, and 252 bytes for the RCT). In comparison, a reorder-
ing scheme might need to buffer more than 50 packets with their
timestamps (see Section 1) for each flow arriving at a node, which
translates to 6,500 bytes for 128-byte packets with two-byte times-
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1: Router architecture with PDIOR support, with significant
deltas from the traditional virtual-channel router highlighted in

green (FAT) and blue (RCT).

tamps when only only one flow arrives at each node, and potentially
hundreds of kilobytes if a node receives multiple flows.

A path-diverse O1TURN router already randomly selects a route
for every packet at the source with 50% probability. PDIOR adds
an overhead of an additional RCT lookup before the random se-
lection (because N must be retrieved from the RCT), and requires
more random bits per query (because the probability varies with N);
this, however, is easily pipelined and does not limit throughput. A
small amount of additional logic is required for ACK handling and
adjustment of the average sequence length N: arriving head flits
must be examined for the switch bit, and an ACK packet generated
for each switch packet; in addition, arriving ACK packets must be
discarded and their arrival times used to recompute N in the RCT.

Finally, PDIOR causes a small traffic overhead. The additional
switch flag required in each head flit will not affect flit size in most
designs, as the other information (flow ID and length) need not
take up the entire bit width of the flit, so the overhead is caused
entirely by the ACK packets. These packets themselves need not
carry any data and so can be limited to just one flit; even with small
packets and relatively small N, this does not appreciably increase
the amount of traffic on the network.

These small overheads compare favorably with the resources and
logic required to implement a typical store-and-reorder scheme for
inorder delivery. Unlike reorder buffers, the additional table memo-
ries do not grow with maximum packet size, and the additional VC
allocation, credit update, and route control logic are much simpler
than the logic needed to reorder, acknowledge, and possibly store
and retransmit packets.

5. EXPERIMENTAL RESULTS
We have evaluated the performance of PDIOR via extensive sim-

ulation on synthetic benchmarks as well as a load profile obtained
from a parallel implementation of an H.264 video decoder, and re-
port the results below.

5.1 Experimental setup
We compared throughput and latency of O1TURN-based PDIOR

to dynamic-VCA DOR, dynamic-VCA O1TURN (O1TURN-OoO),
and also DOR-based single-path EDVCA (EDVCA). While the
baseline DOR and O1TURN with dynamic VCA do not guarantee
inorder packet delivery, comparing against them shows that inorder
delivery can be implemented without a performance penalty.

For our experiments, we used an in-house cycle-accurate NoC
simulator, which implements an ingress-queued standard virtual-
channel router [3]. To mitigate crossbar cost with routing schemes
that require multiple VCs to avoid deadlock, a VC output multi-
plexer chooses a subset of the VCs at each ingress and presents the
chosen subset for switch allocation. To avoid unfairness effects re-

sulting from a particular combination of round-robin strategy and
packet arrival rate, VCs in switch and VC allocation are considered
in random order and greedily matched. To estimate the impact of
out-of-order packets, we implemented a store-and-reorder strategy,
although reorder buffer sizes are not limited and so retransmission
is never necessary.

Table 1 summarizes the configurations used for the experiments
that are shown here. We repeated the experiments on 2 VCs and
an 8×8 crossbar with 4 ports from the processor to the switch; as
the results as they have the same flavor as those presented, we omit
them for brevity.

5.2 Throughput analysis
It is not surprising that multi-path routing can significantly out-

perform single-path routing by reducing link congestion and load-
balancing traffic; for example, on bit-reverse and transpose, both
O1TURN and PDIOR outperform single-path routing by 33%, with
PDIOR performing at 96% of dynamic-VCA O1TURN (Figure 2).
More interestingly, PDIOR can significantly outperform dynamic-
VCA O1TURN (bit-complement, shuffle, H.264 profile); this is
because PDIOR mitigates head-of-line blocking and improves load
balancing by independently adjusting the switching frequency for
each flow. The relative performance of PDIOR benefits even more
from ameliorating head-of-line blocking when there are more vir-
tual channels at each port: while PDIOR does slightly better for
all benchmarks, the performance of dynamic DOR and O1TURN
degrades because of increased head-of-line blocking (Figure 3).

5.3 Latency analysis
While we focus more on throughput performance, we reasoned

that PDIOR may have longer packet latency than dynamic-VCA
DOR/O1TURN as PDIOR prevents packets from being injected
until the previous switching packet has been acknowledged by the
destination node.

Figure 4 shows the average end-to-end packet latency with 4 vir-
tual channels per port. The PDIOR latency plot is clearly different
from the others: in some cases its latency shoots up at a lower
throughput than O1TURN (bit-complement) and in other cases it
offers reasonable latency up to a much higher throughput compared
to O1TURN (shuffle, transpose, H.264); in almost all cases, how-
ever, the latency under PDIOR increases more gradually.

This is a side-effect of the PDIOR duty cycle of on_time and
off_time: the offered rate during on_time is higher than the de-
livered rate on average even if the network is not fully saturated,
because some packets can be delivered in off_time. Packets of-
fered in on_time can thus experience increased end-to-end latency,
and PDIOR latency starts increasing before O1TURN even if its
saturated throughput is similar (bit-reverse and transpose), or even
higher (shuffle). On the other hand, latency under PDIOR increases
only gradually, as offered packets are eventually delivered during

Topology 8×8 2D mesh
Routing DOR–XY(OoO), O1TURN(OoO),

EDVCA(XY), PDIOR(O1TURN)
Link bandwith 1 flit/cycle
Crossbar size 5-by-5
VCs per port 4, 8
VC buffer size 8 flits
Avg. packet size 8 flits
Traffic workload transpose, shuffle, bit-complement,

bit-reverse, H.264 decoder profile
Warmup cycles 240,000
Analyzed cycles 960,000
Burstiness model Markov modulated process

1: Network configuration summary
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(c) bit-reverse
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(d) transpose
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2: Throughput of PDIOR (inorder) vs. DOR/O1TURN (out-of-order) and EDVCA (inorder) under 4 VCs.
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3: Throughput of PDIOR (inorder) vs. DOR/O1TURN (out-of-order) and EDVCA (inorder) under 8 VCs.

off_time (bit-complement is an exception here because the through-
put of dynamic-VCA DOR and O1TURN is unstable: at lower
offered rate the delivered rate of DOR and O1TURN is higher
than PDIOR so the latency seems to be lower than PDIOR, but at
higher offered rates, DOR/O1TURN throughput goes down so the
latency at saturation jumps to infinity at a lower delivered rate than
PDIOR). At higher offered rates, on the other hand, the actual injec-
tion rates of PDIOR become lower than O1TURN because injec-
tion pauses during off_time, and the latency of PDIOR at saturation
becomes lower than O1TURN even when the saturated throughput
is worse than O1TURN (e.g., bit-reverse and transpose).

Note that, for consistency with the throughput results, the plots
for dynamic-VCA DOR and O1TURN exclude latencies associated
with packet reordering. In both of these out-of-order schemes, im-
plementing inorder delivery would contribute significantly to the
observed latency, as it would add both the latency of waiting for
out-of-order packets and the latency of reordering the packets.

6. CONCLUSION
Although applications that require packets to arrive in the order

in which they were sent are ubiquitous, guaranteeing inorder packet
delivery has received comparatively little attention in routing al-
gorithm design, and, with the exception of single-VC dimension-
order routing and static VC assignment, has generally been rele-
gated to a higher level of abstraction. As ultra-fast on-chip net-
works become common, however, buffer-based packet reordering
can become a significant bottleneck. Moreover, existing inorder
network schemes do not apply to multi-path routing which can en-
hance throughput performance of the network. We have proposed
Path Diverse In Order Routing, which extends the inorder guar-
antee of EDVCA to routing algorithms where each flow may be
routed via multiple paths. Ensuring inorder delivery under vari-
ous routing algorithms at the network level obviates the need for
expensive buffers and retransmission logic, promising better per-
formance at a lower cost than a traditional higher-level store-and-
reorder scheme in the niche of fast on-chip networks.
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(c) bit-reverse
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(d) transpose
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4: Average end-to-end latencies of PDIOR, dynamic-VCA DOR/O1TURN and EDVCA under 4 VCs. Reorder latency is not included for
dynamic-VCA/O1TURN.
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